1. Convergence of gauge method for incompressible flow.
C. Wang, J.-G. Liu, Mathematics of Computation,
69, (2000), 1385-1407.
PDF file
2. Analysis of finite difference schemes for unsteady
Navier-Stokes equations in vorticity formulation.
C. Wang, J.-G. Liu, Numerische Mathematik, 91, (2002), 543-576.
PDF file
3. A fourth order scheme for incompressible
Boussinesq equations.
J.-G. Liu, C. Wang, H. Johnston,
Journal of Scientific Computing, 18, (2003), 253-285.
PDF file
4. Positivity property of second order flux-splitting schemes
of compressible Euler equations.
C. Wang, J.-G. Liu, Discrete and Continuous
Dynamical Systems-Series B, 3, (2003), 201-228.
PDF file
5. A fast finite difference method for solving Navier-Stokes
equations on irregular domains.
Z. Li, C. Wang, Communications in Mathematical Sciences,
1, (2003), 181-197.
PDF file
6. Fourth order convergence of compact difference solver
for incompressible flow.
C. Wang, J.-G. Liu, Communications in Applied Analysis,
7, (2003), 171-191.
PDF file
7. Surface pressure Poisson equation formulation
of the primitive equations: Numerical schemes.
R. Samelson, R. Temam, C. Wang, S. Wang,
SIAM Journal of Numerical Analysis, 41, (2003), 1163-1194.
PDF file
8. The primitive equations formulated in mean vorticity.
C. Wang, Discrete and Continuous Dynamical Systems,
Proceeding of ``International Conference on
Dynamical Systems and Differential Equations'', 2003, 880-887.
PDF file
9. High order finite difference methods for unsteady
incompressible flows in multi-connected domains.
J.-G. Liu, C. Wang, Computers and Fluids, 33, (2004), 223-255.
PDF file
10. Analysis of a fourth order finite difference
method for incompressible Boussinesq equations.
C. Wang, J.-G. Liu, H. Johnston,
Numerische Mathematik, 97, (2004), 555-594.
PDF file
11. Convergence analysis of the numerical method for the
primitive equations formulated in mean vorticity on
a Cartesian grid.
C. Wang, Discrete and Continuous Dynamical Systems-Series B,
4, (2004), 1143-1172.
PDF file
12. Boundary-layer separation and adverse pressure gradient for
2-D viscous incompressible flow.
M. Ghil, J.-G. Liu, C. Wang, S. Wang,
Physica D, 197, (2004), 149-173.
PDF file
13. Global weak solution of the planetary
geostrophic equations with inviscid geostrophic balance
J. Liu, R. Samelson, C. Wang,
Applicable Analysis, 85, (2006), 593-606.
PDF file
14. A fourth order numerical method for the planetary
geostrophic equations with inviscid geostrophic balance.
R. Samelson, R. Temam, C. Wang, S. Wang,
Numerische Mathematik, 107, (2007), 669-705.
PDF file
15. A fourth order numerical method for the
primitive equations formulated in mean vorticity.
with J.-G. Liu, C. Wang,
Communications in Computational Physics, 4, (2008), 26-55.
PDF file
16. A fourth order difference scheme for the
Maxwell equations on Yee grid.
A. Fathy, C. Wang, J. Wilson, S. Yang,
Journal of Hyperbolic Differential Equations,
5, (2008), 613-642
PDF file
17. An accurate and stable fourth order finite difference
time domain method.
J. Wilson, C. Wang, S. Yang, A. Fathy, Y. Kang,
IEEE Xplore, MTT-S International Microwave Symposium Digest,
June 2008, 1369-1372.
PDF file
18. A general stability condition for multi-stage
vorticity boundary conditions in incompressible fluids.
C. Wang, Methods and Applications of Analysis,
15, (2008), 469-476.
PDF file
19. Structural stability and bifurcation for 2-D
divergence-free vector with symmetry.
C. Hsia, J.-G. Liu, C. Wang,
Methods and Applications of Analysis,
15, (2008), 495-512.
PDF file
20. Analysis of rapidly twisted hollow waveguides.
J. Wilson, C. Wang, A. Fathy, Y. Kang,
IEEE Transactions on Microwave Theory and Techniques,
57, (2009), 130-139.
PDF file
21. Applications of twisted hollow waveguides
as accelerating structures.
J. Wilson, A. Fathy, Y. Kang, C. Wang,
IEEE Transactions on Nuclear Science,
56, (2009), 1479-1486.
PDF file
22. An energy stable and convergent finite-difference
scheme for the phase field crystal equation.
S. Wise, C. Wang, J. Lowengrub,
SIAM Journal on Numerical Analysis,
47, (2009), 2269-2288.
PDF file
23. Stable and efficient finite-difference
nonlinear-multigrid schemes for the
phase field crystal equation.
Z. Hu, S. Wise, C. Wang, J. Lowengrub,
Journal of Computational Physics,
228, (2009), 5323-5339.
PDF file
24. Unconditionally stable schemes for equations
of thin film epitaxy.
C. Wang, X. Wang, S. Wise,
Discrete and Continuous Dynamical Systems-Series A,
28, (2010), 405-423.
PDF file
25. Global smooth solutions of the three-dimensional
modified phase field crystal equation.
C. Wang, S. Wise,
Methods and Applications of Analysis,
17, (2010), 191-212.
PDF file
26. An energy stable and convergent finite-difference
scheme for the modified phase field crystal equation.
C. Wang, S. Wise,
SIAM Journal on Numerical Analysis,
49, (2011), 945-969.
PDF file
27. Second-order convex splitting schemes for gradient
flows with Ehrlich-Schwoebel type energy:
Application to thin film epitaxy.
J. Shen, C. Wang, X. Wang, S. Wise,
SIAM Journal on Numerical Analysis,
50, (2012), 105-125.
PDF file
28. Long time stability of a classical efficient
scheme for two dimensional Navier-Stokes equations.
S. Gottlieb, F. Tone, C. Wang, X. Wang, D. Wirosoetisno,
SIAM Journal on Numerical Analysis,
50, (2012), 126-150.
PDF file
29. A linear energy stable scheme for
a thin film model without slope selection.
W. Chen, S. Conde, C. Wang, X. Wang, S. Wise,
Journal of Scientific Computing,
52, (2012), 546-562.
PDF file
30. Stability and convergence analysis of
fully discrete Fourier collocation spectral method
for 3-D viscous Burgers' equation.
S. Gottlieb, C. Wang,
Journal of Scientific Computing,
53, (2012), 102-128.
PDF file
31. Energy stable and efficient finite-difference
nonlinear multigrid schemes for the modified
phase field crystal equation.
A. Baskaran, Z. Hu, J. Lowengrub, C. Wang,
S. Wise, P. Zhou,
Journal of Computational Physics,
250, (2013), 270-292.
PDF file
32. Convergence analysis of a second order
convex splitting scheme for the modified
phase field crystal equation.
A. Baskaran, J. Lowengrub, C. Wang, S. Wise,
SIAM Journal on Numerical Analysis,
51, (2013), 2851-2873.
PDF file
33. A linear iteration algorithm for a second
order energy stable scheme for a thin film
model without slope selection.
W. Chen, C. Wang, X. Wang, S. Wise,
Journal of Scientific Computing,
59, (2014), 574-601.
PDF file
34. A local pressure boundary condition spectral
collocation scheme for the three-dimensional
Navier-Stokes equations.
H. Johnston, C. Wang, J.-G. Liu,
Journal of Scientific Computing,
60, (2014), 612-626.
PDF file
35. Second order convex splitting schemes for
periodic nonlocal Cahn-Hilliard and Allen-Cahn
equations.
Z. Guan, J. Lowengrub, C. Wang, S. Wise,
Journal of Computational Physics,
277, (2014), 48-71.
PDF file
36. A convergent convex splitting scheme for
the periodic nonlocal Cahn-Hilliard equation.
Z. Guan, C. Wang, S. Wise,
Numerische Mathematik,
128, (2014), 377-406.
PDF file
37. A Fourier pseudospectral method
for the ``Good" Boussinesq equation with
second-order temporal accuracy.
K. Cheng, W. Feng, S. Gottlieb, C. Wang,
Numerical Methods for Partial Differential Equations,
31, (2015), 202-224.
PDF file
38. An energy-conserving second order numerical
scheme for nonlinear hyperbolic equation with
an exponential nonlinear term.
L. Wang, W. Chen, C. Wang,
Journal of Computational and Applied Mathematics,
280, (2015), 347-366.
PDF file
39. Simple finite element numerical simulation of incompressible flow over non-rectangular domains and the super-convergence analysis.
Y. Xue, C. Wang, J.-G. Liu, Journal of Scientific Computing, 65 (2015), 1189-1216.
PDF file
40. An $H^2$ convergence of a second-order convex-splitting, finite difference scheme for the three-dimensional Cahn-Hilliard equation.
J. Guo, C. Wang, S. Wise, X. Yue, Communications in Mathematical Sciences, 14 (2016), 489-515.
PDF file
41. Convergence analysis of a fully discrete finite difference scheme for Cahn-Hilliard-Hele-Shaw equation.
W. Chen, Y. Liu, C. Wang, S. Wise, Mathematics of Computation, 85 (2016), 2231-2257.
PDF file
42. Global-in-time Gevrey regularity solution for a class of bistable gradient flows.
N. Chen, C. Wang, S. Wise, Discrete and Continuous Dynamical Systems-Series B, 21 (2016), 1689-1711.
PDF file
43. An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations.
Z. Guan, V. Heinonen, J. Lowengrub, C. Wang, S. Wise, Journal of Computational Physics, 321 (2016), 1026-1054.
PDF file
44. Stability and convergence of a second order mixed finite element method for the Cahn-Hilliard equation.
A. Diegel, C. Wang, S. Wise, IMA Journal of Numerical Analysis, 36 (2016), 1867-1897.
PDF file
45. Long time stability of high order multi-step numerical schemes for two-dimensional incompressible Navier-Stokes equations.
K. Cheng, C. Wang, SIAM Journal on Numerical Analysis, 54 (2016), 3123-3144.
PDF file
46. A second-order, weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method.
K. Cheng, C. Wang, S. Wise, X. Yue, Journal of Scientific Computing, 69 (2016), 1083-1114.
PDF file
47. Preconditioned steepest descent methods for some regularized p-Laplacian problems.
W. Feng, A. Salgado, C. Wang, S. Wise, Journal of Computational Physics, 334 (2017), 45-67.
PDF file
48. Error analysis of a mixed finite element method for a Cahn-Hilliard-Hele-Shaw system.
Y. Liu, W. Chen, C. Wang, S. Wise, Numerische Mathematik, 135 (2017), 679-709.
PDF file
49. Error analysis of an energy stable finite difference scheme
for the epitaxial thin film growth model with slope selection with an improved
convergence constant.
Z. Qiao, C. Wang, S. Wise, Z. Zhang, International Journal of Numerical Analysis and Modeling, 14 (2017), 283-305.
PDF file
50. A second order operator splitting numerical scheme for the ``Good" Boussinesq equation.
C. Zhang, H. Wang, J. Huang, C. Wang, X. Yue, Applied Numerical Mathematics, 119 (2017), 179-193.
PDF file
51. A third order linearized BDF scheme for Maxwell's equations with nonlinear conductivity using finite element method.
C. Yao, C. Wang, Y. Kou, Y. Lin, International Journal of Numerical Analysis and Modeling, 14 (2017), 511-531.
PDF file
52. Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system.
A. Diegel, C. Wang, X. Wang, S. Wise, Numerische Mathematik, 135 (2017), 495-534.
PDF file
53. A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation.
Y. Yan, W. Chen, C. Wang, S. Wise, Communications in Computational Physics, 23 (2018), 572-602.
PDF file
54. Convergence analysis for second order accurate convex splitting
scheme for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations.
Z. Guan, J. Lowengrub, C. Wang, Mathematical Methods in the Applied Sciences, 40 (2017), 6836-6863.
PDF file
55. Convergence analysis and numerical implementation of a second order numerical scheme for the three-dimensional phase field crystal equation.
L. Dong, W. Feng, C. Wang, S. Wise, Z. Zhang, Computers & Mathematics with Applications, 75 (2018), 1912-1928.
PDF file
56. Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization.
Y. Chen, J. Lowengrub, J. Shen, C. Wang, S. Wise, Journal of Computational Physics, 365 (2018), 56-73.
PDF file
57. On the operator splitting and integral equation preconditioned deferred correction methods for the ``Good" Boussinesq equation.
C. Zhang, J. Huang, C. Wang, X. Yue, Journal of Scientific Computing, 75 (2018), 687-712.
PDF file
58. A second order energy stable linear scheme for a thin film model without slope selection.
W. Li, W. Chen, C. Wang, Y. Yan, R, He, Journal of Scientific Computing, 76 (2018), 1905-1937.
PDF file
59. A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard equation and its convergence analysis.
W. Feng, Z. Guan, J. Lowengrub, C. Wang, S. Wise, Y. Chen, Journal of Scientific Computing, 76 (2018), 1938-1967.
PDF file
60. A second order numerical scheme for the annealing of metallic-intermetallic laminate composite: a ternary reaction system.
S. Zhou, Y. Wang, X. Yue, C. Wang, Journal of Computational Physics, 374 (2018), 1044-1060.
PDF file
61. A second-order energy stable Backward Differentiation Formula method for the epitaxial thin film equation with slope selection.
W. Feng, C. Wang, S. Wise, Z. Zhang, Numerical Methods for Partial Differential Equations, 34 (2018), 1975-2007.
PDF file
62. A second order energy stable scheme for the Cahn-Hilliard-Hele-Shaw equation.
W. Chen, W. Feng, Y. Liu, C. Wang, S. Wise, Discrete and Continuous Dynamical Systems-Series B, 24 (2019), 149-182.
PDF file
63. Optimal rate convergence analysis of a second order numerical scheme for the Poisson-Nernst-Planck system.
J. Ding, C. Wang, S. Zhou, Numerical Mathematics: Theory, Methods and Applications, 12, (2019), 607-626.
PDF file
64. Numerical methods for porous medium equation by an energetic variational approach.
C. Duan, C. Liu, C. Wang, X. Yue, Journal of Computational Physics, 385, (2019), 13-32.
PDF file
65. Numerical complete solution for random genetic drift by energetic variational approach.
C. Duan, C. Liu, C. Wang, X. Yue, Mathematical Modeling and Numerical Analysis, 53, (2019), 615-634.
PDF file
66. An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation.
K. Cheng, W. Feng, C. Wang, S. Wise, Journal of Computational and Applied Mathematics, 362, (2019), 574-595.
PDF file
67. An energy stable Fourier pseudo-spectral numerical scheme for the square phase field crystal equation.
K. Cheng, C. Wang, S. Wise, Communications in Computational Physics, 26, (2019), 1335-1364.
PDF file
68. A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability.
K. Cheng, Z. Qiao, C. Wang, Journal of Scientific Computing, 81, (2019), 154-185.
PDF file
69. Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential.
W. Chen, C. Wang, X. Wang, S. Wise, Journal of Computational Physics: X, 3, (2019), 100031.
PDF file
70. A positivity-preserving, energy stable and convergent numerical scheme for the Cahn-Hilliard equation with a Flory-Huggins-deGennes energy.
L. Dong, C. Wang, H. Zhang, Z. Zhang, Communications in Mathematical Science, 17, (2019), 921-939.
PDF file
71. Second-order semi-implicit projection methods for micromagnetics simulations.
C. Xie, C.J. Garcia-Cervera, C. Wang, Z. Zhou, Journal of Computational Physics, 404, (2020), 109104.
PDF file
72. A weakly nonlinear energy stable scheme for the strongly anisotropic Cahn-Hilliard system and its convergence analysis.
K. Cheng, C. Wang, S. Wise, Journal of Computational Physics, 405 (2020), 109109.
PDF file
73. Convergence analysis of a numerical Scheme for the porous medium equation by an energetic variational approach.
C. Duan, C. Liu, C. Wang, X. Yue, Numerical Mathematics: Theory, Methods and Applications, 13 (2020), 63-80.
PDF file
74. A stabilized second order ETD multistep method for thin film growth model without slope selection.
W. Chen, W. Li, Z. Luo, C. Wang, X. Wang, Mathematical Modeling and Numerical Analysis, M2AN, 54 (2020), 727-750.
PDF file
75. Optimal rate convergence analysis of a second order scheme for a thin film model with slope selection.
S. Wang, W. Chen, H. Pan, C. Wang, Journal of Computational and Applied Mathematics, 377 (2020), 112855.
PDF file
76. Energy stable numerical schemes for Ternary Cahn-Hilliard system.
W. Chen, C. Wang, S. Wang, X. Wang, S. Wise, Journal of Scientific Computing, 84 (2020), 27.
PDF file
77. Energy stable higher order linear ETD multi-step methods for gradient flows: application to thin film epitaxy.
W. Chen, W. Li, C. Wang, S. Wang, X. Wang, Research in the Mathematical Sciences, 7 (2020), 13.
PDF file
78. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation.
K. Cheng, C. Wang, S. Wise, Z. Yuan, Discrete and Continuous Dynamical Systems-Series S, 13 (2020), 2211-2229.
PDF file
79. A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters.
L. Dong, C. Wang, H. Zhang, Z. Zhang, Communications in Computational Physics, 28 (2020), 967-998.
PDF file
80. Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn-Hilliard equation.
C. Zhang, J. Ouyang, C. Wang, S. Wise, Journal of Computational Physics, 423 (2020), 109772.
PDF file
81. Artificial regularization parameter analysis for the no-slope-selection epitaxial thin film model.
X. Meng, Z. Qiao, C. Wang, Z. Zhang, CSIAM Transaction on Applied Mathematics, 1 (2020), 441-462.
PDF file
82. Convergence analysis for a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn-Hilliard equation.
X. Li, Z. Qiao, C. Wang, Mathematics of Computation, 90 (2021), 171-188.
PDF file
83. A positive and energy stable numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard equations with steric interactions.
Y. Qian, C. Wang, S. Zhou, Journal of Computational Physics, 426 (2021), 109908.
PDF file
84. An improved error analysis for a second-order numerical scheme for the Cahn-Hilliard equation.
J. Guo, C. Wang, S. Wise, X. Yue, Journal of Computational and Applied Mathematics, 388 (2021), 113300.
PDF file
85. A third order BDF energy stable linear scheme for the no-slope-selection thin film model.
Y. Hao, Q. Huang, C. Wang, Communications in Computational Physics, 29 (3) (2021), 905-929.
PDF file
86. A structure-preserving, operator splitting scheme for reaction-diffusion equations with detailed balance.
C. Liu, C. Wang, Y. Wang, Journal of Computational Physics, 436 (2021), 110253.
PDF file
87. Structure-preserving, energy stable numerical schemes for a liquid thin film coarsening model.
J. Zhang, C. Wang, S. Wise, Z. Zhang, SIAM Journal on Scientific Computing, 43 (2) (2021), A1248-A1272.
PDF file
88. A positivity-preserving and convergent numerical scheme for the binary fluid-surfactant system.
Y. Qin, C. Wang, Z. Zhang, International Journal of Numerical Analysis and Modeling, 18 (3) (2021), 399-425.
PDF file
89. An energy stable finite element scheme for the three-component Cahn-Hilliard-type model for macromolecular microsphere composite hydrogels.
M. Yuan, W. Chen, C. Wang, S. Wise, Z. Zhang, Journal of Scientific Computing, 87 (2021), 78.
PDF file
90. Convergence analysis of a second-order semi-implicit projection method for Landau-Lifshiz equation.
J. Chen, C. Wang, C. Xie, Applied Numerical Mathematics, 168 (2021), 55-74.
PDF file
91. A positivity preserving, energy stable scheme for the ternary Cahn-Hilliard system with the singular interfacial parameters.
L. Dong, C. Wang, S. Wise, Z. Zhang, Journal of Computational Physics, 442 (2021), 110451.
PDF file
92. A second order accurate scalar auxiliary variable (SAV) numerical method for the square phase field crystal equation.
M. Wang, Q. Huang, C. Wang, Journal of Scientific Computing, 88 (2) (2021), 33.
PDF file
93. A positivity-preserving, energy stable and convergent numerical scheme for the Poisson-Nernst-Planck system.
C. Liu, C. Wang, S. Wise, X. Yue, S. Zhou, Mathematics of Computation, 90 (2021), 2071-2106.
PDF file
94. High order accurate in time, fourth order finite difference schemes for the harmonic mapping flow.
Z. Xia, C. Wang, L. Xu, Z. Zhang, Journal of Computational and Applied Mathematics, 401, (2022), 113766.
PDF file
95. Error estimate of second order accurate scalar auxiliary variable (SAV) scheme for the thin film epitaxial models.
Q. Cheng, C. Wang, Advances in Applied Mathematics and Mechanics, 13 (2021), 1318-1354.
PDF file
96. Convergence analysis of Fourier pseudo-spectral schemes for three-dimensional incompressible Navier-Stokes equations.
C. Wang, Electronic Research Archives, 29 (5) (2021), 2915-2944.
PDF file
97. A modified Crank-Nicolson scheme for the Flory-Huggins Cahn-Hilliard model.
W. Chen, J. Jing, C. Wang, X. Wang, S. Wise, Communications in Computational Physics, 31 (1) (2022), 60-93.
PDF file
98. An iteration solver for the Poisson-Nernst-Planck system and its convergence analysis.
C. Liu, C. Wang, S. Wise, X. Yue, S. Zhou, Journal of Computational and Applied Mathematics, 406 (2022), 114017.
PDF file
99. A second-order numerical method for Landau-Lifshitz-Gilbert equation with large damping parameters.
Y. Cai, J. Chen, C. Wang, C. Xie, Journal of Computational Physics, 451 (2022), 110831.
PDF file
100. Convergence analysis of structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions.
C. Duan, W. Chen, C. Liu, C. Wang, S. Zhou, Mathematical Methods in the Applied Sciences, 45 (7) (2022), 3764-3781.
PDF file
101. A third order accurate in time, BDF-type energy stable scheme for the Cahn-Hilliard equation.
K. Cheng, C. Wang, S. Wise, Y. Wu, Numerical Mathematics: Theory, Methods and Applications, 15 (2) (2022), 279-303.
PDF file
102. A second order accurate, energy stable numerical scheme for porous medium equation by an energetic variational approach.
C. Duan, W. Chen, C. Liu, C. Wang, X. Yue, Communications in Mathematical Sciences, 20 (4) (2021), 976-1024.
PDF file
103. Convergence analysis of the variational operator splitting scheme for a reaction-diffusion system with detailed balance.
C. Liu, C. Wang, Y. Wang, S. Wise, SIAM Journal on Numerical Analysis, 60 (2) (2022), 781-803.
PDF file
104. Optimal error estimates of a second-order projection finite element method for magnetohydrodynamic equations.
C. Wang, J. Wang, Z. Xia, L. Xu, Mathematical Modeling and Numerical Analysis, 56 (3) (2022), 767-789.
PDF file
105. A positivity preserving, energy stable finite difference scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes system.
W. Chen, J. Jing, C. Wang, X. Wang, Journal of Scientific Computing, 92 (2022), 31.
PDF file
106. Optimal rate convergence analysis of a numerical scheme for the ternary Cahn-Hilliard system with a Flory-Huggins-deGennes energy potential.
L. Dong, C. Wang, S. Wise, Z. Zhang, Journal of Computational and Applied Mathematics, 406 (2022), 114474.
PDF file
107. Error estimate of a decoupled numerical scheme for the Cahn-Hilliard-Stokes-Darcy system.
W. Chen, D. Han, C. Wang, S. Wang, X. Wang, Y. Zhang, IMA Journal of Numerical Analysis, 42 (3) (2022), 2621-2655.
PDF file
108. A second order accurate, operator splitting schemes for reaction-diffusion systems in the energetic variational formulation.
C. Liu, C. Wang, Y. Wang, SIAM Journal on Scientific Computing, 44 (4) (2022), A2276-A2301.
PDF file
109. A second order accurate in time, energy stable finite element scheme for the Flory-Huggins-Cahn-Hilliard equation.
M. Yuan, W. Chen, C. Wang, S. Wise, Z. Zhang, Advances in Applied Mathematics and Mechanics, 14 (6) (2022), 1477-1508.
PDF file
110. A preconditioned steepest descent solver for the Cahn-Hilliard equation with variable mobility.
X. Chen, C. Wang, S. Wise, International Journal of Numerical Analysis and Modeling, 19 (6) (2022), 839-863.
PDF file
111. A thermodynamically-consistent phase field crystal model of solidification with heat flux.
C. Wang, S. Wise, Journal of Mathematical Study, 55 (2022), 337-357.
PDF file
112. Convergence analysis of structure-preserving numerical methods based on Slotboom transformation for the Poisson-Nernst-Planck equations.
J. Ding, C. Wang, S. Zhou, Communications in Mathematical Sciences, 21 (2) (2023), 459-484.
PDF file
113. Exponential time differencing-Pade finite element method for nonlinear convection-diffusion-reaction equations with time constant delay.
H. Dai, Q. Huang, C. Wang, Journal of Computational Mathematics, 41 (3) (2023), 350-374.
PDF file
114. Convergence analysis on a structure-preserving numerical scheme for the Poisson-Nernst-Planck-Cahn-Hilliard system.
Y. Qian, C. Wang, S. Zhou, CSIAM Transaction on Applied Mathematics, 4 (2) (2023), 345-380.
PDF file
115. An energy stable finite difference scheme for the Ericksen-Leslie system with penalty function and its optimal rate convergence analysis.
K. Cheng, C. Wang, S. Wise, Communications in Mathematical Sciences, 21 (4) (2023), 1135-1169.
PDF file
116. Stabilization parameter analysis of a second order linear numerical scheme
for the nonlocal Cahn-Hilliard equation.
X. Li, Z. Qiao, C. Wang, IMA Journal of Numerical Analysis, 43 (2) (2023), 1089-1114.
PDF file
117. Advantages of a semi-implicit scheme over a fully implicit scheme for Landau-Lifshitz-Gilbert equation.
Y. Sun, J. Chen, R. Du, C. Wang, Discrete and Continuous Dynamical Systems-Series B, 28 (9) (2023), 5105-5122.
PDF file
118. High order accurate and convergent numerical scheme for the strongly anisotropic Cahn-Hilliard mode.
K. Cheng, C. Wang, S. Wise, Numerical Methods for Partial Differential Equations, 39 (2023), 4007-4029.
PDF file
119. A second order accurate, positivity preserving numerical method for the Poisson-Nernst-Planck system and its convergence analysis.
C. Liu, C. Wang, S. Wise, X. Yue, S. Zhou, Journal of Scientific Computing, 97 (1) (2023), 23.
PDF file
120. Error analysis of a linear numerical scheme for the Landau-Lifshitz equation with large damping parameters.
Y. Cai, J. Chen, C. Wang, C. Xie, Mathematical Methods in the Applied Sciences, 46 (2023), 18952-18974.
PDF file
121. Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn-Hilliard-magnetohydrodynamics system of equations.
C. Wang, J. Wang, S. Wise, Z. Xia, L. Xu, Journal of Computational and Applied Mathematics, 436 (2024), 115409.
PDF file
122. Double stabilizations and convergence analysis of a second-order linear numerical scheme for the nonlocal Cahn-Hilliard equation.
X. Li, Z. Qiao, C. Wang, Science China Mathematics, 67 (1) (2024), 187-210.
PDF file
123. A scalar auxiliary variable (SAV) finite element numerical scheme for the Cahn-Hilliard-Hele-Shaw system with dynamic boundary conditions.
C. Yao, F. Zhang, C. Wang, Journal of Computational Mathematics, 42 (2) (2024), 544-569.
PDF file
124. A second order accurate, positivity-preserving numerical scheme of the Cahn-Hilliard-Navier-Stokes system with Flory-Huggins potential.
W. Chen, J. Jing, Q. Liu, C. Wang, X. Wang, Communications in Computational Physics, 35 (2024), 633-661.
PDF file
125. Implicit-explicit Runge-Kutta methods for Landau-Lifshitz equation with arbitrary damping.
Y. Gui, C. Wang, J. Chen, Communications in Mathematical Sciences, 22 (5) (2024), 1397-1425.
PDF file
126. Convergence analysis of a second order numerical scheme for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes system.
W. Chen, J. Jing, Q. Liu, C. Wang, X. Wang, Journal of Computational and Applied Mathematics, 450 (2024), 115981.
PDF file
127. A third order positivity-preserving, energy stable numerical scheme for the Cahn-Hilliard equation with logarithmic potential.
Y. Li, J. Jing, Q. Liu, C. Wang, W. Chen, Science China Mathematics, Chinese version, 54 (2024), 1-30.
PDF file
128. Convergence analysis of a positivity-preserving numerical scheme for the Cahn-Hilliard-Stokes system with Flory-Huggins energy potential.
Y. Guo, C. Wang, S. Wise, Z. Zhang, Mathematics of Computation, 93 (349) (2024), 2185-2214.
PDF file
129. Efficient finite element schemes for a phase field model of two-phase incompressible flows with different densities.
J. Wang, M. Li, C. Wang, Journal of Computational Physics, 518 (2024), 113331.
PDF file
130. Convergence analysis of an implicit finite difference method for the inertial Landau-Lifshitz-Gilbert equation.
J. Chen, P. Li, C. Wang, Journal of Scientific Computing, 101 (2024), 48.
PDF file
131. Convergence analysis of a BDF finite element method for the resistive MHD equations.
L. Ma, C. Wang, Z. Xia, Advances in Applied Mathematics and Mechanics, (2024), accepted and in press.
PDF file
132. A refined convergence estimate for a fourth order finite difference numerical scheme to the Cahn-Hilliard equation.
J. Guo, C. Wang, Y. Yan, X. Yue, Advances in Applied Mathematics and Mechanics, (2024), accepted and in press.
PDF file
133. A third-order implicit-explicit Runge-Kutta method for Landau-Lifshitz equation with arbitrary damping parameters.
Y. Gui, R. Du, C. Wang, Numerical Mathematics: Theory, Methods and Applications, (2024), accepted and in press.
PDF file
134. Convergence analysis of a preconditioned steepest descent solver for the Cahn-Hilliard equation with logarithmic potential.
A. Diegel, C. Wang, S. Wise, International Journal of Numerical Analysis and Modeling, (2024), accepted and in press.
PDF file
135. On a positive-preserving, energy-stable numerical scheme to mass-action kinetics with detailed balance.
C. Liu, C. Wang, Y. Wang, Communications in Mathematical Sciences, (2024), submitted and in review.
136. Global-in-time energy stability analysis for the exponential time differencing Runge-Kutta scheme for the phase field crystal equation.
X. Li, Z. Qiao, C. Wang, Mathematics of Computation, (2024), submitted and in review.
137. A positivity-preserving, second-order energy stable and convergent numerical scheme for a ternary system of macromolecular microsphere composite hydrogels.
L. Dong, C. Wang, Z. Zhang, Journal of Computational and Applied Mathematics, (2024), submitted and in review.
138. Unique solvability and error analysis of the Lagrange multiplier approach for gradient flows.
Q. Cheng, J. Shen, C. Wang, SIAM Journal on Numerical Analysis, (2024), submitted and in review.
139. A second-order accurate, structure preserving numerical scheme for the Poisson-Nernst-Planck-Navier-Stokes (PNPNS) system.
Y. Qin, C. Wang, IMA Journal of Numerical Analysis, (2024), submitted and in review.
140. A second-order, original energy dissipative numerical scheme for chemotaxis and its convergence analysis.
J. Ding, C. Wang, S. Zhou, Mathematics of Computation, (2024), submitted and in review.
141. A uniquely solvable and positivity-preserving finite difference scheme for the Flory-Huggins-Cahn-Hilliard equation with dynamical boundary condition.
Y. Guo, C. Wang, S. Wise, Z. Zhang, Journal of Computational and Applied Mathematics, (2024), submitted and in review.
142. Maximum bound principle and bound preserving ETD schemes for a phase-field model of tumor growth with extracellular matrix degradation.
Q. Huang, Z. Qiao, C. Wang, H. Yang, Mathematical Models and Methods in Applied Sciences, (2024), submitted and in review.
143. A third order accurate, energy stable exponential time differencing multi-step scheme for Landau-Brazovskii model.
M. Cui, Y. Niu, C. Wang, Z. Xu, (2024), in preparation.
144. Convergence analysis for a reaction-diffusion system with nonlinear diffusion process.
C. Liu, C. Wang, Y. Wang, S. Wise, (2024), in preparation.
145. Convergence analysis of a second order accurate, operator splitting scheme for the energetic variational approach of reaction-diffusion system.
C. Liu, C. Wang, Y. Wang, S. Wise, (2024), in preparation.
146. A positivity-preserving, energy stable numerical scheme for the energetic variational approach of reaction-diffusion-Stokes system.
C. Liu, C. Wang, Y. Wang, S. Wise, (2024), in preparation.
147. A positivity preserving, entropy increasing numerical scheme for the thermodynamically-consistent model of phase field crystal equation.
C. Liu, C. Wang, Y. Wang, S. Wise, (2024), in preparation.
148. A third order accurate in time, linear numerical scheme for the Landau-Lifshitz equation.
Y. Cai, J. Chen, C. Wang, C. Xie, (2024), in preparation.
149. A third order accurate, linear energy stable BDF3 numerical scheme for non-local Cahn-Hilliard equation.
Q. Huang, Z. Qiao, C. Wang, (2024), in preparation.
150. High order accurate numerical scheme for a system of reaction diffusion equation.
T. Ferreira, A. Heryudono, C. Wang, (2024), in preparation.
Please send any comments or suggestions to:
cwang1@umassd.edu, 12/06/2024