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Abstract
Asecondorder accurate (in time) numerical scheme is proposed and analyzed for thePoisson–
Nernst–Planck equation (PNP) system, reformulated as a non-constantmobility H−1 gradient
flow in the Energetic Variational Approach (EnVarA). The centered finite difference is taken
as the spatial discretization. Meanwhile, the highly nonlinear and singular nature of the log-
arithmic energy potentials has always been the essential difficulty to design a second order
accurate scheme in time, while preserving the variational energetic structures. The mobility
function is updated with a second order accurate extrapolation formula, for the sake of unique
solvability. Amodified Crank–Nicolson scheme is used to approximate the logarithmic term,
so that its inner product with the discrete temporal derivative exactly gives the corresponding
nonlinear energy difference; henceforth the energy stability is ensured for the logarithmic
part. In addition, nonlinear artificial regularization terms are added in the numerical scheme,
so that the positivity-preserving property could be theoretically proved, with the help of the
singularity associated with the logarithmic function. Furthermore, an optimal rate conver-
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gence analysis is provided in this paper, in which the higher order asymptotic expansion for
the numerical solution, the rough error estimate and refined error estimate techniques have
to be included to accomplish such an analysis. This work combines the following theoretical
properties for a second order accurate numerical scheme for the PNP system: (i) second order
accuracy in both time and space, (ii) unique solvability and positivity, (iii) energy stability,
and (iv) optimal rate convergence. A few numerical results are also presented.

Keywords Poisson–Nernst–Planck (PNP) system · Second order accuracy · Positivity
preserving · Energy stability · Optimal rate convergence analysis · Rough error estimate and
refined estimate

Mathematics Subject Classification 35K35 · 35K55 · 65M06 · 65M12

1 Introduction

The Poisson–Nernst–Planck (PNP) system for the charge dynamics of z0 : z0 electrolytes is
formulated as

∂t n = Dn�n − z0e0
kBθ0

∇ · (Dnn∇φ) , (1.1)

∂t p = Dp�p + z0e0
kBθ0

∇ · (Dp p∇φ
)
, (1.2)

−ε�φ = z0e0(p − n) + ρ f , (1.3)

where n and p are the concentrations of negatively and positively charged ions, and φ is
the electric potential. In this model, kB , θ0, ε, z0, e0 stand for the Boltzmann constant, the
absolute temperature, the dielectric coefficient, valence of ions, the charge of an electron,
respectively; the parameters Dn and Dp are diffusion/mobility coefficients. The periodic
boundary conditions are assumed in this paper, for simplicity of presentation, though the
presented analysis could be extended to more complicated, more physical boundary condi-
tions, such as the homogeneous Neumann one. Furthermore, the source term ρ f is assumed
to vanish everywhere, i.e., ρ f ≡ 0. An extension to a non-homogeneous source term is
straightforward. See the related works [4, 5, 18, 21, 22, 27, 29, 30, 33–35, 37–39, 42] for
more detailed descriptions of this physical model.

In particular, the Energetic Variational Approach (EnVarA) [19] for the PNP system has
attracted more and more attentions, since the PDE system is formulated as a gradient flow
with respect to a certain free energy. This framework has provided great convenience in the
structure preserving analysis, at both the PDE and numerical levels. In fact, the dimensionless
dynamical equations of the PNP system could be rewritten as (see the detailed derivation in
[32])

∂t n = ∇ · (∇n − n∇φ) , (1.4)

∂t p = D∇ · (∇ p + p∇φ) , (1.5)

−�φ = p − n. (1.6)

The corresponding dimensionless energy is given by

E(n, p) =
∫

�

{n ln n + p ln p} dx + 1

2
‖n − p‖2H−1 , (1.7)
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under the assumption that n − p is of mean zero, and the H−1 norm is defined via

‖ f ‖H−1 := √
( f , f )H−1 , ( f , g)H−1 = (

f , (−�)−1g
) = (

(−�)−1 f , g
)
,

for f and g with mean zero .

In turn, the PNP system (1.4)–(1.6) as the following conserved H−1 gradient flow, with
non-constant mobility function:

∂t n = ∇ · (n∇μn) , ∂t p = D∇ · (p∇μp
)
, (1.8)

μn := δn E = ln n + 1 + (−�)−1(n − p) = ln n + 1 − φ, (1.9)

μp := δpE = ln p + 1 + (−�)−1(p − n) = ln p + 1 + φ, (1.10)

where the electric potential is defined as φ = (−�)−1(p − n). A careful calculation implies

that the energy dissipation law becomes dt E = − ∫
�

{
n |∇μn |2 + D p

∣
∣∇μp

∣
∣2
}
dx ≤ 0.

There have been extensive numerical works for the PNP system,whilemost existingworks
have focused on first-order-accurate (in time) algorithms. Second order and even higher order
numerical schemes turn out to be a very important subject, due to their ability to capture more
refined structures in long-time simulation. On the other hand, a theoretical analysis for the
second order numerical scheme has always been very challenging, in particular in terms of
the positivity-preserving analysis (the PDE solution preserves this property at a point-wise
level, in the sense that n, p > 0), the energy stability estimate, as well as the optimal rate
convergence analysis. In particular, the highly nonlinear and singular nature of the logarithmic
energy potentials has always been the essential difficulty to design a second order accurate
scheme that is able to preserve the variational energetic structures. Some existing works have
reported one or two theoretical properties in the structure-preserving for the corresponding
numerical method, while no existing second order numerical scheme has been proved to
satisfy all three theoretical properties.

In this paper, we propose and analyze a second order accurate numerical scheme, which
preserves all three important theoretical features. First of all, the numerical scheme has to
be based on the variational structure of the PNP system, so that a theoretical justification
of energy stability is hopeful. In the temporal discretization, a modified Crank–Nicolson
approximation is taken, so that all the terms in the PDE system are evaluated at the mid-
point time instant tm+1/2. The mobility function is explicitly updated in the scheme, with
an explicit second order extrapolation formula. The advantage of this choice is to enforce
the strictly elliptic nature of the operator associated with the temporal derivative part in the
H−1 gradient flow, so that the unique solvability analysis could go through. Meanwhile, a
direct application of Crank–Nicolson approximation to the logarithmic terms (for n and p)
would lead to a serious difficulty in theoretical justification of the energy stability. Instead,
a modified Crank–Nicolson approximation to the logarithmic term is proposed, in the form

of F(um+1)−F(um )

um+1−um
(with u either the component n or p). This approximation may seem

singular at the first glance, as um+1 → um , while a more careful observation reveals its
analytic property as um+1 − um → 0, and a singularity will not appear even if um+1 = um .
Furthermore, the advantage of this approximation is associated with the fact that, its inner
productwith the discrete temporal derivative exactly gives the correspondingnonlinear energy
difference; henceforth the energy stability is ensured for the logarithmic part. In addition,
nonlinear artificial regularization terms, in the form of �t(ln nm+1 − ln nm), �t(ln pm+1 −
ln pm), are added in the numerical scheme, so that the positivity-preserving property could be
theoretically proved, with the help of the singularity associated with the logarithmic function;
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also see the related works [8, 15, 16] for the Cahn–Hilliardmodel with Flory–Huggins energy
potential.

Moreover, an optimal rate convergence analysis turns out to be another challenging issue
for the PNP system, due to its non-constant mobility nature, as well as the highly nonlinear
and singular properties of the logarithmic terms. The only existing convergence analysis work
for a second order numerical scheme could be found in [13], in which the estimate has been
based on the perfect Laplacian operator structure for n and p, instead of the H−1 gradient flow
structure. To overcome this subtle difficulty, many highly non-standard techniques have to be
introduced, due to the nonlinear parabolic coefficients. The higher order asymptotic analysis
of the numerical solution, up to the fourth order temporal accuracy and spatial accuracy,
has to be performed with a careful linearization expansion. Such a higher order asymptotic
expansion enables one to obtain a rough error estimate, so that to the L∞

h bound for n and p
could be derived, as well as their discrete temporal derivatives. With these bounds at hand,
the corresponding inner product between the discrete temporal derivative of the numerical
error function and the numerical error associated with the chemical potential becomes a
discrete derivative of certain nonlinear, non-negative functional in terms of the numerical
error functions, combined with some numerical perturbation terms. As a result, all the key
difficulties in the nonlinear analysis of the second order scheme will be overcome, and the
discrete Gronwall inequality could be applied to obtain the desired result of optimal rate
convergence analysis. To our knowledge, this scheme will be the first work to combine three
theoretical properties for any second order numerical scheme for the PNP system: unique
solvability/positivity-preserving, energy stability, and optimal rate convergence analysis.

The rest of the article is organized as follows. In Sect. 2 we propose the fully discrete
numerical scheme. The detailed proof for the positivity-preserving property of the numerical
solution, as well as the energy stability analysis, are provided in Sect. 3. The optimal rate
convergence analysis is presented in Sect. 4. Some numerical results are provided in Sect. 5.
Finally, the concluding remarks are given in Sect. 6.

2 The Second Order Accurate Numerical Scheme

2.1 The Finite Difference Spatial Discretization

The standard centered finite difference spatial approximation is applied. We present the
numerical approximation on the computational domain� = (0, 1)3 with a periodic boundary
condition, and �x = �y = �z = h = 1

N with N ∈ N to be the spatial mesh resolution
throughout this work. In particular, fi, j,k stands for the numerical value of f at the cell
centered mesh points

((
i + 1

2

)
h,

(
j + 1

2

)
h,

(
k + 1

2

)
h
)
, and we denote Cper as

Cper : = {(
fi, j,k

)∣∣ fi, j,k = fi+αN , j+βN ,k+γ N , ∀ i, j, k, α, β, γ ∈ Z
}
,

with the discrete periodic boundary condition imposed. In turn, the discrete average and dif-
ference operators are evaluated at (i+1/2, j, k), (i, j+1/2, k) and (i, j, k+1/2), respectively:

Ax fi+1/2, j,k := 1

2

(
fi+1, j,k + fi, j,k

)
, Dx fi+1/2, j,k := 1

h

(
fi+1, j,k − fi, j,k

)
,

Ay fi, j+1/2,k := 1

2

(
fi, j+1,k + fi, j,k

)
, Dy fi, j+1/2,k := 1

h

(
fi, j+1,k − fi, j,k

)
,

Az fi, j,k+1/2 := 1

2

(
fi, j,k+1 + fi, j,k

)
, Dz fi, j,k+1/2 := 1

h

(
fi, j,k+1 − fi, j,k

)
.
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Conversely, the corresponding operators at the staggered mesh points are defined as follows:

ax f
x
i, j,k := 1

2

(
f xi+1/2, j,k + f xi−1/2, j,k

)
, dx f

x
i, j,k := 1

h

(
f xi+1/2, j,k − f xi−1/2, j,k

)
,

ay f
y
i, j,k := 1

2

(
f yi, j+1/2,k + f yi, j−1/2,k

)
, dy f

y
i, j,k := 1

h

(
f yi, j+1/2,k − f yi, j−1/2,k

)
,

az f
z
i, j,k := 1

2

(
f zi, j,k+1/2 + f zi, j,k−1/2

)
, dz f

z
i, j,k := 1

h

(
f zi, j,k+1/2 − f zi, j,k−1/2

)
.

In turn, for a scalar cell-centered function g and a vector function 
f = (
f x , f y, f z

)T , with
f x , f y and f z evaluated at

(
i + 1/2, j, k

)
,
(
i, j + 1/2, k

)
,
(
i, j, k + 1/2

)
, respectively, the

discrete divergence is defined as

∇h · (g 
f )i, j,k = dx
(
Axg · f x

)
i, j,k + dy

(
Ayg · f y

)
i, j,k + dz

(
Azg · f z

)
i, j,k . (2.1)

In particular, if 
f = ∇hφ = (
Dxφ, Dyφ, Dzφ

)T for certain scalar grid function φ, the
corresponding divergence becomes

∇h · (g∇hφ
)
i, j,k = dx (Axg · Dxφ)i, j,k + dy

(
Ayg · Dyφ

)
i, j,k + dz (Azg · Dzφ)i, j,k ,

(2.2)
(
�hφ

)
i, j,k = ∇h · (∇hφ

)
i, j,k = dx (Dxφ)i, j,k + dy

(
Dyφ

)
i, j,k + dz (Dzφ)i, j,k .

(2.3)

The discrete L2
h inner product associated norm are defined as

〈 f , g〉� := h3
N∑

i, j,k=1

fi, j,kgi, j,k, ‖ f ‖2 := (〈 f , f 〉�
) 1
2 , ∀ f , g ∈ Cper.

The mean zero space is introduced as C̊per :=
{
f ∈ Cper

∣∣0 = f := h3
|�|

∑m
i, j,k=1 fi, j,k

}
.

Similarly, for two vector grid functions 
f = (
f x , f y, f z

)T , 
g = (
gx , gy, gz

)T—with f x

(gx ), f y (gy), f z (gz) defined at the edge grid points (i+1/2, j, k), (i, j+1/2, k), (i, j, k+1/2),
respectively—the corresponding discrete inner product is defined as

[ 
f , 
g
]

:= [
f x , gx

]
x + [

gy, gy
]
y + [

f z, gz
]
z ,

where
[
f x , gx

]
x := 〈

ax
(
f x gx

)
, 1

〉
,
[
f y, gy

]
y := 〈

ay
(
f ygy

)
, 1

〉
,
[
f z, gz

]
z := 〈

az( f
zgz), 1

〉
.

We say such functions are in 
E , and in 
Eper, if periodic boundary conditions are enforced.
In addition to the discrete ‖ · ‖2 norm, the discrete maximum (L∞

h ) norm is defined as
‖ f ‖∞ := max1≤i, j,k≤N

∣∣ fi, j,k
∣∣. Moreover, the discrete H1

h and H2
h norms are introduced as

‖∇h f ‖22 := [∇h f ,∇h f ] = [Dx f , Dx f ]x + [
Dy f , Dy f

]
y + [

Dz f , Dz f
]
z ,

‖ f ‖2
H1
h

:= ‖ f ‖22 + ‖∇h f ‖22 , ‖ f ‖2
H2
h

:= ‖ f ‖2
H1
h

+ ‖�h f ‖22.

Summation by parts formulas are recalled in the following lemma; the detailed proof could
be found in [25, 46, 51, 52], et cetera.
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Lemma 2.1 [25, 46, 51, 52] For any ψ, φ, g ∈ Cper , and any 
f ∈ Eper , the following sum-
mation by parts formulae are valid:

〈
ψ,∇h · 
f

〉
= −

[
∇hψ, 
f

]
, 〈ψ,∇h · (g∇hφ)〉 = − [∇hψ, g∇hφ] , (2.4)

where g∇hφ ∈ Eper is defined via
[g∇hφ]x = AxgDxφ, [g∇hφ]y = AygDyφ, [g∇hφ]z = AzgDzφ,

For any ϕ ∈ C̊per and a positive (at a point-wise level) grid function g, the weighed discrete
norm is defined as

‖ϕ‖L−1
g

=
√〈

ϕ,L−1
g (ϕ)

〉
, (2.5)

where ψ = L−1
g (ϕ) ∈ C̊per is the unique solution that solves

Lg(ψ) := −∇h · (g∇hψ) = ϕ. (2.6)

In the simplified case that g ≡ 1, it is obvious that Lg(ψ) = −�hψ , and the discrete H−1
h

norm is introduced as ‖ϕ‖−1,h =
√〈

ϕ, (−�h)−1(ϕ)
〉
.

Lemma 2.2 ([8]) Suppose that ϕ�, ϕ̂ ∈ Cper , with ϕ� − ϕ̂ ∈ C̊per , satisfy 0 < ϕ̂i, j,k, ϕ
�
i, j,k ≤

Mh, for all 1 ≤ i, j, k ≤ N, where Mh > 0 may depend on h. There is a constant C0 > 0,
which depends only upon �, such that

‖(−�h)
−1(ϕ̂ − ϕ�)‖∞ ≤ C0Mh . (2.7)

Lemma 2.3 ([8]) Suppose that ϕ1, ϕ2 ∈ Cper , with ϕ1 − ϕ2 ∈ C̊per . Assume that
‖ϕ1‖∞, ‖ϕ2‖∞ ≤ Mh, where Mh > 0 may depend upon h, and g ∈ Cper satisfies g ≥ g0
(at a point-wise level), for some constant g0 > 0 that is independent of h. Then we have the
following estimate:

∥∥∥L−1
g (ϕ1 − ϕ2)

∥∥∥∞ ≤ C1g
−1
0 h−1/2, (2.8)

where C1 > 0 depends only upon Mh and �.

2.2 The Proposed Second Order Numerical Scheme

The point-wise mobility functions are given by (Mm
n )i, j,k = nmi, j,k ,

(Mm
p

)
i, j,k = Dpmi, j,k .

In turn, the following mobility function at the face-centered mesh points are introduced:

(M̆m+1/2
n

)
i+1/2, j,k :=

((
Ax

(3
2
Mm

n − 1

2
Mm−1

n

)
i+1/2, j,k

)2 + �t6
)1/2

,

(M̆m+1/2
n

)
i, j+1/2,k :=

((
Ay

(3
2
Mm

n − 1

2
Mm−1

n

)
i, j+1/2,k

)2 + �t6
)1/2

,

(M̆m+1/2
n

)
i, j,k+1/2

:=
((

Az
(3
2
Mm

n − 1

2
Mm−1

n

)
i, j,k+1/2

)2 + �t6
)1/2

, (2.9)

with similar definitions for M̆m
p . Such a choice ensures the point-wise positivity of the

numericalmobility functions,whichwill be useful in the unique solvability analysis presented
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in the next section. In turn, we propose the following second order accurate scheme: given
nm, nm−1, pm, pm−1 ∈ Cper, find nm+1, pm+1 ∈ Cper such that

nm+1 − nm

�t
= ∇h ·

(
M̆m+1/2

n ∇hμ
m+1/2
n

)
, (2.10)

pm+1 − pm

�t
= ∇h ·

(
M̆m+1/2

p ∇hμ
m+1/2
p

)
, (2.11)

μ
m+1/2
n = nm+1 ln nm+1 − nm ln nm

nm+1 − nm
− 1 + �t ln

nm+1

nm
+ (−�h)

−1(nm+1/2 − pm+1/2
)
,

(2.12)

μ
m+1/2
p = pm+1 ln pm+1 − pm ln pm

pm+1 − pm
− 1 + �t ln

pm+1

pm
+ (−�h)

−1(pm+1/2 − nm+1/2
)
,

(2.13)

where

nm+1/2 = 1

2

(
nm+1 + nm

)
and pm+1/2 = 1

2

(
pm+1 + pm

)
.

3 Positivity-Preserving Analysis and Energy Stability Estimate

To facilitate the theoretical analysis, we define F(x) = x ln x , and the following three smooth
functions are introduced:

G1
a(x) := F(x) − F(a)

x − a
, x > 0, for a fixed a > 0,

G0
a(x) :=

∫ x

a
G1

a(t) dt =
∫ x

a

F(t) − F(a)

t − a
dt,

G2
a(x) := (

G0
a

)′′
(x) = (

G1
a

)′
(x) = F ′(x)(x − a) − (

F(x) − F(a)
)

(x − a)2
.

(3.1)

The following preliminary estimate will be used in the later analysis; its proof is based on
direct calculations. The details are left to interested readers.

Lemma 3.1 Suppose that a > 0 is fixed. Then the following hold:

1. G2
a(x) ≥ 0, for any x > 0;

2. G0
a(x) is a convex function of x in the domain [0,∞);

3. (G1
a)

′(x) = 1
2ξ , for some ξ between a and x;

4. Since G1
a(x) is an increasing function of x, we have G

1
a(x) ≤ G1

a(a) = ln a + 1, for any
0 < x ≤ a.

The unconditional positivity-preserving and unique solvability properties may now be
established.

Theorem 3.1 Given nm, nm−1, pm, pm−1 ∈ Cper , with 0 < nmi, j,k, n
m−1
i, j,k, pmi, j,k, pm−1

i, j,k ,

1 ≤ i, j, k ≤ N, and nm − pm, nm−1 − pm−1 ∈ C̊per , there exists a unique solution
(
nm+1, pm+1

) ∈ [Cper
]2

to the numerical scheme (2.10)–(2.13), with 0 < nm+1
i, j,k, p

m+1
i, j,k ,

1 ≤ i, j, k ≤ N and nm+1 − pm+1 ∈ C̊per .
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Proof Using an induction style argument, we assume that nk = pk = β0 > 0, for any
k ≥ 0. In addition, two auxiliary variables are introduced, νk := nk −β0 and ρk := pk −β0,
k = m,m−1, to simplify the notations in the later analysis. A careful calculation reveals that,
the numerical solution of (2.10)–(2.13) is equivalent to the minimization of the following
discrete energy functional:

Jmh (ν, ρ) = 1

2�t

(
‖ν − νm‖2L−1

M̆m+1/2
n

+ ‖ρ − ρm‖2L−1

M̆m+1/2
p

)

+ �t

(〈
(ν + β0) ln(ν + β0) + (ρ + β0) ln(ρ + β0), 1

〉) + 1

4
‖ν − ρ‖2−1,h

+ 〈
G0

nm (ν + β0), 1
〉 + 〈

G0
pm (ρ + β0), 1

〉 + 〈
ν + β0, f mn

〉 + 〈
ρ + β0, f mp

〉
,

f mn =1

2

( − �h
)−1(

nm − pm
) − �t ln nm , f mp = 1

2

( − �h
)−1(

pm − nm
) − �t ln pm ,

(3.2)

over the admissible set

Åh :=
{
(ν, ρ) ∈

[
C̊per

]2 ∣∣ 0 < νi, j,k + β0, ρi, j,k + β0 < Mh, 1 ≤ i, j, k ≤ N

}
,

Mh := β0|�|
h3

. (3.3)

It is clear that Jmh (n, p) is a strictly convex function over Åh . The primary aim is to prove

that there exists a minimizer of Jmh (n, p) over Åh .
For the convenience of the analysis, the following closed domain is defined:

Åh,δ :=
{
(ν, ρ) ∈

[
C̊per

]2 ∣∣ δ ≤ νi, j,k + β0, ρi, j,k + β0 ≤ Mh − δ, 1 ≤ i, j, k ≤ N

}
,

δ > 0. (3.4)

Of course, Åh,δ is a compact set in the hyperplane H := {
(ν, ρ)

∣∣ ν = ρ = 0
}
. As a result,

there exists a (not necessarily unique) minimizer of Jmh (ν, ρ) over Åh,δ . The rest work of the
positivity analysis is focused on the proof that, such a minimizer could not occur at one of
the boundary points of Åh,δ , provided δ is sufficiently small.

A contradiction argument is applied. We suppose the contrary, that the minimizer of
Jmh (ν, ρ) occurs at a boundary point of Åh,δ . Without loss of generality, the minimizer is
assumed to be (ν�

i, j,k, ρ
�
i, j,k), with ν�

i0, j0,k0
+β0 = δ, at a grid point (i0, j0, k0). On the other

hand, we also assume that the maximum value of ν� is attained at the grid point (i1, j1, k1).
Because of the mass conservation identity, ν� = 0, we see that ν�

i1, j1,k1
≥ 0.

The following directional derivative is calculated, for any ψ ∈ C̊per:

ds J
m
h

(
ν� + sψ, ρ�

)∣∣
s=0 = 1

�t

〈
L−1

M̆m+1/2
n

(
ν� − νm

)
, ψ

〉
+ �t

〈
ln

(
ν� + β0

)
, ψ

〉

+ 1

2

〈
(−�h)

−1 (ν� − ρ�
)
, ψ

〉 + 〈
G1

nm
(
ν� + β0

)
, ψ

〉 + 〈 f mn , ψ〉.

As a special example, we pick the direction ψ ∈ C̊per, such that

ψi, j,k = δi,i0δ j, j0δk,k0 − δi,i1δ j, j1δk,k1 ,
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where δk,� is the Kronecker delta function. A careful calculation reveals that

1

h3
ds J

m
h

(
ν� + sψ, ρ�

)∣∣
s=0 = �t

(
ln

(
ν�
i0, j0,k0 + β0

) − ln
(
ν�
i1, j1,k1 + β0

))

+ 1

2

( − �h
)−1(

ν� − ρ�
)
i0, j0,k0

− 1

2

( − �h
)−1(

ν� − ρ�
)
i1, j1,k1

+ 1

�t

(L−1

M̆m+1/2
n

(
ν� − νm

)
i0, j0,k0

− L−1

M̆m+1/2
n

(
ν� − νm

)
i1, j1,k1

)

+ G1
nm

(
ν�
i0, j0,k0 + β0

) − G1
nm

(
ν�
i1, j1,k1 + β0

)

+ (
f mn

)
i0, j0,k0

− (
f mn

)
i1, j1,k1

. (3.5)

Because of the following facts

n�
i0, j0,k0 = ν�

i0, j0,k0 + β0 = δ and n�
i1, j1,k1 = ν�

i1, j1,k1 + β0 ≥ β0,

we immediately get

ln
(
ν�
i0, j0,k0 + β0

) − ln
(
ν�
i1, j1,k1 + β0

) ≤ ln
δ

β0
. (3.6)

For the third and fourth terms appearing in (3.5), an application of Lemma 2.2 gives

− 2C0Mh ≤ (−�h)
−1(ν� − ρ�

)
i0, j0,k0

− (−�h)
−1(ν� − ρ�

)
i1, j1,k1

≤ 2C0Mh . (3.7)

For the fifth and sixth terms appearing in (3.5), an application of Lemma 2.3 leads to

− 2C1M−1
0 h−1/2 ≤ L−1

M̆m
n
(ν� − νm)i0, j0,k0 − L−1

M̆m
n

(
ν� − νm

)
i1, j1,k1

≤ 2C1M−1
0 h−1/2.

(3.8)

Next, we look at the seventh and eighth terms. Since G1
a(x) is an increasing function of x

(for a fixed a > 0), as given by Lemma 3.1, the following inequalities are valid:

G1
nm (ν�

i0, j0,k0 + β0) = G1
nm (δ) ≤ G1

nm
(
nmi0, j0,k0

) = ln nmi0, j0,k0 + 1 ≤ D(m)
1 ,

G1
nm

(
ν�
i1, j1,k1 + β0

) ≥ (
G1

nm (β0)
)
i1, j1,k1

≥ −D(m)
2 ,

(3.9)

for some positive constants D(m)
i , i = 1, 2, since both ln nmi0, j0,k0 and (G1

nm (β0))i1, j1,k1 are
dependent only upon nm . Similarly, the last two terms appearing in (3.5) are given functions,
only dependent on nm and pm , so that the following estimate is available:

| f mn | ≤ D(m)
3 , ( f mn )i0, j0,k0 − ( f mn )i1, j1,k1 ≤ 2D(m)

3 , (3.10)

for some positive constant D(m)
3 . Therefore, a substitution of (3.6)–(3.10) into (3.5) results

in

1

h3
ds J

m
h (ν� + sψ, ρ�)

∣∣
s=0

≤ �t ln
δ

β0
+ 2C0Mh + 2C1M−1

0 �t−1h−1/2 + D(m)
1 + D(m)

2 + 2D(m)
3 . (3.11)

To simplify the notation, the following quantity is introduced

D0 := 2C0Mh + 2C1M−1
0 �t−1h−1/2 + D(m)

1 + D(m)
2 + 2D(m)

3 ,
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which is a constant for fixed �t and h, though it may become singular as �t, h → 0. Of
course, for any fixed �t and h, we are able to choose δ > 0 sufficiently small so that

�t ln
δ

β0
+ D0 < 0. (3.12)

Consequently, the following observation is made: for δ > 0 sufficiently small,

ds J
m
h (ν� + sψ, ρ�)

∣
∣
s=0 < 0. (3.13)

As a result, this inequality implies a contradiction to the assumption that Jmh has a minimum
at (ν�, ρ�), since the directional derivative is negative in a direction pointing into the interior
of Åh,δ .

Similar arguments could be applied to prove that the global minimum of Jmh (ν, ρ) over

Åh,δ could not possibly occur at a boundary point satisfying ρ�
i0, j0,k0

+ β0 = δ, if δ is
sufficiently small.

A combination of these facts leads to the conclusion that the global minimum of Jmh (ν, ρ)

over Åh,δ could only possibly occur at an interior point, for δ > 0 sufficiently small. Mean-
while, Jmh (ν, ρ) is a smooth function, as long as ν+β0 and ρ+β0 are positive at a point-wise

level. Therefore, there must be a solution (νi, j,k, ρi, j,k) ∈ Åh,δ (provided that δ is small
enough), so that

ds J
m
h (ν + sψ, ρ + sφ)

∣∣
s=0 = 0, ∀ (ψ, φ) ∈

[
C̊per

]2
. (3.14)

In fact, this equation is equivalent to the numerical solution of (2.10)–(2.13), because the
variational derivatives of Jmh (ν, ρ) exactly give the numerical scheme. As a result, there

exists a numerical solution to (2.10)–(2.13), over the compact domain Åh,δ ⊂ Åh , with
point-wise positive values for nm+1, pm+1. The existence of a positive numerical solution is
demonstrated.

The uniqueness analysis for the numerical solution (2.10)–(2.13) (over Åh) is a direct
consequence of the strict convexity of Jmh (ν, ρ) (in terms of ν and ρ). This finishes the proof
of Theorem 3.1. ��

Remark 3.1 ThemodifiedCrank–Nicolson approximation to the nonlinear logarithmic terms,
namely G1

nm (nm+1) and G1
pm (pm+1), makes its inner product with nm+1 − nm , pm+1 − pm ,

exactly the difference of the logarithmic energies between two consecutive time steps. This
fact will greatly facilitate the energy stability analysis, as we will see in the next section.
Meanwhile, it is observed that, the proposed nonlinear approximation terms do not indicate
a singularity as nm+1 → 0 or pm+1 → 0. Such a feature leads to a difficulty of a theoretical
justification for the positivity-preserving property. To overcome this difficulty, a nonlinear
regularization term, in the form of �t(ln nm+1 − ln nm), �t(ln pm+1 − ln pm), are added
in the numerical scheme. Although this artificial regularization term is of order O(�t2),
a singularity is available as nm+1 → 0 or pm+1 → 0, and such a singularity has played
an important role in the theoretical justification of the positivity-preserving property for the
proposed numerical scheme (2.10)–(2.13).

The discrete energy functional is defined via

Eh(n, p) := 〈n ln n + p ln p, 1〉 + 1

2
‖n − p‖2−1,h . (3.15)
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Theorem 3.2 For the numerical solution (2.10)–(2.13), the following energy dissipation is
valid:

Eh
(
nm+1, pm+1) + R ≤ Eh

(
nm, pm

)
, (3.16)

where

R := �t
([

M̆m+1/2
n ∇hμ

m+1/2
n ,∇hμ

m+1/2
n

]
+

[
M̆m+1/2

p ∇hμ
m+1/2
p ,∇hμ

m+1/2
p

])
≥ 0.

Consequently, Eh(nm, pm) ≤ Eh(n0, p0) ≤ C2, for all m ∈ N, where C2 > 0 is a constant
independent of h and �t .

Proof A discrete inner product of (2.10) with μ
m+1/2
n , and of (2.11) with μ

m+1/2
p , yields

〈
nm+1 − nm, μ

m+1/2
n

〉
+

〈
pm+1 − pm, μ

m+1/2
p

〉

+ �t
([

M̆m+1/2
n ∇hμ

m+1/2
n ,∇hμ

m+1/2
n

]
+

[
M̆m+1/2

p ∇hμ
m+1/2
p ,∇hμ

m+1/2
p

])
= 0.

(3.17)

Meanwhile, the following equalities and inequalities are valid:
〈
nm+1 − nm,G1

nm
(
nm+1)〉 = 〈

nm+1 ln nm+1, 1
〉 − 〈

nm ln nm, 1
〉
, (3.18)

〈
pm+1 − pm,G1

pm
(
pm+1)

〉
= 〈

pm+1 ln pm+1, 1
〉 − 〈

pm ln pm, 1
〉
, (3.19)

〈
nm+1 − nm, (−�h)

−1(nm+1/2 − pm+1/2
)〉 +

〈
pm+1 − pm, (−�h)

−1(pm+1/2 − nm+1/2
)〉

=1

2

(∥∥nm+1 − pm+1
∥∥2−1,h − ∥∥nm − pm

∥∥2−1,h

)
,

(3.20)

〈nm+1 − nm, ln nm+1 − ln nm〉 ≥0, (3.21)

〈pm+1 − pm, ln pm+1 − ln pm〉 ≥0. (3.22)

Consequently, a substitution of (3.18)–(3.22) into (3.17) gives (3.16), so that an energy
stability is proved. Meanwhile, a consistency argument implies that, there is a constant
C2 > 0, independent of h and �t , so that Eh(n0, p0) ≤ C2; the details are left to the
interested reader. This finishes the proof of Theorem 3.2. ��
Remark 3.2 The modified Crank–Nicolson approximation to the logarithmic nonlinear term,

in the formof
F
(
um+1

)
−F(um )

um+1−um
(with u either the componentn or p), has played an essential role

in the energy stability analysis. This approximation may seem singular at the first glance, as
um+1 → um , while a more careful observation reveals its analytic property as um+1−um →
0, and a singularity will not appear even if um+1 = um ; in fact, such a difference quotient
function has an exact value of ln u+1 if um+1 = um = u. Furthermore, the advantage of this
approximation is associated with the fact that, its inner product with the discrete temporal
derivative exactly gives the corresponding nonlinear energy difference; henceforth the energy
stability is ensured for the logarithmic part. Such a modified Crank–Nicolson approximation
has been successfully applied to various gradient flows, such as the polynomial approximation
of the Cahn–Hilliard equation [7, 9, 11, 12, 25, 26], phase field crystal [2, 3, 14, 28], epitaxial
thin film growth [6, 43], etc. Meanwhile, all these existing works have been focused on the
polynomial pattern of the energy potential, while a logarithmic function is involved in the
proposed scheme.
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4 Optimal Rate Convergence Analysis

Let (N, P,�) be the exact PDE solution for the non-dimensional PNP system (1.4)–(1.6).
The following regularity assumption is made for the exact solution:

N, P ∈ R := H6 (0, T ;Cper(�)
) ∩ H5

(
0, T ;C2

per(�)
)

∩ L∞ (
0, T ;C6

per(�)
)

. (4.1)

In addition, the following separation property is assumed for the exact solution, for the
convenience of the analysis:

N ≥ ε0, P ≥ ε0, for some ε0 > 0, at a point-wise level. (4.2)

In fact, this property has been established for the two-dimensional Cahn–Hilliard flow with
logarithmic Flory–Huggins energy potential; see the related works [1, 10, 20, 36]. A similar
separation property is also expected for the PNP system.

To facilitate the error analysis,we also introduce theFourier projection of the exact solution
as NN ( · , t) := PNN( · , t), PN ( · , t) := PNP( · , t), with the projection into BK , the space of
trigonometric polynomials of degree to K (N = 2K + 1). The standard projection estimate
is recalled as

‖NN − N‖L∞(0,T ;Hk ) ≤ Ch�−k‖N‖L∞(0,T ;H�), ‖PN − P‖L∞(0,T ;Hk )

≤ Ch�−k‖P‖L∞(0,T ;H�), (4.3)

for any � ∈ N with 0 ≤ k ≤ �, (N, P) ∈ L∞(0, T ; H �
per(�)). Of course, this Fourier

projection estimate does not automatically ensure the positivity of the ion concentration
variables; meanwhile, a similar phase separation estimate, NN ≥ 1

2ε0, PN ≥ 1
2ε0, would

be available by taking h sufficiently small (corresponding to a large N ). For simplicity of
notation, we denote Nm

N = NN ( · , tm), PmN = PN ( · , tm), with tm = m · �t . Moreover, the
fact that (NN , PN ) ∈ BK leads to the mass conservative identity at the discrete level:

Nm
N = 1

|�|
∫

�

NN (·, tm) dx = 1

|�|
∫

�

NN (·, tm−1) dx = Nm−1
N , ∀m ∈ N,

PmN = Pm−1
N , ∀m ∈ N, (similar analysis).

(4.4)

Meanwhile, the discrete mass conservative identity for the numerical solution (2.10)–(2.11)
is also straightforward:

nm = nm−1, pm = pm−1, ∀ m ∈ N. (4.5)

Of course, the mass conservative projection could be applied to the initial data:

(n0)i, j,k = PhNN ( · , t = 0) := NN (pi , p j , pk, t = 0),

(p0)i, j,k = PhPN ( · , t = 0) := PN (pi , p j , pk, t = 0).
(4.6)

For the exact electric potential �, we denote its Fourier projection as �N . In turn, the error
grid functions are defined as

emn := PhNm
N − nm, emp := PhPmN − pm, emφ := Ph�

m
N − φm, ∀ m ∈ N. (4.7)

The above derivations indicate that emn = emp = 0, for any m ∈ N. As a result, the discrete
norm ‖ · ‖−1,h is well defined for both emn and emp . The optimal rate convergence result is
stated in the following theorem.
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Theorem 4.1 Given initial data N( · , t = 0), P( · , t = 0) ∈ C6
per(�), suppose the exact

solution for the PNP system (1.4)–(1.5) is of regularity classR. Then, provided�t and h are
sufficiently small, and under the linear refinement requirement λ1h ≤ �t ≤ λ2h, we have

‖emn ‖2 + ‖emp ‖2 + ‖emφ ‖H2
h

≤ C(�t2 + h2), (4.8)

for all positive integers m, such that tm = m�t ≤ T , where C, λ1, and λ2 are constants
independent of �t and h.

4.1 Higher Order Consistency Analysis

Adirect substitution of the project solution (NN , PN ) into the numerical scheme (2.10)–(2.13)
gives the second order accuracy in both time and space. However, this leading local truncation
error will not be sufficient to recover an L∞

h bound of the discrete temporal derivative of
the numerical solution, which is needed in the nonlinear convergence analysis. To overcome
this subtle difficulty, we have to apply a higher order consistency estimate via a perturbation
analysis. This technique has been reported for a wide class of nonlinear PDEs, such as
incompressible fluid flow [40, 41, 44, 45, 47, 49, 50], various gradient models [3, 23, 24,
31], the porous medium equation based on the energetic variational approach [17], nonlinear
wave equation [48], et cetera. Such a higher order consistency result is stated below, and the
detailed proof will be provided in Appendix A.

Proposition 4.1 Given the exact solution (N, P) for thePNP system (1.4)–(1.6) and its Fourier
projection (NN , PN ). There exist auxiliary fields, N�t,1, N�t,2, Nh,1, P�t,1, P�t,2, Ph,1, so
that the following

N̂ = NN + PN
(
�t2N�t,1 + �t3N�t,2 + h2Nh,1

)
,

P̂ = PN + PN
(
�t2P�t,1 + �t3P�t,2 + h2Ph,1

)
, (4.9)

satisfies the numerical scheme up to a higher O(�t4 + h4) consistency:

N̂m+1 − N̂m

�t
= ∇h ·

((
3

2
N̂m − 1

2
N̂m−1

)
∇h

(
G1

N̂m

(
N̂m+1

)
+

(
− �h

)−1(
N̂m+1/2 − P̂m+1/2

))

+�t

(
ln N̂m+1 − ln N̂m

))
+ τ

m+1/2
n , (4.10)

P̂m+1 − P̂m

�t
= ∇h ·

((
3

2
P̂m − 1

2
P̂m−1

)
∇h

(
G1

P̂m

(
P̂m+1

)
+ ( − �h

)−1
(
P̂m+1/2 − N̂m+1/2

))

+�t

(
ln P̂m+1 − ln P̂m

))
+ τ

m+1/2
p , (4.11)

where ‖τm+1/2
n ‖2, ‖τm+1/2

p ‖2 ≤ C(�t4 + h4). The constructed functions, N�t,1, N�t,2,
Nh,1, P�t,1, P�t,2, Ph,1, depend solely on the exact solution (N, P), and their derivatives
are bounded.

1. The following mass conservative identities and zero-mean property for the local trunca-
tion error are available:

n0 ≡ N̂0, p0 ≡ P̂0, nk = n0, pk = p0, ∀ k ≥ 0, (4.12)

N̂k = 1

|�|
∫

�

N̂(·, tk) dx = 1

|�|
∫

�

N̂0 dx = n0, P̂k = p0, ∀ k ≥ 0, (4.13)
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τ
m+1/2
n = τ

m+1/2
p = 0, ∀m ≥ 0. (4.14)

2. A similar phase separation property is valid for the constructed (N̂, P̂):

N̂ ≥ ε�
0, P̂ ≥ ε�

0, for ε�
0 > 0. (4.15)

3. A discrete W 1,∞ bound for the constructed profile (N̂, P̂), as well as its discrete temporal
derivative, is available:

‖N̂k‖∞ ≤ C�, ‖P̂k‖∞ ≤ C�, ‖∇hN̂k‖∞ ≤ C�, ‖∇h P̂k‖∞ ≤ C�, ∀ k ≥ 0, (4.16)

‖N̂k+1 − N̂k‖∞ ≤ C��t, ‖P̂k+1 − P̂k‖∞ ≤ C��t, ∀ k ≥ 0. (4.17)

Remark 4.1 Because of the phase separation property (4.15) for the constructed functions
(N̂, P̂), combined with their regularity in time, we conclude that, an explicit extrapolation
formula in the mobility function in (4.10)–(4.11), with coefficients 3

2 , − 1
2 at time instants

tm , tm−1, respectively, must give a positive mobility concentration values, which stand for a
numerical approximation at time instant tm+1/2. In turn, a positive regularization (as in (2.9))
could be avoided in the consistency analysis.

4.2 A Rough Error Estimate

A direct analysis for the error function defined in (4.7) would not give the desired bound.
Instead, alternate numerical error functions are introduced:

ñm := PhN̂m − nm, p̃m := Ph P̂m − pm, φ̃m := (−�h)
−1( p̃m − ñm), ∀ m ∈ N.

(4.18)

Of course, the advantage of this error function is associated with its higher order accuracy,
implied by the higher order consistency estimate (4.10)–(4.11). Similarly, the discrete norm
‖ · ‖−1,h is well defined for the error grid function (ñm, p̃m), for any m ≥ 0, because of
the fact that ñm = p̃m = 0 (given by (4.12)–(4.13)). Moreover, the following average error
functions at the intermediate time instant tm+1/2 is also introduced, for the convenience of
the notation:

ñm+1/2 := 1

2

(
ñm+1 + ñm

)
, p̃m+1/2 := 1

2
( p̃m+1 + p̃m),

φ̃m+1/2 := (−�h)
−1( p̃m+1/2 − ñm+1/2

)
,

˘̃nm+1/2 := 3

2
ñm − 1

2
ñm−1, ˘̃pm+1/2 := 3

2
p̃m − 1

2
p̃m−1.

(4.19)

Subtracting the numerical solution (2.10)–(2.13) from the consistency equations (4.10)–
(4.11) gives

ñm+1 − ñm

�t
= ∇h ·

(
n̆m+1/2∇hμ̃

m+1/2
n + ˘̃nm+1/2∇hVm+1/2

n

)
+ τ

m+1/2
n , (4.20)

p̃m+1 − p̃m

�t
= ∇h ·

(
D p̆m+1/2∇hμ̃

m+1/2
p + D ˘̃pm+1/2∇hVm+1/2

p

)
+ τ

m+1/2
p , (4.21)

where

μ̃
m+1/2
n = G1

N̂m

(
N̂m+1) − G1

nm
(
nm+1) + ( − �h

)−1(
ñm+1/2 − p̃m+1/2

)

+�t
(
ln N̂m+1 − ln nm+1 − ln N̂m + ln nm

)
, (4.22)
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Vm+1/2
n = G1

N̂m

(
N̂m+1) + ( − �h

)−1(N̂m+1/2 − P̂m+1/2
) + �t

(
ln N̂m+1 − ln N̂m)

,

(4.23)

μ̃
m+1/2
p = G1

P̂m

(
P̂m+1) − G1

pm
(
pm+1) + ( − �h

)−1(
p̃m+1/2 − ñm+1/2

)

+�t
(
ln P̂m+1 − ln pm+1 − ln P̂m + ln pm

)
, (4.24)

Vm+1/2
p = G1

P̂m

(
P̂m+1) + ( − �h

)−1(P̂m+1/2 − N̂m+1/2
) + �t

(
ln P̂m+1 − ln P̂m

)
.

(4.25)

A discreteW 1,∞ bound could be assumed for Vm+1/2
n and Vm+1/2

p , due to the fact that they
only depend on the exact solution and the constructed profiles:

‖Vm+1/2
n ‖W 1,∞

h
, ‖Vm+1/2

p ‖W 1,∞
h

≤ C�. (4.26)

In addition, the following a-priori assumption is made, so that the nonlinear analysis could
be accomplished by an induction argument:

‖ñk‖2, ‖ p̃k‖2 ≤ �t
15
4 + h

15
4 , k = m,m − 1. (4.27)

This a-priori assumption will be recovered by the optimal rate convergence analysis at the
next time step, as will be demonstrated later. As a consequence, an application of inverse
inequality gives an �∞ bound for the numerical error function at the previous time steps:

‖ñk‖∞ ≤ C‖ñk‖2
h

3
2

≤ C(�t
15
4 + h

15
4 )

h
3
2

≤ C(�t
9
4 + h

9
4 ) ≤ ε∗

0

8
,

‖ p̃k‖∞ ≤ C‖ p̃k‖2
h

3
2

≤ C(�t
15
4 + h

15
4 )

h
3
2

≤ C(�t
9
4 + h

9
4 ) ≤ ε∗

0

8
,

(4.28)

for k = m,m − 1, and the linear refinement constraint λ1h ≤ �t ≤ λ2h has been used.
In turn, with the help of the regularity assumption (4.16), an �∞ bound for the numerical
solution could be derived at the previous time steps:

‖nk‖∞ ≤‖N̂k‖∞ + ‖ñk‖∞ ≤ C̃3 := C� + 1,

‖pk‖∞ ≤‖P̂k‖∞ + ‖ p̃k‖∞ ≤ C̃3, k = m,m − 1.
(4.29)

Meanwhile, a combination of the �∞ estimate (4.28) for the numerical error function and the
separation estimate (4.15) results in a similar separation property for the numerical solution
at the previous time steps:

nk ≥ N̂k − ‖ñk‖∞ ≥ 3ε�
0

8
and pm ≥ P̂k − ‖ p̃k‖∞ ≥ 3ε�

0

8
, k = m,m − 1.

(4.30)
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Subsequently, at the intermediate time instant tm+1/2, the following estimates could be
derived:

3

2
N̂m − 1

2
N̂m−1 = 1

2
(N̂m+1 + N̂m) + O(�t2), since N̂m+1 − 2N̂m + N̂m−1 = O(�t2),

1

2
(N̂m+1 + N̂m) = N̂(tm+1/2) + O(�t2), N̂(tm+1/2) ≥ ε∗

0 , (by (4.15)),

so that
3

2
N̂m − 1

2
N̂m−1 ≥ ε∗

0 + O(�t2),

‖3
2
ñm − 1

2
ñm−1‖∞ ≤C(�t

9
4 + h

9
4 ), (by (4.28)),

n̆m+1/2 = 3

2
nm − 1

2
nm−1 = 3

2
N̂m − 1

2
N̂m−1 − (3

2
ñm − 1

2
ñm−1)

≥ ε∗
0 + O(�t2) − O

(
�t

9
4 + h

9
4
) ≥ ε∗

0

2
,

p̆m+1/2 = 3

2
pm − 1

2
pm−1 ≥ ε∗

0

2
, (similar analysis).

(4.31)

In other words, the phase separation property for the average mobility functions, n̆m+1/2,
p̆m+1/2, has also been established, and this property will be useful in the later analysis.

In particular, the phase separation bound (4.31) reveals that, a positive regularization (2.9)
could also be avoided for the numerical solution, provided that the a-priori error esti-
mates (4.27) are valid in the previous time steps. As a result, both the numerical mobility
function and the mobility error function have been correctly represented in the error evolu-
tionary system (4.20)–(4.25).

Before proceeding into the error estimate, a very rough bound control of the nonlinear
error inner products, namely, 〈ñm+1,G1

N̂m (N̂m+1) −G1
nm (nm+1)〉 and 〈 p̃m+1,G1

P̂m
(P̂m+1) −

G1
pm (pm+1)〉, is necessary. A preliminary estimate is stated in the following lemma; the

detailed proof will be provided in Appendix B.

Lemma 4.1 The regularity requirement (4.16), and phase separation (4.15) assumptions
are made for the constructed approximate solution (N̂, P̂), as well as the a-priori assump-
tion (4.27) for the numerical solution at the previous time steps. In addition, we define the
following sets:

�n =
{
(i, j, k) : nm+1

i, j,k ≥ 2C∗ + 1
}

, �p =
{
(i, j, k) : pm+1

i, j,k ≥ 2C∗ + 1
}

, (4.32)

and denote K ∗
n := |�n |, K ∗

p := |�p|, the number of grid points in �n and �p, respectively.
Then we have a rough bound control of the following nonlinear inner products:

〈ñm+1,G1
N̂m (N̂m+1) − G1

nm (nm+1)〉
+ �t〈ñm+1, ln N̂m+1 − ln nm+1 − (ln N̂m − ln nm)〉 ≥ 1

2
C∗K ∗

n h
3 − C̃4‖ñm‖22,

〈 p̃m+1,G1
P̂m

(P̂m+1) − G1
pm (pm+1)〉

+ �t〈 p̃m+1, ln P̂m+1 − ln pm+1 − (ln P̂m − ln pm)〉 ≥ 1

2
C∗K ∗

ph
3 − C̃4‖ p̃m‖22,

(4.33)

in which C̃4 is a constant only dependent on ε∗
0 and C

∗, independent of�t and h. In addition,
if K ∗

n = 0 and K ∗
p = 0, i.e, both �n and �p are empty sets, we have an improved bound

control:
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〈ñm+1,G1
N̂m (N̂m+1) − G1

nm (nm+1)〉
+ �t(〈ñm+1, ln N̂m+1 − ln nm+1〉 − 〈ñm+1, ln N̂m − ln nm〉) ≥ C̃5‖ñm+1‖22 − C̃4‖ñm‖22,

〈 p̃m+1,G1
P̂m

(P̂m+1) − G1
pm (pm+1)〉 (4.34)

+ �t(〈 p̃m+1, ln P̂m+1 − ln pm+1〉 − 〈 p̃m+1, ln P̂m − ln pm〉) ≥ C̃5‖ p̃m+1‖22 − C̃4‖ p̃m‖22,
in which C̃5 stands for another constant only dependent on ε∗

0 and C∗.

The following proposition states the rough error estimate result.

Proposition 4.2 For the numerical error evolutionary system (4.20)–(4.25), we make the
regularity assumption (4.26) for the constructed profiles Vm+1/2

n , Vm+1/2
p , as well as the a-

priori assumption (4.27) for the numerical solution at the previous time steps. Then we have
a rough error estimate

‖ñm+1‖2 + ‖ p̃m+1‖2 ≤ �t3 + h3. (4.35)

Proof A discrete inner product with (4.20), (4.21) by μ̃
m+1/2
n , μ̃m+1/2

p , respectively, results in

1

�t

(〈ñm+1, μ̃
m+1/2
n 〉 + 〈 p̃m+1, μ̃

m+1/2
p 〉)

+ (〈(n̆m+1/2
)∇hμ̃

m+1/2
n ,∇hμ̃

m+1/2
n 〉 + D〈( p̆m+1/2

)∇hμ̃
m+1/2
p ,∇hμ̃

m+1/2
p 〉)

= 1

�t

(〈ñm, μ̃
m+1/2
n 〉 + 〈 p̃m, μ̃

m+1/2
p 〉) + (〈τm+1/2

n , μ̃
m+1/2
n 〉 + 〈τm+1/2

p , μ̃
m+1/2
p 〉)

− (〈(n̆m+1/2
)∇hVm+1/2

n ,∇hμ̃
m+1/2
n 〉 + D〈( p̆m+1/2

)∇hVm+1/2
p ,∇hμ̃

m+1/2
p 〉). (4.36)

The separation estimate (4.31) for the average mobility functions, n̆m+1/2, p̆m+1/2 implies the
following inequalities:

〈(
n̆m+1/2

)∇hμ̃
m+1/2
n ,∇hμ̃

m+1/2
n

〉 ≥ ε�
0

2
‖∇hμ̃

m+1/2
n ‖22,

〈(
p̆m+1/2

)∇hμ̃
m+1/2
p ,∇hμ̃

m+1/2
p

〉 ≥ ε�
0

2
‖∇hμ̃

m+1/2
p ‖22.

(4.37)

Meanwhile, the following estimate is available, based on the fact that the local truncation
error terms are mean-free, as given by (4.14):

〈
τ
m+1/2
n , μ̃

m+1/2
n

〉 ≤ ‖τm+1/2
n ‖−1,h · ‖∇hμ̃

m+1/2
n ‖2 ≤ 2

ε�
0
‖τm+1/2

n ‖2−1,h + 1

8
ε�
0‖∇hμ̃

m+1/2
n ‖22,

〈
τ
m+1/2
p , μ̃

m+1/2
p

〉 ≤ ‖τm+1/2
p ‖−1,h · ‖∇hμ̃

m+1/2
p ‖2 ≤ 2

Dε�
0
‖τm+1/2

p ‖2−1,h + 1

8
Dε�

0‖∇hμ̃
m+1/2
p ‖22.

(4.38)

The terms 〈ñm, μ̃
m+1/2
n 〉 and 〈 p̃m, μ̃

m+1/2
p 〉 could be bounded in a straightforward way:

〈ñm, μ̃
m+1/2
n 〉 ≤ ‖ñm‖−1,h · ‖∇hμ̃

m+1/2
n ‖2 ≤ 2

ε�
0�t

‖ñm‖2−1,h + 1

8
ε�
0�t‖∇hμ̃

m+1/2
n ‖22,

〈 p̃m, μ̃
m+1/2
p 〉 ≤ ‖ p̃m‖−1,h · ‖∇hμ̃

m+1/2
p ‖2 ≤ 2

Dε�
0�t

‖ p̃m‖2−1,h + 1

8
Dε�

0�t‖∇hμ̃
m+1/2
p ‖22.

s(4.39)
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The last two terms on the right hand side of (4.36) could be analyzed in a similar way:

−〈(n̆m+1/2)∇hVm+1/2
n ,∇hμ̃

m+1/2
n 〉 ≤ ‖∇hVm+1/2

n ‖∞ · ‖(n̆m+1/2)‖2 · ‖∇hμ̃
m+1/2
n ‖2

≤C�‖n̆m+1/2‖2 · ‖∇hμ̃
m+1/2
n ‖2

≤ 2(C�)2

ε�
0

‖n̆m+1/2‖22 + 1

8
ε�
0‖∇hμ̃

m+1/2
n ‖22,

−D〈( p̆m+1/2)∇hVm+1/2
p ,∇hμ̃

m+1/2
p 〉 ≤ 2(C�)2D

ε�
0

‖ p̆m+1/2‖22 + 1

8
Dε�

0‖∇hμ̃
m+1/2
p ‖22.

(4.40)

Therefore, a substitution of (4.37)–(4.40) into (4.36) yields

〈ñm+1, μ̃
m+1/2
n 〉 + 〈 p̃m+1, μ̃

m+1/2
p 〉 + ε�

0

8
�t(‖∇hμ̃

m+1/2
n ‖22 + D‖∇hμ̃

m+1/2
p ‖22)

≤ 2

ε�
0�t

‖ñm‖2−1,h + 2

Dε�
0�t

‖ p̃m‖2−1,h + 2�t

ε�
0

‖τm+1/2
n ‖2−1,h + 2�t

Dε�
0
‖τm+1/2

p ‖2−1,h

+ 2(C�)2(ε�
0)

−1�t(‖n̆m+1/2‖22 + D−1‖ p̆m+1/2‖22). (4.41)

On the other hand, the detailed expansion in (4.22) gives

〈ñm+1, μ̃
m+1/2
n 〉 = 〈ñm+1,G1

N̂m (N̂m+1) − G1
nm (nm+1)〉 + 〈ñm+1, (−�h)

−1(ñm+1/2 − p̃m+1/2)〉
+ �t(〈ñm+1, ln N̂m+1 − ln nm+1〉 − 〈ñm+1, ln N̂m − ln nm〉)

≥ 1

2
C∗K ∗

n h
3 − C̃4‖ñm‖22 + 〈ñm+1, (−�h)

−1(ñm+1/2 − p̃m+1/2)〉, (4.42)

inwhich the rough bound control (4.33) (in Lemma4.1) has been applied.A similar inequality
could be derived for 〈 p̃m+1, μ̃

m+1/2
p 〉:

〈 p̃m+1, μ̃
m+1/2
p 〉 ≥ 1

2
C∗K ∗

ph
3 − C̃4‖ p̃m‖22 + 〈 p̃m+1, (−�h)

−1( p̃m+1/2 − m̃m+1/2)〉.
(4.43)

Meanwhile, we make the following observation:

〈ñm+1, (−�h)
−1(ñm+1/2 − p̃m+1/2)〉 + 〈 p̃m+1, (−�h)

−1( p̃m+1/2 − ñm+1/2)〉
= 1

2
〈(−�h)

−1(ñm+1 − p̃m+1 + ñm − p̃m), ñm+1 − p̃m+1〉

≥ 1

4
(‖ñm+1 − p̃m+1‖2−1,h − ‖ñm − p̃m‖2−1,h).

(4.44)

Then we conclude that

〈ñm+1, μ̃
m+1/2
n 〉 + 〈 p̃m+1/2, μ̃m+1

p 〉
≥ 1

2
C∗(K ∗

n + K ∗
p)h

3 − C̃4(‖ñm‖22 + ‖ p̃m‖22) − 1

4
‖ñm − p̃m‖2−1,h . (4.45)
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For the right hand side of (4.41), the following estimates could be derived, with the help of
a-priori assumption (4.27):
(

2

ε�
0�t

+ 1

)
‖ñm‖2−1,h +

(
2

Dε�
0�t

+ 1

)
‖ p̃m‖2−1,h ≤ C

ε�
0�t

(‖ñm‖22 + ‖ p̃m‖22) ≤ C(�t
13
2 + h

13
2 ),

2�t

ε�
0

‖τm+1/2
n ‖2−1,h + 2�t

Dε�
0
‖τm+1/2

p ‖2−1,h ≤ C(�t9 + �th8),

2(C�)2(ε�
0)

−1�t‖n̆m+1/2‖22 ≤ C�t(‖ñm‖22 + ‖ñm−1‖22) ≤ C(�t
17
2 + h

17
2 ),

2(C�)2(ε�
0)

−1D−1�t‖ p̆m+1/2‖22 ≤ C(�t
17
2 + h

17
2 ),

C̃4(‖ñm‖22 + ‖ p̃m‖22) ≤ C
(
�t

15
2 + h

15
2

)
,

1

4
‖ñm − p̃m‖2−1,h ≤ C

(
�t

15
2 + h

15
2

)
,

(4.46)

in which the inequality that ‖ f ‖−1,h ≤ C‖ f ‖2, as well as the linear refinement constraint
λ1h ≤ �t ≤ λ2h, have been repeatedly applied. Its combination with (4.41) leads to

1

2
C∗(K ∗

n + K ∗
p)h

3 ≤ C
(
�t

13
2 + h

13
2

)
. (4.47)

If K ∗
n ≥ 1 or K ∗

p ≥ 1, this inequality will make a contradiction, provided that �t and h are
sufficiently small. Therefore, we conclude that K ∗

n = 0 and K ∗
p = 0, i.e., both�n and�p are

empty sets, so that we are able to apply an improved bound control (4.34) (in Lemma 4.1).
In turn, an improved estimate becomes available:

〈ñm+1, μ̃
m+1/2
n 〉 + 〈 p̃m+1/2, μ̃m+1

p 〉 ≥ C̃5(‖ñm+1‖22 + ‖ p̃m+1‖22) − C̃4(‖ñm‖22 + ‖ p̃m‖22)
− 1

4
‖ñm − p̃m‖2−1,h .

(4.48)

Its combination with (4.46) and (4.41) reveals that

C̃5(‖ñm+1‖22 + ‖ p̃m+1‖22) ≤ C
(
�t

13
2 + h

13
2

)
,

‖ñm+1‖2 + ‖ p̃m+1‖2 ≤ Ĉ
(
�t

13
4 + h

13
4

)
≤ �t3 + h3,

(4.49)

under the linear refinement requirement λ1h ≤ �t ≤ λ2h, with Ĉ dependent on the phys-
ical parameters. This inequality are exactly the rough error estimate (4.35). The proof of
Proposition 4.2 is complete. ��

Based on the rough error estimate (4.35), an application of 3-D inverse inequality yields

‖ñm+1‖∞ + ‖ p̃m+1‖∞ ≤ C(‖ñm+1‖2 + ‖ p̃m+1‖2)
h

3
2

≤ Ĉ(�t
3
2 + h

3
2 ) ≤ ε�

0

2
, (4.50)

under the same linear refinement requirement, provided that �t and h are sufficiently small.
Its combinationwith (4.15), the separation property for the constructed approximate solution,
leads to a similar property for the numerical solution at time step tm+1:

ε�
0

2
≤ nm+1 ≤ C� + ε�

0

2
≤ C̃3 and

ε�
0

2
≤ pm+1 ≤ C� + ε�

0

2
≤ C̃3. (4.51)

This ‖ · ‖∞ bound will play a very important role in the refined error estimate. In addition,
the following bound for the discrete temporal derivative of the numerical solution is also
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available:

‖ñm+1 − ñm‖∞ ≤ ‖ñm+1‖∞ + ‖ñm‖∞ ≤ (Ĉ + 1)(�t
3
2 + h

3
2 ) ≤ �t, (by (4.28), (4.50)),

‖N̂m+1 − N̂m‖∞ ≤ C��t, (by (4.17)),

‖nm+1 − nm‖∞ ≤ ‖N̂m+1 − N̂m‖∞ + ‖ñm+1 − ñm‖∞ ≤ (C∗ + 1)�t,

‖pm+1 − pm‖∞ ≤ (C∗ + 1)�t, (using similar analysis).

(4.52)

4.3 A Refined Error Estimate

Before proceeding into the refined error estimate, the following preliminary results are
needed. For simplicity of presentation, the detailed proof will be provided in Appendix C.

Lemma 4.2 Under the a-priori ‖ · ‖∞ estimate (4.29), (4.30) for the numerical solution at
the previous time steps and the rough ‖ · ‖∞ estimates (4.51), (4.52) for the one at the next
time step, we have

ρ f (x, y) = 100

σ
√
2π

⎛

⎝e−
(
x+ 1

2

)2
+
(
y+ 1

2

)2

2σ2 − e−
(
x+ 1

2

)2
+
(
y− 1

2

)2

2σ2 − e−
(
x− 1

2

)2
+
(
y+ 1

2

)2

2σ2 + e−
(
x− 1

2

)2
+
(
y− 1

2

)2

2σ2

⎞

⎠ .

〈ñm+1 − ñm ,G1
N̂m

(
N̂m+1) − G1

nm
(
nm+1)〉

≥ 1

2

(〈 1

N̂m+1
,
(
ñm+1)2

〉
−

〈 1

N̂m
,
(
ñm

)2〉) − C̃6�t
(‖ñm+1‖22 + ‖ñm‖22

)
, (4.53)

〈ñm+1 − ñm , ln N̂m+1 − ln nm+1 − (
ln N̂m − ln nm

)〉 ≥ −C̃7�t
(‖ñm+1‖22 + ‖ñm‖22

)
,

(4.54)

〈 p̃m+1 − p̃m ,G1
P̂m

(
P̂m+1) − G1

pm
(
pm+1)〉

≥ 1

2

(〈 1

P̂m+1
,
(
p̃m+1)2

〉
−

〈 1

P̂m
,
(
p̃m

)2〉) − C̃6�t
(‖ p̃m+1‖22 + ‖ p̃m‖22

)
, (4.55)

〈 p̃m+1 − p̃m , ln P̂m+1 − ln pm+1 − (
ln P̂m − ln pm

)〉 ≥ −C̃7�t
(‖ p̃m+1‖22 + ‖ p̃m‖22

)
,

(4.56)

in which the constants C̃6 and C̃7 only depend on ε�
0 , and C

�.

Now we perform the refined error estimate. The inner product equation (4.36), as well as
the estimate (4.37)–(4.38) and (4.40), are still useful. Their combination yields

〈
ñm+1 − ñm , μ̃

m+1/2
n

〉 + 〈
p̃m+1 − p̃m , μ̃

m+1/2
p

〉 + ε�
0

4
�t

(‖∇hμ̃
m+1/2
n ‖22 + D‖∇hμ̃

m+1/2
p ‖22

)

≤ 2�t

ε�
0

‖τm+1/2
n ‖2−1,h + 2�t

Dε�
0
‖τm+1/2

p ‖2−1,h + 2(C�)2(ε�
0)

−1�t
(‖n̆m+1/2‖22 + D−1‖ p̆m+1/2‖22

)
.

(4.57)

Meanwhile, we have to analyze the temporal stencil inner product in a more precise way. A
detailed expansion in (4.22) and (4.23) gives

〈ñm+1 − ñm , μ̃
m+1/2
n 〉 + 〈 p̃m+1 − p̃m , μ̃

m+1/2
p 〉

= 〈ñm+1 − ñm ,G1
N̂m (N̂m+1) − G1

nm (nm+1)〉 + 〈 p̃m+1 − p̃m ,G1
P̂m

(P̂m+1) − G1
pm (pm+1)〉

+ �t〈ñm+1 − ñm , ln N̂m+1 − ln nm+1 − (ln N̂m − ln nm)〉
+ �t〈 p̃m+1 − p̃m , ln P̂m+1 − ln pm+1 − (ln P̂m − ln pm)〉
+ 〈ñm+1 − ñm , (−�h)

−1(ñm+1/2 − p̃m+1/2)〉 + 〈 p̃m+1 − p̃m , (−�h)
−1( p̃m+1/2 − ñm+1/2)〉.

(4.58)
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In fact, a careful calculation reveals the following identity for the last term:

〈ñm+1 − ñm, (−�h)
−1(ñm+1/2 − p̃m+1/2)〉 + 〈 p̃m+1 − p̃m, (−�h)

−1( p̃m+1/2 − ñm+1/2)〉
= 〈(ñm+1 − p̃m+1) − (ñm − p̃m), (−�h)

−1(ñm+1/2 − p̃m+1/2)〉
= 1

2
(‖ñm+1 − p̃m+1‖2−1,h − ‖ñm − p̃m‖2−1,h).

(4.59)

Its combination with the refined estimates (4.53)–(4.56) (in Lemma 4.2) results in

〈ñm+1 − ñm , μ̃
m+1/2
n 〉 + 〈 p̃m+1 − p̃m , μ̃

m+1/2
p 〉

≥Fm+1 − Fm − (C̃6 + C̃7)�t(‖ñm+1‖22 + ‖ñm‖22 + ‖ p̃m+1‖22 + ‖ p̃m‖22),
Fm+1 = 1

2

(〈 1

N̂m+1
, (ñm+1)2

〉
+

〈 1

P̂m+1
, ( p̃m+1)2

〉
+ ‖ñm+1 − p̃m+1‖2−1,h

)
.

(4.60)

Subsequently, a substitution of (4.60) into (4.57) leads to

Fm+1 − Fm ≤ C̃8�t(‖ñm+1‖22 + ‖ñm‖22 + ‖ñm−1‖22 + ‖ p̃m+1‖22 + ‖ p̃m‖22 + ‖ p̃m−1‖22)
+ 2�t

ε�
0

‖τm+1/2
n ‖2−1,h + 2�t

Dε�
0
‖τm+1/2

p ‖2−1,h

≤ C̃8C
∗�t(Fm+1 + Fm + Fm−1) + 2�t

ε�
0

‖τm+1/2
n ‖2−1,h + 2�t

Dε�
0
‖τm+1/2

p ‖2−1,h,

(4.61)

with C̃8 = C̃6C̃7 +6(C�)2(ε�
0)

−1 +1. Notice that we have applied the following inequalities
in the derivation:

‖ñm+1/2‖22 = ‖3
2
ñm − 1

2
ñm−1‖22 ≤ 3‖ñm‖22 + ‖ñm−1‖22, ‖ p̃m+1/2‖22 ≤ 3‖ p̃m‖22 + ‖ p̃m−1‖22,

〈 1

N̂k
, (ñk)2

〉
≥ 1

C∗ ‖ñk‖22,
〈 1

P̂k
, ( p̃k)2

〉
≥ 1

C∗ ‖ p̃k‖22, so that Fk ≥ 1

2C∗ (‖ñk‖22 + ‖ p̃k‖22).
(4.62)

As a result, an application of discrete Gronwall inequality leads to the desired higher order
convergence estimate

Fm+1 ≤ C(�t8 + h8), so that ‖ñm+1‖2 + ‖ p̃m+1‖2 ≤ C(�t4 + h4), (4.63)

in which the higher order truncation error accuracy, ‖τm+1
n ‖2, ‖τm+1

p ‖2 ≤ C(�t4 + h4), has
been applied. The refined error estimate is finished.

Recovery of the a-priori assumption (4.27)
With the help of the higher order error estimate (4.63), we conclude that the a-priori

assumption in (4.27) is satisfied at the next time step tm+1:

‖ñm+1‖2, ‖ p̃m+1‖2 ≤ Ĉ2(�t4 + h4) ≤ �t
15
4 + h

15
4 , (4.64)

provided �t and h are sufficiently small. Consequently, an induction analysis could be
applied, so that the higher order convergence analysis is complete.

As a further result, the convergence estimate (4.8) for the variable (n, p) comes from
a combination of (4.63) with the definition (4.9) of the constructed approximate solution
(N̂, P̂), as well as the projection estimate (4.3).
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Finally, to derive a convergence estimate for the electric potential variable φ, we recall
the definition for φ̃k in (4.18) and observe the following inequality

‖φ̃m‖H2
h

≤ C‖�h φ̃m‖2 ≤ C‖ñm − p̃m‖2 ≤ Ĉ3(�t4 + h4), Ĉ3 = CĈ2. (4.65)

This in turn implies that

‖φ̃m − emφ ‖H2
h

≤ C‖�h(φ̃
m − emφ )‖2 ≤ Ĉ4(�t2 + h2), (4.66)

and

(−�h)(φ̃
m − emφ ) = PN (�t2P�t,1 + �t3P�t,2 + h2Ph,1

− �t2N�t,1 − �t3N�t,2 − h2Nh,1) + τ
m+1/2
φ . (4.67)

In fact, the discrete elliptic regularity has been applied in (4.65), (4.66), and the truncation
error for φ turns out to be τmφ = (−�h)�N − (P̂m − N̂m). Of course, we arrive at

‖emφ ‖H2
h

≤ ‖φ̃m‖H2
h

+ ‖φ̃m − emφ ‖H2
h

≤ Ĉ3(�t4 + h4) + Ĉ4(�t2 + h2)

≤ (Ĉ4 + 1)(�t2 + h2). (4.68)

This finishes the proof of Theorem 4.1.

5 Numerical Results

An iterative algorithm is proposed to numerically solve the fully nonlinear scheme (2.10)–
(2.13) at each time step. Since the nonlinear scheme is a three-step method, we use the
first-order scheme proposed in [32] to obtain the solution at the first time step. Given nm−1,
pm−1, φm−1, nm , pm , and φm , we set the initial guess as nm+1,0 := max(2nm − nm−1, ε),
pm+1,0 := max(2pm − pm−1, ε), and φm+1,0 := 2φm − φm−1, where ε is a small positive
number. Given the k-th iterate numerical solution nm+1,k , pm+1,k , φm+1,k , the first stage of
the (k + 1)-th iterate is obtained by the following linearized iteration:

nm+1,∗ − (
�t + �t2

)∇h ·
(
M̆m+1/2

n ∇h

(
nm+1,∗

nm+1,k

))
= nm

+ �t∇h ·
(
M̆m+1/2

n ∇h

(
ln nm+1,k + nm(ln nm+1,k − ln nm)

nm+1,k − nm
+ �t ln

(
nm+1,k

nm

)
− φm+1,k + φm

2

))
,

pm+1,∗ − (
�t + �t2

)∇h ·
(
M̆m+1/2

p ∇h

(
pm+1,∗

pm+1,k

))
= pm

+ �t∇h ·
(
M̆m+1/2

p ∇h

(
ln pm+1,k + pm(ln pm+1,k − ln pm)

pm+1,k − pm
+ �t ln

(
pm+1,k

pm

)
+ φm+1,k + φm

2

))
,

− �hφ
m+1,∗ = pm+1,∗ − nm+1,∗.

In particular, in the regime that the distance between nm+1,k and nm is within certain small
tolerance, the following approximation is employed to prevent a singular calculation:

nm(ln nm+1,k − ln nm)

nm+1,k − nm
≈ 2nm

nm+1,k + nm
.

Next, we obtain nm+1,k+1, pm+1,k+1, and φm+1,k+1 by
(
nm+1,k+1, pm+1,k+1, φm+1,k+1

)
= ωr

(
nm+1,k, pm+1,k, φm+1,k

)

+ (1 − ωr )
(
nm+1,∗, pm+1,∗, φm+1,∗) ,
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Table 1 The L2h differences and convergence order for p, n, and ψ at time T = 0.5 with �t = 0.1h in 2D

simulations, where various mesh resolutions are used: h1 = 1
20 , h2 = 1

40 , h3 = 1
60 , h4 = 1

80 , and h5 = 1
100

— u = p Order u = n Order u = ψ Order

‖uh1 − uh2‖2 2.739E−5 – 2.739E−5 – 4.598E−2 –

‖uh2 − uh3‖2 5.104E−6 1.99 5.104E−6 1.99 9.460E−3 1.85

‖uh3 − uh4‖2 1.788E−6 2.00 1.788E−6 2.00 3.508E−3 1.86

‖uh3 − uh4‖2 8.280E−7 2.00 8.280E−7 2.00 1.690E−3 1.86

Table 2 The L2h differences and convergence order for p, n, and ψ at time T = 0.1 with �t = 0.1h in 3D

simulations, where various mesh resolutions are used: h1 = 1
15 , h2 = 1

20 , h3 = 1
25 , h4 = 1

30 , and h5 = 1
35

— u = p Order u = n Order u = ψ Order

‖uh1 − uh2‖2 2.163E−5 – 2.163E−5 – 1.139E−2 –

‖uh2 − uh3‖2 1.002E−5 2.00 1.002E−5 2.00 5.367E−3 1.94

‖uh3 − uh4‖2 5.440E−6 2.00 5.440E−6 2.00 2.961E−3 1.93

‖uh3 − uh4‖2 3.274E−6 2.01 3.274E−6 2.01 1.809E−3 1.93

where ωr ∈ (0, 1) is a relaxation parameter.
To demonstrate numerical accuracy of the proposed scheme,we perform a series of 2D and

3D numerical tests in computational domains� = (−1, 1)2 and� = (−1, 1)3, respectively.
For 2D simulations, the following fixed charge distribution is considered:

ρ f (x, y) = 100

σ
√
2π

(
e−

(
x+ 1

2

)2
+
(
y+ 1

2

)2

2σ2 − e−
(
x+ 1

2

)2
+
(
y− 1

2

)2

2σ2 − e−
(
x− 1

2

)2
+
(
y+ 1

2

)2

2σ2 + e−
(
x− 1

2

)2
+
(
y− 1

2

)2

2σ2

)
.

For 3D simulations, a similar fixed charge distribution is considered:

ρ f (x, y, z
) = 100

σ
√
2π

(
e−

(
x+ 1

2

)2
+
(
y+ 1

2

)2
+z2

2σ2 − e−
(
x+ 1

2

)2
+
(
y− 1

2

)2
+z2

2σ2

−e−
(
x− 1

2

)2
+
(
y+ 1

2

)2
+z2

2σ2 + e−
(
x− 1

2

)2
+
(
y− 1

2

)2
+z2

2σ2

)
.

For simplicity, we take σ = 0.5, D = 1, and uniform initial data for concentrations

p(·, 0) = 0.01 and n(·, 0) = 0.01.

To test numerical accuracy, we perform computations with a sequence of uniform mesh
resolutions h with �t = 0.1h. Since the exact solution is not available, we calculate the L2

h
differences between numerical solutions with consecutive spatial resolutions, h j−1, h j and
h j+1. The convergence order is calculated by

Convergence Order ≈
ln

(
1
A∗ · ‖uh j−1−uh j ‖∞

‖uh j −uh j+1‖∞

)

ln
h j−1
h j

, A∗ =
1 − h2j

h2j−1

1 − h2j+1

h2j

, for h j−1 > h j > h j+1.
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Fig. 1 The evolution of discrete energy Eh , total mass of p, and the minimum concentration CMin

From Table 1, one can see that the L2
h differences at time T = 0.5 decrease robustly as the

mesh refines from h = 1
20 ,

1
40 ,

1
60 ,

1
80 , to

1
100 in 2D simulations, predicting an almost perfect

second order convergence rate for both the ionic concentrations and electrostatic potential.
Similarly, for 3D simulations, as the mesh refines from h1 = 1

15 , h2 = 1
20 , h3 = 1

25 , h4 = 1
30 ,

to h5 = 1
35 , the L2

h differences listed in Table 2 reduce in a second-order convergence rate
as well for both the ionic concentrations and electrostatic potential.

In addition, we perform numerical tests to demonstrate the performance of our numerical
scheme in preserving physical properties at a discrete level. With periodic boundary condi-
tions, the total mass of concentrations over the computational box should be conserved for
each time step. This is perfectly confirmed in the upper panel of the Fig. 1. Also, from the fig-
ure, one can observe that the discrete energy Eh decreases monotonically, as predicted in our
numerical analysis. To explore the positivity-preserving property, we focus on the evolution
of the minimum concentration, i.e., CMin := Min{Mini, j,knmi, j,k,Mini, j,k pmi, j,k}. As shown
in the lower panel of Fig. 1, the numerical solutions of concentration remain positive all the
time, even though the concentration could be extremely low for T > 0.1. Overall, we can
see from the numerical tests that the proposed numerical scheme is capable of maintaining
mass conservation, energy dissipation, and positivity at a discrete level.

6 Concluding Remarks

A second order accurate numerical scheme is proposed and analyzed for the Poisson–Nernst–
Planck (PNP) system, with finite difference spatial approximation. The Energetic Variational
Approach (EnVarA) is taken, so that the PNP system could be reformulated as a non-constant
mobility H−1 gradient flow, with singular logarithmic energy potentials involved. In the pro-
posed numerical algorithm, the mobility function is explicitly treated with a second order
accurate extrapolation formula, so that the elliptic nature of the temporal derivative part is
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preserved and the unique solvability could be ensured. A modified Crank–Nicolson approx-

imation is applied to the logarithmic term, in the form of F(um+1)−F(um )

um+1−um
(with u either the

component n or p). The advantage of this approximation is associated with the fact that,
its inner product with the discrete temporal derivative exactly gives the corresponding non-
linear energy difference; henceforth the energy stability is ensured for the logarithmic part.
In addition, nonlinear artificial regularization terms, in the form of �t(ln nm+1 − ln nm),
�t(ln pm+1 − ln pm), have been added in the numerical scheme, so that the positivity-
preserving property could be theoretically justified, with the help of the singularity associated
with the logarithmic function. In addition, an optimal rate convergence analysis is provided
in this work, with many highly non-standard estimates involved. The higher order asymptotic
expansion (up to fourth order temporal accuracy and spatial accuracy) has been performed
with a careful linearization expansion. In turn, we are able to obtain a rough error estimate,
so that to the L∞

h bound for n and p could be derived, as well as the temporal derivatives.
With the help of these bounds, the corresponding inner product between the discrete temporal
derivative of the numerical error function and the numerical error associated with the chem-
ical potential becomes a discrete derivative of certain nonlinear, non-negative functional in
terms of the numerical error functions, combined with some numerical perturbation terms.
Finally, the refined error estimate are carried out to accomplish the desired convergence result.
It is the first work to combine the following theoretical properties for numerical scheme to
the PNP system: second order accuracy in both time and space, unique solvability/positivity-
preserving, energy stability and optimal rate convergence analysis. A few numerical results
are also presented in this article, which demonstrates the robustness of the proposed numerical
scheme.
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Appendix A: Proof of Proposition 4.1

In terms of the temporal discretization, the following local truncation error can be derived
by a Taylor expansion in time, combined with the projection estimate (4.3):

Nm+1
N − Nm

N

�t
= ∇ · (N̆m+1/2

N ∇(
G1

Nm
N

(
Nm+1
N

) + (−�)−1(Nm+1/2
N − Pm+1/2

N

)

+�t
(
lnNm+1

N − lnNm
N

))) + �t2
(
G(0)

n

)m+1/2 + O
(
�t3

) + O
(
hm0

)
,

(A.1)

Pm+1
N − PmN

�t
= ∇ · (DP̆m+1/2

N ∇(
G1

PmN

(
Nm+1
P

) + (−�)−1(Pm+1/2
N − Nm+1/2

N

)

+�t
(
ln Pm+1

N − ln PmN
))) + �t2

(
G(0)

p

)m+1/2 + O
(
�t3

) + O
(
hm0

)
,

N̆m+1/2
N = 3

2
Nm
N − 1

2
Nm−1
N , P̆m+1/2

N = 3

2
PmN − 1

2
Pm−1
N ,
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Nm+1/2
N = 1

2

(
Nm+1
N + Nm

N

)
, Pm+1/2

N = 1

2

(
Pm+1
N + PmN

)
, (A.2)

with the projection accuracy orderm0 ≥ 4. In fact, the spatial functionsG(0)
n G(0)

p are smooth
enough in the sense that their derivatives are bounded.

Subsequently, the leading order temporal correction function (N�t,1, P�t,1) turns out to
be the solution of the following linear equations:

∂tN�t,1 = ∇ ·
(
N�t,1∇

(
lnNN + (−�)−1(NN − PN

))

+NN∇( 1

NN
N�t,1 + (−�)−1(N�t,1 − P�t,1

))) − G(0)
n , (A.3)

∂tP�t,1 = ∇ ·
(
DP�t,1∇

(
ln PN + (−�)−1(PN − NN

))

+DPN∇( 1

PN
P�t,1 + (−�)−1(P�t,1 − N�t,1

))) − G(0)
p . (A.4)

In fact, existence of a solution of the above linear and parabolic PDE system is straight-
forward. It depends only on the projection solution (NN , PN ). And also, the derivatives of
(N�t,1, P�t,1) in various orders are bounded. In turn, an application of the semi-implicit
discretization to (A.3)–(A.4) gives

Nm+1
�t,1 − Nm

�t,1

�t
= ∇ ·

(
N̆m+1/2

�t,1 ∇(
G1

Nm
N

(
Nm+1
N

) + ( − �)−1(Nm+1/2
N − Pm+1/2

N

))

+N̆m+1/2
N ∇(

1

Nm+1/2
N

Nm+1/2
�t,1 + (−�)−1(Nm+1/2

�t,1 − Pm+1/2
�t,1

)))

−(
G(0)

n

)m+1/2 + �t2hm+1/2
1 + O

(
�t3

)
, (A.5)

Pm+1
�t,1 − Pm�t,1

�t
= ∇ ·

(
DP̆m+1/2

�t,1 ∇(
G1

PmN

(
Pm+1
N

) + ( − �)−1(Pm+1/2
N − Nm+1/2

N

))

+DP̆m+1/2
N ∇(

1

Pm+1/2
N

Pm+1/2
�t,1 + ( − �)−1(Pm+1/2

�t,1 − Nm+1/2
�t,1

)))

−(
G(0)

p

)m+1/2 + �t2hm+1/2
2 + O(�t3),

N̆m+1/2
�t,1 = 3

2
Nm

�t,1 − 1

2
Nm−1

�t,1, P̆m+1/2
�t,1 = 3

2
Pm�t,1 − 1

2
Pm−1

�t,1,

Nm+1/2
�t,1 = 1

2

(
Nm+1

�t,1 + Nm
�t,1

)
, Pm+1/2

�t,1 = 1

2

(
Pm+1

�t,1 + Pm�t,1

)
. (A.6)

A combination of (A.1)–(A.2) and (A.5)–(A.6) results in the third order temporal truncation
error for N̂1 := NN + �t2PNN�t,1, P̂1 := PN + �t2PNP�t,1:

N̂m+1
1 − N̂m

1

�t
= ∇ ·

((3
2
N̂m
1 − 1

2
N̂m−1
1

)∇(
G1

N̂m
1

(
N̂m+1
1

) + (−�)−1(N̂m+1/2
1 − P̂m+1/2

1

)

+�t
(
ln N̂m+1

1 − ln N̂m
1

))) + �t3
(
G(1)

n

)m+1/2 + O(�t4) + O
(
hm0

)
,

(A.7)

P̂m+1
1 − P̂m1

�t
= ∇ ·

(
D
(3
2
P̂m1 − 1

2
P̂m−1
1

)∇(
G1

P̂m1
(P̂m+1

1

) + (−�)−1(P̂m+1/2
1 − N̂m+1/2

1

)

+�t
(
ln P̂m+1

1 − ln P̂m1
))) + �t3

(
G(1)

p

)m+1/2 + O(�t4) + O
(
hm0

)
,
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N̂m+1/2
1 = 1

2

(
N̂m+1
1 + N̂m

1

)
, P̌m+1/2

1 = 1

2

(
P̂m+1
1 + P̂m1

)
. (A.8)

In the derivation of (A.7)–(A.8), the following linearized expansions have been applied:

G1
N̂m
1

(
N̂m+1
1

) =G1
Nm
N

(
Nm+1
N

) + 1

2Nm
N

(
N̂m
1 − Nm

N

) + 1

2Nm+1
N

(
N̂m+1
1 − Nm+1

N

) + O(�t3)

=G1
Nm
N

(
Nm+1
N

) + 1

2
�t2

( 1

Nm
N

· Nm
�t,1 + 1

Nm+1
N

· Nm+1
�t,1

)
+ O(�t3),

1

Nm+1/2
N

Nm+1/2
�t,1 = 1

2

( 1

Nm
N

· Nm
�t,1 + 1

Nm+1
N

· Nm+1
�t,1

)
+ O

(
�t2

)
,

(A.9)

in which property (3) of G1
a(x) (as stated in Lemma 3.1) is recalled. The corresponding

expansions for G1
P̂m1

(P̂m+1
1 ) could be similarly derived, and the technical details are skipped

for the sake of brevity.
Similarly, the next order temporal correction function

(
N�t,2, P�t,2

)
turns out to be the

solution of following linear equations:

∂tN�t,2 = ∇ · (N�t,2∇
(
ln Ň1 + (−�)−1(Ň1 − P̌1

))

+Ň1∇
( 1

Ň1
N�t,2 + (−�)−1(N�t,2 − P�t,2

))) − G(1)
n , (A.10)

∂tP�t,2 = ∇ · (DP�t,2∇
(
ln P̌1 + (−�)−1(P̌1 − Ň1

))

+DP̌1∇
( 1

P̌1
P�t,2 + (−�)−1(P�t,2 − N�t,2

))) − G(1)
p . (A.11)

Again, the solution depends only on the exact solution (N, P), with derivatives of various
orders stay bounded. Of course, an application of the semi-implicit discretization to (A.10)–
(A.11) gives

Nm+1
�t,2 − Nm

�t,2

�t
= ∇ · (N̆m+1/2

�t,2 ∇(
G1

N̂m
1

(
N̂m+1
1

) + (−�)−1(N̂m+1/2
1 − P̂m+1/2

1
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(
3

2
N̂m
1 − 1

2
N̂m−1
1
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∇( 1
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1
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�t,2 + (−�)−1(Nm+1/2

�t,2 − Pm+1/2
�t,2

)))

−(
G(1)

n

)m+1/2 + O
(
�t2

)
, (A.12)

Pm+1
�t,2 − Pm�t,2

�t
= ∇ ·

(
DP̆m+1/2

�t,2 ∇(G1
P̂m1

(
P̂m+1
1

) + (−�)−1(P̂m+1/2
1 − N̂m+1/2

1
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+D
(3
2
P̂m1 − 1

2
P̂m−1
1
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1

P̂m+1/2
1
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�t,2 − Nm+1/2
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−(
G(1)

p

)m+1/2 + O
(
�t2

)
,

N̆m+1/2
�t,2 = 3

2
Nm

�t,2 − 1

2
Nm−1

�t,2, P̆m+1/2
�t,2 = 3

2
Pm�t,2 − 1

2
Pm−1

�t,2 . (A.13)

As a result, a combination of (A.10)–(A.11) and (A.12)–(A.13) yields the fourth order tem-
poral truncation error for N̂2 := N̂1 + �t3PNN�t,2, P̂2 := P̂1 + �t3PNP�t,2:

N̂m+1
2 − N̂m

2

�t
= ∇ · ((3

2
N̂m
2 − 1

2
N̂m−1
2

)∇(
G1

N̂m
2

(
N̂m+1
2 ) + (−�)−1(N̂m+1/2

2 − P̂m+1/2
2

))
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+�t
(
ln N̂m+1

2 − ln N̂m
2

)) + �t4
(
G(2)

n

)m+1/2 + O
(
�t5

) + O
(
hm0

)
,

(A.14)

P̂m+1
2 − P̂m2

�t
= ∇ ·

(
D
(3
2
P̂m2 − 1

2
P̂m−1
2

)∇(
G1

P̂m2

(
P̂m+1
2

) + (−�)−1(P̂m+1/2
2 − N̂m+1/2

2

))

+�t
(
ln P̂m+1

2 − ln P̂m2
)) + �t4

(
G(2)

p

)m+1/2 + O
(
�t5

) + O
(
hm0

)
,

(A.15)

in which similar linearized expansions (as in (A.9)) have been used in the derivation.
In terms of spatial discretization, we construct the spatial correction term (Nh,1, Ph,1) to

improve the spatial accuracy order. The following truncation error estimate for the spatial
discretization is available, by using a straightforward Taylor expansion for the constructed
profile (N̂2, P̂2):

N̂m+1
2 − N̂m

2

�t
= ∇h · ((3

2
N̂m
2 − 1

2
N̂m−1
2

)∇h
(
G1

N̂m
2

(
N̂m+1
2

) + (−�h)
−1(N̂m+1/2

2 − P̂m+1/2
2

))

+�t
(
ln N̂m+1

2 − ln N̂m
2

)) + h2
(
H (0)
n

)m+1/2 + O
(
�t4 + h4

)
, (A.16)

P̂m+1
2 − P̂m2

�t
= ∇h · (D(3

2
P̂m2 − 1

2
P̂m−1
2

)∇h
(
G1

P̂m2

(
P̂m+1
2

) + (−�h)
−1(P̂m+1/2

2 − N̂m+1/2
2

))

+�t
(
ln P̂m+1

2 − ln P̂m2
)) + h2

(
H (0)

p

)m+1/2 + O(�t4 + h4), (A.17)

in which the average operator is taken in a similar form as (2.9). Similarly, the spatially
discrete functions H (0)

n , H (0)
p are smooth enough in the sense that their discrete derivatives

are bounded. Because of the symmetry in the centered finite difference approximation, there
is no O(h3) truncation error term. In turn, the spatial correction function (Nh,1, Ph,1) is
determined by solving the solution of the following linear PDE system:

∂tNh,1 = ∇ ·
(
Nh,1∇

(
ln Ň2 + (−�)−1(Ň2 − P̌2

))

+Ň2∇
( 1

Ň2
Nh,1 + (−�)−1(Nh,1 − Ph,1

))) − H (0)
n , (A.18)

∂tPh,1 = ∇ · (DPh,1∇
(
ln P̌2 + (−�)−1(P̌2 − Ň2

)
)

+DP̌1∇
( 1

P̌2
Ph,1 + (−�)−1(Ph,1 − Nh,1

))) − H (0)
p . (A.19)

Again, the solution depends only on the exact solution (N, P), with the divided differences of
various orders stay bounded. An application of a full discretization to (A.18)–(A.19) leads
to

Nm+1
h,1 − Nm

h,1

�t
= ∇h ·

((
N̆m+1/2
h,1

)
∇h

(
G1

N̂m
2

(
N̂m+1
2

)
+ (−�h)

−1
(
N̂m+1/2
2 − P̂m+1/2

2

))

+
(3
2
N̂m
2 − 1

2
N̂m−1
2

)
∇h

( 1

N̂m+1/2
2

Nm+1/2
h,1 + (−�h)

−1
(
Nm+1/2
h,1 − Pm+1/2

h,1

)))

−(
H (0)
n

)m+1/2 + O
(
�t2 + h2

)
, (A.20)

Pm+1
h,1 − Pmh,1

�t
= ∇h · (D(

P̆m+1/2
h,1

)∇h
(
G1

P̂m2

(
P̂m+1
2

) + (−�h)
−1(P̂m+1/2

2 − N̂m+1/2
2

))
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+D
(3
2
P̂m2 − 1

2
P̂m−1
2

)∇h
( 1

P̂m+1/2
2

Pm+1/2
h,1 + (−�h)

−1(Pm+1/2
h,1 − Pm+1/2

h,1

)))

−(
H (0)

p

)m+1/2 + O
(
�t2 + h2

)
,

N̆m+1/2
h,1 = 3

2
Nm
h,1 − 1

2
Nm−1
h,1 , P̆m+1/2

h,1 = 3

2
Pmh,1 − 1

2
Pm−1
h,1 . (A.21)

Finally, a combination of (A.18)–(A.19) and (A.20)–(A.21) yields the higher order trunca-
tion error for (N̂, P̂), as given by (4.10)–(4.11). Of course, the linear expansions have been
extensively utilized.

Moreover, we see that trivial initial data N�t, j ( · , t = 0), P�t, j ( · , t = 0) ≡ 0 could
be taken ( j = 1, 2) as in (A.3)–(A.4), (A.10)–(A.11), respectively, as well as (Nh,1, Ph,1)

in (A.18)–(A.19). Consequently, using similar arguments as in (4.4)–(4.5), we arrive at the
mass conservative identities (4.12), (4.13). Notice that the first step of (4.13) is based on the
fact that N̂ ∈ BK , and the second step comes from the mass conservative property of N̂ at
the continuous level. And also, the mass conservative property of (N̂, P̂) is stated in (4.13),
and we conclude that the local truncation error τn , τp has a similar property, so that (4.14) is
proved.

Based on the fact that the temporal and spatial correction functions (N�t, j , P�t, j ),
(Nh,1, Ph,1) are bounded, we recall the separation property (4.2) for the exact solution. In
turn, a similar property (4.15) becomes available for the constructed profile (N̂, P̂), in which
the projection estimate (4.3) has been recalled. Of course,�t and h could be taken sufficiently
small so that (4.15) is valid for a modified value ε�

0, such as ε�
0 = 1

4ε0.
Furthermore, we recall the fact that the correction functions stay bounded, in terms of

both the spatial and temporal derivatives, since they only depend on (NN , PN ) and the exact
solution. Therefore, a discreteW 1,∞ bound for (N̂, P̂) could be derived as in (4.16), aswell as a
bound (4.17) for its discrete temporal derivative. This completes the proof of Proposition 4.1.

Appendix B: Proof of Lemma 4.1

For the nonlinear inner product associated with the artificial regularization, the following
fact is observed:

ln N̂m+1 − ln nm+1 = 1

ζ
(m+1)
n

ñm+1, ζ (m+1)
n between N̂m+1and nm+1, (Taylor expansion),

〈
ln N̂m+1 − ln nm+1, ñm+1

〉
=

〈
1

ζ
(m+1)
n

ñm+1, ñm+1
〉

≥ 0,
(B.1)

in which the positivity-preserving property of nm+1 and Ňm+1 has been applied. For the
additional term in the artificial regularization part, we have the following estimates:

ln N̂m − ln nm = 1

ζ
(m)
n

ñm, ζ (m)
n between N̂m and nm, (Taylor expansion), (B.2)

| 1

ζ
(m)
n

| ≤ max
( 1

N̂m
,
1

nm

)
≤ 2

ε∗
0
, (by (4.15), (4.30)), (B.3)

| ln N̂m − ln nm | = | 1

ζ
(m)
n

| · |ñm | ≤ 2

ε∗
0
|ñm |, |〈ln N̂m − ln nm, ñm+1〉| ≤ 2

ε∗
0
|〈ñm, ñm+1〉|.

(B.4)
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For the error term 〈ñm+1,G1
N̂m (N̂m+1) − G1

nm (nm+1)〉, we begin with the following decom-
position:

G1
N̂m

(
N̂m+1) − G1

nm
(
nm+1) = NLEm

1 + NLEm
2 , NLEm

1 = G1
nm

(
N̂m+1) − G1

nm
(
nm+1),

NLEm
2 = G1

N̂m+1

(
N̂m) − G1

N̂m+1

(
nm

)
,

(B.5)

in which G1
a(x) has been introduced in (3.1). For the NLEm

2 error term, we apply the inter-
mediate value theorem and obtain

NLEm
2 = G1

N̂m+1

(
N̂m) − G1

N̂m+1(n
m)

= (
G1

N̂m+1

)′(
η(m)
n

)(
N̂m − nm

)
, η(m)

n between N̂mand nm .
(B.6)

Meanwhile, by property (3) in Lemma 3.1, we conclude that

(
G1

N̂m+1

)′(
η(m)
n

) = 1

2ξ (m)
n

, ξ (m)
n between N̂m+1and η(m)

n . (B.7)

By the combined fact that, ξ
(m)
n is between N̂m+1 and η

(m)
n , η is between N̂m and nm , the

following bound is available

ξ (m)
n is between the values of N̂m+1, N̂mand nm,

∣∣∣
1

ξ
(m)
n

∣∣∣ ≤ max
( 1

N̂m+1
,

1

N̂m
,
1

nm

)
≤ 2

ε∗
0
,

(B.8)

in which the phase separation properties (4.15), (4.30) have been recalled. Then we arrive at

∣∣NLEm
2

∣∣ = ∣∣(G1
N̂m+1

)′(
η(m)
n

)∣∣ · ∣∣ñm ∣∣ =
∣∣∣

1

2ξ (m)
n

∣∣∣ · ∣∣ñm ∣∣ ≤ 1

ε∗
0

∣∣ñm
∣∣. (B.9)

Based on this point-wise bound, the following inequality is available

〈NLEm
2 , ñm+1〉 ≥ − 1

ε∗
0
|〈ñm, ñm+1〉| ≥ −h3

ε∗
0

∑

i, j,k

|ñmi, j,k | · |ñm+1
i, j,k |. (B.10)

For the NLEm
1 error term, a similar nonlinear analysis could be performed:

NLEm
1 = G1

nm
(
N̂m+1) − G1

nm
(
nm+1) = (

G ˆnm
)′(

η(m+1)
n

)(
N̂m+1 − nm+1),

(
G1

nm
)′(

η(m+1)
n

) = 1

2ξ (m+1)
n

, ξ (m+1)
n between nmand η(m+1)

n ,

ξ (m+1)
n is between the values of nm , N̂m+1and nm+1,

1

ξ
(m+1)
n

≥ min
( 1

N̂m+1
,

1

nm+1 ,
1

nm

)
.

(B.11)

This in turn leads to
〈
NLEm

1 , ñm+1
〉

=
〈

1

2ξ (m+1)
n

,
(
ñm+1)2

〉
= 1

2
h3

∑

i, j,k

1
(
ξ

(m+1)
n

)
i, j,k

· |ñm+1
i, j,k |2. (B.12)

Subsequently, a combination of (B.10) and (B.12) yields
〈
ñm+1,G1

N̂m

(
N̂m+1) − G1

nm
(
nm+1)

〉
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≥ h3
∑

i, j,k

( 1
2(

ξ
(m+1)
n

)
i, j,k

· ∣∣ñm+1
i, j,k

∣
∣2 − (ε∗

0 )
−1

∣
∣ñmi, j,k

∣
∣ · ∣∣ñm+1

i, j,k

∣
∣
)
. (B.13)

Moreover, its combination with (B.1)–(B.4) indicates that

�t

〈
ñm+1, ln N̂m+1 − ln nm+1 − (

ln N̂m − ln nm
)〉 +

〈
ñm+1,G1

N̂m (N̂m+1) − G1
nm (nm+1)

〉

≥ h3
∑

i, j,k

( 1
2

(ξ
(m+1)
n )i, j,k

· |ñm+1
i, j,k |2 − 3

2
(ε∗

0 )
−1|ñmi, j,k | · |ñm+1

i, j,k |
)

.

(B.14)

At each fixed grid point (i, j, k), if (i, j, k) is not in �n , i.e., 0 < nm+1
i, j,k < 2C∗ + 1, the

following estimates are available:

1

nm+1
i, j,k

≥ 1

2C∗ + 1
,

1

N̂m+1
i, j,k

≥ 1

C∗ ,
1

nmi, j,k
≥ 1

C∗ + 1
, (by (4.16), (4.29)),

so that
1

(
ξ

(m+1)
n

)
i, j,k

≥ min

(
1

N̂m+1
i, j,k

,
1

nm+1
i, j,k

,
1

nmi, j,k

)
≥ 1

2C∗ + 1
.

(B.15)

In turn, the following inequality is valid for 0 < nm+1
i, j,k < 2C∗ + 1:

1
2(

ξ
(m+1)
n

)
i, j,k

· |ñm+1
i, j,k |2 − 3

2

(
ε∗
0

)−1|ñmi, j,k | · |ñm+1
i, j,k |

≥
1
2

2C∗ + 1
|ñm+1

i, j,k |2 − 3

2

(
ε∗
0

)−1|ñmi, j,k | · |ñm+1
i, j,k |

≥ 1

4C∗ + 2
|ñm+1

i, j,k |2 − 1

8C∗ + 4
|ñm+1

i, j,k |2

− 9(2C∗ + 1)

16
(ε∗

0 )
−2|ñmi, j,k |2

≥ 1

8C∗ + 4
|ñm+1

i, j,k |2 − 9(2C∗ + 1)

16
(ε∗

0 )
−2|ñmi, j,k |2.

(B.16)

At each fixed grid point (i, j, k), if (i, j, k) ∈ �n , i.e., n
m+1
i, j,k ≥ 2C∗ + 1, we see that

nm+1
i, j,k > max(N̂m+1

i, j,k, n
m
i, j,k), so that

1
(
ξ

(m+1)
n

)
i, j,k

≥ min
( 1

N̂m+1
i, j,k

,
1

nm+1
i, j,k

,
1

nmi, j,k

)
= 1

nm+1
i, j,k

. (B.17)

Meanwhile, since nm+1
i, j,k > N̂m+1

i, j,k , we see that ñ
m+1
i, j,k = N̂m+1

i, j,k − nm+1
i, j,k < 0, and the following

fact is observed:

N̂m+1
i, j,k ≤ C∗ ≤ C∗

2C∗ + 1
(2C∗ + 1) ≤ C∗nm+1

i, j,k

2C∗ + 1
,

|ñm+1| = |N̂m+1
i, j,k − nm+1

i, j,k | ≥ |nm+1
i, j,k | − C∗nm+1

i, j,k

2C∗ + 1
≥ C∗ + 1

2C∗ + 1
nm+1
i, j,k,

1

(ξ
(m+1)
n )i, j,k

· |ñm+1
i, j,k | ≥ 1

nm+1
i, j,k

· C∗ + 1

2C∗ + 1
nm+1
i, j,k = C∗ + 1

2C∗ + 1
= 1

2
+

1
2

2C∗ + 1
.
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(B.18)

Subsequently, the following inequality could be derived, for nm+1
i, j,k ≥ 2C∗ + 1:

1
2(

ξ
(m+1)
n

)
i, j,k

· |ñm+1
i, j,k |2 − 3

2
(ε∗

0 )
−1|ñmi, j,k | · |ñm+1

i, j,k |

≥
1
2 (C∗ + 1)

2C∗ + 1
· |ñm+1

i, j,k | − 3

2

(
ε∗
0

)−1 · �t2 · |ñm+1
i, j,k | ≥

( 1
2 (C∗ + 1)

2C∗ + 1
− 3

2
(ε∗

0 )
−1�t2

)
|ñm+1

i, j,k |

≥ 1

4
|ñm+1

i, j,k | ≥ 1

4
(2C∗ + 1) ≥ 1

2
C∗, (B.19)

in which the ‖ · ‖∞ estimate (4.28) has been applied in the second step, and the fact the
1
2 (C∗+1)
2C∗+1 − 3

2 (ε
∗
0 )

−1�t2 ≥ 1
4 has been used in the fourth step.

Consequently, a substitution of the point-wise inequalities (B.16), (B.19) into (B.14)
results in the desired estimate (4.33), by taking C̃4 = 9(2C∗+1)

16 (ε∗
0 )

−2. The other inequality
in (4.33) could be derived in the same manner; the technical details are skipped for the sake
of brevity.

Finally, if K ∗
n = 0 and K ∗

p = 0, i.e, both �n and �p are empty sets, we see that
inequality (B.16) is valid at every grid points. In turn, a summation in space results in the
improved nonlinear estimate (4.34). This finishes the proof of Lemma 4.1.

Appendix C: Proof of Lemma 4.2

The Taylor expansions (B.6)–(B.8), (B.11) are still valid, which in turn imply that

G1
N̂m

(
N̂m+1) − G1

nm
(
nm+1) = NLEm

1 + NLEm
2 = 1

2ξ (m+1)
n

ñm+1 + 1

2ξ (m)
n

ñm . (C.1)

In particular, ξ (m)
n could be analyzed in a more precise way:

ξ (m)
n is between the values of N̂m+1, N̂mand nm, so that

max
(|ξ (m)

n − N̂m+1|, |ξ (m)
n − N̂m |)

≤ |N̂m+1 − N̂m | + ∣∣nm − N̂m
∣∣ ≤ C∗�t + �t = (C∗ + 1)�t,

(C.2)

in which the regularity requirement (4.16) for the constructed profile N̂, as well as the ‖ · ‖∞
a-priori error estimate for ñm , has been applied. A similar error bound could also be derived
for ξ

(m+1)
n , with the technical details skipped for the sake of brevity:
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max
(∣∣ξ (m+1)

n − N̂m+1
∣
∣,
∣
∣ξ (m+1)
n − N̂m

∣
∣) ≤ |N̂m+1 − N̂m | + |nm+1 − N̂m+1| + |nm − N̂m |

≤ C∗�t + �t = (
C∗ + 1

)
�t . (C.3)

Then we arrive at the point-wise error bounds:

∣
∣
∣

1

2ξ (m)
n

− 1

N̂m+1 + N̂m

∣
∣
∣ = |N̂m+1 − ξ

(m)
n + N̂m − ξ

(m)
n |

2ξ (m)
n (N̂m+1 + N̂m)

≤ (
ε∗
0

)−1 · 2(ε∗
0

)−1 · 2(C∗ + 1)�t = M (0)�t,
∣
∣
∣

1

2ξ (m+1)
n

− 1

N̂m+1 + N̂m

∣
∣
∣ ≤ M (0)�t, (similar analysis),

(C.4)

with M (0) = 4(ε∗
0 )

−2 · (C∗ + 1), and the phase separation estimates (4.30), (4.31), (4.51)
have been applied. As a further consequence, the following inequality could be derived

〈ñm+1 − ñm,G1
N̂m

(
N̂m+1) − G1

nm (nm+1)〉 =
〈
ñm+1 − ñm,

1

2ξ (m+1)
n

ñm+1 + 1

2ξ (m)
n

ñm
〉

≥
〈
ñm+1 − ñm,

1

N̂m+1 + N̂m

(
ñm+1 + ñm

)
〉
−

〈
|ñm+1 − ñm |, M (0)�t

(|ñm+1| + |ñm |)
〉

≥
〈 1

N̂m+1 + N̂m
,
(
ñm+1)2

〉
−

〈 1

N̂m+1 + N̂m
,
(
ñm

)2〉 − 2M (0)�t
(‖ñm+1‖22 + ‖ñm‖22

)
.

(C.5)

On the other hand, the following estimates are straightforward:

∣∣∣
1

N̂m+1 + N̂m
− 1

2N̂m+1

∣∣∣ = |N̂m+1 − N̂m |
2N̂m+1(N̂m+1 + N̂m)

≤ C∗�t · 4(ε∗
0 )

−2 = M (1)�t,

∣∣∣
1

N̂m+1 + N̂m
− 1

2N̂m

∣∣∣ ≤ M (1)�t,

(C.6)

with M (1) = 4C∗(ε∗
0 )

−2, in which the temporal regularity assumptions (4.17) for the
constructed profile N̂, as well as the phase separation estimate (4.30), have been applied.
Subsequently, the following inequalities are obvious:

〈
1

N̂m+1 + N̂m
, (ñm+1)2

〉
− 1

2

〈
1

N̂m+1
, (ñm+1)2

〉
≥ − M (1)�t‖ñm+1‖22,

〈
1

N̂m+1 + N̂m
,
(
ñm

)2
〉
− 1

2

〈
1

N̂m
,
(
ñm

)2
〉

≤ M (1)�t‖ñm‖22.
(C.7)

Finally, a combination of (C.5) and (C.7) results in the refined estimate (4.53), by taking
C̃6 = 2M (0) +M (1). Since both M (0) and M (1) only depend onC∗, ε∗

0 , the same dependence
preserves for C̃6.

Inequalities (4.54), (4.55), and (4.56) could be derived in a similar manner; the technical
details are skipped for the sake of brevity.
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