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Hilliard system with the Willmore regularization, the total free energy of the system is
non-increasing for any time step and mesh sizes. A straightforward modification of the

I;ﬁﬁﬁ?;id scheme is then used to solve the regularized strongly anisotropic Cahn-Hilliard system,
Cahn-Hilliard and it is numerically verified that the discrete energy of the anisotropic system is also non-
Anisotropy increasing, and can be efficiently solved by using the modified stable method. We present
Willmore regularization numerical results in both two and three dimensions that are in good agreement with those
Energy stable in earlier work on the topics. Numerical simulations are presented to demonstrate the

Multigrid method accuracy and efficiency of the proposed methods.
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1. Introduction

Phase field methods have been widely used to study the dynamics of different material phases via order parameters,
such as phase transformations in binary alloys, e.g., [22,19,20]; epitaxial thin film growth, e.g., [15,44,26,35,34,46]; crystal
faceting, e.g., [36,27,28,7]; multiphase fluid flow, e.g., [23,2,3,12]; and solid tumor growth, e.g., [43,42,13,11], just to name
a few. The methods are capable of describing the evolution of complex, morphology-changing surfaces and can provide
a general framework to consider more physical effects. The well-studied second order Allen-Cahn [1] and fourth order
Cahn-Hilliard models [8] are sub-classes of phase field models, which are of interest in materials science.

Crystalline anisotropy is a critical contributing factor to the equilibria and dynamic macroscopic shapes of heteroge-
neous materials. In the absence of anisotropy, the microscopic shape is rotationally symmetric. Anisotropy breaks this
symmetry as certain directions are endowed with higher energy. For sufficiently strong anisotropy, the double-well sur-
face density function may become negative. At equilibrium, the system responds by removing these orientations (termed
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missing orientations) in the shape of the crystal (Wulff shape) driven by minimizing the total surface energy of the system.
As a result, the equilibrium interface is no longer a smooth curve, but presents sharp corners or facets with slope disconti-
nuities [33]. In three dimensions, the onset of missing orientations occurs at a convex-to-concave transition in a polar plot
of the reciprocal of the surface free energy (y) [29], which is equivalent to show that the normal to the 1/y-plot is propor-
tional to the & vector in [9]. The anisotropic phase field model becomes ill-posed when the gradient energy is non-convex,
which is equivalent with the sign change of the surface stiffness [33,41]. To overcome ill-posedness and loss of smooth-
ness of the anisotropic Cahn-Hilliard model, a higher order derivative regularization is added to the surface energy [14,6].
For example, a Laplacian-squared regularization is used in [41,10], and a nonlinear Willmore regularization is considered
in [35,10,27,28]. Recently, some theoretical studies of the regularized Cahn-Hilliard equation have been conducted. For in-
stance, well-posedness for the isotropic Cahn-Hilliard equation with Willmore regularization was shown in [25], and the
proof of existence and uniqueness of the solution to the strongly anisotropic Cahn-Hilliard equation with Willmore regular-
ization was obtained in [24]. For both regularizations, the resulting Cahn-Hilliard-type equations are sixth order in space,
which bring significant challenges in the development of efficient and accurate numerical schemes.

Eggleston et al. [16] used a convexification technique for the strongly anisotropic Cahn-Hilliard system and performed
one-sided difference approximation to treat the corners to maintain the stability of the numerical method. The simulation
results showed excellent agreement with sharp interface equilibrium shapes. However, the use of explicit time discretization
leaded to severe time step restrictions. Torabi et al. [35] implemented finite difference in space and a Crank-Nicholson
scheme to discretize in time. Recently, a stabilized time discretization and spectral discretization in space were used to
solve the regularized anisotropic Cahn-Hilliard equation in [10]. This scheme is unconditionally energy stable.

As a first step towards the development of a scheme for the anisotropic system, we first develop an energy stable time
discretization scheme based on a convex splitting approach for the isotropic Cahn-Hilliard-Willmore system, and prove
that it is unconditionally energy stable. For the spatial discretization, we use centered finite difference method with a
dynamic, block-structured Cartesian mesh refinement. An adaptive nonlinear multigrid method is used to solve the resulting
nonlinear system at each time step [41,43,42,13]. We note that the convex splitting we use here is different from that
used in [18] which was intended for the functionalized Cahn-Hilliard equation but can also be used for the isotropic
Cahn-Hilliard-Willmore equation. However, we encountered difficulty in implementing the nonlinear multigrid method
using the scheme in [18] for the isotropic Cahn-Hilliard-Willmore equation.

We then extend this scheme to the strongly anisotropic Cahn-Hilliard system with the Willmore regularization. We
present numerical results in 2D and 3D to show that the scheme is still energy stable with arbitrary time steps, although
we are not able to prove this analytically.

This paper is organized as follows. In Section 2, we describe the isotropic Cahn-Hilliard and strongly anisotropic Cahn-
Hilliard systems with the Willmore regularization. In Section 3, we proposed energy stable numerical methods based on a
convex splitting approach for solving the model systems. Two and three dimensional numerical simulations and a summary
are presented in Section 4.

2. Diffuse interface anisotropy

Here, we consider a boundary domain © c R? with d =2, 3. Let ¢ : 2 — R be an order parameter; n = % is the unit

normal vector, and P=1—n® n, where I is the identity matrix. We consider an anisotropic surface energy [35] as
y () e’
E@) = [ L2 (1@ + S 190R)ix, (1)
Q

where € is a small parameter that measures the thickness of the interface transition layer, f(¢) = %q&z(l — ¢)? is a double
well potential, y(n) is an interfacial energy function describing the property of the anisotropy. Note that the interface
thickness is independent of orientation. This is a natural formulation if we interpret the term %(f(qb) + %‘V(blz) as the
approximation of the surface delta function. The corresponding evolution equations are as follows:

0 _1g.
ot ev (M(p)Vu), 2)
1
p=_(ymf¢)—ev.m, (3)
with
_ f@) 1
m=y Ve +PVy (g5 +5191). (4)

Following [35], we use the asymptotic result that near interface f(¢) ~ (€2/2)|V¢|?, to yield the approximation

m~ymVe + |Vo|PVyy (). (3)
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The difference between an isotropic system and an anisotropic one is the choice of y(n) in Eq. (1). When y(n) =1, the
system is isotropic and the free energy does not depend on orientation. In this case, the H~!-gradient flow of Eq. (1) leads
to the usual isotropic Cahn-Hilliard equation. In the anisotropic case, y(n) depends on n in the nontrivial manner. For
example, a four-fold symmetric anisotropy can be modeled using [29]:

d
y@=1+a(4) nf-3), (6)
i=1
where « describes the anisotropic strength and d = 2, 3. In two dimensions, this is equivalent to

y(m) =14 o cos(46), (7)

where 6 denotes the angle between the normal vector to the interface and the x-axis. When o =0, the system is isotropic.
As o increases, the system becomes anisotropic. A sufficient large o would produce a strongly anisotropic system, and the
Cahn-Hilliard equation would become ill-posed. In order to overcome the ill-posedness, one may add an extra term to
regularize the system. In this paper, we add a nonlinear Willmore energy as a regularization. The regularized free energy
thus reads

2 1
E@) = [ Y2 (101 + 5 190P) + 5 (@) - agrax ®)

€
Q
where B represents the bending rigidity. Taking the H~'-gradient flow on the new energy (8), we derive a strongly
anisotropic Cahn-Hilliard system with the Willmore regularization:

aa—f = %V-(M((P)V/«L), (9)
= %(y(n)f’(¢)—ezvm>+ :iz(f”w)w—ezAw), (10)
m=ymV¢ + |V4|PVyy (n), an
w= %(f/(dn —€*Ap). (12)

This is a sixth-order system. To motivate the development of energy-stable numerical schemes, we first consider an associ-
ated regularized isotropic system:

E(¢) =Es(¢) + Ep(9), (13)
with

1 e _
Es<¢)=/g<f<¢)+7|w| )dx,
Q

and

1
Eb(¢>>=§ / 6—3(f’<¢>—ezA¢>>2dx.
Q

The evolution equations are given below:

o 1o
PV @, (14)
1
=) -89+ L (@0 - o), (15)
1
o=@ —€’A¢). (16)

We complete our models with the following boundary conditions:
n-Vo=n-Vu=n-Vo=0. (17)

To perform convex splitting, we require the following results.

Lemma 2.1. Let £(¢) = [, A((¢ — D) + Vo[ + (¢ — 1)?|Ve|%dx. If A > 1/2, then E(¢) is convex.
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Proof. A similar result was proved in [18]. For the reader’s convenience, we provide a proof below.
Let ¥ =¢ — % and define the operators

g =AW +|VyY and h(y) = y2|Vy|?
Then we have

Ew)= / g() + h(y)dx.

Q

According to the fact that functions p(y) = v2 and q(y) = |[Vy|? are convex, which implies

<w1 +w2>2 _Vitvs
2 - 2
and

(llﬁ-i—llfz)‘ V1% + [Vl
=< 3 .
Using inequalities (19), (20) and through direct calculations, we find

g(%);g(lﬂz) — g %erwz <¢] oyt |w1|4+|wz|4)—A[('“;‘”2) ‘V<W1+wz>‘ ]

‘ v

[(m +1//22)2+<|V¢1|2+|V!/fz|2>2}

= 2 (wt+vd +1vunt 4 vyart) - a[ (Y .

N \

= 2w v v - vy
and

h(¥) +h(¥2) 1//1 +¢2
2 2

1 +
= SWHVYP + 931V val) - (U : %)(

14 +W2>2‘V1/f1 +1//z’2

)= SRV + v via) - (Y :

|vw1|2+|vwz|2)
2

175 2 2 2
=2 (vt = v3) (Vw2 = 199aP?).
Adding inequalities (21) and (22) together gives us,

gW) +gW2) Yi+v2, | h() +h(2) gty
> —8(——)+ 5 —h(—;
A 1
= 2wt — D+ (VP =199+ 2 (v - 93) (VP = 1V9aP?),

2A—-1
= [ =D+ (VP = Vv

The last inequality holds based on the simple fact that (a+ b)* > 0, implying ab > —(a* + b?)/2.
It is clearly seen that A > 1/2 guarantees the convexity of E(¢). O

3. Numerical schemes

3.1. Discrete time and continuous space schemes

59

(18)

(19)

(20)

(21)

(22)

(23)

In order to solve the isotropic nonlinear Cahn-Hilliard Eqgs. (14)-(16), we here develop an energy stable numerical
scheme. The scheme, which is first order accurate in time and second order accurate in space, is based on a convex splitting
approach, see [17,21,38-40,45,4,5,30,13], and has two important properties: (1) unconditional energy stability, and (2) un-
conditional unique solvability [40]. The key idea is that the energy E admits a (not necessarily unique) splitting into purely
convex and concave energies, that is, E = E° — E¢, where E¢ and E® are convex, though not necessarily strictly convex
[17,45], where E€ refers to the contractive part of the energy (convex) and E° refers to the expansive part of the energy
(concave), we consider a canonical splitting of the total free energy of the isotropic system E(¢) = E(¢) — E¢(¢) where
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ES(¢) =/ é(%[@ - %)4 + 11—6] + %2|v¢>|2)dx

Q
[ L (@- 50+ 150 - 3P+ @?) + Lo - 329er + 2L - 3+ it @)
Q
and

E¢(¢) = / Zi(zb - %)zdx
Q
f%«p——) +£|V(¢——>| +ﬂ(<¢— D+ 1VeIhdx (25)
Q

Using standard calculations and Lemma 2.1, it can be shown that both E€ and E® are convex. Note that the convex splitting
above is similar but different from that used in [18] in the case of Cahn-Hilliard-Willmore.
Using this convex splitting, we then propose the following semi-implicit scheme for the isotropic model:

d’kHS ¢ %v (M@ vk, (26)
phT = g - %)3 — a4 L (6@kT - )+ @M - ) +epackt
613 (¢k+l )V(¢k+1v¢k+1) 4 ?wkﬂ _ %)A¢k+1
mﬂ e (A %)3 — V- (VT 2vgkthy)
- %(dﬂ‘ - %) - :%«/)" - %)3 + £A¢" - @((d)k - %)3 — V- (IVe*PVeh)), (27)
Wkt = A¢k+1. (28)

Theorem 3.1. The energy E is non-increasing in time, i.e., E(¢**1) < E(¢¥), independent of any choice of the time step size.

The result follows from the estimate E(¢) — E(¥) < (84E°(¢) — 84E€(¥), ¢ — ¥);2, which was proved by Wise et al. in
[45], and taking ¢ = ¢**1 and y = ¢*. Observe that at the implicit time level the equations are nonlinear but represent the
gradients of strictly convex functions. Thus, these equations are uniquely solvable.

Next, we extend this approach to construct a stable scheme for the strongly anisotropic Cahn-Hilliard model (9)-(12).
We notice that the term y (n) changes its sign and is a function of phase field parameter ¢. Thus, it is difficulty to perform
a convex splitting of the total energy. Instead, we modify the scheme (26)-(28) to incorporate anisotropy:

k+1 _ gk
T v vk, (29)
kt1 _ V(“ k1 13 ky o o k+1 B 1 ls 1 gy 1 k+1
VO (gt — 20 =V (et + L (6041 = 27+ 56k = ) +epaow
Gﬁ(¢/<+1 )v(¢k+1v¢k+1)+?ﬁ(¢k+17§)A¢k+1
12Aﬁ 128 okt - %)3 V- (VT 2vgkty)
_L“'” k_ 1 o, yogkpy - Bk 13 B gk
— 2) €V (PVny )V9H)) — S8 = 50 + - A9
12A
AP (o~ L3 _ v qvgtpvery, (30)
Wk :A¢k+l. (31)

Although we are not able to prove that this schemes is energy stable, our numerical simulations shown below indicate that
the scheme is energy dissipative and stable for any choice of the time step size.
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3.2. The fully discrete energy stable schemes

3.2.1. Spatial discretization

We first recall some notation and finite difference operators used in [40,45,12]. We only present the scheme in two
dimensions; the three dimensional case is analogously defined. Assuming that the computational domain € = (0, Nxh) x
(0, Nyh), where Ny and N, are positive integers, and h > 0 is the grid spacing. We define

o1 o1
Xi:(l_i)h and yj:(]_i)h’

where i, j can take on integer and half integer values. Consider the following three sets of uniform grid points: (i) east-west
edge points E€Y, (ii) north-south edge points E™, (iii) cell-centered points C, defined via

BV ={(x;y 1, ypli=0,--om; j=1,---,n},

E™ ={(, yj Dli=1,--,m; j=0,.--,n},

Eew:{(XH%,J’j)Ii:O,M ,m; j=0,--- ,n+1}

E™ ={(i, y Dli=0,--,m+1;j=0,--- ,n},

Coxn ={(xi, ypli=1,--- m; j=1,--- ,n},

Cixn ={(xi, ypli=0,--- . m+1;j=1,--- ,n},

Cnxa ={xi, ypli=1,--- ,m; j=0,--- ,n+1},

Ciaxii = {(xi, y)Ii=0,--- ,m+1;j=0,--- ,n+1}.
We define the function spaces

Cmxn = {¢ : Cmxn —> R}, Ciscn =1{¢ : Cisen — R},

Cnxii = {9 Cmxi = R}, Cixii = {9 : Caxa — R},

eV ={u:E*" >R}, EX =1V E" >R},
e ={u:E® —> R}, el ={v:E® >R}

To perform the spatial discretization, we replace spatial derivatives by finite difference operators. The reader is referred
to [40,45,12] for the definitions of the edge-to-center difference operators dy : £5%, — Cmxn and dy : EF , — Cmxn; the
center-to-edge average and difference operators Ay, Dy : Ciixn = Emens Ay, Dy : Cmxii = Epon, respectively. The Laplacian

mxn»
operator is approximated to second order by

Git1,j +di-1,j + Gijr1+ Pij—1 — 4Pij

Vidij= 2 : G2)
where ¢ is cell-centered. The Laplacian with non-constant coefficients is approximated to second order by
Axmi+%,j(¢i+1,j —¢ij) — Axmi_%,j(‘pi,j —¢i-1,j)
Va - (mVy)i j = 2
Aymi,]ur% (@i, j+1 — di.j) — Aymi,j,% (¢i,j — ¢ij-1)
+ 2 , (33)

where both ¢ and m are assumed to be cell-centered, and Agye,x and Agye, y are the averaging operators defined component-
wise as

My, j+mij _ M+ miogj

Aave,xmi+%’j =5 Aave,xm,‘_%’j =5
Ao m _ Mij + My A m _ M +mij—
ave,y ,"j+% = 72 ) ave,y i,j—% = 72 .

The grid function norms are defined as follows: for ¢ € Cyxn, 1 < p < 00,

lpllp = B> > " Igi jIP)/P.

i=1 j=1

For any ¢ € Cs«ii, we define

Vagllz = \/hZ[Dx¢||Dx¢]ew +h2[Dy$|Dy@lns.
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Inner product is define as: for ¢, ¥ € Cmxn U Ciixn U Cmxii U Ciixii

Nx N.V

@ V)= 17 ZZ@N/,J

i=1 j=1

3.2.2. Fully discrete schemes and its properties
We now introduce a fully discrete energy F : Ci«i — R, which is consistent with the continuous space energy (13):

F(¢i,j) = F(¢i,j) — F¢(¢1,)), (34)

with

1 1 1 3A 1
FE@) = 56— 513+ S IV 1P + 55 ’ (||¢— SIg+ 6||<z>— §||%+e4||Ad¢||2)+T’3(||¢—5||3+||vd¢||i)

1 IB 2 2
o Area@) + 2 (9~ )2 Vagl?). (35)
and
1 1 1 1 3A 1
F@) = o 16— 5B+ o516 = 5+ 2190 — DB+ 228 (16— 514+ 1a913). (36)

where Area(£2) :NxNyhz. F¢ and F¢ are convex.
The fully discretized version of Eqs. (26)-(28) becomes:

¢t — g = fv (M@f HVush, (37)
W= Lt = 27 —enaty + L (6why - 204 sl - D)) +epaaty
o — @ - )V<¢!ﬁ1V¢!ﬁ#>+?ﬁ<¢fij] —%)Mf‘jl
1“’3 A A AR 2 )
2A
- —<¢i, - —)— ﬁ(@, — —) + 52 p A - —ﬂ«qs,] =) = V- (IVef PV ). (38)
k+1 _ Adb"”. (39)

Note that this scheme is first order in time and second order in space. It follows that

Theorem 3.2. Suppose that ¢**1, ¢k € Cawii and m - Vygpkt1 = 0. The convex splitting scheme (37)-(39) is unconditionally energy
stable, i.e., F(¢*t1) < F(¢¥), independent of any choice of the time step size.

Analogously, the fully discrete version of (29)-(31) is as follows:

¢t — g = fv (M@f HVush, (40)

Ml.ky=_”(‘:f~f)(¢ﬁ1_%)3—v-(ey(n Vel + 0 (6 - )+ g0t - ) +epacky
3

o — @7 - >V<¢!ﬁ71V¢!i71>+

12Aﬂ

(¢f<—j¢—1 _ _) ¢k+l
k k k

—— (¢ - 5) — V- (V[T PVgTh)

V(fp

(¢F; - —> — €V - (PVyy ()| VgK)); j — ﬁ(@ = —> + £A¢

12Aﬂ

‘ ——)3 V- (Ve PV ), (41)

k-;] _ A¢k+]~ (42)
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3.2.3. Space and time adaptive strategy

The fully coupled, discrete schemes (37)-(39) and (40)-(42) lead to a sequence of discrete elliptic equations at each time
step. We shall solve them by using the adaptive multigrid method developed in [41,43,42,13]. In fact, since the system of
governing equations is discretized on a block-structured Cartesian mesh, the composite mesh consists of a hierarchy of levels
which is particularly suitable for adaptive multigrid. At each time step, we check grid cells for refinement using a simple
undivided gradient test. Since it is essential that much more refinement is needed in the diffuse interface region. This test
marks grid cells where the finite differences of the phase-field functions are large. In particular, the set of cell-centered
points is marked for refinement in three dimensions if

\/(¢i+l,j,k = $i-1,10% + @i jr1k — Di -1 + (@i jk+1 — @i jk-1* > Ch,

where Cy is the critical value for level k. More sophisticated mesh refinement strategy could also be used here [32] although
by refining near the interface we automatically refine high curvature regions as well. See Fig. 9. For a detailed discussion of
all the aspects of the adaptive algorithm, the reader is referred to [41].

Finally, although it is difficult to construct second-order convex splitting schemes for systems of such complexity as
these, we can nevertheless generate second-order approximation using Richardson extrapolation to improve the accuracy.
More precisely, we may compute two approximations y° and /% at time t; with time step sizes s and 0.5s, respectively,
and generate a second-order approximation as

wl,new — 21//5/2 _ wsv (43)

The results presented in Tables 2 and 3 confirm that the convex splitting scheme with Richardson extrapolation is second
order accurate in time and in space.

In all our simulations presented in the next section, we use the fourth-order mobility M(¢) = 16¢%(1 — ¢)? [27,37]. To
solve the nonlinear equations at the implicit time step a nonlinear multigrid method [42] is used.

4. Numerical results

In this section we present examples to show the robustness and effectiveness of the numerical schemes. First, we demon-
strate the convergence and near optimal complexity of the solvers. Then we consider the dynamics in 2D and 3D of both
the isotopic system (o = 0) and the anisotropic system using several different initial interface shapes and anisotropies.

4.0.1. Complexity and convergence of the schemes

We use the initial condition given below in Eq. (44) to test the convergence rate and near optimal complexity of the
numerical methods presented in the previous section. For the complexity test, we fix the time step size s = 0.001 and
vary the spatial step sizes from 3.2/32 to 3.2/512, with each grid size being one half the size of the previous. Following
[40], we vary the number of multigrid smoothing sweeps (1). We report the results at t = 0.02. The number of multigrid
iterations required to reduce the norm of the residual below the tolerance To; = 1.0 x 1078 is given in Table 1, where we
vary the parameters €, . and spatial step size h. We observe that for A = 2, 3, the required number of iteration is nearly
independent of h, which is also confirmed in Fig. 1, where the detailed residual values of the residuals for the different
cases are described. The results suggest that the multigrid solver is of nearly optimal complexity.

\/(x—1.6)2+(y—1.6)2—0.8>) (44)

24/2¢

To estimate the convergence rate with respect to a mesh with grid spacing h, three different grid spacings 2h, h, and h/2
are used. We calculate the error between two different grid spacings ¢" and ¢"/2 by

dx,y,t=0)= %(1.0—tanh<

hh/2 0 L[ n2 h/2 h/2 h/2
i =i Z(¢2i,2j + 517125 T Painja +¢2i—1,2j—1)

and correspondingly for e2"". The rate of convergence is defined as

e

log ( [le2m:h]]; )
2\lleh/z), /)"
32 32 3.2

For the convergence test, the mesh spacings are taken to be h = 5z, 255, 7533 We use the linear refinement path
s = 0.016h. Therefore, the corresponding time step sizes s = 0.0002, 0.0001, 0.00005. The numerical results indicate that the
scheme of convex splitting with Richardson extrapolation is indeed of second-order in both time and space, see Tables 2
and 3.

For the stability tests, we fix the mesh spacings h = % and vary the time step sizes from 0.005 to 0.04, with each time
step being double the size of the previous one. The parameters are € = 0.03, 8 =0.001, A = 1.0. For the anisotropic case we
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Table 1

The number of multigrid iterations required to reduce the norm of the residual below the tolerance To = 1.0 x 103, The numbers are counted at time
t = 0.02 with the time step size s =0.001. The parameters are given in the text and in the table. The initial data are given below in Eq. (44). The detailed
residual values for the different cases (labeled Tests) are given in Fig. 1. We find, for a variety of parameter sets, that the required number of multigrid
iterations is nearly independent of the mesh size h by using the multigrid smoothing parameters A =2, 3.

Test 1 Test 2 Test 3 Test 4 Test 5
€ 0.2 0.2 0.2 0.1 0.05
A 1 2 3 3 3
h 3.2/32 7 5 5 4 5
3.2/64 8 5 5 5 6
3.2/128 8 6 5 5 6
3.2/256 8 6 5 6 6
3.2/512 9 6 5 6 7
1072 T T T T T T T
——h=3.2/32
h=3.2/64
—=—h=8.2/128
——h=3.2/256 ||
h=3.2/512

2-norm of the residual

5 6
multigrid V—cycle iterations

Fig. 1. 2-norm of the residual per multigrid V-cycle at time t = 0.02 with different smoothing parameter 4, i.e., » =1, 2, 3. The results showing the cases
A =2, 3 achieve nearly optimal complexity of the solver (performance independent of grid size). See text for additional parameters and explanation.

Table 2

Errors and convergence rate for the scheme (37)-(39) of isotropic Cahn-Hilliard system with the Willmore
regularization, combined with Richardson extrapolation. Parameters are € = 0.03, @ =0, 8 = 0.0001, and the
initial data are shown in Eq. (44). Numerical results confirm second order in time and space.

Grid sizes 256%-5122 5122-10242
Error 4.268E-04 9.984E-05
Rate 2.09

Table 3

Errors and convergence rate for the scheme (40)-(42) of strongly anisotropic Cahn-Hilliard system with the
Willmore regularization, combined with Richardson extrapolation. Parameters are € = 0.03, « = 0.2, 8 = 0.0001
and the initial data are shown in Eq. (44). Numerical results confirm second order in time and space.

Grid sizes 256%-5122 5122-10242
Error 4.502E-03 9.269E-04
Rate 2.28

choose the 4-fold anisotropy from Eq. (6) with o = 0.2. Fig. 2 shows the discrete energy profiles for isotropic and strongly
anisotropic systems. The discrete energy is non-increasing with any time step sizes. The results indicate that the schemes
(37)-(39) and (40)—(42) for isotropic and anisotropic systems are both energy stable, even if this cannot be rigorously proved
for the anisotropic case.

4.1. Coarsening dynamics

For the two dimensional examples shown here, the computational domain is [0, 3.2] x [0, 3.2]. We choose the root-level
grid size to be 32 x 32, and perform three levels of mesh refinement, i.e., the finest mesh size h =3.2/256. We set time step
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Fig. 2. Energy profile for isotropic system (o = 0) [a] and strongly anisotropic system (o = 0.2) [b] with different time step sizes. Other parameters are
€=0.03, 8=0.001, A=1.0. In both cases, the energy monotonically decreases in time for any choice of time step.

Fig. 3. Evolution of the phase function for the isotropic Cahn-Hilliard model with the Willmore regularization at t =0, 0.1, 0.3, 0.8, 1.0, respectively. The
parameters are given in the text.

size s = 0.0001, which is for the purpose of accuracy, not for the stability requirement, as the schemes are all unconditionally
stable.

4.1.1. Isotropic case with the Willmore regularization
We here consider the isotropic Cahn-Hilliard system with the Willmore regularization. We use the following parameters:

€=0.03, =0.004, « =0, A=1.

Initial condition is

3

1 \/(—i)z vy —y)2—r
¢(va7f=0)=i135<1.0—tanh< X=X zJ:/iye 72y

where {(xl-,y,»)}?:1 and {r,»}f’=1 are circle centers and radii. We take (xq, y1) = (0.6, 2.6), (x2,y2) = (0.7,0.7), (x3,y3) =
(1.6,1.6), and ry = 0.3, = 0.2,r3 = 0.8, respectively. The time evolution of the phase function ¢ is shown in Fig. 3 and
the time evolution of the energy is shown in Fig. 4.

From Fig. 3, we can clearly see that the three circles undergo a coarsening process, in which two small circles are
gradually absorbed into the large circle. Form Fig. 4, the total energy is seem to be monotonically decreasing with abrupt
changes at the times t = 0.3, 1.0 at which the small circles disappear. At t = 1.0, the decrease in energy becomes fairly
small and after some time the energy is almost constant.

(45)

4.1.2. Anisotropic case with the Willmore regularization
We now consider the anisotropic Cahn-Hilliard system with the Willmore regularization. We use the 4-fold anisotropy
from Eq. (6) together with the following parameters:

€=0.03, $=0.004, « =02, A=1.

The same initial condition is used as above for the isotropic system.
Fig. 5 shows the combined effects of anisotropy and coarsening. The three circles first evolve to anisotropic shapes with
missing orientation at the four corners, then the anisotropic system coarsens and the small shapes disappear. Fig. 6 shows
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Fig. 4. Energy profile for the simulations shown in Fig. 3.

Fig. 5. Evolution of the phase function for the anisotropic Cahn-Hilliard model with the Willmore regularization at t =0, 0.1, 0.3, 1.0, 2.0, respectively. The
parameters are given in the text.
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Fig. 6. Energy profile for the simulations shown in Fig. 5.

the energy profile. We observe that the total energy is decreasing and undergoes two rapid changes at t = 0.3, 1.6, which
correspond to the times the small shapes disappear.

4.2. Anisotropy and missing orientations

In this section we study first the strong interfacial anisotropy of rough curve in two dimensions, then we investigate
missing orientations in the Wulff shape and tetragonal trisoctahedron shape in three dimensions. We assess the effects of
different o values and the Willmore regularization parameter B8 on the equilibrium interface morphologies.

4.2.1. Strong anisotropy of a rough curve
We now study the effects of the four-fold anisotropy on the dynamics of a rough curve. The computational domain is
[0, 6.4] x [0, 3.2]. The initial data is

y—04xrx) — 1.6))

1
¢(x,y,t=0)=5(1.o—tanh( N

(46)
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Fig. 7. Evolution of an initially rough surface undergoing decomposition into near-facets and kinks, followed by coarsening process due to strongly four-fold
anisotropy. The parameters are given in the text.
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Fig. 8. [a]: Energy profile for the simulations shown in Fig. 7. [b]: A close-up showing where the energy decreases fast.

where

r(x) =1.8cos(irx) + 1.5cos(3wx) 4+ 0.2 cos(5wx) + 0.04 cos(7m x). (47)

The domain is periodic in the x direction. The root-level grid has size 64 x 32, and three levels of mesh refinement are used.
The time step size s =0.00001 based on the accuracy requirement. The parameters are

€=0.03, $=0.0001, =0.2, A=1.0.

Fig. 7 shows the decomposition of an initially rough curve into near-facets and kinks followed by coarsening. The effect of
the strongly four-fold anisotropy is clearly observed. Note that the shape is still evolving as the valley is being removed The
dynamics of the energy are shown in Fig. 8; the energy is seen to be monotonically decreasing.

4.2.2. Missing orientations of the Wulff shape

We next investigate the effect of the strength of the four-fold anisotropy parameter & on crystal shapes in three dimen-
sions. Four different values of «, i.e.,, « =0.1,0.2,0.3,0.4, are considered. The other parameters € = 0.03, 8 = 0.002, and
A =1. Initial data is

(48)

Vx—162+(y—16)2+(z—1.6)%— 0.8)>
24/2¢ '

Which describes a sphere with radius +/0.8. Two-levels of mesh refinement are used (see Fig. 9), where the root-level grid
is 32 x 32 x 32 and the time step size s = 0.0001. The evolution of the initially spherical shape towards its equilibrium is
shown in Fig. 10, with o = 0.2, and the corresponding two dimensional cross-sections along x = 1.6 are shown in Fig. 11.
The results are in very good agreement with simulations shown in [35]. For different values of «, the equilibrium shapes
are shown in Fig. 12, and the two dimensional cross-sections along x = 1.6 are shown in Fig. 13. It can be seen that as
o is relatively small, such as o = 0.1, missing orientations are not seen clearly. When « is increased (o = 0.2,0.3,0.4),

d(X, Y, 2, t=0)= %(1.0ftanh(
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Fig. 9. A typical adaptive mesh from Fig. 12 with @ =0.2 at t =0.1. The ¢ = 0.5 isosurface is shown. Two levels of refinement (red boxes) are performed
with the root-level grid 32 x 32 x 32 (not shown). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

0006¢

Fig. 10. Evolution of an initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization at t =
0,0.025,0.1,0.2, 2.0, respectively. The parameters € = 0.03, « = 0.2, 8 = 0.002, A = 1.0. The simulation is performed with two-levels of mesh refine-
ment and the root-level grid is 32 x 32 x 32.

Fig. 11. Two-dimensional cross-section (x = 1.6) of the evolution from Fig. 10.

LA ld

Fig. 12. Evolution of an initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization at t = 2.0, respectively.
The parameters € =0.03, 8 =0.002, A= 1.0 with different « (from left to right): 0.1, 0.2, 0.3, and 0.4, respectively. See text for additional details.

shapes tend to be a double-sided pyramid because of the strong anisotropy. The energy profile (Fig. 14) shows that energy
decreases faster with larger o.

The impact of the Willmore regularization parameter 8 on the equilibrium four-fold shapes is shown in Fig. 15; the two
dimensional cross-sections along x = 1.6 are shown in Fig. 16. We take g = 0.002, 0.004, 0.008, 0.01. The other parameters
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Fig. 13. Impact of the parameter @ on the corner shape. [a]: Two-dimensional cross-section (x = 1.6) of the evolution of the initially spherical shape for
the strongly anisotropic Cahn-Hilliard model with the Willmore regularization shown in Fig. 12. [b]: A close-up showing the upper corner with different o
(from bottom to top): 0.1 (green), 0.2 (red), 0.3 (blue), and 0.4 (magenta). The parameters are given in the text.
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Fig. 14. Energy profile for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization using four different values of o shown in Fig. 12.
[b]: A close-up shows that energy decreases faster with larger .

s

Fig. 15. Evolution of an initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization at t = 2.0, respectively.
The parameters € =0.03, « = 0.2, A =1.0 with different g (from left to right): 0.002, 0.004 , 0.008, and 0.01, respectively. See text for additional details.

€ =0.03,¢ =0.2, and A = 1. Two-levels of mesh refinement with a root-level grid of 32 x 32 x 32 are used. The time step
size s =0.0001. It can be seen from Fig. 15 that the evolution from the initial sphere to the final Wulff shapes is similar
to that shown in Fig. 10. As 8 increases, the corners are wider and smoother in the equilibrium morphologies. From the
energy profile (Fig. 17) we can see that energy decreases faster with smaller 8.

As a final example, we present the dynamics of an initial sphere (Eq. (48)) using an eight-fold symmetric anisotropic
function [31,27]:
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Fig. 16. Impact of the Willmore regularization parameter S on the corner shape. [a]: Two-dimensional cross-section (x = 1.6) of the evolution of the
initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization shown in Fig. 15. [b]: A close-up showing the
upper corner with different 8 (from top to bottom): 0.002 (green), 0.004 (red), 0.008 (blue), and 0.01 (magenta). Wider and smoother corners form in the
equilibrium shapes as B increases. The parameters are given in the text.
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Fig. 17. [a]: Energy profile for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization using four different values of g shown in
Fig. 15. [b]: A close-up shows that energy decreases faster with smaller 8.

Fig. 18. Evolution of an initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization at t =
0, 0.0025, 0.005, 0.01, 2.0, respectively. The parameters € =0.03, « = 0.2, § =0.002, A =1.0. See text for additional details.

d
y@) =1-+a(4Y_16nf —20n +2nf +3n?) - 3). (49)
i=1
We take the parameters to be € =0.03, « = 0.2, 8 =0.002, A =1.0. Fig. 18 shows that facets are gradually formed from the
crystal tends to its equilibrium shape - a tetragonal trisoctahedron. Two-levels of mesh refinement with a root-level grid of
32 x 32 x 32 are used and the time step is s = 0.0001. Two-dimensional cross-sections along x = 1.6, presented in Fig. 19,
show that the cross-sections acquire an octagonal shape.
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Fig. 19. Two-dimensional cross-section (x = 1.6) of the evolution of the initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the
Willmore regularization shown in Fig. 18.

Fig. 20. Evolution of an initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization at t = 2.0, respectively.
The parameters € = 0.03, 8 =0.002, A = 1.0 with different « (from left to right): 0.1, 0.2, 0.3, and 0.4, respectively. See text for additional details.
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Fig. 21. [a]: Energy profile for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization using four different values of o shown in
Figs. 20. [b]: A close-up shows that energy decreases faster with larger «.

Fig. 22. Evolution of an initially spherical shape for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization at t = 2.0, respectively.
The parameters € = 0.03, « = 0.2, A= 1.0 with different B (from left to right): 0.001, 0.002, 0.006 and 0.01, respectively. See text for additional details.

We next investigate the effect of o on the equilibrium morphologies. Fig. 20 shows for small anisotropies, such as
a = 0.1, the equilibrium shape tends to have rounded corners/edges. The stronger the anisotropy, the sharper the corner
and edges become. The total energy of the system decreases as « increases, see Fig. 21. For fixed «, Fig. 22 shows that B
enhances the degree of roundness of the corners/edges. The energy profile decreases as 8 decreases, see Fig. 23.
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Fig. 23. [a]: Energy profile for the strongly anisotropic Cahn-Hilliard model with the Willmore regularization using four different values of g shown in
Fig. 22. [b]: A close-up shows that energy decreases faster with smaller 8.

4.3. Summary and future work

We have developed robust, efficient, and stable numerical methods to solve isotropic and strongly anisotropic Cahn-
Hilliard systems with a Willmore regularization. These systems involve six order derivatives and are highly nonlinear. We
used a convex splitting technique to develop energy stable schemes for the isotropic case and we extended this approach
to account for anisotropy. Although we are not able to prove that the anisotropic scheme is energy stable, our numerical
results indicates that even in the anisotropic case, the energy decreases for every choice of time step. To solve the nonlinear
equations at the implicit time level, we used a very efficient adaptive nonlinear multigrid finite-difference algorithm. We
validate our schemes by presenting some computational examples in both two and three dimensions, which exhibit excel-
lent agreement with previous results by other methods. However, compared to previous approaches (e.g., [35]), we are able
to use time steps that can be orders of magnitude larges.

We plan to extend the numerical approaches developed here to simulate other challenging mathematical models, such
as a mathematical model of tumor growth which involves a Willmore energy to capture the dynamic evolution of basement
membrane.

Acknowledgements

This work is partially supported by NSF DMS-1620262 (JS) and AFOSR FA9550-16-1-0102 (JS), NSF-DMS-1522775 (JL),
NIH grant P50GM76516 (JL) for the Center of Excellence in Systems Biology at the University of California, Irvine, NSF-DMS
1418689 (CW), and NSF-DMS 1418692 (SW).

References

[1] S.M. Allen, ].W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall. Mater. 27
(1979) 1085-1095.
[2] V. Badalassi, H. Ceniceros, S. Banerjee, Computation of multiphase stems with phase field models, J. Comput. Phys. 290 (2003) 371-397.
[3] V. Badalassi, H. Ceniceros, S. Banerjee, Conservative multigrid methods for Cahn-Hilliard fluids, ]. Comput. Phys. 193 (2004) 511-543.
[4] A. Baskaran, Z. Hu, ]. Lowengrub, C. Wang, S. Wise, P. Zhou, Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified
phase field crystal equation, ]. Comput. Phys. 250 (2013) 470-492.
[5] A. Baskaran, J. Lowengrub, C. Wang, S. Wise, Convergence analysis of a second order convex splitting scheme for the modified phase field crystal
equation, SIAM J. Numer. Anal. 51 (2013) 2851-2873.
[6] M. Burger, F. HauRer, C. Stocker, A. Voigt, A level set approach to anisotropic flows with curvature regularization, . Comput. Phys. 225 (2007) 183-205.
[7] P.C. Bollada, PK. Jimack, A.M. Mullis, Faceted and dendritic morphology change in alloy solidification, Comput. Mater. Sci. 144 (2018) 76-84.
[8] J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system I, interfacial free energy, J. Chem. Phys. 28 (1958) 258-267.
[9] J.W. Cahn, D.W. Hoffman, A vector thermodynamics for anisotropic surfaces-II, curved and faceted surfaces, Acta Metall. 22 (1974) 1205-1214.
[10] E Chen, ]. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys.
13 (2013) 1189-1208.
[11] Y. Chen, ]J. Lowengrub, Tumor growth in complex, evolving microenvironmental geometries: a diffuse domain approach, J. Theor. Biol. 361 (2014)
14-30.
[12] Y. Chen, ]. Shen, Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes phase-field models, J. Comput. Phys. 308
(2016) 40-56.
[13] Y. Chen, S. Wise, V. Shenoy, J. Lowengrub, A stable scheme for a nonlinear, multispecies tumor growth model with an elastic membrane, Int. ]. Numer.
Methods Biomed. Eng. 30 (2014) 726-754.
[14] A. DiCarlo, M. Gurtin, P. Podio-Guidugli, A regularized equation for anisotropic motion-by-curvature, SIAM J. Appl. Math. 52 (1992) 1111-1119.
[15] JJ. Eggleston, PW. Voorhees, Ordered growth of nanocrystals via a morphologycal instability, Appl. Phys. Lett. 80 (2002) 306-308.


http://refhub.elsevier.com/S0021-9991(18)30184-0/bib416C6C656E433739s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib416C6C656E433739s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib426164616C6173736943423033s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4B696D4B4C3034s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4261736B6172616E484C57575A3133s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4261736B6172616E484C57575A3133s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4261736B6172616E4C57573133s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4261736B6172616E4C57573133s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4275726765724853563037s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib426F6C6C6164614554414C3138s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4361686E483538s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4361686E483734s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E533133s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E533133s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E4C3134s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E4C3134s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E533136s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E533136s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E57534C3134s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4368656E57534C3134s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib44694361726C6F47503932s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4567676C6573746F6E563032s1

Y. Chen et al. / Journal of Computational Physics 365 (2018) 56-73 73

[16] JJ. Eggleston, G.B. McFadden, P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D 150 (2001) 91-103.

[17] D.J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, in: Computational and Mathematical Models of Microstructural
Evolution, San Francisco, CA, 1998, Mater. Res. Soc. Symp. Proc., Warrendale, PA 529 (1998) 39-46.

[18] W. Feng, Z. Guan, ]. Lowengrub, C. Wang, S.M. Wise, Y. Chen, A uniquely solvable, energy stable numerical scheme for the functionalized Cahn-Hilliard
equation and its convergence analysis, J. Sci. Comput. (2018), https://doi.org/10.1007/s10915-018-0690-1.

[19] J.H. Garche, M. Rumpf, U. Weikard, The Cahn-Hilliard equation with elasticity: finite element approximation and qualitative studies, Interfaces Free
Bound. 3 (2001) 101-118.

[20] S. Hu, L. Chen, A phase-field model for evolving microstructures with strong elastic inhomogeneity, Acta Mater. 49 (2001) 1879-1890.

[21] Z. Huy, S. Wise, C. Wang, ]. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes for the phase-field crystal equation, J. Comput.
Phys. 228 (2009) 5323-5339.

[22] J. Jou, P. Leo, ]. Lowengrub, Microstructural evolution in inhomogeneous elastic media, J. Comput. Phys. 131 (1997) 109-148.

[23] J. Lowengrub, L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci.
454 (1998) 2617-2654.

[24] A. Makki, A. Miranville, Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions, Discrete Contin. Dyn.
Syst., Ser. S 9 (2016) 759-775.

[25] A. Miranville, Asymptotic behavior of a sixth-order Cahn-Hilliard system, Cent. Eur. J. Math. 12 (2014) 141-154.

[26] A. Ritz, A. Ribalta, A. Voigt, Surface evolution of elastically stressed films under deposition by a diffuse interface model, J. Comput. Phys. 214 (2006)
187-208.

[27] M. Salvalaglio, R. Backofen, R. Bergamaschini, F. Montalenti, A. Voigt, Faceting of equilibrium and metastable nano structures: a phase-field model of
surface diffusion tacking realistic shapes, Cryst. Growth Des. 15 (6) (2015) 2787-2794.

[28] M. Salvalaglio, R. Backofen, A. Voigt, F. Montalenti, Morphological evolution of pit-patterned Si(001) substrates driven by surface-energy reduction,
Nanoscale Res. Lett. 12 (2017) 554.

[29] R.F. Sekerka, Analytical criteria for missing orientations on three-dimensional equilibrium shapes, J. Cryst. Growth 275 (2005) 77-82.

[30] J. Shen, C. Wang, X. Wang, S. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel-type energy: application to thin
film epitaxy, SIAM J. Numer. Anal. 50 (2012) 205-225.

[31] EJ. Siem, W.C. Carter, Orientation-dependent surface tension functions for surface energy minimizing calculations, ]. Mater. Sci. 40 (2005) 3107-3113.

[32] M. Sussman, A.S. ALmgren, ].B. Bell, P. Colella, L.H. Howell, An adaptive level set approach for incompressible two-phase flows, ]. Comput. Phys. 148
(1999) 81-124.

[33] J.E. Taylor, J.W. Cahn, Diffuse interface with sharp corners and facets: phase field models with strongly anisotropic surfaces, Physica D 112 (1998)
381-411.

[34] S. Torabi, J. Lowengrub, Simulating interfacial anisotropy in thin-film growth using an extended Cahn-Hilliard model, Phys. Rev. E 85 (2012) 041603.

[35] S. Torabi, J. Lowengrub, A. Voigt, S. Wise, A new phase-field model for strongly anisotropic systems, Proc. R. Soc. A 465 (2009) 1337-1359.

[36] T. Uehara, R.F. Sekerka, Phase field simulations of faceted growth for strong anisotropy of kinetic coefficient, J. Cryst. Growth 254 (2003) 251-261.

[37] A. Voigt, Comment on “Degenerate mobilities in phase field models are insufficient to capture surface diffusion” [Appl. Phys. Lett. 107 (2015) 081608],
Appl. Phys. Lett. 108 (2016) 036101.

[38] C. Wang, X. Wang, S. Wise, Unconditionally stable schemes for equations of thin film epitaxy, Discrete Contin. Dyn. Syst., Ser. A 28 (2010) 405-423.

[39] C. Wang, S.M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal. 49
(2011) 945-969.

[40] S. Wise, Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput.
44 (2010) 38-68.

[41] S. Wise, ].S. Kim, ]. Lowengrub, Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method, J. Com-
put. Phys. 226 (2007) 414-446.

[42] S. Wise, ]. Lowengrub, V. Cristini, An adaptive multigrid algorithm for simulating solid tumor growth using mixture models, Math. Comput. Model. 53
(2011) 1-20.

[43] S. Wise, ]. Lowengrub, ]. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth - i: model and numerical method, J. Theor. Biol.
253 (2008) 524-543.

[44] S. Wise, ]. Lowengrub, J. Kim, K. Thornton, P. Voorhees, W. Johnson, Quantum dot formation on a strain-patterned epitaxial thin film, Appl. Phys. Lett.
87 (2005) 133102.

[45] S. Wise, C. Wang, J. Lowengrub, An energy stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal. 47
(2009) 2269-2288.

[46] P. Zhou, S. Wise, X. Li, ]. Lowengrub, Coarsening of elastically stressed, strongly anisotropic driven thin films, Phys. Rev. E 85 (2012) 061605.


http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4567676C6573746F6E4D563031s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib457972655F3938s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib457972655F3938s1
https://doi.org/10.1007/s10915-018-0690-1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib476172636B6552573031s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib476172636B6552573031s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4875433031s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib487557574C3039s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib487557574C3039s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4A6F754C4C3937s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4C6F772E543938s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4C6F772E543938s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4D616B6B694D3136s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4D616B6B694D3136s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib4D6972616E76696C6C653134s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5261747A52563036s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5261747A52563036s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib53616C76616C61676C696F4554414C3135s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib53616C76616C61676C696F4554414C3135s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib53616C76616C61676C696F4554414C3137s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib53616C76616C61676C696F4554414C3137s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib53656B65726B613035s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5368656E5757573132s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5368656E5757573132s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5369656D433035s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib537573736D616E4554414C3939s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib537573736D616E4554414C3939s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5461796C6F72433938s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5461796C6F72433938s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib546F726162694C3132s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib546F726162694C56573039s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5565686172614554414C3033s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib566F6967743136s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib566F6967743136s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib57616E6757573130s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib57616E67573131s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib57616E67573131s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973653130s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973653130s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654B4C3037s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654B4C3037s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654C4332303131s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654C4332303131s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654C46433038s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654C46433038s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654C4B54564A3035s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib576973654C4B54564A3035s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib57697365574C3039s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib57697365574C3039s1
http://refhub.elsevier.com/S0021-9991(18)30184-0/bib5A686F75574C4C3132s1

