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Abstract

This paper proposes a second-order accurate numerical scheme for the Patlak–Keller–Segel
system with various mobilities for the description of chemotaxis. Formulated in a variational
structure, the entropy part is novelly discretized by a modified Crank-Nicolson approach so
that the solution to the proposed nonlinear scheme corresponds to a minimizer of a convex
functional. A careful theoretical analysis reveals that the unique solvability and positivity-
preserving property could be theoretically justified. More importantly, such a second order
numerical scheme is able to preserve the dissipative property of the original energy functional,
instead of a modified one. To the best of our knowledge, the proposed scheme is the first
second-order accurate one in literature that could achieve both the numerical positivity and
original energy dissipation. In addition, an optimal rate convergence estimate is provided for
the proposed scheme, in which rough and refined error estimate techniques have to be included
to accomplish such an analysis. Ample numerical results are presented to demonstrate robust
performance of the proposed scheme in preserving positivity and original energy dissipation
in blowup simulations.

Keywords: Patlak–Keller–Segel system; second-order accuracy; unique solvability; positivity
preservation; original energy dissipation; optimal rate convergence analysis
AMS subject classification: 35K35, 35K61, 65M06, 65M12, 92C17

1 Introduction

As a classical chemotaxis model, the Patlak–Keller–Segel (PKS) system is often used to describe
the evolution of living organisms interacting with environmental signals [34,43]:{

∂tρ = γ∆ρ− χ∇ · (η(ρ)∇ϕ),
θ∂tϕ = µ∆ϕ− αϕ+ χρ.

(1.1)

Here ρ is the density distribution of living organisms, ϕ stands for the density of the chemical
signals, γ, µ, and α are three positive constants, χ denotes the chemotactic sensitivity, η(ρ)
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is the density-dependent mobility, and θ ≥ 0 describes how fast chemical signals respond to
living organisms. To address the confinement effect in a bounded domain Ω, the PKS system is
prescribed with homogeneous Neumann boundary condition:

∇ρ · n = ∇ϕ · n = 0, on ∂Ω. (1.2)

The PKS system describes the diffusion of living organisms and aggregation induced by chem-
ical signals. In particular, the nonlinear term −χ∇ · (η(ρ)∇ϕ) models organism movement to-
wards higher density of chemical signals. It is well-known that the solution of the classical PKS
system (1.1) with η(ρ) = ρ may blow up in finite time. Many efforts have been devoted to
mathematical analysis on blowup solutions [5, 29, 30, 41, 42, 44]. According to the homogeneous
Neumann boundary condition (1.2), the total mass is conserved in the PKS system. There exists a
certain critical threshold value for initial total mass, by which the finite-time blow up solution and
globally existent solution can be distinguished [5,7,8,33,40,42]. In fact, the 2D solution exhibits
a critical-mass (8π/χ) phenomenon: initial data with subcritical mass lead to global existence,
while initial data with supercritical mass may cause finite-time blowup [7, 8, 17, 31]. Meanwhile,
in the 3D case, the solution existence becomes more subtle: blowup can occur for any positive
initial mass dependent on the initial concentration, with no universal threshold [51,52], although
global existence and boundedness can be established if the initial data is sufficiently small [35].
However, the density of living organisms does not blow up in reality, rather exhibiting density
peaks with difference of several orders in magnitude. Modified models with various η(ρ) have
been proposed to capture such a phenomenon [36].

Many numerical methods have been proposed for the PKS system in various chemotaxis ap-
plications [2–4,21,24,39,45,50,56]. The solution to the PKS system has several properties of great
physical significance, such as mass conservation, positivity for cell density, and energy dissipation.
Shen and Xu develop unconditionally energy-stable schemes that preserve positivity/bounds for
the PKS equations [45]. Based on the scalar auxiliary variable (SAV) approach, a high-order,
linear, positivity/bound preserving and unconditionally energy-stable scheme has also been de-
veloped in [32]. Based on the Slotboom formulation, a positivity-preserving and asymptotic
preserving scheme has also been constructed for the PKS system in 2D [39]. On the other hand,
second-order positivity-preserving central-upwind schemes have been developed for chemotaxis
models, by using the finite volume method [12] and discontinuous Galerkin approach [22, 23].
An implicit finite volume scheme has been proposed in [24], in which the existence of a positive
solution is established under certain restrictions. Bessemoulin-Chatard and Jüngel have also con-
structed a finite volume scheme for the PKS model [4], with an additional cross-diffusion term
in the second equation of (1.1). The positivity-preserving, mass conservation, entropy stability,
and the well-posedness of the nonlinear scheme have been proved in the work. Zhou and Saito
have introduced a linear finite volume scheme that satisfies both positivity and mass conservation
requirements [56].

Because of the non-constant mobilities, the numerical design of a second order accurate in time,
energy-stable algorithm for the PKS system turns out to be very challenging. In this work, we
propose a novel second-order (in time) numerical scheme for the PKS equations. The standard
Crank-Nicolson approximation is applied to the chemoattractant evolution equation, while the
variational structure of the density equation is used to facilitate the numerical design. In more
details, the mobility function is computed by an explicit second order extrapolation formula, and
such an explicit treatment will be useful in the unique solvability analysis. On the other hand, a
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singular logarithmic term appears in the chemical potential, and poses a great challenge for second-
order temporal discretization to ensure the theoretical properties at a discrete level. To overcome
this subtle difficulty, we approximate the logarithmic term by a careful Taylor expansion, up to the
second order accuracy. The unique solvability and positivity-preserving property of such a highly
nonlinear and singular numerical system is theoretically established, in which the convex and
singular nature of the implicit terms play a very important role in the theoretical analysis; see the
related works for various gradient flow models with singular energy potential [9–11,18–20,54,55].
This approach also avoids a nonlinear artificial regularization term in the numerical design. More
importantly, a careful nonlinear analysis reveals a dissipation property of the original free energy
functional, instead of a modified energy reported in many existing works for multi-step numerical
schemes [32,45]. This turns out to be a remarkable theoretical result for a second order accurate
scheme.

It is observed that, a highly nonlinear formulation in the numerical system, which is designed
to accomplish certain structure-preserving properties at a discrete level, often poses a challenging
task for a rigorous convergence analysis. In this work, an optimal rate convergence analysis is
performed for the proposed second-order numerical scheme. Due to the non-constant mobility
nature, together with the highly nonlinear and singular properties of the logarithmic terms, such
an optimal rate convergence analysis for the PKS equations turns out to be a very complicated
issue. To overcome this difficulty, several highly non-standard techniques have to be introduced. A
careful linearization expansion is required for the higher-order asymptotic analysis of the numerical
solution, up to the fourth order accuracy in both time and space. Such a higher-order asymptotic
expansion enables one to derive a maximum norm bound for the density variable, based on a rough
error estimate. Subsequently, the corresponding inner product between the discrete temporal
derivative of the numerical error function and the numerical error associated with the logarithmic
terms becomes a discrete derivative of certain nonlinear, non-negative functional in terms of the
numerical error functions, along with a few numerical perturbation terms. Consequently, all the
major challenges in the nonlinear analysis of the second-order accurate scheme could be overcome,
and the associated error estimate could be carefully derived. To our knowledge, this is the first
work to combine three theoretical properties for second-order accurate numerical schemes for the
PKS system: positivity-preservation, original energy dissipation, and optimal rate convergence
analysis.

The rest of the paper is organized as follows. In Section 2, the PKS system for chemotaxis
is introduced, and the associated physical properties are recalled. Subsequently, a second-order
accurate numerical scheme is proposed in Section 3. Afterwards, the structure-preserving proper-
ties of the proposed numerical scheme, such as mass conservation, unique solvability, positivity-
preserving property, and the original energy dissipation, are proved in Section 4. In addition, the
optimal rate convergence analysis is presented in Section 5. Some numerical results are provided
in Section 6. Finally, some concluding remarks are given in Section 7.

2 Chemotaxis models

For the PKS system (1.1), the following free energy is considered:

F (ρ, ϕ) =

∫
Ω

[
γf(ρ)− χρϕ+

µ

2
|∇ϕ|2 + α

2
ϕ2

]
dx. (2.1)
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For simplicity of presentation, the notation η(ρ) = 1
f ′′(ρ) is introduced. With an alternate repre-

sentation formula ∆ρ = ∇ · ( 1
f ′′(ρ)∇f

′(ρ)) [45], the PKS system could be rewritten as
∂tρ = ∇ ·

(
1

f ′′(ρ)
∇
[
γf ′(ρ)− χϕ

])
= ∇ ·

(
1

f ′′(ρ)
∇δF

δρ

)
,

θ∂tϕ = µ∆ϕ− αϕ+ χρ = −δF
δϕ
.

(2.2)

The homogeneous Neumann boundary condition (1.2) is imposed for both physical variables.
In this work, we consider three typical choices of the entropy function f(ρ) and the corre-

sponding mobility function η(ρ) (see the related examples in [28,44,45]):

• (i) The classical PKS system:

η(ρ) = ρ, f(ρ) = ρ(ln ρ− 1), for ρ ∈ I = (0,∞); (2.3)

• (ii) PKS system with a bounded mobility [47,48]:

η(ρ) =
ρ

κρ+ 1
(κ > 0), f(ρ) = ρ(ln ρ− 1) + κρ2/2, for ρ ∈ I = (0,∞); (2.4)

• (iii) PKS system with a saturation density [16,27]:

η(ρ) = ρ(1−ρ/M)(M > 0), f(ρ) = ρ ln ρ+(M−ρ) ln(1−ρ/M), for ρ ∈ I = (0,M), (2.5)

where M is the saturation density.

For cases (i) and (ii), the solution of the PKS equations requires the positivity of the density
variable, while in the case (iii), a bound 0 < ρ < M is needed.

With homogeneous Neumann boundary condition, the analytical solution to (1.1) has three
properties of physical importance:

• Mass conservation: the total density remains constant over time, i.e.,∫
Ω
ρ(t,x)dx =

∫
Ω
ρ(0,x)dx, ∀t > 0;

• Bound/Positivity: the organism density is positive, i.e.,

ρ(t,x) ∈ I, if ρ(0,x) ∈ I, for x ∈ Ω, ∀t > 0;

• Free-energy dissipation: the free-energy (2.1) decays in time [6, 13]

dF

dt
= −

∫
Ω

[
1

f ′′(ρ)

(
∇δF

δρ

)2

+
1

θ

(
δF

δϕ

)2
]
dx ≤ 0, for θ > 0.
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3 The numerical scheme

3.1 Some notations

For simplicity, a cubic rectangular computational domain Ω = (a, b)3 is considered, with homo-
geneous Neumann boundary condition. Let N ∈ N∗ be the number of grid points along each
dimension, and h = (b − a)/N be the uniform grid spacing size. The computational domain is
covered by the cell-centered grid points

{xi, yj , zk} =

{
a+ (i− 1

2
)h, a+ (j − 1

2
)h, a+ (k − 1

2
)h

}
,

for i, j, k = 1, · · · , N . Denote by ρi,j,k and ϕi,j,k the discrete approximations of ρ(xi, yj , zk, ·) and
ϕ(xi, yj , zk, ·), respectively.

The standard discrete operators and notations are recalled in the finite difference discretiza-
tion [49,53]. We define a uniform mesh with grid spacing h > 0: P = {pi | i = 1, 2, · · · , N}, where
pi := a + (i − 1

2)h. The following grid function spaces, with homogeneous Neumann boundary
conditions, are introduced:

C : =
{
u : P × P × P → R

∣∣ umN,j,k = u1+mN,j,k, ui,mN,k = ui,1+mN,k, ui,j,mN = ui,j,1+mN ,

∀i, j, k = 1, 2, · · · , N,m = 0, 1
}
,

C̊ : =

{
u ∈ C

∣∣ u :=
h3

|Ω|

N∑
i,j,k=1

ui,j,k = 0

}
,

in which ui,j,k = u(pi, pj , pk) is taken. Meanwhile, the average and difference operators in the
x-direction are given by

Axfi+1/2,j,k :=
1

2
(fi+1,j,k + fi,j,k) , Dxfi+1/2,j,k :=

1

h
(fi+1,j,k − fi,j,k) ,

axfi,j,k :=
1

2

(
fi+1/2,j,k + fi−1/2,j,k

)
, dxfi,j,k :=

1

h

(
fi+1/2,j,k − fi−1/2,j,k

)
.

Average and difference operators in y and z directions, denoted by Ay, Az, Dy, Dz, ay, az, dy,
and dz, could be analogously defined. The discrete gradient and discrete divergence become

∇hfi,j,k =
(
Dxfi+1/2,j,k, Dyfi,j+1/2,k, Dzfi,j,k+1/2

)
,

∇h · f⃗i,j,k = dxf
x
i,j,k + dyf

y
i,j,k + dzf

z
i,j,k,

where f⃗ = (fx, fy, fz), with fx, fy and fz evaluated at (i+1/2, j, k), (i, j+1/2, k), (i, j, k+1/2),
respectively. The standard discrete Laplacian turns out to be

∆hfi,j,k :=∇h · (∇hf)i,j,k = dx(Dxf)i,j,k + dy(Dyf)i,j,k + dz(Dzf)i,j,k.

Similarly, for a scalar function D that is defined at face center points, we have

∇h ·
(
Df⃗

)
i,j,k

= dx (Df
x)i,j,k + dy (Df

y)i,j,k + dz (Df
z)i,j,k .

If f ∈ C, then ∇h · (D∇h·) : C→ C becomes

∇h ·
(
D∇hf

)
i,j,k

= dx (DDxf)i,j,k + dy (DDyf)i,j,k + dz (DDzf)i,j,k .
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For f, ξ ∈ C, the discrete L2 inner product is defined as

⟨f, ξ⟩ := h3
N∑

i,j,k=1

fi,j,k ξi,j,k, f, ξ ∈ C.

Similarly, for two vector grid functions f⃗s = (fxs , f
y
s , fzs ), s = 1, 2, evaluated at (i+1/2, j, k), (i, j+

1/2, k), (i, j, k + 1/2), respectively, the corresponding discrete inner product is given by

[f, ξ]x := ⟨ax(fξ), 1⟩, [f, ξ]y := ⟨ay(fξ), 1⟩,

[f, ξ]z := ⟨az(fξ), 1⟩, [f⃗1, f⃗2] := [fx1 , f
x
2 ]x + [fy1 , f

y
2 ]y + [fz1 , f

z
2 ]z .

In turn, the following norms could be introduced for f ∈ C: ∥f∥22 := ⟨f, f⟩, ∥f∥pp := ⟨|f |p, 1⟩, with
1 ≤ p <∞, and ∥f∥∞ := max1≤i,j,k≤N |fi,j,k|. The gradient norms are defined as

∥∇hf∥22 := [∇hf,∇hf ] = [Dxf,Dxf ]x + [Dyf,Dyf ]y + [Dzf,Dzf ]z , ∀ f ∈ C,

∥∇hf∥pp := [|Dxf |p, 1]x + [|Dyf |p, 1]y + [|Dzf |p, 1]z , ∀ f ∈ C, 1 ≤ p <∞.

The higher-order norms could be similarly introduced:

∥f∥2H1
h
:= ∥f∥22 + ∥∇hf∥22 , ∥f∥2H2

h
:= ∥f∥2H1

h
+ ∥∆hf∥22 , ∀ f ∈ C.

We now define a discrete analogue of the space H−1(Ω). Consider a positive, scalar function
D. For any g ∈ C̊, there exists a unique solution f ∈ C̊ to the equation

QDf := −∇h · (D∇hf) = g,

with discrete homogeneous Neumann boundary condition

fmN,j,k = f1+mN,j,k, fi,mN,k = fi,1+mN,k, fi,j,mN = fi,j,1+mN for i, j, k = 1, · · · , N, m = 0, 1.

Then the following discrete norm could be introduced:

∥g∥
Q−1
D

=
√〈

g,Q−1
D (g)

〉
.

In particular, if D= 1, we have Q1f = −∆hf , and a discrete ∥ · ∥−1,h norm becomes

∥g∥−1,h =
√
⟨g, (−∆h)−1(g)⟩.

Lemma 3.1 [25, 49, 53] For any ϕ1, ϕ2, ϕ3, g ∈ C, and any f⃗ = (fx, fy, fz), with fx, fy and
fz evaluated at (i+ 1/2, j, k), (i, j + 1/2, k), (i, j, k + 1/2), respectively, the following summation-
by-parts formulas are valid:〈

ϕ1,∇h · f⃗
〉
= −[∇hϕ1, f⃗ ], ⟨ϕ2,∇h · (g∇hϕ3)⟩ = −[∇hϕ2,Ah(g)∇hϕ3],

where the vector Ah(g)∇hϕ3 = (AxgDxϕ3, AygDyϕ3, AzgDzϕ3).
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3.2 Second-order accurate numerical scheme

We consider uniform temporal discretization with a time step size ∆t, and define time steps
tn = n∆t, tn+ 1

2
= n∆t + ∆t

2 . Denote by ρni,j,k and ϕni,j,k the approximations of ρ(n∆t, xi, yj , zk)

and ϕ(n∆t, xi, yj , zk) for i, j, k = 1, · · · , N . Moreover, denote by ρn and ϕn the approximate grid
functions.

To derive second-order temporal discretization, we start with the following approximation

δF

δρ

∣∣∣∣
t=tn+1/2

≈ γ
f(ρn+1)− f(ρn)

ρn+1 − ρn
− χϕn+1/2.

By a third order Taylor expansion, one obtains

δF

δρ

∣∣∣∣
t=tn+1/2

≈ γSn+ 1
2 − χϕn+1/2,

where

Sn+ 1
2 = f ′(ρn+1)− 1

2
f ′′(ρn+1)(ρn+1 − ρn) +

1

6
f ′′′(ρn+1)(ρn+1 − ρn)2.

A third order expansion brings several crucial advantages in preserving structure properties of the
analytical solution to the PKS system. With such an approximation, we propose the following
second-order accurate numerical scheme

ρn+1 − ρn

∆t
=∇h ·

[ 1

f ′′(ρ̂n+
1
2 )
∇h

(
γSn+ 1

2 − χϕn+
1
2 +

χ2∆t

4θ
(ρn+1 − ρn)

)]
, (3.1)

θ
ϕn+1 − ϕn

∆t
=µ∆hϕ

n+ 1
2 − αϕn+

1
2 + χρn+

1
2 , (3.2)

where the mobility function at tn+ 1
2
, namely 1

f ′′(ρ̂n+1
2 )
, is approximated by using

ρ̂n+
1
2 =

(
(
3

2
ρn − 1

2
ρn−1)2 +∆t8

) 1
2
, (3.3)

to ensure both the positivity and a higher order consistency, and the stabilization term χ2∆t
4θ (ρn+1−

ρn) is introduced to establish the unique existence of the solution to the nonlinear scheme. See
Section 4 for more details.

Define two linear operators

L1 =
θ

∆t
+
α

2
− µ

2
∆h, L2 =

θ

∆t
− α

2
+
µ

2
∆h,

where L1 is invertible. In turn, the proposed numerical scheme could be rewritten as

ρn+1 − ρn

∆t
=∇h ·

[ 1

f ′′(ρ̂n+
1
2 )
∇h

(
γSn+ 1

2 −
(χ
2
L−1

1 L2ϕ
n +

χ2

4
L−1

1 ρn +
χ

2
ϕn

+
χ2∆t

4θ
ρn

)
+ Ghρ

n+1
)]
,

L1ϕ
n+1 =L2ϕ

n +
χ

2
(ρn+1 + ρn),

(3.4)

with Gh := χ2∆t
4θ − χ2

4 L−1
1 . The nonlinear scheme supplemented with homogeneous boundary

conditions results in a nonlinear system.
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Remark 3.2 A stabilization term χ2∆t
4θ+2α∆t(ρ

n+1− ρn), instead of χ2∆t
4θ (ρn+1− ρn) in (3.1), could

be used in the numerical scheme for a small positive θ, and the theoretical analysis on structure-
preserving properties and convergence could still go through. In the case with θ = 0, the stabiliza-

tion term becomes χ2

2α(ρ
n+1 − ρn), and the proposed numerical scheme is reduced to a first-order

accurate one with provable structure-preserving properties.

Remark 3.3 Since the proposed numerical scheme is a three-level algorithm, we need an accurate
approximation to the living organism density variable at a temporally “ghost” point approximation,
namely ρ−1, which such an approximation to the chemical signal density variable is not required.
A careful application of predictor-correction approach could be applied to accomplish this goal.
For instance, a rough predictive numerical solution at the first time step by using the two-level
semi-implicit scheme [45]:

ρ̂1 − ρ0

∆t
= ∇h ·

( 1

f ′′(ρ0)
∇h

[
γf ′(ρ̂1)− χ

2
(ϕ0 + ϕ̂1) +

χ

2
(ρ̂1 − ρ0)

] )
,

θ
ϕ̂1 − ϕ0

∆t
= µ∆hϕ̂

1 − αϕ̂1 +
χ

2
(ρ0 + ρ̂1)− χ

2
(ϕ̂1 − ϕ0),

where ρ0i,j,k = ρ(0, xi, yj , zk), ϕ
0
i,j,k = ϕ(0, xi, yj , zk), i, j, k = 1, · · · , N . In fact, (ρ̂1, ϕ̂1) is an

O(∆t2 + h2) approximation to the exact solution at time instant t1 = ∆t, which comes from a
single-step numerical approximation. Subsequently, a more accurate correction process is carried
out: we take an average of ρ̂1 and ρ0 to approximate ρ̂

1
2 , and implement numerical scheme (3.1-

3.2) at n = 0 to obtain (ˆ̂ρ1,
ˆ̂
ϕ1), and use 3

2
ˆ̂ρ1 − 1

2ρ
0 to approximate ρ̂

3
2 , and implement numerical

scheme (3.1-3.2) at n = 1 to obtain (ˆ̂ρ2,
ˆ̂
ϕ2). Again, since these computations correspond to finite

time step algorithm, we see that (ˆ̂ρj ,
ˆ̂
ϕj) are indeed O(∆t3 + ∆th2) approximation to the exact

solution at tj, j = 1, 2. In turn, a third order extrapolation formula, ρ−1 = 3ρ0 − 3ˆ̂ρ1 − 3ˆ̂ρ2,
ρ−2 = 6ρ0 − 8ˆ̂ρ1 + 3ˆ̂ρ2, gives an O(∆t3 + ∆th2) approximation to the living organism density
variable at t−1, t−2, respectively. Such an approximation will be useful in the later convergence
analysis. Of course, with an accurate approximation to ρ−1, the initialization process for the
proposed three-level numerical scheme (3.1-3.2) is completed, and the numerical values of (ρj , ϕj)
(j ≥ 1) could be obtained by the solution of the numerical algorithm.

4 Structure-preserving properties

In this section, we prove the mass conservation, unique solvability, positivity-preserving properties
of the second-order numerical scheme, as well as an unconditional dissipation of the original free
energy functional, at the discrete level.

Theorem 4.1 (Mass conservation) The second-order accurate numerical scheme (3.1-3.2) re-
spects a discrete mass conservation law:〈

ρn+1, 1
〉
= ⟨ρn, 1⟩ .

Such a mass conservation identity is obtained by applying the summation on both sides, and the
discrete homogeneous Neumann boundary conditions have been used.
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The free energy is discretized as

Fh(ρ
n, ϕn) = γ ⟨f(ρn), 1⟩ − χ ⟨ρn, ϕn⟩+ µ

2
∥∇hϕ

n∥22 +
α

2
∥ϕn∥22, (4.1)

which turns out to be a second-order approximation to the continuous version of the energy.
Meanwhile, the following monotonicity property is needed in the unique solvability analysis.

Lemma 4.2 The linear operator Gh satisfies the monotonicity condition:

⟨Gh(η1)− Gh(η2), η1 − η2⟩ ≥ 0, for η1, η2 ∈ C. (4.2)

Furthermore, the equality is valid if and only if η̃ = 0, i.e., η1 = η2, if η1 = η2 = 0 is required.
Therefore, the operator Gh is invertible.

Proof Denote a difference function η̃ = η1 − η2 ∈ C̊. Since Gh is a linear operator, we have

Gh(η1)− Gh(η2) = Gh(η̃) =
χ2∆t

4θ
η̃ − χ2

4
L−1

1 η̃. (4.3)

Taking a discrete inner product with (4.3) by η̃ yields

⟨Gh(η̃), η̃⟩ =
χ2∆t

4θ
∥η̃∥22 −

χ2

4

〈
L−1

1 η̃, η̃
〉
. (4.4)

From Appendix B, we have
χ2

4

〈
η̃,L−1

1 η̃
〉
≤ χ2∆t

4θ
∥η̃∥22. (4.5)

Consequently, a combination of (4.4) and (4.5) leads to

⟨Gh(η̃), η̃⟩ ≥ 0. (4.6)

In addition, the equality is valid if and only if η̃ = 0, i.e., η1 = η2. The proof is complete.

Moreover, a discrete maximum norm bound of the operator Q−1
f is also needed in the later

analysis.

Lemma 4.3 Assume that ν ∈ C̊, ∥ν∥∞ ≤ C2, and f ∈ C satisfies f ≥ f0 > 0 (at a point-wise
level). The following estimate is available:

∥Q−1
f ν∥∞ ≤ C3f

−1
0 h−

1
2 ,

where C3 > 0 only depends on Ω and C2.

Such an estimate has been established in Lemma 3.2 of the work [11] for periodic boundary
conditions. The proof is omitted for brevity. Interested readers are referred to another previous
work [15] for the details involving homogeneous Neumann boundary conditions.

The positivity-preserving and unique solvability properties are proved in the following theorem.
For simplicity of presentation, the classical PKS system, with f(ρ) = ρ(ln ρ−1) (as given by (2.3)),
is considered in the theoretical analysis. In turn, we get f ′(ρ) = ln ρ, f ′′(ρ) = 1

ρ and f ′′′(ρ) = − 1
ρ2
.

An extension to the PKS system with a bounded mobility (2.4) and a saturation density (2.5)
would be straightforward.
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Theorem 4.4 (Existence, uniqueness, and positivity-preserving property) Define Cn
min :=

min
1≤i,j,k≤N

ρni,j,k, C
n
max := max

1≤i,j,k≤N
ρni,j,k and ∥ϕn∥∞ ≤Mn

max. Given Cn
min > 0, there exists a unique

solution to the second-order accurate scheme (3.1-3.2), such that

ρn+1
i,j,k > 0, for i, j, k = 1, 2, · · · , N. (4.7)

Proof The numerical solution to the proposed algorithm (3.1-3.2) is equivalent to the minimizer
of the discrete energy functional:

Jn(ρ) =
1

2∆t
∥ρ− ρn∥2

Q−1

ρ̂
n+1

2

+ γ

〈
ρ+

5

6
ρn, ln ρ− 1

〉
+ γ

〈
(ρn)2,

1

6ρ

〉
− 2

3
γ ⟨ρ, 1⟩

− χ2

8

〈
ρ,L−1

1 ρ
〉
+
χ2∆t

8θ
∥ρ∥22

−
〈
χ

2
L−1

1 L2ϕ
n +

χ2

4
L−1

1 ρn +
χ

2
ϕn +

χ2∆t

4θ
ρn, ρ

〉
,

(4.8)

over the admissible set

Kh :=

{
ρ

∣∣∣∣0 < ρi,j,k < ξ,
1

|Ω|
⟨ρ, 1⟩ = Q0, i, j, k = 1, · · · , N

}
, Q0 =

1

|Ω|
〈
ρ0, 1

〉
, ξ :=

Q0|Ω|
h3

.

Consider a closed subset Kh,δ ⊂ Kh:

Kh,δ :=

{
ρ

∣∣∣∣δ ≤ ρi,j,k ≤ ξ − δ,
1

|Ω|
⟨ρ, 1⟩ = Q0, i, j, k = 1, · · · , N

}
, δ ∈ (0,

ξ

2
).

Obviously, Kh,δ is a bounded, convex, and compact subset of Kh. By the convexity of Jn, there
exists a unique minimizer of Jn in Kh,δ.

Suppose that the minimizer of Jn, ρ∗, touches the boundary of Kh,δ. Assume that there exists
a grid point α⃗0 = (i0, j0, k0) such that ρ∗α⃗0

= δ, and a grid point α⃗1 = (i1, j1, k1) such that the
maximum of ρ∗ is achieved. It is clear that the maximum value ρ∗α⃗1

is larger than the mean value

Q0, and the minimum value ρ∗α⃗0
is less than Q0, i.e.,

ρ∗α⃗1
≥ Q0, ρ∗α⃗0

≤ Q0.

Consider the following directional derivative

lim
t→0+

Jn(ρ∗ + td)−Jn(ρ∗)

t

=
1

∆t

〈
Q−1

ρ̂n+1
2
(ρ∗ − ρn), d

〉
+ γ

〈
ln ρ∗ +

5ρn

6ρ∗
− (ρn)2

6(ρ∗)2
− 2

3
, d

〉
+ ⟨Ghρ∗, d⟩ −

〈
χ

2
L−1

1 L2ϕ
n +

χ2

4
L−1

1 ρn +
χ

2
ϕn +

χ2∆t

4θ
ρn, d

〉
,

with the direction
d = δi,i0δj,j0δk,k0 − δi,i1δj,j1δk,k1 ,
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where δl,k is the Kronecker symbol. Clearly, d ∈ C̊. In turn, the directional derivative becomes

1

h3
lim
t→0+

Jn(ρ∗ + td)−Jn(ρ∗)

t

=
1

∆t
Q−1

ρ̂n+1
2
(ρ∗ − ρn)α⃗0

− 1

∆t
Q−1

ρ̂n+1
2
(ρ∗ − ρn)α⃗1

+ (Ghρ
∗)α⃗0

− (Ghρ
∗)α⃗1

+ γ
(
ln ρ∗ +

5ρn

6ρ∗
− (ρn)2

6(ρ∗)2

)
α⃗0

− γ
(
ln ρ∗ +

5ρn

6ρ∗
− (ρn)2

6(ρ∗)2

)
α⃗1

−
(χ
2
L−1

1 L2ϕ
n +

χ2

4
L−1

1 ρn +
χ

2
ϕn +

χ2∆t

4θ
ρn

)
α⃗0

+
(χ
2
L−1

1 L2ϕ
n +

χ2

4
L−1

1 ρn +
χ

2
ϕn +

χ2∆t

4θ
ρn

)
α⃗1

.

(4.9)

Define Cn
max = max

i,j,k=1,··· ,N
ρni,j,k and Cn

min = min
i,j,k=1,··· ,N

ρni,j,k. Since ρ
∗
α⃗0

= δ and ρ∗α⃗1
≥ Q0, we have

γ

[
ln(ρ∗) +

5ρn

6ρ∗
− (ρn)2

6(ρ∗)2

]
α⃗0

− γ

[
ln(ρ∗) +

5ρn

6ρ∗
− (ρn)2

6(ρ∗)2

]
α⃗1

≤γ ln δ + 5γCn
max

6δ
− γ(Cn

min)
2

6δ2
− γ lnQ0 +

γ(Cn
max)

2

6(Q0)2
.

(4.10)

With a similar analysis technique as in Lemma 4.3, one can derive that ∥Ghρ∗∥∞ ≤ M1/2 with
∥ρ∗∥∞ ≤ ξ, where M1 is a constant independent of δ. Then we have

(Ghρ
∗)α⃗0

− (Ghρ
∗)α⃗1

≤M1. (4.11)

On the other hand, the operator χ
2L

−1
1 L2ϕ

n + χ2

4 L−1
1 ρn + χ

2ϕ
n + χ2∆t

4θ ρn is linear with respect to
ϕn and ρn. Subsequently, the a-priori assumptions ∥ρn∥∞ ≤ Cn

max and ∥ϕn∥∞ ≤ Mn
max indicate

that (
χ

2
L−1

1 L2ϕ
n +

χ2

4
L−1

1 ρn +
χ

2
ϕn +

χ2

4θ
ρn

)
α⃗1

−
(
χ

2
L−1

1 L2ϕ
n +

χ2

4
L−1

1 ρn +
χ

2
ϕn +

χ2

4θ
ρn

)
α⃗0

≤M2,

(4.12)

where M2 is another constant independent of δ. By the bound ∥ρ∗ − ρn∥∞ ≤ ξ + Cn
max, we get

Q−1

ρ̂n+1
2
(ρ∗ − ρn)α⃗0

− Q−1

ρ̂n+1
2
(ρ∗ − ρn)α⃗1

≤ 2M3, (4.13)

where M3 is a constant dependent on Cn
max, ∆t, h, Ω, ξ, and Lemma 4.3 has been applied.

Substituting (4.10), (4.11), (4.12), and (4.13) into (4.9), we obtain

1

h3
lim
t→0+

Jn(ρ∗ + td)−Jn(ρ∗)

t
≤2(∆t)−1M3 + γ ln δ +

5γCn
max

6δ
+M1 +M2

− γ(Cn
min)

2

6δ2
− γ lnQ0 +

γ(Cn
max)

2

6(Q0)2
.

(4.14)

For any fixed ∆t and h, the value of δ could be chosen sufficiently small so that

2(∆t)−1M3+γ ln δ +
5γCn

max

6δ
− γ(Cn

min)
2

6δ2
− γ lnQ0 +

γ(Cn
max)

2

6(Q0)2
+M1 +M2 < 0. (4.15)
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Therefore, the following inequality is valid:

lim
t→0+

Jn(ρ∗ + td)−Jn(ρ∗)

t
< 0. (4.16)

This is contradictory to the assumption that ρ∗ is the minimizer of Jn.
Similarly, we are able to prove that the minimizer of Jn cannot occur at the upper boundary

of Kh,δ. In fact, if this occurs, there must be a grid point, at which the value of ρ∗ approaches
zero. A contradiction could be obtained in the same manner as above. Therefore, the global
minimum of Jn could only possibly achieve at an interior point, i.e., ρ∗ ∈ K̊h,δ ⊂ K̊h as δ → 0.

Since Jn is a smooth functional, there must exist a solution ρ∗ ∈ K̊h,δ ⊂ K̊h, satisfying

lim
t→0+

Jn(ρ∗ + td)−Jn(ρ∗)

t
= 0. (4.17)

As a result, there exists a positive numerical solution ρ∗ to the numerical system (3.1-3.2). The
uniqueness of the numerical solution is a direct consequence of the strict convexity of the discrete
energy functional Jn(ρ).

Theorem 4.5 (The original energy dissipation) The second-order numerical scheme (3.1-
3.2) respects a dissipation law of the discrete free energy (4.1):

Fn+1
h − Fn

h ≤−∆t[
1

f ′′(ρ̂n+
1
2 )
∇hv

n+ 1
2 ,∇hv

n+ 1
2 ]− θ

∆t
∥ϕn+1 − ϕn∥22 −

χ2∆t

4θ
∥ρn+1 − ρn∥22 ≤ 0,

(4.18)

with vn+
1
2 = γSn+ 1

2 − χ
2 (ϕ

n+1 + ϕn) + χ2∆t
4θ (ρn+1 − ρn).

Proof Taking a discrete inner product with (3.1) by ∆tvn+
1
2 , we get〈

ρn+1 − ρn, vn+
1
2

〉
= −∆t[

1

f ′′(ρ̂n+
1
2 )
∇hv

n+ 1
2 ,∇hv

n+ 1
2 ]. (4.19)

For any function H(·) ∈ C4(R), the following Taylor expansion is valid:

H(x) =H(y) +H(1)(y)(x− y) +
1

2
H(2)(y)(x− y)2

+
1

6
H(3)(y)(x− y)3 +

1

24
H(4)(η)(x− y)4, ∀x, y ∈ R,

where η is between x and y, and H(p)(y) = ∂pH
∂yp for p = 1, 2, 3, 4. If H(4)(η) > 0, one has

H(y)−H(x) ≤
(
H(1)(y)− 1

2
H(2)(y)(y − x) +

1

6
H(3)(y)(y − x)2

)
(y − x).

Choosing H(ρ) = f(ρ), we have〈
ρn+1 − ρn, vn+

1
2

〉
≥γ

〈
f(ρn+1)− f(ρn), 1

〉
− χ

2

〈
ρn+1 − ρn, ϕn+1 + ϕn

〉
+
χ2∆t

4θ
∥ρn+1 − ρn∥22.

(4.20)
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On the other hand, taking a discrete inner product with (3.2) by −(ϕn+1 − ϕn), we have

− θ

∆t
∥ϕn+1 − ϕn∥22 =

µ

2

(
∥∇hϕ

n+1∥2 − ∥∇hϕ
n∥2

)
+
α

2

(
∥ϕn+1∥2 − ∥ϕn∥2

)
− χ

2

〈
ρn + ρn+1, ϕn+1 − ϕn

〉
.

(4.21)

Moreover, the following equality is valid:

−χ
2

〈
ρn+1 − ρn, ϕn+1 + ϕn

〉
− χ

2

〈
ρn + ρn+1, ϕn+1 − ϕn

〉
= −χ

(〈
ρn+1, ϕn+1

〉
− ⟨ρn, ϕn⟩

)
. (4.22)

A combination of (4.19)-(4.22) leads to the energy dissipation inequality (4.18).

Remark 4.6 Structure-preserving properties, such as the unique solvability of positive numerical
solution (4.7) and the original energy dissipation (4.18), can be analogously proved for the PKS
system with a bounded mobility (2.4) or a saturation density (2.5).

Remark 4.7 If the free energy contains both the convex and concave parts, some existing works
have reported a modified energy stability analysis for various second order accurate, multi-step
numerical schemes [10,20,32]. However, these reported stability analysis is in terms of a modified
discrete energy. In comparison, the stability estimate (4.18) is in terms of the original free energy
(4.1), which turns out to be a remarkable theoretical result that has been rarely reported.

5 Convergence analysis

Let (ϕe, ρe) be the exact solution to the PKS system (2.2) [7, 26, 51, 52]. In fact, for a gradient
flow equation with a logarithmic energy potential, its regularity relies heavily on the separation
property, i.e., a uniform distance between the solution away from the singular limit value of 0,
namely ρe ≥ ε∗ > 0 in the PKS system. For example, in terms of the 2D Flogy-Huggins-Cahn-
Hilliard equation, in which the energy potential takes a very similar form as (2.5), the separation
property for the phase variable has been justified at a theoretical level [1, 14]. As a result, the
higher order regularity estimate (in addition to the free energy regularity) for the 2D Flogy-
Huggins-Cahn-Hilliard equation could be easily derived with the help of this separation property,
so that the global-in-time smooth solution becomes a straightforward consequence. On the other
hand, such a uniform-in-time analysis for the PKS system (2.2) is expected to be much more
challenging than that of the Cahn-Hilliard equation, due to the lack of a regular surface diffusion
part in the free energy expansion. In turn, a global-in-time separation property and the smooth
solution analysis have not been theoretically established. Meanwhile, although a global-in-time
solution has not been theoretically available, one could always derive a local-in-time smooth
solution with a sufficient regular initial data, with the help of local-in-time analytic tools. Since
the convergence analysis and error estimate are always local-in-time, it is natural to assume a
local-in-time exact solution with sufficient regularity, as well as its separation property.

The following regularity assumption is made for the exact solution:

ϕe, ρe ∈ R := H6(0, T ;C(Ω)) ∩H5(0, T ;C2(Ω)) ∩ L∞(0, T ;C6(Ω)).

In addition, the following separation property is assumed for the exact solution, for the convenience
of the analysis:

ρe ≥ ε∗, for some ε∗ > 0, at a point-wise level.
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Define ρN := PNρe(·, t) and ϕN := PNϕe(·, t) as the Fourier Cosine projection of the exact
solution into PK , which is the space of trigonometric polynomials spanned by cosine functions in
x, y, and z, with degree up to K (with K = N − 1) defined by

PK = span

{
cos(

kxπx

b− a
) cos(

kyπy

b− a
) cos(

kzπz

b− a
)

∣∣∣∣ 0 ≤ kx, ky, kz ≤ K

}
.

See more details in our previous work [15]. The following projection approximation is standard,
for (ϕe, ρe) ∈ L∞(0, T ;Hm(Ω)), with m ∈ N, 0 ≤ k ≤ m:

∥ϕN − ϕe∥L∞(0,T ;Hk) ≤ Chm−k∥ϕe∥L∞(0,T ;Hm),

∥ρN − ρe∥L∞(0,T ;Hk) ≤ Chm−k∥ρe∥L∞(0,T ;Hm).
(5.1)

Notice that the Fourier Cosine projection estimate does not preserve the positivity of the variables,
while we are always able to take h sufficiently small (corresponding to a large N) so that

ρN ≥ 1

2
ε∗.

Denote by ϕnN = ϕN (·, tn) and ρnN = ρN (·, tn), with tn = n∆t. Since ρnN ∈ PK , the mass
conservative property is available at the discrete level:

ρn =
1

|Ω|

∫
Ω
ρ(·, tn)dx =

1

|Ω|

∫
Ω
ρ(·, tn−1)dx = ρn−1 for n ∈ N∗.

On the other hand, the numerical solution of the second-order scheme (3.1-3.2) is also mass
conservative at the discrete level:

ρn−1 = ρn for n ∈ N∗.

In turn, the mass conservative projection is made for the initial data:

ϕ0 = PhϕN (·, t = 0) := ϕN (pi, pj , pk, t = 0),

ρ0 = PhρN (·, t = 0) := ρN (pi, pj , pk, t = 0),

where Ph is an interpolation operator that restricts a continuous function in PK onto its value
on the discrete grid (xi, yj , zk). Accordingly, the error grid functions are defined as

enϕ := Phϕ
n
N − ϕn, enρ := Phρ

n
N − ρn, n ∈ N∗. (5.2)

As indicated above, one can verify that ēnϕ = 0, ēnρ = 0, for n ∈ N, so that the discrete norm
∥ · ∥−1,h is well defined for the error grid functions.

The following theorem is the main result of this section.

Theorem 5.1 Given initial data ϕe(·, t = 0), ρe(·, t = 0) ∈ C6(Ω), suppose the exact solution
for the PKS system (2.2) is of regularity class R. Let enϕ and enρ be the error grid functions
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defined in (5.2). Then, under the linear refinement requirement λ1h ≤ ∆t ≤ λ2h, the following
convergence result is available as ∆t, h→ 0:

∥∥enρ∥∥2 + (
∆t

n−1∑
k=0

∥∇h(e
k
ρ + ek+1

ρ )∥22
) 1

2

+ ∥enϕ∥2 + ∥∇he
n
ϕ∥2 +

(
∆t

n−1∑
k=0

∥∆h(e
k
ϕ + ek+1

ϕ )∥22
) 1

2 ≤ C(∆t2 + h2), n ∈ N,

(5.3)

where tn = n∆t ≤ T and the constant C > 0 is independent of ∆t and h.

5.1 Higher-order consistency analysis

The leading local truncation error will not be sufficient to recover an ℓ∞ bound of the discrete tem-
poral derivative of the numerical solution, which is needed in the nonlinear convergence analysis.
To overcome this subtle difficulty, we apply a higher order consistency estimate via a perturbation
analysis [37, 38]. Such a higher order consistency result is stated below, and the detailed proof
follows a similar idea as in [38]. The technical details are skipped for the sake of brevity.

Proposition 5.2 Let (ϕe, ρe) be the exact solution to the PKS system (1.1) and (ϕN , ρN ) be its
Fourier Cosine projection. There exists auxiliary variables, ϕ∆t,1, ϕ∆t,2, ϕh,1, ρ∆t,1, ρ∆t,2, ρh,1,
so that the following expansion profiles

ϕ̌ = ϕN +PN

(
∆t2ϕ∆t,1 +∆t3ϕ∆t,2 + h2ϕh,1

)
,

ρ̌ = ρN +PN

(
∆t2ρ∆t,1 +∆t3ρ∆t,2 + h2ρh,1

)
,

(5.4)

satisfy the numerical scheme up to an O(∆t4 + h4) consistency:

ρ̌n+1 − ρ̌n

∆t
=∇h ·

[(3
2
ρ̌n − 1

2
ρ̌n−1

)
∇h

(
γŠn+ 1

2 − χ

2
(ϕ̌n + ϕ̌n+1)

+
χ2∆t

4θ
(ρ̌n+1 − ρ̌n)

)]
+ τ

n+ 1
2

ρ ,

Šn+ 1
2 = ln(ρ̌n+1)− 1

2ρ̌n+1
(ρ̌n+1 − ρ̌n)− 1

6(ρ̌n+1)2
(ρ̌n+1 − ρ̌n)2,

θ
ϕ̌n+1 − ϕ̌n

∆t
=
µ

2
∆h(ϕ̌

n+1 + ϕ̌n)− α

2
(ϕ̌n+1 + ϕ̌n) +

χ

2
(ρ̌n+1 + ρ̌n) + τ

n+ 1
2

ϕ ,

(5.5)

with ∥τn+
1
2

ρ ∥2, ∥τ
n+ 1

2
ϕ ∥2 ≤ C(∆t4 + h4). The constructed variables ϕ∆t,1, ϕ∆t,2, ϕh,1, ρ∆t,1, ρ∆t,2,

ρh,1 solely depend on the exact solution (ϕe, ρe), and their derivatives are bounded.
(1) The following mass conservative identities and zero-mean property for the local truncation

error are available:

ρ0 ≡ ρ̌0, ρn = ρ0, n ∈ N,

ρ̌n =
1

|Ω|

∫
Ω
ρ̌(·, tn)dx =

1

|Ω|

∫
Ω
ρ̌0dx = ρ̌0, n ∈ N,

τ
n+ 1

2
ρ = 0, n ∈ N.

(5.6)
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(2) A similar phase separation property is valid for the constructed ρ̌, for some ε∗ > 0:

ρ̌ ≥ ε∗ > 0. (5.7)

(3) A discrete W 1,∞ bound for the constructed profile ρ̌, as well as its discrete temporal deriva-
tive, is available at any time step tk:

∥ρ̌k∥∞ ≤ C∗, ∥∇hρ̌
k∥∞ ≤ C∗, ∥ρ̌k − ρ̌k−1∥∞ ≤ C∗∆t, ∥∇h(ρ̌

k − ρ̌k−1)∥∞ ≤ C∗∆t. (5.8)

5.2 A rough error estimate

Instead of analyzing the original numerical error functions defined in (5.2), we consider the fol-
lowing ones

ϕ̃n := Phϕ̌
n − ϕn, ρ̃n := Phρ̌

n − ρn, n ∈ N. (5.9)

For the convenience of the notation, the following average numerical error functions are introduced
at the intermediate time instant tn+ 1

2
:

ρ̌n+
1
2 =

3

2
ρ̌n − 1

2
ρ̌n−1,

˜̂ρn+
1
2 = ρ̌n+

1
2 − ρ̂n+

1
2 =

3

2
ρ̌n − 1

2
ρ̌n−1 −

(
(
3

2
ρn − 1

2
ρn−1)2 +∆t8

) 1
2
.

Subtracting the numerical scheme (3.1-3.2) from the consistency estimate (5.5) yields

ρ̃n+1 − ρ̃n

∆t
= ∇h ·

(
ρ̂n+

1
2∇hṽ

n+ 1
2 + ˜̂ρn+

1
2∇hV

n+ 1
2

)
+ τ

n+ 1
2

ρ , (5.10)

θ
ϕ̃n+1 − ϕ̃n

∆t
=
µ

2
∆h(ϕ̃

n + ϕ̃n+1)− α

2
(ϕ̃n+1 + ϕ̃n) +

χ

2
(ρ̃n+1 + ρ̃n) + τ

n+ 1
2

ϕ , (5.11)

where

ṽn+
1
2 =γS̃n+ 1

2 − χ

2
(ϕ̃n+1 + ϕ̃n) +

χ2∆t

4θ
(ρ̃n+1 − ρ̃n),

S̃n+ 1
2 = ln(ρ̌n+1)− ln(ρn+1)− 1

2ρn+1
(ρ̃n+1 − ρ̃n) +

ρ̃n+1

2ρ̌n+1ρn+1
(ρ̌n+1 − ρ̌n)

− ρ̌n+1 − ρ̌n + ρn+1 − ρn

6(ρn+1)2
(ρ̃n+1 − ρ̃n) +

(ρ̌n+1 + ρn+1)ρ̃n+1

6(ρ̌n+1)2(ρn+1)2
(ρ̌n+1 − ρ̌n)2,

Vn+ 1
2 =γŠn+ 1

2 − χ

2
(ϕ̌n+1 + ϕ̌n) +

χ2∆t

4θ
(ρ̌n+1 − ρ̌n).

(5.12)

A discrete W 1,∞
h bound could be assumed for Vn+ 1

2 , due to the fact that it only depends on
the exact solution and the constructed profiles:

∥Vn+ 1
2 ∥

W 1,∞
h

≤ C∗. (5.13)

In addition, we make the following a-prior assumption at the previous time steps:

∥ρ̃n∥2, ∥ϕ̃n∥2 ≤ ∆t
15
4 + h

15
4 , ∥ρ̃n−1∥2, ∥ρ̃n−2∥2 ≤ ∆t

11
4 + h

11
4 . (5.14)
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Such an a-priori assumption is valid at n = 0, as indicated by Remark 3.3. In addition, this
assumption will be recovered by the optimal rate convergence analysis at the next time step, as
will be proved later. Thanks to the inverse inequality, the W 1,∞

h bound for the numerical error
function is available at the previous time steps:

∥ρ̃k∥∞ ≤ C∥ρ̃k∥2
h

3
2

≤ C(∆t
11
4 + h

11
4 )

h
3
2

≤ C(∆t
5
4 + h

5
4 ) ≤ ε∗

2
,

∥∇hρ̃
k∥∞ ≤ 2∥ρ̃k∥∞

h
≤ C(∆t

5
4 + h

5
4 )

h
≤ C(∆t

1
4 + h

1
4 ) ≤ 1,

(5.15)

where the linear refinement constraint λ1h ≤ ∆t ≤ λ2h has been used. Subsequently, combined
with the regularity assumption (5.8), a W 1,∞

h bound for the numerical solution could be derived
at the previous time steps:

∥ρk∥∞ ≤ ∥ρ̌k∥∞ + ∥ρ̃k∥∞ ≤ C∗ +
ε∗

2
:= Č0, k = n, n− 1, n− 2,

∥∇hρ
k∥∞ ≤ ∥∇hρ̌

k∥∞ + ∥∇hρ̃
k∥∞ ≤ C∗ + 1 := C̃0.

(5.16)

Its combination with the separation estimate for ρ̌ results in a similar separation property for the
numerical solution at the previous time steps:

ρk ≥ ρ̌n − ∥ρ̃k∥∞ ≥ ε∗

2
k = n, n− 1, n− 2. (5.17)

Moreover, the discrete temporal derivative of the numerical solution at the previous time steps
has to be bounded, for k = n, n− 1, n− 2, and such a bound will be useful in the later analysis:

∥ρ̃k − ρ̃k−1∥∞ ≤ ∥ρ̃k∥∞ + ∥ρ̃k−1∥∞ ≤ C(∆t
5
4 + h

5
4 ) ≤ ∆t,

∥ρk − ρk−1∥∞ ≤ ∥ρ̌k − ρ̌k−1∥∞ + ∥ρ̃k − ρ̃k−1∥∞ ≤ (C∗ + 1)∆t = C̃0∆t, (by (5.8)).
(5.18)

The following preliminary estimate will be used in the later analysis; its proof is based on
direct calculations. The details are left to interested readers.

Lemma 5.3 The following bounds are valid at the intermediate time instant tn+ 1
2
:

ε∗

2
≤ ρ̂n+

1
2 ≤ Č0, ∥ ˜̂ρn+

1
2 ∥2 ≤

3

2
∥ρ̃n∥2 +

1

2
∥ρ̃n−1∥2 +∆t4,

∥ρ̂n+
1
2 − ρ̂n−

1
2 ∥∞ ≤ 3

2
∥ρn − ρn−1∥∞ +

1

2
∥ρn−1 − ρn−2∥∞ + 2∆t4 ≤ 2C̃0∆t.

(5.19)

Before proceeding into the error estimate, a rough bound control of the nonlinear error inner
products, namely, ⟨ρ̃n+1, γS̃n+ 1

2 ⟩, is necessary. A preliminary estimate is stated in the following
lemma; the detailed proof is provided in Appendix A.

Lemma 5.4 Suppose the assumptions of the regularity requirement (5.8), phase separation (5.7)
for the constructed approximate solution (ϕ̌, ρ̌), and the a-priori assumption (5.14) hold. In addi-
tion, let ψ̃n be an another error function with ∥ψ̃n∥∞ ≤ h. Define the following set

K = {(i, j, k) : ρi,j,k ≥ 2C∗ + 1} , (5.20)
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and denote L∗ := |K|, the number of grid points in K. Then there exists a constant Č2 dependent
only on ε∗, γ, Č0 and C∗ such that

⟨ρ̃n+1, γS̃n+ 1
2 + ψ̃n⟩ ≥ C∗

6
γL∗h3 − Č2(γ

2∥ρ̃n∥22 + ∥ψ̃n∥22). (5.21)

In addition, if L∗ = 0, i.e., K is an empty set, there exists a constant Č3 dependent on C∗ and γ
such that

⟨ρ̃n+1, γS̃n+ 1
2 + ψ̃n⟩ ≥ Č3∥ρ̃n+1∥22 − Č2(γ

2∥ρ̃n∥22 + ∥ψ̃n∥22). (5.22)

The following proposition states a rough error estimate.

Proposition 5.5 Based on the regularity requirement assumption (5.13) for the constructed pro-

file Vn+ 1
2 , as well as the a-priori assumption (5.14) for the numerical solution at the previous

time steps, a rough error estimate is available:

∥ρ̃n+1∥2 ≤ ∆t3 + h3. (5.23)

Proof We divide the proof into three steps: (1) establish an upper bound for
〈
ρ̃n+1, ṽn+

1
2

〉
; (2)

establish a lower bound for
〈
ρ̃n+1, ṽn+

1
2

〉
; and (3) combine the bounds obtained in steps 1 and 2

to get the rough estimate (5.23).

Step 1. Taking a discrete inner product with (5.10) by ṽn+
1
2 leads to

⟨ρ̃n+1, ṽn+
1
2 ⟩+∆t⟨ρ̂n+

1
2∇hṽ

n+ 1
2 ,∇hṽ

n+ 1
2 ⟩ =⟨ρ̃n, ṽn+

1
2 ⟩+∆t⟨τn+

1
2

ρ , ṽn+
1
2 ⟩

−∆t⟨ ˜̂ρn+
1
2∇hV

n+ 1
2 ,∇hṽ

n+ 1
2 ⟩.

(5.24)

Applying the separation estimate (5.19) for the mobility functions ρ̂n+
1
2 , we obtain the following

inequality:

⟨ρ̂n+
1
2∇hṽ

n+ 1
2 ,∇hṽ

n+ 1
2 ⟩ ≥ ε∗

2
∥∇hṽ

n+ 1
2 ∥22. (5.25)

By the mean-free property for the local truncation error terms, the following estimate is obvious:

⟨τn+
1
2

ρ , ṽn+
1
2 ⟩ ≤ ∥τn+

1
2

ρ ∥−1,h · ∥∇hṽ
n+ 1

2 ∥2 ≤
2

ε∗
∥τn+

1
2

ρ ∥2−1,h +
ε∗

8
∥∇hṽ

n+ 1
2 ∥22. (5.26)

An application of the Cauchy inequality reveals that

⟨ρ̃n, ṽn+
1
2 ⟩ ≤ ∥ρ̃n∥−1,h · ∥∇hṽ

n+ 1
2 ∥2 ≤

2

ε∗∆t
∥ρ̃n∥2−1,h +

ε∗

8
∆t∥∇hṽ

n+ 1
2 ∥22. (5.27)

Using discrete Hölder and Young’s inequalities for the last term on the right hand side of (5.24),
we have

−
〈
˜̂ρn+

1
2∇hV

n+ 1
2 ,∇hṽ

n+ 1
2

〉
≤ ∥∇hV

n+ 1
2 ∥∞ · ∥ ˜̂ρn+

1
2 ∥2 · ∥∇hṽ

n+ 1
2 ∥2

≤ C∗∥ ˜̂ρn+
1
2 ∥2 · ∥∇hṽ

n+ 1
2 ∥2

≤ C∗
(3
2
∥ρ̃n∥2 +

1

2
∥ρ̃n−1∥2 +∆t4

)
· ∥∇hṽ

n+ 1
2 ∥2

≤ Ĉ1

(
3∥ρ̃n∥22 + ∥ρ̃n−1∥22 +∆t8

)
+
ε∗

8
∥∇hṽ

n+ 1
2 ∥22,

(5.28)
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where Ĉ1 =
4(C∗)2

ε∗ . Therefore, a substitution of (5.25-5.28) into (5.24) gives

⟨ρ̃n+1, ṽn+
1
2 ⟩+ ε∗∆t

8
∥∇hṽ

n+ 1
2 ∥22 ≤

2

ε∗∆t
∥ρ̃n∥2−1,h +

2∆t

ε∗
∥τn+

1
2

ρ ∥2−1,h

+ Ĉ1∆t(3∥ρ̃n∥22 + ∥ρ̃n−1∥22 +∆t8).

(5.29)

Step 2. The numerical error for the evolutionary equation (5.11) is equivalent to L1ϕ̃
n+1 =

L2ϕ̃
n + χ

2 (ρ̃
n+1 + ρ̃n) + τ

n+ 1
2

ϕ , so that the linear error terms could be rewritten as

ϕ̃n+1 = L−1
1 L2ϕ̃

n +
χ

2
L−1

1 (ρ̃n+1 + ρ̃n) +L−1
1 τ

n+ 1
2

ϕ .

This in turn gives

−χ
2
(ϕ̃n+1 + ϕ̃n) +

χ2

4θ
∆t(ρ̃n+1 − ρ̃n) = ψ̃n + Ghρ̃

n+1,

where

ψ̃n = −χ
2
L−1

1 L2ϕ̃
n − χ2

4
L−1

1 ρ̃n − χ

2
ϕ̃n − χ2

4θ
∆tρ̃n − χ

2
L−1

1 τ
n+ 1

2
ϕ .

Subsequently, the following bounds could be derived:

∥L−1
1 L2ϕ̃

n∥2 ≤ ∥ϕ̃n∥2, ∥
χ

2
L−1

1 L2ϕ̃
n +

χ

2
ϕ̃n∥2 ≤ χ∥ϕ̃n∥2, ∥L−1

1 τ
n+ 1

2
ϕ ∥2 ≤ θ−1∆t∥τn+

1
2

ϕ ∥2,

∥L−1
1 ρ̃n∥2 ≤ θ−1∆t∥ρ̃n∥2, ∥χ

2

4
L−1

1 ρ̃n +
χ2

4θ
∆tρ̃n∥2 ≤

χ2

2θ
∆t∥ρ̃n∥2,

so that ∥ψ̃n∥2 ≤ χ∥ϕ̃n∥2 +
χ2

2θ
∆t∥ρ̃n∥2 +

χ

2θ
∆t∥τn+

1
2

ϕ ∥2 ≤ C(∆t
15
4 + h

15
4 ), (5.30)

in which the inequalities ∥L−1
1 L2f∥2 ≤ ∥f∥2, ∥L−1

1 f∥2 ≤ θ−1∆t∥f∥2 (the detailed proof is
provided in Appendix B), and the a-priori assumption (5.14), have been repeatedly applied in the
derivation. Of course, an application of inverse inequality indicates that

∥ψ̃n∥∞ ≤ C∥ψ̃n∥2
h

3
2

≤ C(∆t
15
4 + h

15
4 )

h
3
2

≤ C(∆t
9
4 + h

9
4 ) ≤ h, since λ1h ≤ ∆t ≤ λ2h. (5.31)

As a consequence, an application of the rough bound control (5.21) (in Lemma 5.4) gives

⟨ρ̃n+1, γS̃n+ 1
2 + ψ̃n⟩ ≥ C∗

6
γL∗h3 − Č2(γ

2∥ρ̃n∥22 + ∥ψ̃n∥22). (5.32)

Moreover, the monotonicity estimate (4.2) of the operator Gh (in Lemma 4.2) implies that〈
ρ̃n+1, Ghρ̃

n+1
〉
≥ 0. (5.33)

In turn, a combination of (5.32) and (5.33) leads to

⟨ρ̃n+1, ṽn+
1
2 ⟩ ≥ C∗

6
γL∗h3 − Č2(γ

2∥ρ̃n∥22 + ∥ψ̃n∥22). (5.34)
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Step 3. A combination of (5.34) with (5.29) reveals that

C∗

6
γL∗h3 +

ε∗∆t

8
∥∇hṽ

n+ 1
2 ∥22 ≤

2

ε∗∆t
∥ρ̃n∥2−1,h +

2∆t

ε∗
∥τn+

1
2

ρ ∥2−1,h + Č2∥ψ̃n∥22

+ (Č2γ
2 + 1)∥ρ̃n∥22 + Ĉ1∆t(∥ρ̃n−1∥22 +∆t8), if 3Ĉ1∆t ≤ 1.

(5.35)
The following bounds for the right hand side terms are available, based on the a-priori assumption
(5.14), the preliminary estimate (5.30), as well as the higher order truncation error accuracy:

2

ε∗∆t
∥ρ̃n∥2−1,h ≤ 2C

ε∗∆t
∥ρ̃n∥22 ≤ C(∆t

13
2 + h

13
2 ),

Č2∥ψ̃n∥22, (Č2γ
2 + 1)∥ρ̃n∥22 ≤ C(∆t

15
2 + h

15
2 ),

2∆t

ε∗
∥τn+

1
2

ρ ∥2−1,h ≤ C∆t∥τn+
1
2

ρ ∥22 ≤ C(∆t9 +∆th8),

Ĉ1∆t∥ρ̃n−1∥22 ≤ C∆t(∆t
11
2 + h

11
2 ) ≤ C(∆t

13
2 +∆th

11
2 ).

(5.36)

Again, the inequality ∥f∥−1,h ≤ C∥f∥2 and the linear refinement requirement λ1h ≤ ∆t ≤ λ2h,
have been used. Going back to (5.35), we arrive at

C∗

6
γL∗h3 ≤ C(∆t

13
2 + h

13
2 ).

If L∗ ≥ 1, this inequality could make a contradiction, provided that ∆t and h are sufficiently
small. Therefore, we conclude that L∗ = 0. In turn, an improved estimate (5.22), as given by
Lemma 5.4, becomes available. As a direct consequence, we obtain

⟨ρ̃n+1, ṽn+
1
2 ⟩ ≥Č3∥ρ̃n+1∥22 − Č2(γ

2∥ρ̃n∥22 + ∥ψ̃n∥22), so that

Č3∥ρ̃n+1∥22 +
ε∗∆t

8
∥∇hṽ

n+ 1
2 ∥22 ≤

2

ε∗∆t
∥ρ̃n∥2−1,h +

2∆t

ε∗
∥τn+

1
2

ρ ∥2−1,h + Č2∥ψ̃n∥22 + Ĉ1∆t
9

+ (Č2γ
2 + 1)∥ρ̃n∥22 + Ĉ1∆t∥ρ̃n−1∥22 ≤ C(∆t

13
2 + h

13
2 ).

(5.37)

In particular, we see that

∥ρ̃n+1∥2 ≤ C(∆t
13
4 + h

13
4 ) ≤ ∆t3 + h3, (5.38)

under the linear refinement requirement λ1h ≤ ∆t ≤ λ2h. This inequality is exactly the rough
error estimate (5.23), and the proof of Proposition 5.5 is completed.

With the rough error estimate (5.23) at hand, we are able to establish the W 1,∞
h bound of the

numerical solution for the density variable. A direct application of 3-D inverse inequality gives

∥ρ̃n+1∥∞ ≤ C∥ρ̃n+1∥2
h

3
2

≤ C(∆t
3
2 + h

3
2 ) ≤ ε∗

2
,

∥∇hρ̃
n+1∥∞ ≤ 2∥ρ̃n+1∥∞

h
≤ C(∆t

1
2 + h

1
2 ) ≤ 1,

(5.39)

under the same linear refinement requirement. In turn, the following separation is valid at time
step tn+1:

ε∗

2
≤ ρn+1 ≤ C∗ +

ε∗

2
= Č0. (5.40)
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This ∥ · ∥∞ bound will play a very important role in the refined error estimate. Moreover, a
maximum norm bound also becomes available for ∇hρ

n+1:

∥∇hρ
n+1∥∞ ≤ ∥∇hρ̌

n+1∥∞ + ∥∇hρ̃
n+1∥∞ ≤ C∗ + 1 = C̃0. (5.41)

Meanwhile, the following bound, in terms of the discrete temporal derivative for the numerical
solution at time step tn+1, will be used in the refined error estimate:

∥ρ̃n+1 − ρ̃n∥∞ ≤ ∥ρ̃n+1∥∞ + ∥ρ̃n∥∞ ≤ 2C(∆t
3
2 + h

3
2 ) ≤ ∆t,

∥ρn+1 − ρn∥∞ ≤ ∥ρ̌n+1 − ρ̌n∥∞ + ∥ρ̃n+1 − ρ̃n∥∞ ≤ (C∗ + 1)∆t = C̃0∆t.
(5.42)

In particular, the following observation is made

∥ρn+1 − ρ̂n+
1
2 ∥∞ ≤∥(ρn+1 − ρn)− 1

2
(ρn − ρn−1)∥∞ + C∆t4

≤∥ρn+1 − ρn∥∞ +
1

2
∥ρn − ρn−1∥∞ + C∆t4 ≤ 3

2
C̃0∆t.

(5.43)

Meanwhile, by the fact that ε∗

2 ≤ ρn+1, ρ̂n+
1
2 ≤ C̃0, it is clear that

3

4
≤ ρ̂n+

1
2

ρn+1
≤ 5

4
, at a point-wise level, provided that ∆t is sufficiently small. (5.44)

5.3 A refined error estimate

The rough error estimate (5.23) is not able to go through an induction argument. Therefore, a
refined error estimate is needed to accomplish a closed loop of convergence analysis. Because of the
Crank-Nicolson-style temporal discretization in the numerical design, the following preliminary
estimate is necessary to control the nonlinear errors associated with the logarithmic diffusion part.
The technical details of the proof are provided in Appendix C.

Proposition 5.6 Assume that the a-priori ∥ · ∥∞ estimate (5.16)-(5.19) and the rough ∥ · ∥∞
estimates (5.40)-(5.44) hold for the numerical solution at the previous and next time steps, re-
spectively. There exist positive constants C̃1, M1, dependent only on ε∗, C∗, γ, C̃0 and |Ω| such
that

γ
〈
ρ̂n+

1
2∇hS̃

n+ 1
2 ,∇h(ρ̃

n+1 + ρ̃n)
〉
≥γ
4
∥∇h(ρ̃

n+1 + ρ̃n)∥22 − C̃1(∥ρ̃n+1∥22 + ∥ρ̃n∥22)−M1h
8.

(5.45)

Proposition 5.7 Assume that the a-priori ∥ · ∥∞ estimate (5.19) hold for the numerical solution
at the previous time steps. There exists a positive constant C, independent of h and ∆t, such that

∥ρ̃n+1∥2 + ∥ϕ̃n+1∥2 + ∥∇hϕ̃
n+1∥2 ≤ C(∆t4 + h4),

∆t

n∑
k=1

∥∇h(ρ̃
k+1 + ρ̃k)∥22 +∆t

n∑
k=1

∥∆h(ϕ̃
k+1 + ϕ̃k)∥22 ≤ C(∆t8 + h8).
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Proof Now we look at the refined error estimate. Taking a discrete inner product with (5.10) by
(ρ̃n+1 + ρ̃n) gives

1

∆t
(∥ρ̃n+1∥22 − ∥ρ̃n∥22) +

〈
ρ̂n+

1
2∇hṽ

n+ 1
2 ,∇h(ρ̃

n+1 + ρ̃n)
〉

= −
〈
˜̂ρn+

1
2∇hV

n+ 1
2 ,∇h(ρ̃

n+1 + ρ̃n)
〉
+ ⟨τn+

1
2

ρ , ρ̃n+1 + ρ̃n⟩.
(5.46)

The first term on the right hand side could be analyzed in a standard way:

−
〈
˜̂ρn+

1
2∇hV

n+ 1
2 ,∇h(ρ̃

n+1 + ρ̃n)
〉
≤∥∇hV

n+ 1
2 ∥∞ · ∥ ˜̂ρn+

1
2 ∥2 · ∥∇h(ρ̃

n+1 + ρ̃n)∥2

≤C∗(
3

2
∥ρ̃n∥2 +

1

2
∥ρ̃n−1∥2 +∆t4)∥∇h(ρ̃

n+1 + ρ̃n)∥2

≤(C∗)2

γ
(24∥ρ̃n∥22 + 8γ∥ρ̃n−1∥22 + 8∆t8)

+
γ

16
∥∇h(ρ̃

n+1 + ρ̃n)∥22.

(5.47)

The Cauchy inequality is applied to bound the local truncation error term:

⟨τn+
1
2

ρ , ρ̃n+1 + ρ̃n⟩ ≤ ∥τn+
1
2

ρ ∥2 · ∥ρ̃n+1 + ρ̃n∥2 ≤
1

2
∥τn+

1
2

ρ ∥22 + (∥ρ̃n+1∥22 + ∥ρ̃n∥22). (5.48)

For the nonlinear term on the left hand side, we separate it into three parts:〈
ρ̂n+

1
2∇hṽ

n+ 1
2 ,∇h(ρ̃

n+1 + ρ̃n)
〉

= γ
〈
ρ̂n+

1
2∇hS̃

n+ 1
2 ,∇h(ρ̃

n+1 + ρ̃n)
〉
− χ

2

〈
ρ̂n+

1
2∇h(ϕ̃

n+1 + ϕ̃n),∇h(ρ̃
n+1 + ρ̃n)

〉
+
χ2∆t

4θ

〈
ρ̂n+

1
2∇h(ρ̃

n+1 − ρ̃n),∇h(ρ̃
n+1 + ρ̃n)

〉
.

(5.49)

The second part could be controlled by a direct application of the Cauchy inequality:

χ

2

〈
ρ̂n+

1
2∇h(ϕ̃

n+1 + ϕ̃n),∇h(ρ̃
n+1 + ρ̃n)

〉
≤ χ

2
∥ρ̂n+

1
2 ∥∞ · ∥∇h(ϕ̃

n+1 + ϕ̃n)∥2 · ∥∇h(ρ̃
n+1 + ρ̃n)∥2

≤ χČ0

2
· ∥∇h(ϕ̃

n+1 + ϕ̃n)∥2 · ∥∇h(ρ̃
n+1 + ρ̃n)∥2

≤ 2χ2Č2
0

γ
(∥∇hϕ̃

n+1∥22 + ∥∇hϕ̃
n∥22) +

γ

16
∥∇h(ρ̃

n+1 + ρ̃n)∥22.

(5.50)

In terms of the third part on the right hand side of (5.49), we begin with a point-wise vector
identity: ∇h(ρ̃

n+1 − ρ̃n) · ∇h(ρ̃
n+1 + ρ̃n) = |∇hρ̃

n+1|2 − |∇hρ̃
n|2. This in turn leads to〈

ρ̂n+
1
2∇h(ρ̃

n+1 − ρ̃n),∇h(ρ̃
n+1 + ρ̃n)

〉
=

〈
ρ̂n+

1
2 , |∇hρ̃

n+1|2 − |∇hρ̃
n|2

〉
=

〈
ρ̂n+

1
2 , |∇hρ̃

n+1|2
〉
−
〈
ρ̂n−

1
2 , |∇hρ̃

n|2
〉
−
〈
ρ̂n+

1
2 − ρ̂n−

1
2 , |∇hρ̃

n|2
〉
.

(5.51)
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Moreover, for the last term in the rewritten expansion, an application of the preliminary esti-
mate (5.19) implies that〈

ρ̂n+
1
2 − ρ̂n−

1
2 , |∇hρ̃

n|2
〉
≤ ∥ρ̂n+

1
2 − ρ̂n−

1
2 ∥∞ · ∥∇hρ̃

n∥22 ≤ 2C̃0∆t∥∇hρ̃
n∥22. (5.52)

Subsequently, a combination of (5.51) and (5.52) yields

χ2∆t

4θ

〈
ρ̂n+

1
2∇h(ρ̃

n+1 − ρ̃n),∇h(ρ̃
n+1 + ρ̃n)

〉
≥ 1

4
χ2θ−1∆t

(〈
ρ̂n+

1
2 , |∇hρ̃

n+1|2
〉
−
〈
ρ̂n−

1
2 , |∇hρ̃

n|2
〉)

− 1

2
χ2C̃0θ

−1∆t2∥∇hρ̃
n∥22.

(5.53)

Meanwhile, the nonlinear diffusion error estimate (5.45) is valid, as stated in Proposition 5.6. A
substitution of (5.45), (5.50), and (5.53) into (5.49) results in〈

ρ̂n+
1
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n+ 1
2 ,∇h(ρ̃
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〉)

+
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16
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(5.54)
Its combination with (5.46)-(5.48) reveals that
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(5.55)
in which an inverse inequality and ∆t∥∇hρ̃

n∥2 ≤ Ĉ3∥ρ̃n∥2 (under the linear refinement requirement
λ1h ≤ ∆t ≤ λ2h) has been used.

The analysis for the numerical error evolutionary equation (5.11) takes a much simpler form,
because of its linear nature. Taking a discrete inner product with (5.11) by (ϕ̃n+1 + ϕ̃n) gives

θ

∆t
(∥ϕ̃n+1∥22 − ∥ϕ̃n∥22) +
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2
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χ

2
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2
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1
2

ϕ ∥22,

(5.56)

in which the Cauchy inequality has been repeatedly applied. Meanwhile, we need a further H1

error estimate for the density variable, to balance the terms ∥∇hϕ̃
n+1∥22 and ∥∇hϕ̃

n∥22 on the right
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hand side of (5.55). Taking a discrete inner product with (5.11) by −∆h(ϕ̃
n+1 + ϕ̃n) indicates
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(5.57)

This is equivalent to
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(5.58)

Therefore, a combination of (5.55), (5.56) and (5.58) leads to
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(5.59)
In turn, the following quantity is introduced:

Fn+1 := ∥ρ̃n+1∥22 + θ(∥ϕ̃n+1∥22 + ∥∇hϕ̃
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Then we obtain
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(5.61)

where
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Consequently, an application of the discrete Gronwall inequality gives the desired higher order
convergence estimate [46]:

Fn+1 ≤ C(∆t8 + h8), ∥ρ̃n+1∥2 + ∥ϕ̃n+1∥2 + ∥∇hϕ̃
n+1∥2 ≤ C(Fn+1)

1
2 ≤ C(∆t4 + h4),

∆t
n∑

k=1

∥∇h(ρ̃
k+1 + ρ̃k)∥22 +∆t

n∑
k=1

∥∆h(ϕ̃
k+1 + ϕ̃k)∥22 ≤ C(∆t8 + h8),

(5.62)

in which the fourth order truncation error accuracy ∥τn+
1
2

ρ ∥2, ∥τ
n+ 1

2
ϕ ∥2 ≤ C(∆t4 + h4) has been

applied. This finishes the refined error estimate.

5.4 Recovery of the a-priori assumption (5.14)

With the help of the higher order error estimate, we see that the a-priori assumption (5.14) is
satisfied at tn+1:

∥ρ̃n+1∥2, ∥ϕ̃n+1∥2 ≤ C(∆t4 + h4) ≤ ∆t
15
4 + h

15
4 , (5.63)

provided that ∆t and h are sufficiently small. The recovery for ∥ρ̃n∥2 and ∥ρ̃n−1∥2 would be more
straightforward. Therefore, an induction analysis could be effectively applied and the higher order
convergence analysis is complete. Subsequently, a combination of (5.62) with (5.4) leads to the
convergence estimate (5.3). The proof of Theorem 5.1 is completed.

6 Numerical results

6.1 Accuracy test

We now test numerical accuracy of the proposed scheme (3.1-3.2) in solving the PKS system{
∂tρ = ∆ρ−∇ · (ρ∇ϕ) + f1,

θ∂tϕ = ∆ϕ− ϕ+ ρ+ f2,
(6.1)

in computational domains Ω = (0, 1)2 and Ω = (0, 1)3. For 2D simulations, the source terms f1
and f2 are determined by the following exact solution{

ρe(x, y, t) = 0.1e−t cos(πx) cos(πy) + 0.2,

ϕe(x, y, t) = 0.1e−t cos(πx) cos(πy) + 0.2.
(6.2)

In the 3D simulation, the source terms f1 and f2 are determined by the following exact solution{
ρe(x, y, z, t) = 0.1e−t cos(πx) cos(πy) cos(πz) + 0.2,

ϕe(x, y, z, t) = 0.1e−t cos(πx) cos(πy) cos(πz) + 0.2.
(6.3)

The initial conditions are obtained by evaluating the exact solution at T = 0. We consider
homogeneous Neumann boundary condition (1.2) for both ρ and ϕ. We first test numerical
accuracy of the proposed scheme utilizing various spatial step size h with a fixed mesh ratio
∆t = h/10. Figure 1 displays the ℓ∞ errors and convergence orders for the density of living
organisms and chemical signals at a final time T = 0.1. We observe that the numerical error
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Figure 1: Numerical errors (in ℓ∞) of ρ and ϕ computed by the second-order accurate scheme
(3.1)-(3.2) at a final time T = 0.1 in 2D simulations, with a mesh ratio ∆t = h/10. Various values
of θ are considered: θ = 1, θ = 1e− 2, and θ = 1e− 4.
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Figure 2: Numerical errors (in ℓ∞) of ρ and ϕ computed by the second-order accurate scheme
(3.1)-(3.2) at a final time T = 0.1 in the 3D simulation, with a mesh ratio ∆t = h/10. Various
values of θ are used: θ = 1, θ = 1e− 2, and θ = 1e− 4.
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decreases as the mesh refines and that second order convergence rates are clearly observed for
both ρ and ϕ. This verifies the second-order accuracy for the proposed numerical scheme (3.1-3.2),
in both temporal and spatial discretization. In the 3D simulation, as the mesh refines from h = 1

20
to h = 1

100 , the ℓ
∞ errors displayed in Figure 2 decrease at a second-order convergence rate as

well, for both the density of living organisms and chemical signals. Also, we observe from the
figures that smaller values of θ result in larger ℓ∞ errors, particularly for θ = 1e − 4. However,
the second-order convergence rate can be robustly maintained across all tested values of θ. Notice
that the mesh ratio is chosen for the sake of numerical accuracy test, not for stability or positivity.

6.2 Blowup phenomena

6.2.1 Blowup in the center

In this case, we demonstrate the performance of the proposed scheme in preserving mass conser-
vation, energy dissipation, and solution positivity in a two-dimensional domain Ω = (0, 1)2. The
parameters are taken as: γ = 1, χ = 1, θ = 1, µ = 1, and α = 1. The homogeneous boundary
conditions are imposed for both ρ and ϕ. The initial data is prescribed as follows:{

ρ0(x, y) = 1000e−100[(x− 1
2
)2+(y− 1

2
)2],

ϕ0(x, y) = e−100[(x− 1
2
)2+(y− 1

2
)2],

(6.4)

which mimics concentrated living organisms and chemical signals of high peak values initially
distribute at the center of the domain. According to the mathematical analysis in [26], the

Figure 3: Evolution of density ρ at time instants: T = 0, 0.12, 0.15, and 0.16, with ∆t = 10−5

and h = 10−2.

analytic solution to the classical PKS system is expected to develop a blowup at the center of
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the domain in finite time, with initial mass ∥ρ0∥1 ≈ 31.4159 > 8π. Indeed, Figure 3 displays
numerical results on singularity formation at a sequence of time instants: T = 0, 0.12, 0.15, and
0.16, with a time step size ∆t = 10−5. It is observed that the numerical solution of the living
organism density evolves into blowup at the center of the domain, leading to a shrinking support
for the organism density.
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Figure 4: Time evolution of the discrete energy Fh, mass of ρ, and the maximum and minimum
values of ρ for the case with blowup at the center.

We next demonstrate the robustness of the proposed numerical scheme in preserving the
desired properties in such blowup evolution, which poses a challenging task on numerical sta-
bility. With homogeneous Neumann boundary conditions, the physical system possesses mass
conservation and free-energy dissipation. From the left panel of Figure 4, one can see that the
free energy (4.1) monotonically decreases and the total mass of ρ remains constant robustly as
time evolves. The right panel of Figure 4 displays the time evolution of ρMin := Mini,j ρi,j and
ρMax := Maxi,j ρi,j , the minimum and maximum values of ρ over the computational mesh, re-
spectively. It is observed that the proposed numerical scheme is positivity-preserving and the
maximum value of ρ grows exponentially as time evolves in the singularity formation.

6.2.2 Effect of mobility

In this case, we assess the performance of the proposed numerical scheme (3.1-3.2) in simulating
the PKS system with various mobility functions η(ρ) (cf. (2.3)-(2.5)). The simulations are con-
ducted in a two-dimensional domain Ω = (0, 1)2 with the same initial conditions and parameters
given in the previous section. In terms of the mobility parameters, we set κ = 1e − 4 in the
bounded-mobility system (2.4), and M = 2000 in saturation-concentration choice (2.5). Figure 5
illustrates (a) the bounded-mobility system in the first row, and (b) the saturation-concentration
system in the second row. The first column shows the density distribution ρ at T = 0.15. Both
modified models effectively capture the chemotaxis phenomenon, characterized by cell aggrega-
tion. In contrast to the plot for the PKS system with a classical mobility, displayed in Figure 3, one
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Figure 5: The first column shows the density distribution ρ at T = 0.15, the second column gives
the evolution of the free energy and total mass, and the third column presents the maximum
and minimum concentration over the computational mesh. The first row (a) shows the bounded-
mobility system and the second row (b) depicts the saturation-concentration system.

can observe that the modified mobility gives bounded solutions without exhibiting blowup. The
second column depicts the evolution of discrete free energy (solid orange) and total mass (dashed
green). As expected, the discrete free energy monotonically decreases and total mass remains
constant as time evolves. The third column illustrates the evolution of the maximum density
values ρMax (solid orange) and minimum density values ρMin (dashed green), demonstrating that
the numerical solution remains positive over time.

6.2.3 Blowup at the corner

The proposed second-order accurate scheme (3.1-3.2) is applied to probe blowup formation away
from the peak position of initial densities. We consider the same IBVPs as in Section 6.2.1, while
the center of initial data is shifted to (0.75, 0.75):{

ρ0(x, y) = 1000e−100((x−0.75)2+(y−0.75)2),

ϕ0(x, y) = e−100((x−0.75)2+(y−0.75)2).

Again, the solution of ρmay blow up in a finite time due to the fact that ∥ρ0∥1 ≈ 31.4033 > 8π [31].
Figure 6 displays spatial density profiles of living organisms at four different time instants. It

has been proved in [26] that the solution is expected to blow up at the boundary of the domain
in this case. It is clearly observed that the behavior of the computed solution matches our
expectation: the living organisms first move towards the boundary and then concentrate due to
zero-flux boundary conditions, eventually forming solution blow up at the corner. Similar to the
previous example, the free energy (4.1) depicted in Figure 7 gradually decreases over time and
the total mass of ρ remains at a constant value perfectly. Regarding the energy functional Fh, a
significant decline in magnitude occurs before blowup and continuing decrease can be seen during
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Figure 6: Time evolution of ρ at a sequence of time instants: T = 0, 0.04, 0.076, and 0.08, with
∆t = 10−5 and h = 1/100.
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Figure 7: Time evolution of the discrete energy Fh, mass of ρ, and the minimum and maximum
values of ρ for the case with blowup at the corner.
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the singularity formation. Additionally, the density of living organism always remains positive,
and the maximum value of density increases exponentially over time, indicating a solution blowup.

6.2.4 Blowup in 3D

Figure 8: Cross-section snapshots of the density ρ at time instances T = 0, 0.01, and 0.02, with
∆t = 10−5 and h = 1
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Figure 9: Time evolution of the discrete energy Fh, mass of ρ, and the minimum and maximum
values of ρ in the case of 3D blowup.

To further illustrate the 3D solution behavior, we conduct a blowup test for the PKS system
over a cubic domain Ω = (0, 1)3. The initial data is given by{

ρ0(x, y, z) = 1000e−50[(x− 1
2
)2+(y− 1

2
)2+(z− 1

2
)2],

ϕ0(x, y, z) = e−50[(x− 1
2
)2+(y− 1

2
)2+(z− 1

2
)2].

Figure 8 shows cross-section snapshots of the density ρ at time instances T = 0, 0.01, and 0.02,
using a spatial resolution of h = 1

100 . The extracted cross-section slices at the planes x = 0.5,
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y = 0.5, and z = 0.5 demonstrate that the solution is spherically symmetric and concentrates
more and more at the center, exhibiting a 3D blowup phenomenon.

Figure 9 presents the time evolution of the free energy, total mass of ρ, maximum value ρMax,
and minimum value of ρMin over the computational mesh with h = 1

100 and ∆t = 10−5. Similar
to the 2D examples, the free energy (4.1) gradually decreases over time and the total mass of
ρ remains at a perfect constant value. Furthermore, the density of living organism consistently
stays positive, and the maximum value of density grows exponentially over time, indicating a
solution blowup.

7 Conclusions

This work has proposed a novel second-order accurate numerical scheme for the PKS system with
various mobilities for the description of chemotaxis. The variational structure of the PDE system
has been used to facilitate the numerical design. The singular part in the chemical potential is
discretized by a modified Crank-Nicolson approach, which leads to a nonlinear and singular nu-
merical system. The unique solvability and positivity-preserving property have been theoretically
established, in which the convexity of the nonlinear and singular term plays an important role.
Moreover, a careful nonlinear analysis has proved a dissipation property of the original free energy
functional, instead of a modified energy reported in many existing works for a multi-step numerical
scheme. This makes the original energy stability analysis remarkable for the second-order dis-
cretization. In addition, this study has provided an optimal rate convergence analysis and error
estimate for the proposed second order scheme, in which several highly non-standard techniques
have been included. With a careful linearization expansion, the higher-order asymptotic expan-
sion (up to fourth order accuracy in both time and space) has been performed. In turn, we are
able to derive a rough error estimate, so that the ℓ∞ bound for the density variable, as well as its
temporal derivative, becomes available. Subsequently, a refined error estimate has been performed
and the desired convergence estimate for ρ is accomplished, in the ℓ∞(0, T ; l2)∩ℓ2(0, T ;H1

h) norm.
A few numerical results have confirmed the accuracy and robustness of the numerical scheme in
preserving desired properties in simulations of chemotaxis. Given the numerical performance of
the proposed scheme in terms of the structure preservation, it is of interest to see whether the
scheme is able to numerically predict the blowup time. This deserves a further study in our future
work.

A Proof of Lemma 5.4

By the fact that Sn+ 1
2 = ln ρn+1 + 5ρn

6ρn+1 − ρn

6(ρn+1)2
− 2

3 , we see that the term S̃n+ 1
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]
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(A.1)

and ξn+1 is between ρ̌n+1 and ρn+1, with an application of intermediate value theorem.
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Recalling the phase separation property (5.7), regularity requirement (5.8), and a-priori ∥ · ∥∞
estimate (5.16) at the previous time step, we have∣∣∣∣ 5

6ρ̌n+1
− ρ̌n + ρn

6(ρ̌n+1)2
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5
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)
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,
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)
:= Ĉ2.

Therefore, the following inequality is available:
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In terms of S̃
n+ 1

2
2 , we begin with the following observation:
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This in turn implies that

⟨S̃n+ 1
2

2 , ρ̃n+1⟩ ≥ h3
N∑

i,j,k=1

23

48ξn+1
i,j,k

|ρ̃n+1
i,j,k |

2. (A.4)

Its combination with (A.2) yields

⟨S̃n+ 1
2 , ρ̃n+1⟩ ≥ h3

N∑
i,j,k=1

( 23

48ξn+1
i,j,k

|ρ̃n+1
i,j,k |

2 − Ĉ2|ρ̃ni,j,k| · |ρ̃n+1
i,j,k |

)
, and

⟨γS̃n+ 1
2 + ψ̃n, ρ̃n+1⟩ ≥ h3

N∑
i,j,k=1

( 23γ

48ξn+1
i,j,k

|ρ̃n+1
i,j,k |

2 − (Ĉ2γ|ρ̃ni,j,k|+ |ψ̃n
i,j,k|)|ρ̃n+1

i,j,k |
)
.

(A.5)

At a fixed grid point (i, j, k) that is not in K, i.e., 0 < ρn+1
i,j,k < 2C∗ + 1, the following estimate

is available:
1

ξn+1
i,j,k

≥ min
( 1

ρ̌n+1
i,j,k

,
1

ρn+1
i,j,k

)
≥ 1

2C∗ + 1
.

Subsequently, the following inequality is valid for 0 < ρn+1
i,j,k < 2C∗ + 1:

23γ

48ξn+1
i,j,k

|ρ̃n+1
i,j,k |

2 − (Ĉ2γ|ρ̃ni,j,k|+ |ψ̃n
i,j,k|)|ρ̃n+1

i,j,k |

≥ 23γ

48(2C∗ + 1)
|ρ̃n+1

i,j,k |
2 −

( 23γ

96(2C∗ + 1)
|ρ̃n+1

i,j,k |
2 +

48γĈ2
2 (2C

∗ + 1)

23
|ρ̃ni,j,k|2

+
48(2C∗ + 1)

23γ
|ψ̃n

i,j,k|2
)

=
23γ

96(2C∗ + 1)
|ρ̃n+1

i,j,k |
2 − 48γĈ2

2 (2C
∗ + 1)

23
|ρ̃ni,j,k|2 −

48(2C∗ + 1)

23γ
|ψ̃n

i,j,k|2.

(A.6)
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On the other hand, if (i, j, k) is in K, i.e., ρn+1
i,j,k ≥ 2C∗ + 1, we have ρ̃n+1

i,j,k = ρ̌n+1
i,j,k − ρn+1

i,j,k < 0,
so that the following inequalities are valid:

ρ̌n+1
i,j,k ≤ C∗ ≤ C∗

2C∗ + 1
(2C∗ + 1) ≤

C∗ρn+1
i,j,k

2C∗ + 1
,

|ρ̃n+1
i,j,k | = |ρ̌n+1

i,j,k − ρn+1
i,j,k | ≥ |ρn+1

i,j,k | −
C∗ρn+1

i,j,k

2C∗ + 1
≥ (C∗ + 1)

2C∗ + 1
ρn+1
i,j,k ,

|ρ̃n+1
i,j,k |
ξn+1
i,j,k

≥
|ρ̃n+1

i,j,k |
ρn+1
i,j,k

≥ (C∗ + 1)

2C∗ + 1
.

Subsequently, the following inequality could be derived:

23γ

48ξn+1
i,j,k

|ρ̃n+1
i,j,k |

2 − (Ĉ2γ|ρ̃ni,j,k|+ |ψ̃n
i,j,k|)|ρ̃n+1

i,j,k |

≥ 23(C∗ + 1)γ

48(2C∗ + 1)
|ρ̃n+1

i,j,k | − (γĈ2 · C(∆t
9
4 + h

9
4 ) + h)|ρ̃n+1

i,j,k |

≥ γ

6
|ρ̃n+1

i,j,k | ≥
γ

6
(C∗ + 1) ≥ C∗γ

6
,

(A.7)

where the ∥ · ∥∞ estimate (5.15) and the assumption that ∥ψ̃n∥∞ ≤ h have been recalled in the

second step, and the fact that 23(C∗+1)γ
48(2C∗+1) − (γĈ2 ·C(∆t

9
4 + h

9
4 ) + h) ≥ γ

6 has been used in the last
step.

As a result, a substitution of the point-wise inequalities (A.6) and (A.7) into (A.5) results in the

desired estimate (5.21), by taking Č2 =
48Ĉ2

2 (2C
∗+1)

23γ . Moreover, if |K| = 0, the improved nonlinear

estimate in (5.22) could be derived, based on (A.6), by taking Č3 = 23γ
96(2C∗+1) . Therefore, the

proof of Lemma 5.4 is completed.

B Proof of the bounds for ∥L−1
1 ∥2 and ∥L−1

1 L2∥2
Recall the definitions

L1 =
θ

∆t
+
α

2
− µ

2
∆h, L2 =

θ

∆t
− α

2
+
µ

2
∆h,

where α > 0, µ > 0, and ∆h is a negative semi-definite discrete Laplacian operator with homoge-
nous Neumann boundary conditions. For any η ∈ C̊, there exists u ∈ C̊ such that L1u = η. Since
α
2 − µ

2∆h is positive definite, it follows that

⟨u,L1u⟩ ≥
θ

∆t
∥u∥22.

It follows from L−1
1 η = u that

θ

∆t
∥L−1

1 η∥22 ≤
〈
L−1

1 η, η
〉
≤ ∥L−1

1 η∥2 · ∥η∥2.

Therefore, ∥L−1
1 η∥2 ≤ ∆t

θ ∥η∥2, which implies that ∥L−1
1 ∥2 ≤ ∆t

θ .
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Denote by u = L−1
1 L2η ∈ C̊, where η ∈ C̊. By L1u = L2η, one has

− θ

∆t
(u− η) =

(α
2
− µ

2
∆h

)
(u+ η).

It follows from the negative semi-definiteness of ∆h that

− θ

∆t
⟨u+ η, u− η⟩ =

〈
u+ η,

(α
2
− µ

2
∆h

)
(u+ η)

〉
≥ α

2
⟨u+ η, u+ η⟩ .

Therefore, we see that(
α

2
+

θ

∆t

)
⟨u, u⟩+

(
α

2
− θ

∆t

)
⟨η, η⟩ ≤ −α ⟨u, η⟩ ≤ α

2
⟨u, u⟩+ α

2
⟨η, η⟩ ,

which leads to ⟨u, u⟩ ≤ ⟨η, η⟩, i.e., ∥L−1
1 L2η∥2 ≤ ∥η∥2. This completes the proof of ∥L−1

1 L2∥2 ≤ 1.

C Proof of Proposition 5.6

By the numerical error expansion formula (5.12), the following decomposition is available for

S̃n+ 1
2 , at a point-wise level:

S̃n+ 1
2 = J1 + J2 + J3 + J4 + J5, with

J1 = ln(ρ̌n+1)− ln(ρn+1), J2 = − 1

2ρn+1
(ρ̃n+1 − ρ̃n), J3 =

ρ̃n+1

2ρ̌n+1ρn+1
(ρ̌n+1 − ρ̌n),

J4 = − ρ̌
n+1 − ρ̌n + ρn+1 − ρn

6(ρn+1)2
(ρ̃n+1 − ρ̃n), J5 =

(ρ̌n+1 + ρn+1)ρ̃n+1

6(ρ̌n+1)2(ρn+1)2
(ρ̌n+1 − ρ̌n)2.

(C.1)

Meanwhile, at each cell, from (i, j, k) → (i + 1, j, k), the following expansion identity is always
valid:

Dx(fg)i+1/2,j,k = (Axf)i+1/2,j,k · (Dxg)i+1/2,j,k + (Axg)i+1/2,j,k · (Dxf)i+1/2,j,k. (C.2)

We first look at the DxJ3 term. Because of the point-wise bounds, ε∗ ≤ ρ̌n+1 ≤ C∗, ε∗

2 ≤
ρn+1 ≤ Č0, and ∥∇hρ

n+1∥∞ ≤ C̃0 as given by (5.7), (5.40), and (5.41), respectively, the following
estimates could be derived:

0 < Ax(
1

ρ̌n+1
) ≤ (ε∗)−1, 0 < Ax(

1

ρn+1
) ≤ 2(ε∗)−1, 0 < Ax(

1

ρ̌n+1ρn+1
) ≤ 2(ε∗)−2, (C.3)

|Dx(
1

ρ̌n+1
)| ≤ (ε∗)−2|Dxρ̌

n+1| ≤ C∗(ε∗)−2, |Dx(
1

ρn+1
)| ≤ 4(ε∗)−2|Dxρ

n+1| ≤ 4C̃0(ε
∗)−2, (C.4)

|Dx(
1

ρ̌n+1ρn+1
)| ≤ Ax(

1

ρ̌n+1
) · |Dx(

1

ρn+1
)|+Ax(

1

ρn+1
) · |Dx(

1

ρ̌n+1
)|

≤ (ε∗)−3(2C∗ + 4C̃0), (C.5)

in which inequalities (5.8) and (5.41) have also been applied. Subsequently, a further application
of (C.2) leads to∣∣∣Ax

( ρ̃n+1

2ρ̌n+1ρn+1

)∣∣∣ ≤ 1

2
· 2(ε∗)−2Ax|ρ̃n+1| = (ε∗)−2Ax|ρ̃n+1|,∣∣∣Dx

( ρ̃n+1

2ρ̌n+1ρn+1

)∣∣∣ ≤ 1

2
Ax(

1

ρ̌n+1ρn+1
) · |Dxρ̃

n+1|+ 1

2
|Dx(

1

ρ̌n+1ρn+1
)| · |Axρ̃

n+1|

≤ (ε∗)−2|Dxρ̃
n+1|+ (ε∗)−3(C∗ + 2C̃0)Ax|ρ̃n+1|.

(C.6)
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Meanwhile, the regularity assumption (5.8) (for the constructed profile ρ̌) implies that

|ρ̌n+1 − ρ̌n| ≤ C∗∆t, |Dx(ρ̌
n+1 − ρ̌n)| ≤ C∗∆t, at a point-wise level. (C.7)

Consequently, a combination of (C.6) and (C.7) reveals that

|DxJ3| ≤
∣∣∣Ax

( ρ̃n+1

2ρ̌n+1ρn+1

)∣∣∣ · |Dx(ρ̌
n+1 − ρ̌n)|+

∣∣∣Dx

( ρ̃n+1

2ρ̌n+1ρn+1

)∣∣∣ ·Ax|ρ̌n+1 − ρ̌n|

≤(ε∗)−2C∗∆t
(
|Dxρ̃

n+1|+ ((ε∗)−1(C∗ + 2C̃0) + 1)Ax|ρ̃n+1|
)
.

(C.8)

Notice that we have dropped the | · |i+1/2,j,k subscript notation on the right hand side terms, for
simplicity of presentation, since all these inequalities are derived at a point-wise level.

Similar bounds could be derived for |DxJ4| and |DxJ5| terms:

0 < Ax(
1

(ρn+1)2
) ≤ 4(ε∗)−2, |Dx(

1

(ρn+1)2
)| ≤ 16(ε∗)−3|Dxρ

n+1| ≤ 16C̃0(ε
∗)−3,

|ρ̌n+1 − ρ̌n|, |Dx(ρ̌
n+1 − ρ̌n)| ≤ C∗∆t, |ρn+1 − ρn| ≤ C̃0∆t,

|Ax(ρ̌
n+1 − ρ̌n + ρn+1 − ρn)| ≤ (C∗ + C̃0)∆t, |Dx(ρ̌

n+1 − ρ̌n + ρn+1 − ρn)| ≤ C∗∆t+ 2C̃0,

|Ax(
ρ̌n+1 − ρ̌n + ρn+1 − ρn

(ρn+1)2
)| ≤ (C∗ + C̃0)∆t · 4(ε∗)−2 = 4(ε∗)−2(C∗ + C̃0)∆t,

|Dx(
ρ̌n+1 − ρ̌n + ρn+1 − ρn

(ρn+1)2
)| ≤ (C∗ + C̃0)∆t · 16C̃0(ε

∗)−3 + (C∗∆t+ 2C̃0) · 4(ε∗)−2

≤ 4(ε∗)−2∆t
(
C∗ + 4C̃0(ε

∗)−1(C̃0 + C∗)
)
+ 8(ε∗)−2C̃0 ≤ 8(ε∗)−2C̃0 + 1,

|DxJ4| ≤
1

6
|Ax(

ρ̌n+1 − ρ̌n + ρn+1 − ρn

(ρn+1)2
)| · |Dx(ρ̃

n+1 − ρ̃n)|

+
1

6
|Dx(

ρ̌n+1 − ρ̌n + ρn+1 − ρn

(ρn+1)2
)| ·Ax|ρ̃n+1 − ρ̃n|

≤ 2

3
(ε∗)−2(C∗ + C̃0)∆t(|Dxρ̃

n+1|+ |Dxρ̃
n|) + 1

6
(8(ε∗)−2C̃0 + 1)(Ax|ρ̃n+1|+Ax|ρ̃n|)

0 ≤ (ρ̌n+1 − ρ̌n)2 ≤ (C∗)2∆t2,

|Dx((ρ̌
n+1 − ρ̌n)2)| ≤ 2∥Dx(ρ̌

n+1 − ρ̌n)∥∞ · ∥ρ̌n+1 − ρ̌n∥∞ ≤ 2(C∗)2∆t2,

0 < Ax(
1

(ρ̌n+1)2(ρn+1)2
) ≤ (ε∗)−2 · 4(ε∗)−2 = 4(ε∗)−4,

|Dx(
1

(ρ̌n+1)2(ρn+1)2
)| ≤ 8(ε∗)−5(|Dxρ̌

n+1|+ 2|Dxρ
n+1|) ≤ 8(C∗ + 2C̃0)(ε

∗)−5,

|Ax(ρ̌
n+1 + ρn+1)| ≤ C∗ + Č0, |Dx(ρ̌

n+1 + ρn+1)| ≤ |Dxρ̌
n+1|+ |Dxρ

n+1| ≤ C∗ + C̃0,

|Ax(
ρ̌n+1 + ρn+1

(ρ̌n+1)2(ρn+1)2
)| ≤ 4(ε∗)−4(C∗ + Č0),

|Dx(
ρ̌n+1 + ρn+1

(ρ̌n+1)2(ρn+1)2
)| ≤ (C∗ + Č0) · 8(C∗ + 2C̃0)(ε

∗)−5 + (C∗ + C̃0) · 4(ε∗)−4

≤ 8(ε∗)−5(C∗ + Č0)(C
∗ + 2C̃0 + 1),

(C.9)
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|Ax(
(ρ̌n+1 + ρn+1)(ρ̌n+1 − ρ̌n)2

(ρ̌n+1)2(ρn+1)2
)| ≤ 4(ε∗)−4(C∗ + Č0)(C

∗)2∆t2,

|Dx(
(ρ̌n+1 + ρn+1)(ρ̌n+1 − ρ̌n)2

(ρ̌n+1)2(ρn+1)2
)|

≤ 8(ε∗)−5(C∗ + Č0)(C
∗ + 2C̃0 + 1) · (C∗)2∆t2 + 4(ε∗)−4(C∗ + Č0) · 2(C∗)2∆t2

≤ 8(ε∗)−5(C∗)2∆t2(C∗ + Č0)(C
∗ + 2C̃0 + 2),

|DxJ5| ≤
1

6
|Ax(

(ρ̌n+1 + ρn+1)(ρ̌n+1 − ρ̌n)2

(ρ̌n+1)2(ρn+1)2
)| · |Dxρ̃

n+1|

+
1

6
|Dx(

(ρ̌n+1 + ρn+1)(ρ̌n+1 − ρ̌n)2

(ρn+1)2(ρn+1)2
)| ·Ax|ρ̃n+1|

≤ 2

3
(ε∗)−4(C∗)2∆t2(C∗ + Č0)

(
2(ε∗)−1(C∗ + 2C̃0 + 2) ·Ax|ρ̃n+1|+ |Dxρ̃

n+1|
)

≤ ∆t(|Dxρ̃
n+1|+Ax|ρ̃n+1|).

(C.10)

Notice that the phase separation property (5.7), regularity assumption (5.8) for the constructed
profile, a-priori estimate (5.16)-(5.19), and the rough ∥ · ∥∞ estimates (5.40)-(5.44) for the numer-
ical solution, have been repeatedly applied in the above derivation.

In fact, the finite difference operations for the J3, J4 and J5 terms could be viewed as higher-
order perturbations in the nonlinear expansion of DxS̃

n+ 1
2 , and the two leading terms, namely

DxJ1 and DxJ2, turn out to play a dominant role in the nonlinear error estimate. Now we focus
on the DxJ1 term. Within a single mesh cell (i, j, k) → (i + 1, j, k), the following expansion is
straightforward, based on the mean value theorem:

Dx(ln ρ̌
n+1 − ln ρn+1)i+1/2,j,k =

1

h
(ln ρ̌n+1

i+1,j,k − ln ρ̌n+1
i,j,k)−

1

h
(ln ρn+1

i+1,j,k − ln ρn+1
i,j,k)

=
1

ξρ̌
Dxρ̌

n+1
i+1/2,j,k −

1

ξρ
Dxρ

n+1
i+1/2,j,k

=
( 1

ξρ̌
− 1

ξρ

)
Dxρ̌

n+1
i+1/2,j,k +

1

ξρ
Dxρ̃

n+1
i+1/2,j,k, (C.11)

where

1

ξρ̌
=

ln ρ̌n+1
i+1,j,k − ln ρ̌n+1

i,j,k

ρ̌n+1
i+1,j,k − ρ̌n+1

i,j,k

,
1

ξρ
=

ln ρn+1
i+1,j,k − ln ρn+1

i,j,k

ρn+1
i+1,j,k − ρn+1

i,j,k

. (C.12)

Meanwhile, for any a > 0 and b > 0, a careful Taylor expansion of lnx around a middle point
x0 =

a+b
2 reveals that

ln b− ln a

b− a
=

1

x0
+

(b− a)2

12x30
+

(b− a)4

160

( 1

η51
+

1

η52

)
, (C.13)

in which η1 is between a and x0, η2 is between x0 and b. It is observed that, only the even order
terms appear in (C.13), due to the symmetric expansion around x0 =

a+b
2 . This fact will greatly

simplify the nonlinear analysis. In turn, a more precise representation for 1
ξρ̌

and 1
ξρ
, as given
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in (C.12), becomes available:

1

ξρ̌
=

1

Axρ̌
n+1
i+1/2,j,k

+
h2(Dxρ̌

n+1
i+1/2,j,k)

2

12(Axρ̌
n+1
i+1/2,j,k)

3
+
h4(Dxρ̌

n+1
i+1/2,j,k)

4

160

( 1

η5ρ̌,1
+

1

η5ρ̌,2

)
,

1

ξρ
=

1

Axρ
n+1
i+1/2,j,k

+
h2(Dxρ

n+1
i+1/2,j,k)

2

12(Axρ
n+1
i+1/2,j,k)

3
+
h4(Dxρ

n+1
i+1/2,j,k)

4

160

( 1

η5ρ,1
+

1

η5ρ,2

)
,

ηρ̌,1 is between ρ̌n+1
i,j,k and Axρ̌

n+1
i+1/2,j,k, ηρ̌,2 is between Axρ̌

n+1
i+1/2,j,k and ρ̌n+1

i+1,j,k,

ηρ,1 is between ρn+1
i,j,k and Axρ

n+1
i+1/2,j,k, ηρ,2 is between Axρ

n+1
i+1/2,j,k and ρn+1

i+1,j,k.

(C.14)

Then we obtain a detailed expansion of 1
ξρ̌

− 1
ξρ
, which is needed in the analysis for (C.12):

1

ξρ̌
− 1

ξρ
=

−(Axρ̃)
n+1
i+1/2,j,k

Axρ̌
n+1
i+1/2,j,k ·Axρ

n+1
i+1/2,j,k

+
h2(Dxρ

n+1
i+1/2,j,k +Dxρ̌

n+1
i+1/2,j,k)Dxρ̃

n+1
i+1/2,j,k

12(Axρ
n+1
i+1/2,j,k)

3

−
h2(Dxρ̌

n+1
i+1/2,j,k)

2(Axρ̃)
n+1
i+1/2,j,k

12(Axρ̌
n+1
i+1/2,j,k)

3(Axρ
n+1
i+1/2,j,k)

3

·
(
(Axρ̌

n+1
i+1/2,j,k)

2 +Axρ̌
n+1
i+1/2,j,k ·Axρ

n+1
i+1/2,j,k + (Axρ

n+1
i+1/2,j,k)

2
)

+
h4(Dxρ̌

n+1
i+1/2,j,k)

4

160

( 1

η5ρ̌,1
+

1

η5ρ̌,2

)
−
h4(Dxρ

n+1
i+1/2,j,k)

4

160

( 1

η5ρ,1
+

1

η5ρ,2

)
.

(C.15)

On the other hand, because of the following bounds at (i+ 1/2, j, k) and time step tn+1:

ε∗ ≤ Axρ̌ ≤ C∗, |Dxρ̌| ≤ C∗,
ε∗

2
≤ Axρ ≤ Č0, |Dxρ| ≤ C̃0,

ε∗ ≤ ηρ̌,1, ηρ̌,2 ≤ C∗,
ε∗

2
≤ ηρ,1, ηρ,2 ≤ Č0,

(C.16)

the following estimates could be derived:∣∣∣ Axρ̃

Axρ̌ ·Axρ

∣∣∣ ≤ 2(ε∗)−2|Axρ̃|,∣∣∣h2(Dxρ+Dxρ̌)Dxρ̃

12(Axρ)3

∣∣∣ ≤ h2

12
· 8(ε∗)−3 · (C∗ + C̃0)|Dxρ̃| =

2h2

3
(ε∗)−3(C∗ + C̃0)|Dxρ̃|,∣∣∣ h2(Dxρ̌)

2(Axρ̃)

12(Axρ̌)3(Axρ)3
·
(
(Axρ̌)

2 +Axρ̌ ·Axρ+ (Axρ)
2
)∣∣∣

≤ h2

12
· 8(ε∗)−6 · (C∗ + Č0)

2 · (C∗)2|Axρ̃| =
2

3
(ε∗)−6(C∗ + Č0)

2(C∗)2h2|Axρ̃|,∣∣∣h4(Dxρ̌)
4

160

( 1

η5ρ̌,1
+

1

η5ρ̌,2

)∣∣∣ ≤ h4

160
· (C∗)4 · 2(ε∗)−5 =

(C∗)4(ε∗)−5

80
h4,

∣∣∣h4(Dxρ)
4

160

( 1

η5ρ,1
+

1

η5ρ,2

)∣∣∣ ≤ h4

160
· (C̃0)

4 · 64(ε∗)−5 =
2(C̃0)

4(ε∗)−5

5
h4.

(C.17)
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Again, we have dropped the |·|n+1
i+1/2,j,k script notation in the analysis, for simplicity of presentation,

and all these inequalities are derived at a point-wise level. Subsequently, a substitution of (C.17)
into (C.15) yields∣∣∣ 1

ξρ̌
− 1

ξρ

∣∣∣ ≤ (2(ε∗)−2 + 1)|Axρ̃
n+1
i+1/2,j,k|+ h|Dxρ̃

n+1
i+1/2,j,k|+

2(C̃0 + C∗)4(ε∗)−5

5
h4, (C.18)

provided that h is sufficiently small.
In terms of the second expansion term on the right hand side of (C.11), we observe an O(h2)

Taylor expansion to obtain 1
ξρ
, in a similar formula as in (C.14):

1

ξρ
=

1

Axρ
n+1
i+1/2,j,k

+
h2(Dxρ

n+1
i+1/2,j,k)

2

24

( 1

η3ρ,3
+

1

η3ρ,4

)
,

ηρ,3 is between ρn+1
i,j,k and Axρ

n+1
i+1/2,j,k, ηρ,4 is between Axρ

n+1
i+1/2,j,k and ρn+1

i+1,j,k.

(C.19)

Again, the remaining expansion terms could be bounded as follows

ε∗

2
≤ Axρ ≤ Č0, |Dxρ| ≤ C̃0,

ε∗

2
≤ ηρ,3, ηρ,4 ≤ Č0, so that∣∣∣h2(Dxρ)

2

24

( 1

η3ρ,3
+

1

η3ρ,4

)∣∣∣ ≤ h2

24
· (C̃0)

2 · 16(ε∗)−3 =
2(C̃0)

2(ε∗)−3

3
h2 ≤ h,

(C.20)

provided that h is sufficiently small.
As a result, a substitution of (C.18)-(C.20) into (C.11) reveals the following fact, at a point-

wise level:

(DxJ1)i+1/2,j,k =
Dxρ̃

n+1
i+1/2,j,k

Axρ
n+1
i+1/2,j,k

+ ζ
n+ 1

2
1 , with

|ζn+
1
2

1 | ≤ (2(ε∗)−2 + 1)C∗|Axρ̃
n+1
i+1/2,j,k|+ (C∗ + 1)h|Dxρ̃

n+1
i+1/2,j,k|

+
2C∗(C̃0 + C∗)4(ε∗)−5

5
h4.

(C.21)

Notice that the W 1,∞
h bound for ρ̌, ∥Dxρ̌

n+1∥∞ ≤ C∗, has been applied.
The analysis for the DxJ2 part is more straightforward. An application of identity (C.2) gives

DxJ2 = −1

2
Ax(

1

ρn+1
) ·Dx(ρ̃

n+1 − ρ̃n)− 1

2
Dx(

1

ρn+1
) ·Ax(ρ̃

n+1 − ρ̃n). (C.22)

The second term could be bounded as follows

|Dx(
1

ρn+1
)| ≤ 4C̃0(ε

∗)−2, so that∣∣∣Dx(
1

ρn+1
) ·Ax(ρ̃

n+1 − ρ̃n)
∣∣∣ ≤ 4C̃0(ε

∗)−2(|Axρ̃
n+1|+ |Axρ̃

n|).
(C.23)

In terms of the first part on the right hand side of (C.22), we need to estimate the difference
between Ax(

1
ρn+1 ) and 1

Axρn+1 . Similarly, for any a > 0, b > 0, a careful Taylor expansion of 1
x
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around a middle point x0 =
a+b
2 reveals that

1

2

(1
a
+

1

b

)
=

1

x0
+

(b− a)2

8

( 1

η31
+

1

η32

)
, (C.24)

in which η1 is between a and x0, η2 is between x0 and b. In turn, by setting a = ρn+1
i,j,k , b = ρn+1

i+1,j,k,
we see that

Ax(
1

ρn+1
)i+1/2,j,k −

1

Axρ
n+1
i+1/2,j,k

=
h2(Dxρ

n+1
i+1/2,j,k)

2

8

( 1

η3ρ,5
+

1

η3ρ,6

)
,

ηρ,5 is between ρn+1
i,j,k and Axρ

n+1
i+1/2,j,k, ηρ,6 is between Axρ

n+1
i+1/2,j,k and ρn+1

i+1,j,k.

(C.25)

A bound for the remainder term is available:

|Dxρ
n+1| ≤ C̃0,

ε∗

2
≤ ηρ,5, ηρ,6 ≤ Č0, so that∣∣∣h2(Dxρ

n+1
i+1/2,j,k)

2

8

( 1

η3ρ,5
+

1

η3ρ,6

)∣∣∣ ≤ h2

8
· (C̃0)

2 · 16(ε∗)−3 ≤ h,

(C.26)

provided that h is sufficiently small. Therefore, a substitution of (C.23), (C.25), and (C.26) into
(C.22) leads to

(DxJ2)i+1/2,j,k = −
Dx(ρ̃

n+1 − ρ̃n)i+1/2,j,k

2Axρ
n+1
i+1/2,j,k

+ ζ
n+ 1

2
2 , with

|ζn+
1
2

2 | ≤ 2C̃0(ε
∗)−2(|Axρ̃

n+1
i+1/2,j,k|+ |Axρ̃

n
i+1/2,j,k|) +

h

2
(|Dxρ̃

n+1
i+1/2,j,k|+ |Dxρ̃

n
i+1/2,j,k|).

(C.27)

Finally, a combination of (C.8), (C.9), (C.10), (C.21), and (C.27) results in

(DxS̃
n+ 1

2 )i+1/2,j,k =
Dx(ρ̃

n+1 + ρ̃n)i+1/2,j,k

2Axρ
n+1
i+1/2,j,k

+ ζn+
1
2 ,

|ζn+
1
2 | ≤ C̆1(Ax|ρ̃n+1

i+1/2,j,k|+Ax|ρ̃ni+1/2,j,k|) + (C̆2h+ C̆3∆t)(|Dxρ̃
n+1
i+1/2,j,k|+ |Dxρ̃

n
i+1/2,j,k|)

+
2C∗(C̃0 + C∗)4(ε∗)−5

5
h4,

(C.28)

provided that ∆t and h are sufficiently small, with

C̆1 =
1

6
(8(ε∗)−2C̃0 + 1) + (2(ε∗)−2 + 1)C∗ + 2C̃0(ε

∗)−2 + 1,

C̆2 = C∗ +
3

2
, C̆3 =

5

3
(ε∗)−2(C∗ + C̃0) + 1.

(C.29)

In particular, it is observed that the following identity has played a crucial role in the combined
form of (C.28):

Dxρ̃
n+1 − 1

2
Dx(ρ̃

n+1 − ρ̃n) =
1

2
Dx(ρ̃

n+1 + ρ̃n). (C.30)
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As a consequence, the point-wise estimate (C.28) implies that

〈
ρ̂n+

1
2DxS̃

n+ 1
2 , Dx(ρ̃

n+1 + ρ̃n)
〉
=
〈 ρ̂n+

1
2

2Axρn+1
Dx(ρ̃

n+1 + ρ̃n), Dx(ρ̃
n+1 + ρ̃n)

〉
+ ⟨ρ̂n+

1
2 ζn+

1
2 , Dx(ρ̃

n+1 + ρ̃n)⟩.
(C.31)

Meanwhile, the point-wise ratio bound (5.44) reveals that

〈 ρ̂n+
1
2

2Axρn+1
Dx(ρ̃

n+1 + ρ̃n), Dx(ρ̃
n+1 + ρ̃n)

〉
≥ 3

8
∥Dx(ρ̃

n+1 + ρ̃n)∥22. (C.32)

In terms of the second term on the right hand side of (C.31), a direct application of the Cauchy
inequality indicates that

⟨ρ̂n+
1
2 ζn+

1
2 , Dx(ρ̃

n+1 + ρ̃n)⟩ ≥ −1

8
∥Dx(ρ̃

n+1 + ρ̃n)∥22 − 2∥ρ̂n+
1
2 ζn+

1
2 ∥22. (C.33)

A further application of the Cauchy inequality gives

∥ρ̂n+
1
2 ζn+

1
2 ∥22 ≤7C̃2

0 C̆
2
1 (∥ρ̃n+1∥22 + ∥ρ̃n∥22) + 7C̃2

0 (C̆
2
2h

2 + C̆2
3∆t

2)(∥Dxρ̃
n+1∥22 + ∥Dxρ̃

n∥22)

+
28(C̃0C

∗)2(C̃0 + C∗)8(ε∗)−10

25
h8

≤7(C̃2
0 C̆

2
1 + C̃2

0 C̆
2
2 Ĉ

2
4 + C̃2

0 C̆
2
2 Ĉ

2
3 )(∥ρ̃n+1∥22 + ∥ρ̃n∥22)

+
28(C̃0C

∗)2(C̃0 + C∗)8(ε∗)−10

25
h8,

(C.34)

in which the inverse inequalities, ∆t∥∇hf∥2 ≤ Ĉ3∥f∥2 and h∥∇hf∥2 ≤ Ĉ4∥f∥2 (with the linear
refinement requirement λ1h ≤ ∆t ≤ λ2h), have been applied. Therefore, a substitution of (C.32)-
(C.34) into (C.31) yields

γ⟨ρ̂n+
1
2DxS̃

n+ 1
2 , Dx(ρ̃

n+1 + ρ̃n)⟩ ≥ γ

4
∥Dx(ρ̃

n+1 + ρ̃n)∥22 − C̆5(∥ρ̃n+1∥22 + ∥ρ̃n∥22)−Q(0)h8,

with

C̆5 = 14γ(C̃2
0 C̆

2
1 + C̃2

0 C̆
2
2 Ĉ

2
4 + C̃2

0 C̆
2
2 Ĉ

2
3 ), Q(0) =

56γ(C̃0C
∗)2(C̃0 + C∗)8(ε∗)−10

25
.

The nonlinear diffusion error estimates in the y and z directions could be performed in the same
manner. This completes the proof of Proposition 5.6, by taking C̃1 = 3C̆5 and M1 = 3Q(0).

Acknowledgements. This work is supported in part by the National Natural Science Foundation
of China 12101264, Natural Science Foundation of Jiangsu Province BK20210443, High level
personnel project of Jiangsu Province 1142024031211190 (J. Ding), National Science Foundation
DMS-2012269 and DMS-2309548 (C. Wang), and National Natural Science Foundation of China
12171319 (S. Zhou).

41



References

[1] H. Abels and M. Wilke. Convergence to equilibrium for the Cahn-Hilliard equation with a
logarithmic free energy. Nonlinear Anal., 67:3176–3193, 2007.
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