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CONVERGENCE ANALYSIS OF A FULLY

DISCRETE FINITE DIFFERENCE SCHEME

FOR THE CAHN-HILLIARD-HELE-SHAW EQUATION

WENBIN CHEN, YUAN LIU, CHENG WANG, AND STEVEN M. WISE

Abstract. We present an error analysis for an unconditionally energy stable,
fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equa-
tion, a modified Cahn-Hilliard equation coupled with the Darcy flow law. The
scheme, proposed by S. M. Wise, is based on the idea of convex splitting. In
this paper, we rigorously prove first order convergence in time and second or-
der convergence in space. Instead of the (discrete) L∞

s (0, T ; L2
h)∩L2

s(0, T ; H2
h)

error estimate, which would represent the typical approach, we provide a dis-
crete L∞

s (0, T ; H1
h)∩L2

s(0, T ; H3
h) error estimate for the phase variable, which

allows us to treat the nonlinear convection term in a straightforward way. Our
convergence is unconditional in the sense that the time step s is in no way
constrained by the mesh spacing h. This is accomplished with the help of
an L2

s(0, T ; H3
h) bound of the numerical approximation of the phase variable.

To facilitate both the stability and convergence analyses, we establish a finite
difference analog of a Gagliardo-Nirenberg type inequality.

1. Introduction

The Cahn-Hilliard-Hele-Shaw (CHHS) diffuse interface model describes the pro-
cess of phase separation of a viscous, binary fluid into domains in which the fluid
is very nearly pure in the respective components. We refer the reader to [28] for an
overview of the model, its physical background, and some PDE analyses, such as
existence, uniqueness and regularity. See also the related references [2, 3, 45–47].

The Cahn-Hilliard energy functional is given by [10]

(1.1) E(φ) :=

∫

Ω

[
1

4
φ4 − 1

2
φ2 +

ε2

2
|∇φ|2

]
dx,

and, with the appropriate boundary conditions, the Cahn-Hilliard equation takes
the form

(1.2) φt = ∆µ, µ = δφE = φ3 − φ− ε2∆φ, in ΩT .

Here φ denotes the concentration of the binary fluid, ΩT :=Ω×(0, T ], where Ω ⊂ Rd

is a bounded domain with, for example, a Lipschitz continuous boundary. Formally,
the parameter ε gives the thickness of the transition region, i.e., the diffuse interface
thickness. It is well-known that the Cahn-Hilliard system is energy dissipative:
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d
dtE = −∥∇µ∥2

L2 ≤ 0. As shown in [28], the Cahn-Hilliard-Hele-Shaw equation also
satisfies an energy dissipation law. Such an energy law plays a vital role in the
PDE and numerical analyses.

The dynamical equations for the Cahn-Hilliard-Hele-Shaw model are given by

∂tφ = ∆µ −∇·(φu), in ΩT ,(1.3)

µ = φ3 − φ− ε2∆φ, in ΩT ,(1.4)

u = −∇p − γφ∇µ, in ΩT ,(1.5)

∇·u = 0, in ΩT ,(1.6)

where γ ≥ 0 is related to surface tension, u is the advective velocity, and p is the
pressure. The term −γφ∇µ is a diffuse interface approximation of the singular
surface force. Also see the detailed derivations in [36, 37, 41, 47]. The initial and
boundary conditions are assumed to be

φ( · , 0) = φ0( · ) in Ω,(1.7)

∂φ

∂n
=

∂µ

∂n
=

∂p

∂n
= 0 on ∂ΩT := ∂Ω× (0, T ] ,(1.8)

where n is the unit outward normal vector. The system (1.3) – (1.6) is mass
conservative, i.e.,

∫
Ω φ(x, t)dx ≡

∫
Ω φ(x, 0)dx, and energy dissipative [28, 47], i.e.,

(1.9) dtE(φ) +

∫

Ω
|∇µ|2dx +

1

γ

∫

Ω
|u|2dx = 0.

The construction and numerical analyses of schemes that preserve the energy
stability of the CHHS system (and other gradient systems, in general) have be-
come very important topics of research. Such schemes are especially valuable when
large-time scale numerical simulations are required. In this direction, the idea of
convex splitting of the energy into a purely convex part and a purely concave part,
popularized by Eyre’s earlier work [23], has attracted a great deal of attention in
recent years. In a convex splitting scheme, one treats the terms of the variational
derivative implicitly or explicitly according to whether the terms correspond to
the convex or concave parts of the energy, respectively. The energy stability of
the numerical scheme can be derived using simple convexity inequalities. In pre-
vious works, convex splitting schemes have been applied to various PDE systems,
including the phase field crystal (PFC) equation [48], epitaxial thin film growth
model [11, 43], and others. In addition, extensions to second order accurate (in
time) schemes are available for these convex splitting approaches; see the related
references [12, 34, 39].

For a gradient system coupled with fluid motion, such as the CHHS equation
(1.3) – (1.6), the idea of convex splitting can still be applied. Indeed, the reference
[47] describes a fully discrete convex splitting scheme for (1.3) – (1.6), with second
order centered differences in space. An unconditional energy stability was proven
for the proposed numerical scheme. Meanwhile, a combination of the proposed
convex splitting and a finite element approximation in space was analyzed in the
more recent article [28], and a weak convergence of the numerical approximation
to a global-in-time weak solution was established in detail. Similar related works
can also be found in [45, 46], in which approximate solutions constructed by the
abstract Galerkin procedure were proven to converge to a weak solution.
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On the other hand, these convergence results only indicate a weak convergence
without an associated order of convergence. In fact, a convergence analysis for
any numerical scheme applied to the CHHS equation (1.3) – (1.6) is a challenging
problem, one that we will begin to address herein. Compared to the standard
analysis for the pure Cahn-Hilliard equation (1.2), the error estimate for the CHHS
equation (1.3) – (1.6) is a much more delicate matter. The key reason is due to
the appearance of a highly nonlinear convection term; the velocity error term turns
out to be a Helmholtz projection (into the divergence-free vector space) of the
nonlinear error associated with −γφ∇µ. In turn, even the highest order diffusion
term in the standard Cahn-Hilliard part is not able to control the numerical error
term associated with the nonlinear convection. Moreover, the lack of regularity for
the velocity field in the Darcy law (1.5) is an essential difficulty for establishing a
convergence analysis with an optimal order. Some related issues can also be found
in the works [16, 24, 25] for two-phase flow.

In this paper, we will provide a detailed convergence analysis for the fully discrete
scheme formulated in [47], which is shown to be first order accurate in time and
second order in space. In addition, the second order accuracy in space indicates a
kind of super-convergence, as explained in Remark 3.15 below. A careful calculation
shows that the standard L∞

s (0, T ; L2
h) ∩ L2

s(0, T ; H2
h) error estimate does not work

for the CHHS system (1.3) – (1.6) due to the lack of control for the highly nonlinear
convection term. Instead, we perform an L∞

s (0, T ; H1
h)∩L2

s(0, T ; H3
h) error estimate,

and such an estimate in a higher order Sobolev norm is necessary to make the
error term associated with the nonlinear convection term have a non-positive inner
product with the appropriate error test function. This step is a crucial and novel
feature of the convergence analysis.

To facilitate the stability and convergence analysis, we need to establish discrete
Gagliardo-Nirenberg inequality for grid functions. This is accomplished via a dis-
crete Fourier transformation over a uniform numerical grid, so that the discrete
Parseval equality is valid and the equivalence between the discrete and continuous
Hm (m an integer) norms for the numerical grid function and its continuous ver-
sion, respectively, can be established. The discrete Gagliardo-Nirenberg inequality
is crucial for obtaining the L∞

s (0, T ) bound of the discrete concentration, so that
the convergence analysis can go through for the scheme.

We note that for the convex splitting scheme proposed in [47], the discrete
L2

s(0, T ; H2
h) stability for the discrete concentration was also derived, in addition

to the global-in-time L∞
s (0, T ; H1

h) bound (which comes directly from the energy
stability). Similar estimates are also valid for the same temporal discretization
combined with finite element approximation in space, as reported in [28]. While
these energy estimates are sufficient to pass to the limit and obtain a global-in-time
weak solution to the PDE, they are not strong enough to derive an unconditional
error estimate in 3-D, due to the high degree nonlinearity of the CHHS system.
In this article, we will explore the numerical scheme in more detail and derive a
discrete L2

s(0, T ; H3
h) stability for the fully discrete approximation of the concen-

tration, φh,s. Such an estimate is available since there is an L2
s(0, T ; L2

h) bound
for ∇hµh,s, where µh,s is the fully discrete approximation of chemical potential,
combined with the global-in-time L∞

s (0, T ; H1
h) bound on φh,s and a careful appli-

cation of some discrete Sobolev inequalities to the nonlinear term in the definition
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of µh,s. With the help of this L2
s(0, T ; H3

h) bound for φh,s,1 we are able to derive
an unconditional convergence analysis in 3-D; i.e., the convergence rate is valid
without a scaling condition between the time step s and grid size h.

The rest of the paper is organized as follows. The fully discrete scheme is re-
viewed in Section 2. Therein we recall and derive some stability estimates for the
fully discrete finite difference approximations. The refined stabilities, L2

s(0, T ; H3
h)∩

L8
s(0, T ; L∞

h ) bounds of the discrete concentration, depend upon a discrete version
of a Gagliardo-Nirenberg-type inequality, which is proved in Appendix B. In Sec-
tion 3, we detail the convergence analysis for the scheme, which is undertaken in
three steps. First, in Section 3.1 via consistency we establish an equation for the
error function. In Section 3.2 we prove a stability estimate for the error function.
Since we are not able to use the discrete Gronwall inequality directly with the error
stability estimate in Section 3.3, we make an a priori assumption – which serves as
the induction hypothesis in our convergence proof – about the error estimate at an
arbitrary time step to make further progress. The main result and the final step
of the convergence analysis follow by induction and are detailed in Section 3.4. In
Appendix A, we define some notation and tools for the finite difference analysis in
space.

2. The fully discrete scheme and a priori stabilities

For simplicity, we consider the cuboid Ω = (0, Lx) × (0, Ly) × (0, Lz) such that
there are Nx, Ny, Nz ∈ N = {1, 2, 3, . . .}, with h = Lx/Nx = Ly/Ny = Lz/Nz,
for some h > 0. Let s = T

M > 0, for some M ∈ N, be the time step size. The
two-dimensional version of the fully discrete scheme for the CHHS system was
given by [47]. The three-dimensional extension is as follows: for 0 ≤ m ≤ M − 1,
given φm ∈ CΩ, find the cell-centered grid functions (φm+1, µm+1, pm+1) ∈ [CΩ]3,
each satisfying the discrete homogeneous Neumann boundary conditions (defined
in Appendix A) such that

φm+1 − φm = s∇h ·
(
M(Ahφ

m)∇hµm+1
)

+ s∇h ·
(
Ahφ

m∇hpm+1
)
,(2.1)

µm+1 =
(
φm+1

)3 − φm − ε2∆hφ
m+1,(2.2)

−∆hpm+1 = γ∇h ·
(
Ahφ

m∇hµm+1
)
,(2.3)

where M(r) :=1 + r2, for any r ∈ R. Here we are using a compact notation to
make the structure of the scheme more transparent, but some further description
may be necessary. First we point out that M(Ahφm) ∈ E⃗Ω, the set of face-centered
functions in the staggered grid, since Ahφm ∈ E⃗Ω, where Ah is the face-average
operator defined in (A.15). For example, the x-component at a generic x-face
grid point is given as [M(Ahφm)]xi±1/2,j,k = M(Axφm

i±1/2,j,k). In our notation,

M(Ahφm)∇hµm+1 ∈ E⃗Ω, as well. For instance, the y-component at a generic
y-face grid point is given as

[
M(Ahφ

m)∇hµm+1
]y

i,j±1/2,k
= M(Ayφ

m
i,j±1/2,k)Dyµm+1

i,j±1/2,k.

Likewise, Ahφm∇hpm+1, Ahφm∇hµm+1 ∈ E⃗Ω. The definitions of the discrete op-
erators used above can be found in Appendix A.2 and are similar to those found in
[47].

1We will drop the subscripts h and s on the fully discrete finite difference approximations in
the rest of the paper.
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Note that the convex splitting treatment was applied to the chemical potential
as given by (2.2). The unique solvability and unconditional stability have been
established in [47]. The next theorem is a simple three-dimensional extension of
the two-dimensional estimates in [47]:

Theorem 2.1. Suppose that the initial profile φ0 ∈ H2(Ω) satisfies homogeneous
Neumann boundary conditions n · ∇φ0 = 0 on ∂Ω. The scheme (2.1) – (2.3), with
starting values φ0

i,j,k = φ0(ξi, ξj , ξk), is unconditionally energy stable; i.e., for any
s > 0 and h > 0, and any positive integer 1 ≤ ℓ ≤ M ,

(2.4) s
ℓ∑

m=1

∥∇hµm∥2
2 + s

ℓ∑

m=1

∥um∥2
2 + ∥∇hφ

ℓ∥2
2 ≤ C0,

where C0 > is a constant independent of s, h, and ℓ, and um ∈ E⃗Ω, given by

(2.5) um := −∇hpm − γAhφ
m−1∇hµm.

In addition, a (discrete) L2
s(0, T ; H2

h) stability for the numerical solution was
derived in the original article [47]; similar works can also be found in [28], in which
the finite element approximations were taken. In this paper, we will derive a sharper
estimate for (2.1) – (2.3): an L2

s(0, T ; H3
h) stability for the grid function φ. Such an

estimate is crucial to derive an unconditional convergence analysis in 3-D. We need
the following discrete Gagliardo-Nirenberg-type inequality. The proof is contained
in Appendix B.

Lemma 2.2. If the cell-centered grid function φ ∈ CΩ satisfies the discrete homo-
geneous Neumann boundary conditions n · ∇hφ = 0, as defined in Appendix A,
then

(2.6)
∥∥φ− φ̄

∥∥
∞ ≤ C1

(
∥∇hφ∥

3
4
2 ∥∇h∆hφ∥

1
4
2 + ∥∇hφ∥2

)
,

where φ̄ := 1
|Ω| (φ, 1), and C1 > 0 is a constant that is independent of h.

Theorem 2.3. With the same hypotheses as in Theorem 2.1, we have the further
stabilities for the scheme (2.1) – (2.3): for any s, h > 0 and any 1 ≤ ℓ ≤ M , there
exist constants C2, C3, C4 > 0 such that

s
ℓ∑

m=1

∥∇h∆hφ
m∥2

2 ≤ C2(tℓ + 1) ≤ C2(T + 1),(2.7)

s
ℓ∑

m=1

∥φm
F ∥2

H3 ≤ C3(tℓ + 1) ≤ C3 (T + 1) ,(2.8)

s
ℓ∑

m=1

∥φm∥8
∞ ≤ C4(tℓ + 1) ≤ C4 (T + 1) ,(2.9)

where φm
F is the continuous cosine expansion of the numerical solution φm defined

in Appendix B, tℓ := s · ℓ, and T := s · M .

Proof. Recall that the scheme is mass conservative. Therefore, φm = φ0, for all
1 ≤ m ≤ M . Thus

∥φm∥∞ ≤
∥∥φm − φm

∥∥
∞ +

∣∣∣φ0
∣∣∣ ≤

∥∥φm − φm
∥∥
∞ + C,
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with C > 0 independent of h, by a standard consistency argument, leveraging the
regularity of the initial data. By (2.2) and Young’s inequality, we get

∥∇h∆hφ
m+1∥2 =

1

ε2
∥∇h

(
−µm+1 + (φm+1)3 − φm

)
∥2

≤C
(
∥∇hµm+1∥2 + ∥∇hφ

m∥2 + ∥∇h(φm+1)3∥2

)

≤C
(
∥∇hµm+1∥2 + ∥∇hφ

m∥2 + ∥φm+1∥2
∞ · ∥∇hφ

m+1∥2

)

≤C
(
∥∇hµm+1∥2 + ∥∇hφ

m∥2 + ∥φm+1 − φm+1∥2
∞ · ∥∇hφ

m+1∥2

+ ∥∇hφ
m+1∥2

)

≤C
(
∥∇hµm+1∥2 + ∥∇hφ

m∥2 + ∥∇hφ
m+1∥

5
2
2 · ∥∇h∆hφ

m+1∥
1
2
2

+ ∥∇hφ
m+1∥3

2 + ∥∇hφ
m+1∥2

)

≤C
(
∥∇hµm+1∥2 + C

1
2
0 + C

3
2
0 + C

5
2
0

)
+

1

2
∥∇h∆hφ

m+1∥2,

in which Lemma 2.2 was recalled in the fourth step, and the estimate (2.4) was
used in the last step. The following discrete Hölder-type inequality was applied in
the third step: for any φ ∈ CΩ,

∥∥∇h

(
φ3

)∥∥
2
≤ C ∥φ∥2

∞ · ∥∇hφ∥2 .(2.10)

We now arrive at the following estimate:

(2.11) ∥∇h∆hφ
m+1∥2 ≤ C∥∇hµm+1∥2 + C.

By summation, we are able to derive the following bound using estimate (2.4) again:

(2.12) s
ℓ∑

m=1

∥∇h∆hφ
m∥2

2 ≤ Cs
ℓ∑

m=1

∥∇hµm∥2
2 + C tℓ ≤ C0 + CT.

Estimate (2.7) follows.
Meanwhile, using the fact that φm

F = φm = φ0, a consistency argument to bound

the norm of φ0 independent of h, and an application of an elliptic regularity result,
we have
(2.13)

∥φm
F ∥2

H3 ≤ 2
∥∥φm

F − φm
F

∥∥2

H3 + 2
∥∥∥φ0

∥∥∥
2

L2
≤ C ∥∇∆φm

F ∥2
L2 + C ≤ C ∥∇h∆hφ

m∥2
2 + C,

with the equivalence estimate (B.15) (between the discrete and continuous norms)
applied in the last step. With a summation of (2.13) and an application of (2.7),
we have the desired estimate (2.8).

To derive the L8
s(0, T ; L∞

h ) bound for φ, we apply (2.6):

(2.14) ∥φm∥8
∞ ≤ C

∥∥φm − φm
∥∥8

∞ + C ≤ C ∥∇hφ
m∥6

2 ∥∇h∆hφ
m∥2

2 + C ∥∇hφ
m∥8

2 .

With a summation of the above bound and applying (2.4), as well as (2.7), we have
estimate (2.9), and the proof of Theorem 2.3 is complete. !
Remark 2.4. The constant C0 appearing in Theorem 2.1 and the constants C2,
C3, C4 appearing in Theorem 2.3 are all time independent, but they do depend on
integer powers of ε−1. For instance, a careful derivation shows that C0 = O(ε−2).
Similarly, C2 = O(ε−5), C3 = O(ε−5), and C3 = O(ε−11).
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3. Convergence analysis

In this section we provide error estimates in three steps. First, in Section 3.1, we
establish an equation for the error function using a standard consistency argument.
In Section 3.2 we prove a stability estimate for the error function. Since we are
not able to use the discrete Gronwall inequality directly with the error stability to
derive an error estimate, in Section 3.3 we make an a priori assumption about the
error estimate, which serves as an induction hypothesis, to make further progress.
The final step of the convergence analysis follows by induction and an application
of the discrete Gronwall inequality, which can then be rigorously justified. The
main theorem is proved in Section 3.4.

3.1. Error equations. We need the following definition.

Definition 3.1. The subspaces F , G ⊂ E⃗Ω are defined as

(3.1) G :=
{
f ∈ E⃗Ω

∣∣∣ n · f = 0 on ∂Ω
}

, F :=
{

f ∈ E⃗Ω

∣∣∣ ∇h · f = 0 in Ω
}
∩ G.

(The discrete boundary conditions n ·f = 0 are defined in Appendix A.) We define
the projection Ph : G → F as follows: for every f ∈ G,

(3.2) Ph(f) = ∇hp + f ,

where p ∈ C̊Ω := {u ∈ CΩ | (u, 1) = 0} is the unique solution to

(3.3) −∆hp −∇h · f = 0 in Ω and n · ∇hp = 0 on ∂Ω.

The projection operator is linear and has the following properties:

(3.4) (q, Ph(f) − f) = 0, ∀ q ∈ F , and ∥Ph(f)∥2 ≤ ∥f∥2 .

Using this projection operator we may write the scheme compactly as

φm+1 − φm = s∆hµm+1 − s∇h ·
(
Ahφ

mum+1
)
,(3.5)

µm+1 =
(
φm+1

)3 − φm − ε2∆hφ
m+1,(3.6)

um+1 = −Ph

(
γAhφ

m∇hµm+1
)
.(3.7)

We denote (φe, µe, ue) as the exact solution to the original CHHS equation and
take Φℓ

i,j,k = φe(ξi, ξj , ξk, tℓ). We assume that the exact solution has regularity of
class R, i.e.,

(3.8) φe ∈ R := H2(0, T ; C0) ∩ H1(0, T ; C2) ∩ L∞(0, T ; C6).

To facilitate our error analysis, we need to construct an approximate solution to
the chemical potential via the exact solution φe. In addition, we note that the exact
velocity ue is not divergence-free at the discrete level (∇h · ue ̸= 0). To overcome
this difficulty, we must also construct an approximate solution to the velocity vector
(again through the exact solution) which satisfies the divergence-free conditions at
the discrete level. Therefore, we define the cell-centered grid functions

(3.9) Γm+1 := (Φm+1)3 − Φm − ε2∆hΦ
m+1, Um+1 := − Ph

(
γAhΦ

m∇hΓ
m+1

)
,

for 1 ≤ m ≤ M , where Ph is given by Definition 3.1. We need to enforce the
discrete homogeneous Neumann boundary conditions for the chemical potential:
n · ∇hΓm = 0, for all 1 ≤ m ≤ M , so that, in particular, Ph

(
AhΦm∇hΓm+1

)
is

well defined.
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Remark 3.2. In order to assure the divergence-free property of the velocity vector
at the discrete level, we choose a staggered grid for the velocity field, in which
the individual components of a given velocity, say, v = (vx, vy, vz), are evaluated
at the (x, y, and z face) mesh points (ih, (j + 1/2)h, (k + 1/2)h), ((i + 1/2)h, jh,
(k+1/2)h), ((i+1/2)h, (j+1/2)h, kh), respectively. This staggered grid is also known
as the marker and cell (MAC) grid and was first proposed in [31] to deal with the
incompressible Navier-Stokes equations. Also see [38] for related applications to
the 3-D primitive equations.

One key advantage of this staggered grid can be inferred from the following fact:
the discrete divergence of U (defined in (3.9)), specifically, ∇h ·U = dxUx +dyUy +
dzUz, is identically zero at every (cell-center) mesh point ((i + 1/2)h, (j + 1/2)h,
(k + 1/2)h). Such a divergence-free property at the discrete level comes from the
special structure of the MAC grid and assures that the velocity field is orthog-
onal to a corresponding discrete pressure gradient at the discrete level; see also
reference [18].

Moreover, we observe that the velocity component Ux has zero boundary values
at mesh points (0, (j+1/2)h, (k+1/2)h) and (Nxh, (j+1/2)h, (k+1/2)h), corresponding
to the boundaries at x = 0 and x = Lx. Similarly, the velocity component Uy has
zero boundary values at mesh points ((i + 1/2)h, 0, (k + 1/2)h) and ((i + 1/2)h, Nyh,
(k + 1/2)h), and the velocity component Uz has zero boundary values at mesh
points ((i+1/2)h, (j+1/2)h, 0) and ((i+1/2)h, (j+1/2)h, Nzh), so that the boundary
condition of n ·U = 0 is satisfied at the point-wise (global) level at all six boundary
faces.

With the assumed regularities, the constructed approximations Γm and Um obey
the following estimates:

(3.10) ∥∇hΓ
m∥∞ ≤ C5, ∥Um∥∞ ≤ C6,

for 1 ≤ m ≤ M , where the constants C5, C6 > 0 are independent of h > 0 and
s > 0.

It follows that (Φ,Γ,U) satisfies the numerical scheme with an O(s + h2) trun-
cation error:

Φm+1 − Φm

s
= ∆hΓ

m+1 −∇h ·
(
AhΦ

mUm+1
)

+ τm+1,(3.11)

Γm+1 = (Φm+1)3 − Φm − ε2∆hΦ
m+1,(3.12)

Um+1 = −Ph

(
γAhΦ

m∇hΓ
m+1

)
,(3.13)

where the local truncation error satisfies

(3.14) ∥τm∥2 ≤ (s + h2)βm, s
M∑

m=1

β2
m ≤ C7,

and where s · M = T , and C7 is independent of h and s.

Remark 3.3. The regularity estimates (3.8) and the local truncation error analysis
(3.11) are based on a detailed Taylor expansion of the exact solution φe in both
time and space, combined with the standard analysis for the discrete Helmholtz
projection.

The global-in-time weak solution of the PDE has a regularity of L∞(0, T ; H1); see
[28] for the derivation. Moreover, a global-in-time existence of strong and smooth
solutions for the 2-D CHHS flow and a local in time existence for the 3-D model
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have been established in recent works [45, 46]. As a result, we are always able
to make the regularity assumption (3.8) for the exact solution of the 3-D CHHS
equation (1.3) – (1.6) over a finite time interval, with the interval length dependent
on the the initial data and the physical parameter ε. In turn, the convergence
analysis presented in this article is over this finite time interval.

We note that the regularity requirement (3.8) is much higher than the uni-
form in time L∞(0, T ; H1) regularity for the weak solution derived in [28]. Such
a higher regularity requirement comes from the O(s + h2) convergence analy-
sis that is conducted in the high order discrete norms associated to the space
L∞

s (0, T ; H1
h) ∩ L2

h(0, T ; H3
h). If, instead, a convergence analysis was conducted in

the discrete norms associated to the “classical” space L∞
s (0, T ; L2

h) ∩ L2
h(0, T ; H2

h),
the regularity requirement could be reduced.

On the other hand, we remark that the regularity assumption (3.8) does not
represent the optimal regularity requirement for the exact solution. In fact, a
reduced regularity assumption

(3.15) φe ∈ H2(0, T ; C0) ∩ H1(0, T ; H2) ∩ L∞(0, T ; H6)

is sufficient for the L2
s(0, T ; L2

h) bound of the local truncation error τ , following
a subtle consistency analysis as in the style reported in [9, 44]. The details are
suppressed for brevity of presentation.

The numerical error functions are denoted as

(3.16) φ̃m := Φm − φm, µ̃m := Γm − µm, ũm := Um − um.

Subtracting (3.11) – (3.13) from (3.5) – (3.7) yields

φ̃m+1 − φ̃m

s
= ∆hµ̃m+1 −∇h ·

(
Ahφ̃

mUm+1+Ahφ
mũm+1

)
+ τm+1,(3.17)

µ̃m+1 = N m+1φ̃m+1 − φ̃m − ε2∆hφ̃
m+1,(3.18)

ũm+1 = −γPh

(
Ahφ̃

m∇hΓ
m+1 + Ahφ

m∇hµ̃m+1
)

,(3.19)

N m+1 :=
((

Φm+1
)2

+ Φm+1φm+1 +
(
φm+1

)2)
,(3.20)

for 0 ≤ m ≤ M − 1. Observe that φ̃0 ≡ 0.

3.2. Stability of the error functions. In this subsection, we prove a stability
estimate for the error function.

Lemma 3.4. Assume the exact solution is of regularity class R. Then, for any
1 ≤ m ≤ M ,

∥φ̃m∥2 ≤ C8

(
∥∇hφ̃

m∥2 + h2
)

,(3.21)

∥φ̃m∥∞ ≤ C9

(
∥∇hφ̃

m∥
3
4
2 ∥∇h∆hφ̃

m∥
1
4
2 + ∥∇hφ̃

m∥2 + h2
)

(3.22)

for some constants C8, C9 > 0 that are independent of s, h, and m.

Proof. The estimates follow from a discrete version of the Poincaré inequality
(see, for example, [44]) and the discrete Gagliardo-Nirenberg inequality (2.6) in
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Lemma 2.2 and the fact that∣∣∣φ̃m
∣∣∣ =

∣∣Φm − φm
∣∣ =

∣∣∣Φm − φ0
∣∣∣

=

∣∣∣∣Φm − |Ω|−1

∫

Ω
φe(x, tm) dx −

(
φ0 − |Ω|−1

∫

Ω
φe(x, t0) dx

)∣∣∣∣

≤
∣∣∣∣Φm − |Ω|−1

∫

Ω
φe(x, tm) dx

∣∣∣∣ +

∣∣∣∣φ0 − |Ω|−1

∫

Ω
φ0(x) dx

∣∣∣∣

≤ Ch2,(3.23)

owing to consistency. Here the overline refers only to the discrete average. !
The following theorem states the stability of the numerical error functions sat-

isfying the error equations by (3.17) – (3.19).

Theorem 3.5. Assume the exact solution is of regularity class R. Then the er-
ror function φ̃m obeys the following discrete energy stability law: for any m =
0, . . . , M − 1,

∥∇hφ̃
m+1∥2

2 − ∥∇hφ̃
m∥2

2 + ε2s∥∇h∆hφ̃
m+1∥2

2 ≤ sC10D
m+1
1 ∥∇hφ̃

m+1∥2
2

+ sC11D
m
2 ∥∇hφ̃

m∥2
2 + C12D

m+1
3 sh4 + s(s2 + h4)β2

m+1,
(3.24)

where

Dm+1
1 :=

(
α4

m + 1
)
α4

m+1 + α
16
3

m

(
α

8
3
m+1 + 1

)
+ 1,

Dm
2 := α4

m + α2
m + 1,

Dm+1
3 := α4

m

(
α2

m+1 + 1
)

+ α2
m + α2

m+1 + 1,

(3.25)

with αm := ∥φm∥∞, and C10, C11, C12 > 0 are constants that are independent of s
and h.

Proof. Taking a discrete inner product of (3.17) with −s∆hφ̃m+1 gives

1

2
∥∇hφ̃

m+1∥2
2 −

1

2
∥∇hφ̃

m∥2
2 +

1

2
∥∇h(φ̃m+1 − φ̃m)∥2

2(3.26)

− s(∇h∆hφ̃
m+1,∇hµ̃m+1)

= −s(∇h∆hφ̃
m+1, Ahφ̃

mUm+1 + Ahφ
mũm+1) − s(τm+1,∆hφ̃

m+1),

with repeated applications of the summation by parts formulas (A.26) and (A.27).
The term associated with the local truncation error can be bounded as

−(τm+1,∆hφ̃
m+1) ≤ C(s + h2)2β2

m+1 +
∥∥∥∆hφ̃

m+1
∥∥∥

2

2

≤ C(s2 + h4)β2
m+1 + C∥∇hφ̃

m+1∥2
2 +

ε2

8
∥∇h∆hφ̃

m+1∥2
2.(3.27)

In the second step we have used the estimate
(3.28)
∥∥∥∆φ̃m+1

∥∥∥
2

2
= −

(
∇hφ̃

m+1,∇h∆hφ̃
m+1

)
≤ C

ε2
∥∇hφ̃

m+1∥2
2 +

ε2

8
∥∇h∆hφ̃

m+1∥2
2.

The regular diffusion term has the following decomposition:

(∇h∆hφ̃
m+1,∇hµ̃m+1) = (∇h∆hφ̃

m+1,∇h(N m+1φ̃m+1)) − (∇h∆hφ̃
m+1,∇hφ̃

m)

− ε2∥∇h∆hφ̃
m+1∥2

2.

(3.29)
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The concave term can be controlled by

(3.30) −(∇h∆hφ̃
m+1,∇hφ̃

m) ≤ C∥∇hφ̃
m∥2

2 +
ε2

8
∥∇h∆hφ̃

m+1∥2
2.

For the nonlinear error term, we have

∥∇h(N m+1φ̃m+1)∥2 ≤3
(
∥Ahφ

m+1∥∞ + ∥AhΦ
m+1∥∞

)

·
(
∥∇hφ

m+1∥2 + ∥∇hΦ
m+1∥2

)
∥Ahφ̃

m+1∥∞

+
3

2

(
∥AhΦ

m+1∥2
∞ + ∥Ahφ

m+1∥2
∞
)
∥∇hφ̃

m+1∥2

≤C (αm+1 + 1) ∥φ̃m+1∥∞ + C
(
α2

m+1 + 1
)
∥∇hφ̃

m+1∥2.

(3.31)

As a result, we have, using estimate (3.22) and Young’s inequality,

(∇h∆hφ̃
m+1,∇h(N m+1φ̃m+1))

≤C (αm+1 + 1) ∥φ̃m+1∥∞ · ∥∇h∆hφ̃
m+1∥2

+ C
(
α2

m+1 + 1
)
∥∇hφ̃

m+1∥2 · ∥∇h∆hφ̃
m+1∥2

≤C
(
α2

m+1 + 1
)
∥∇hφ̃

m+1∥2 · ∥∇h∆hφ̃
m+1∥2

+ C (αm+1 + 1) ∥∇hφ̃
m+1∥

3
4
2 ∥∇h∆hφ̃

m+1∥
5
4
2

+ C (αm+1 + 1) ∥∇hφ̃
m+1∥2∥∇h∆hφ̃

m+1∥2

+ C (αm+1 + 1)h2∥∇h∆hφ̃
m+1∥2

≤C
(
α4

m+1 + 1
)
∥∇hφ̃

m+1∥2
2 +

ε2

32
∥∇h∆hφ̃

m+1∥2
2

+ C
(
(αm+1)

8
3 + 1

)
∥∇hφ̃

m+1∥2
2 +

ε2

32
∥∇h∆hφ̃

m+1∥2
2

+ C
(
(αm+1)

2 + 1
)
∥∇hφ̃

m+1∥2
2 +

ε2

32
∥∇h∆hφ̃

m+1∥2
2

+ C
(
(αm+1)

2 + 1
)

h4 +
ε2

32
∥∇h∆hφ̃

m+1∥2
2

≤C
(
α4

m+1 + 1
)
∥∇hφ̃

m+1∥2
2 +

ε2

8
∥∇h∆hφ̃

m+1∥2
2 + C

(
α2

m+1 + 1
)
h4.

(3.32)

These above estimates imply that

(∇h∆hφ̃
m+1,∇hµ̃m+1) ≤C

(
α4

m+1 + 1
) ∥∥∥∇hφ̃

m+1
∥∥∥

2

2
+ C

∥∥∥∇hφ̃
m
∥∥∥

2

2

− 3ε2

4

∥∥∥∇h∆hφ̃
m+1

∥∥∥
2

2
+ C

(
α2

m+1 + 1
)
h4.

(3.33)

Next we focus our attention on the terms associated with the nonlinear convec-
tion part. Since ∥Um∥∞ ≤ C6, for all 1 ≤ m ≤ M , the first part can be bounded
by

−(∇h∆hφ̃
m+1, Ahφ̃

mUm+1) ≤C
∥∥∥∇h∆hφ̃

m+1
∥∥∥

2
·
(∥∥∥∇hφ̃

m
∥∥∥

2
+ h2

)

≤ ε2

16

∥∥∥∇h∆hφ̃
m+1

∥∥∥
2

2
+ C

∥∥∥∇hφ̃
m
∥∥∥

2

2
+ Ch4.

(3.34)
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For the second part, the expansion for the velocity numerical error indicates that

−(∇h∆hφ̃
m+1, Ahφ

mũm+1) =γ(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ̃
m∇hΓ

m+1))

+ γ(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ
m∇hµ̃m+1)).

(3.35)

The first term can be estimated in a straightforward way. Using the L2
h stability of

the projection and the regularity estimate ∥∇hΓm∥∞ ≤ C6, we have

γ(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ̃
m∇hΓ

m+1))

≤ γ∥φm∥∞ · ∥∇h∆hφ̃
m+1∥2 · ∥Ph(Ahφ̃

m∇hΓ
m+1)∥2

≤ Cαm∥∇h∆hφ̃
m+1∥2 · ∥φ̃m∥2

≤ Cαm∥∇h∆hφ̃
m+1∥2 ·

(
∥∇hφ̃

m∥2 + h2
)

≤ Cα2
m

(
∥∇hφ̃

m∥2
2 + h4

)
+

ε2

32
∥∇h∆hφ̃

m+1∥2
2,

(3.36)

with the discrete Poincaré inequality (3.21) applied in the third step. The second
term can be expanded as

γ(Ahφ
m∇h∆hφ̃

m+1,Ph(Ahφ
m∇hµ̃m+1))

= γ(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ
m∇h(N m+1φ̃m+1)))

− γ(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ
m∇hφ̃

m))

− γε2(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ
m∇h∆hφ̃

m+1)).

(3.37)

It is observed that the third term of the right-hand side of (3.37) is always non-
positive. Indeed, using a property of the projection,
(3.38)
−(Ahφ

m∇h∆hφ̃
m+1, Ph(Ahφ

m∇h∆hφ̃
m+1)) = −∥Ph(Ahφ

m∇h∆hφ̃
m+1)∥2

2 ≤ 0.

The analysis for the second term of the right-hand side of (3.37) is standard:

−γ(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ
m∇hφ̃

m))≤γ∥Ahφ
m∇h∆hφ̃

m+1∥2 · ∥Ahφ
m∇hφ̃

m∥2

≤ Cα2
m∥∇h∆hφ̃

m+1∥2 · ∥∇hφ̃
m∥2

≤ ε2

64
∥∇h∆hφ̃

m+1∥2
2 + Cα4

m∥∇hφ̃
m∥2

2.

(3.39)
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For the first term of the right-hand side of (3.37), the estimates are as follows:

γ(Ahφ
m∇h∆hφ̃

m+1, Ph(Ahφ
m∇h(N m+1φ̃m+1)))

≤Cα2
m

(
α2

m+1 + 1
)
∥∇hφ̃

m+1∥2 · ∥∇h∆hφ̃
m+1∥2

+ Cα2
m (αm+1 + 1) ∥∇hφ̃

m+1∥
3
4
2 ∥∇h∆hφ̃

m+1∥
5
4
2

+ Cα2
m (αm+1 + 1) ∥∇hφ̃

m+1∥2∥∇h∆hφ̃
m+1∥2

+ Cα2
m (αm+1 + 1)h2∥∇h∆hφ̃

m+1∥2

≤Cα4
m

(
α4

m+1 + 1
)
∥∇hφ̃

m+1∥2
2 +

ε2

256
∥∇h∆hφ̃

m+1∥2
2

+ Cα
16
3

m

(
α

8
3
m+1 + 1

)
∥∇hφ̃

m+1∥2
2 +

ε2

256
∥∇h∆hφ̃

m+1∥2
2

+ Cα4
m

(
α2

m+1 + 1
)
∥∇hφ̃

m+1∥2
2 +

ε2

256
∥∇h∆hφ̃

m+1∥2
2

+ Cα4
m

(
α2

m+1 + 1
)
h4 +

ε2

256
∥∇h∆hφ̃

m+1∥2
2

≤C
{
α4

mα4
m+1 + α

16
3

m

(
α

8
3
m+1 + 1

)
+ 1

}
∥∇hφ̃

m+1∥2
2

+
ε2

64
∥∇h∆hφ̃

m+1∥2
2 + Cα4

m

(
α2

m+1 + 1
)
h4.

(3.40)

A combination of estimates (3.36), (3.38), (3.39), and (3.40) yields

−(∇h∆hφ̃
m+1, Ahφ̃

mũm+1)

≤ C
{
α4

mα4
m+1 + α

16
3

m

(
α

8
3
m+1 + 1

)
+ 1

}
∥∇hφ̃

m+1∥2
2

+ Cα2
m

(
1 + α2

m

)
∥∇hφ̃

m∥2
2 +

ε2

16
∥∇h∆hφ̃

m+1∥2
2

+ C
(
α2

m + α4
m

(
α2

m+1 + 1
))

h4.

(3.41)

Finally, from (3.26), (3.27), (3.33), (3.34), and (3.41), we obtain estimate (3.24).
!

Remark 3.6. Note that we have suppressed the dependence of the constants on the
parameters ε and γ. Typically, one would expect the constants to depend on ε−p

for small positive integers p. We also point out that C10, C11, C12 can depend upon
T , but only indirectly. This is because C10, C11, C12 depend upon the regularity
bounds for the exact PDE solution – for example, C5, C6 – which could possibly
depend upon time.

Remark 3.7. In the classical numerical analyses for the pure Cahn-Hilliard equation
(1.2), it is typical that a discrete L∞

s (0, T ; L2
h) error estimate is performed. See

the related references [6–8, 17, 19–22, 26, 27, 29, 32, 33, 35, 40, 42]. However, such a
classical error estimate does not work for the CHHS equation (1.3) – (1.6) due to
the lack of control for the inner product of φ̃m+1 with the nonlinear error term
associated with the convection part.

Instead, if an L∞
s (0, T ; H1

h) ∩ L2
s(0, T ; H3

h) error estimate is pursued, as in the
present analysis, we observe that the corresponding inner product associated with
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the nonlinear convection term is ensured to be non-positive, as given by (3.38).
This fact is crucial to make the stability and convergence analysis go through.

The following bound can be derived for the growth coefficients appearing in
Theorem 3.5.

Lemma 3.8. With the same hypotheses as for Theorem 3.5, we have for any
1 ≤ ℓ ≤ M ,

(3.42) s
ℓ−1∑

m=0

(
C10D

m+1
1 + C11D

m
2 + C12D

m+1
3

)
≤ C13(tℓ+1) ≤ C13(T +1) := C14,

where C13 > 0 is independent of s and h. Here C13 can depend upon T , since C10,
C11, C12 can depend upon T .

Proof. This is a direct consequence of the discrete L8
s(0, T ) bound for αm :=

∥φm∥∞, as given by (2.9), combined with the following simple result of Young’s
inequality:

!(3.43) αp
m · αq

m+1 ≤ C
(
α8

m + α8
m+1 + 1

)
, ∀ p, q ∈ N : 0 ≤ p + q ≤ 8.

Remark 3.9. We observe that the standard discrete Gronwall inequality cannot be
applied directly to the error estimate (3.24) since the latter is implicit. To make the
estimate explicit, we need to bound sC10D

m+1
1 by a constant less than 1. Indeed,

(3.42) implies that, for arbitrary 1 ≤ m ≤ M ,

(3.44) sC10D
m
1 ≤ s

M∑

j=1

C10D
j
1 ≤ C14.

No matter how small s > 0 is made, this inequality could only ensure that sC10Dm
1

has a value bounded by C14. Meanwhile, a direct point-wise bound (in m) for Dm
1

is not available, as s → 0, based on this inequality alone.

3.3. The result of an a priori error assumption. Since, as we mentioned,
we are not able to use the discrete Gronwall inequality directly to derive an error
estimate from the error stability (3.24), we use an induction argument to prove
convergence. Specifically, we assume, as our induction hypothesis, that the desired
error estimate holds at an arbitrary time step m (0 ≤ m ≤ M − 1). We then use
this a priori assumption to prove that sC10D

m+1
1 < 1, provided s is small enough.

Then we conclude the induction argument by proving that the error estimate holds
at the updated time step m + 1.

First, we will need the following technical result, which is a direct result of
Young’s inequality. The proof is skipped for brevity.

Lemma 3.10. For any a > 0, δ > 0 and 0 < q < 8, we have

(3.45) a·δq ≤ bδ8+r(a, b, q), ∀ b > 0, where r(a, b, q) :=
a

8
8−q

8
8−q

(
b · 8

q

) q
8−q

.

Theorem 3.11. With the same hypotheses as for Theorem 3.5, suppose that h and
s are sufficiently small and the following error estimate is valid up to the time step
tm := m · s, for 0 ≤ m ≤ M − 1:

(3.46)
∥∥∥∇hφ̃

m
∥∥∥

2

2
+ ε2s

m∑

j=1

∥∥∥∇h∆hφ̃
j
∥∥∥

2

2
≤ C15 exp (C16(tm + 1))

(
s2 + h4

)
,
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where C15, C16 > 0 may depend upon the final time T but are independent of s and
h. Then

sC10D
m+1
1 ≤ 1

2
.(3.47)

Proof. As an application of (3.45), the terms after the two leading terms appearing
on the right-hand side of (3.25) for the expansion of Dm+1

1 can be bounded as
follows:

α4
m+1 ≤ 1

16C10C4(T + 1)
α8

m+1 + C,(3.48)

α
16
3

m ≤ 1

16C10C4(T + 1)
α8

m + C.(3.49)

Then we get, for any 0 ≤ m ≤ M − 1,

sC11

(
α

16
3

m + α4
m+1 + 1

)
≤ s

16C4(T + 1)
α8

m+1 +
s

16C4(T + 1)
α8

k + sC17

≤ 1

8
+ sC17,(3.50)

using the L8
s(0, T ) bound for αm := ∥φm∥∞ in (2.9), where C18 > 0 is a constant

that is independent of h and s.
Now, the leading terms appearing on the right-hand side of (3.25) in the expan-

sion of Dm+1
1 – namely, α4

mα4
m+1 and α

16
3

m α
8
3
m+1 – cannot be bounded in this way

due to the fact that their exponents sum to exactly 8: 4 + 4 = 8, 16
3 + 8

3 = 8. We
must, therefore, rely upon (3.46). This bound implies

∥∥∥∇hφ̃
m
∥∥∥

2

2
≤ C15 exp (C16(T + 1))

(
s2 + h4

)
,

∥∥∥∇h∆hφ̃
m
∥∥∥

2

2
≤ ε−2C15 exp (C16(T + 1))

(
s2 + h4

)
s−1.

(3.51)

Using (3.22) and setting C18 := C15 exp (C16(T + 1)), we have
∥∥∥φ̃m

∥∥∥
2

∞
≤ 2C2

9

(∥∥∥∇hφ̃
m
∥∥∥

3
2

2

∥∥∥∇h∆hφ̃
m
∥∥∥

1
2

2
+
∥∥∥∇hφ̃

m
∥∥∥

2

2
+ h4

)

≤ 2C2
9

{
C18

(
s2 + h4

) (
ε−1/2s−1/4 + 1

)
+ h4

}

= 2C2
9

{
C18ε

−1/2s7/4 + C18ε
−1/2h4s−1/4 + C18s

2 + (1 + C18)h4
}

.

(3.52)

Under the time and space step size constraint

C18ε
−1/2s7/4 + C18s

2 + (1 + C18)h4 ≤ 1

2C2
9

,(3.53)

the following bound is available:
∥∥∥φ̃m

∥∥∥
2

∞
≤ 1 + 2C2

9C18ε
−1/2 h4

s1/4
.(3.54)

Consequently, we see that

α2
m := ∥φm∥2

∞ ≤ 2 ∥Φm∥2
∞ + 2

∥∥∥φ̃m
∥∥∥

2

∞
≤ C19

(
1 +

h4

s1/4

)
,(3.55)
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where C19 > 0 is independent of s and h, but it does depend upon the final time T
(at least exponentially) and the interface parameter ε. This shows that

(3.56) α4
mα4

m+1 ≤ C2
19

(
1 +

h4

s1/4

)2

α4
m+1 ≤ 2C2

19α
4
m+1 + 2C2

19
h8

s1/2
α4

m+1.

The first term on the right-hand side can be handled in the same way as (3.48):

2C2
19α

4
m+1 ≤ 1

16C10C4(T + 1)
α8

m+1 + C.(3.57)

Hence

(3.58) sC10

(
2C2

19α
4
m+1

)
≤ 1

16
+ sC20,

where C20 > 0 is independent of s and h. The second term on the right-hand side
of (3.56) can be analyzed as follows: using Cauchy’s inequality and (2.9), we have

sC10

(
2C2

19
h8

s1/2
α4

m+1

)
≤ C10C

2
19h

8
(
sα8

m+1 + 1
)

≤ C10C
2
19C4(T + 1)h8 + C10C

2
19h

8.(3.59)

Under an additional constraint for the grid size

h8 ≤ min

(
1

32C10C2
19C4(T + 1)

,
1

32C10C2
19

)
,(3.60)

we arrive at

sC10

(
2C2

19
h8

s1/2
α4

m+1

)
≤ 1

16
.(3.61)

A combination of (3.56), (3.58) and (3.61) yields

sC10α
4
mα4

m+1 ≤ 1

8
+ sC20.(3.62)

A similar analysis can be applied to the term α
16
3

m α
8
3
m+1 appearing in (3.25): under

similar constraints as given in (3.60), we have

sC10α
16
3

m α
8
3
m+1 ≤ 1

8
+ sC21,(3.63)

where C21 > 0 is independent of s and h. The details of the proof are skipped for
the sake of brevity.

Therefore, a combination of (3.50), (3.62), and (3.63) leads to

sC10D
m+1
1 ≤ 3

8
+ s(C17 + C20 + C21),(3.64)

and under the additional constraint for the time step

s ≤ 1

8(C17 + C20 + C21)
,(3.65)

we get the desired result, estimate (3.47). !
Remark 3.12. The desired bound (3.47) holds under the constraints (3.53), (3.60),
and (3.65), for time step s and grid size h. There is another bound, analogous to
(3.60) required for (3.63) to hold. Observe that there is no CFL-like condition to
be satisfied between s and h. In fact, all these constraints only depend on a few
generic constants, the physical parameters, and final time T .
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Remark 3.13. Under the a priori convergence assumption (3.46), we apply the
discrete Gagliardo-Nirenberg inequality and obtain (3.52), with the only singular

term being the one of the form O
(

h2

s1/8

)
. In turn, the ∥ · ∥∞ norm of the numerical

error function has the bound (3.54). Consequently, in the more detailed expansion
analysis (3.59), a term s1/2α4

m is involved in which the Cauchy inequality can be
applied. In other words, this analysis is marginal in 3-D.

If, on the other hand, a naive application of inverse inequality,

∥f∥∞ ≤ Ch−d/2 ∥f∥2 ,

is applied to the a priori convergence assumption (3.46), we obtain the ∥ · ∥∞ norm

of the numerical error function as of order O
(

s+h2

h3/2

)
in 3-D. Using this approach,

it is not possible to get the desired estimates without having a CFL-like condition
between s and h. Therefore, an application of the discrete Gagliardo-Nirenberg
inequality (3.52) is crucial in the analysis.

3.4. The main result: An error estimate. The following theorem is the main
result of this article. The basic idea is to extend the a priori error estimate (3.46)
by an induction argument.

Theorem 3.14. Given initial data φ0 ∈ C6(Ω), with homogeneous Neumann
boundary conditions, suppose the unique solution for the CHHS equation (1.3) –
(1.6) is of regularity class R. Then, provided s and h are sufficiently small, for all
positive integers ℓ such that s · ℓ ≤ T , we have

(3.66)
∥∥∥∇hφ̃

ℓ
∥∥∥

2

2
+ ε2s

ℓ∑

m=1

∥∥∥∇h∆hφ̃
m
∥∥∥

2

2
≤ C

(
s2 + h4

)
,

where C > 0 is independent of s and h.

Proof. Suppose that m + 1 ≤ M . By summing (3.24) we obtain

∥∥∥∇hφ̃
m+1

∥∥∥
2

2
+ ε2s

m+1∑

j=1

∥∥∥∇h∆hφ̃
j
∥∥∥

2

2

≤
∥∥∥∇hφ̃

0
∥∥∥

2

2
+ s

m+1∑

j=1

C10D
j
1

∥∥∥∇hφ̃
j
∥∥∥

2

2

+ s
m∑

j=0

C11D
j
2

∥∥∥∇hφ̃
j
∥∥∥

2

2

+ (s2 + h4)s
m+1∑

j=1

β2
j + C12h

4s
m+1∑

j=1

Dj
3.(3.67)

We proceed by induction. Namely, suppose that (3.46) holds. Then, if h and s are
sufficiently small – as required in the proof of the last theorem – considering (3.47)
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and using φ̃0 ≡ 0, we have

1

2

∥∥∥∇hφ̃
m+1

∥∥∥
2

2
+ ε2s

m+1∑

j=1

∥∥∥∇h∆hφ̃
j
∥∥∥

2

2

≤
(
1 − sC10D

m+1
1

) ∥∥∥∇hφ̃
m+1

∥∥∥
2

2
+ ε2s

m+1∑

j=1

∥∥∥∇h∆hφ̃
j
∥∥∥

2

2

≤ s
m∑

j=1

(
C10D

j
1 + C11D

j
2

)∥∥∥∇hφ̃
j
∥∥∥

2

2

+ (s2 + h4)s
m+1∑

j=1

β2
j + C12h

4s
m+1∑

j=1

Dj
3.(3.68)

Hence

∥∥∥∇hφ̃
m+1

∥∥∥
2

2
+ 2ε2s

m+1∑

j=1

∥∥∥∇h∆hφ̃
j
∥∥∥

2

2
≤ s

m∑

j=1

(
2C10D

j
1 + 2C11D

j
2

)∥∥∥∇hφ̃
j
∥∥∥

2

2

+C22(s
2 + h4),(3.69)

where C22 > 0 is a constant that is independent of s and h. Using the discrete
Gronwall inequality and Lemma 3.8 gives

∥∥∥∇hφ̃
m+1

∥∥∥
2

2
+ 2ε2s

m+1∑

j=1

∥∥∥∇h∆hφ̃
j
∥∥∥

2

2

≤ C22(s
2 + h4) exp

⎛

⎝s
m∑

j=1

(
2C10D

j
1 + 2C11D

j
2

)
⎞

⎠

≤ C22(s
2 + h4) exp (2C13(tm+1 + 1)) .(3.70)

Consequently, the a priori assumption (3.46) can be justified at time step tm+1 by
taking C15 = C22, C16 = 2C13. This completes the induction argument, and the
proof of Theorem 3.14 is finished. !

Remark 3.15. If the standard H1 conforming piecewise-linear space was used for φ
in a finite element approximation of (1.3) – (1.6) – which roughly corresponds to the
centered difference approximation employed in this work – the standard estimate in
the finite element space projection indicates an O(h) accuracy in the H1 norm. As
a result, the global convergence for the fully discrete finite element scheme would be
expected to be at best O(h) in the L∞(0, T ; H1) norm. Of course, the H3 norm of
the error would be undefined, since the approximation φ (and therefore the error)
would be only globally H1.

On the other hand, it is observed that an O(h2) convergence order has been
established for the finite difference scheme over a uniform grid in the discrete
L∞

s (0, T ; H1
h) ∩ L2

s(0, T ; H3
h) norm. This might be regarded as a kind of super-

convergence result and is due to the use of a uniform grid and spatially discrete
norms. The detailed convergence analysis for a mixed conforming finite element
approximation of the CHHS system (1.3) – (1.6) is currently being considered by
the authors.
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Remark 3.16. The convergence constant appearing in (3.66) (in Theorem 3.14) is
independent of s and h. Of course this constant does depend on the final time T
and on the interface parameter ε. A detailed calculation reveals it is of the order
exp

(
ε−kT

)
(k is some integer), which comes from the application of the discrete

Gronwall inequality in the convergence analysis.
There have been existing works on the improved convergence constant for the

pure Cahn-Hilliard equation (1.2). Specifically, Feng and Prohl [27] proved – for
a first order in time, fully discrete finite element scheme – that the convergence
constant is of order O(eC0T ε−m0), for some positive integer m0 and a constant C0

independent of ε, instead of the singularly ε-dependent exponential growth. To
the authors’ knowledge, this result gives the sharpest convergence constant for the
Cahn-Hilliard flow in the existing literature.

Such an elegant improvement was based on a subtle spectrum analysis for the
linearized Cahn-Hilliard operator, provided in earlier publications [3, 4, 13–15]:

λCH := inf
ψ∈H1,ψ ̸=0

ε−1
((

3Φ2(t) − 1
)
ψ,ψ

)
+ ε ∥∇ψ∥2

∥ψ∥2
H−1

≥ −C0,(3.71)

for any t ≥ 0, ε ∈ (0, ε0), with 0 < ε0 ≪ 1 and C0 independent of ε, where Φ is
the exact solution to the Cahn-Hilliard problem, with certain non-trivial structure
assumptions in place.

On the other hand, such a linearized spectrum estimate is not (yet) available
for the CHHS equation (1.3) – (1.6) due to the highly nonlinear convection term.
In turn, an improvement of the convergence constant reported in (3.66) cannot be
applied straightforwardly. This issue will be explored in the authors’ future work.

Remark 3.17. In the numerical approximation of any nonlinear PDE, the conver-
gence constant in the error analysis usually always contains an exponential growth
term (in the final time) when the discrete Gronwall inequality is utilized; see the
details of Remark 3.16. As a result, a theoretical analysis based on the discrete
Gronwall inequality would not likely justify the long time accuracy of the numerical
simulation. On the other hand, one can go a different route in the analysis. See,
for example, [5], where the authors establish an error constant that is only linear
in final time, T , for a numerical scheme approximating the Navier-Stokes equation.
They do not use the discrete Gronwall inequality, but a more intricate analysis that
requires the assumption of sufficiently small PDE solutions. The general analysis
without assumptions on the solutions or initial data is usually always difficult for
fully nonlinear equations.

The value of the energy stable schemes for long time numerical simulation is not
realized in terms of the convergence order at a fixed final time. Instead, the energy
stable schemes are expected to lead to a numerical accuracy in terms of the long
time average quantities via a recently developed technique of statistical convergence;
see the related works for two-dimensional incompressible Navier-Stokes equations
[30] and the epitaxial thin film growth model [43], to cite a couple of examples.

The statistical convergence properties and the numerical accuracy in terms of
long time average for the convex splitting scheme applied to the CHHS equation
(1.3) – (1.6) and other Cahn-Hilliard flow models are expected to involve many
more technical details, and such analyses will be the subject of future works.

Remark 3.18. The numerical scheme (2.1) – (2.3) is only first order accurate in
time. Meanwhile, higher order energy stable schemes, such as a second order convex
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splitting, is also available for the CHHS equation (1.3) – (1.6). For the second order
convex splitting scheme, the unique solvability, unconditional energy stability and
full order convergence analysis are all expected, though the analyses are somewhat
more complicated. We plan to report our results in future works.

Appendix A. Discretization of space

A.1. Basic definitions. Here we use the notation and results for some discrete
functions and operators from [47]. We begin with definitions of grid functions and
difference operators needed for our discretization of three-dimensional space. We
consider the domain Ω = (0, Lx) × (0, Ly) × (0, Lz) and assume that Nx, Ny and
Nz are positive integers such that h = Lx/Nx = Ly/Ny = Lz/Nz, for some h > 0,
which is called the spatial step size. Consider, for any positive integer N , the
following sets:

EN := {i·h
∣∣ i = 0, . . . , N}, CN :={(i − 1/2)·h

∣∣ i = 1, . . . , N)},(A.1)

CN := {(i − 1/2)·h
∣∣ i = 0, . . . , N + 1)}.(A.2)

The two points belonging to CN \CN are the so-called ghost points. Define the
function spaces

CΩ:={φ :CNx
×CNy

×CNz
→R}, Ex

Ω:={φ :ENx×CNy×CNz →R},(A.3)

Ey
Ω:={φ :CNx×ENy×CNz →R}, Ez

Ω:={φ :CNx×CNy×ENz →R},(A.4)

E⃗Ω := Ex
Ω × Ey

Ω × Ez
Ω.(A.5)

The functions of CΩ are called cell-centered functions. In component form, cell-
centered functions are identified via φi,j,k :=φ(ξi, ξj , ξk), where ξi := (i − 1/2) ·h.
The functions of Ex

Ω, etc., are called face-centered functions. In component form,
face-centered functions are identified via fi+ 1

2 ,j,k := f(ξi+1/2, ξj , ξk), etc.
A discrete function φ ∈ CΩ is said to satisfy homogeneous Neumann boundary

conditions, and we write n · ∇hφ = 0 iff at the ghost points φ satisfies

φ0,j,k = φ1,j,k, φNx,j,k= φNx+1,j,k,(A.6)

φi,0,k = φi,1,k, φi,Ny,k= φi,Ny+1,k,(A.7)

φi,j,0 = φi,j,1, φi,j,Nz = φi,j,Nz+1.(A.8)

A discrete function f = (fx, fy, fz)T ∈ E⃗Ω is said to satisfy the homogeneous
boundary conditions n · f = 0 iff we have

fx
1/2,j,k = 0, fx

Nx+1/2,j,k= 0,(A.9)

fy
i,1/2,k = 0, fy

i,Ny+1/2,k= 0,(A.10)

fz
i,j,1/2

= 0, fz
i,j,Nz+1/2

= 0.(A.11)

This staggered grid is also known as the marker and cell (MAC) grid and was first
proposed in [31] to deal with the incompressible Navier-Stokes equations. Also see
[38] for related applications to the 3-D primitive equations.

A.2. Discrete operators, inner products, and norms. We introduce the face-
to-center difference operator dx :Ex

Ω → CΩ, defined component-wise via

(A.12) dxfi,j,k :=
1

h
(fi+ 1

2 ,j,k − fi− 1
2 ,j,k),
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with dy :Ey
Ω → CΩ and dz :Ez

Ω → CΩ formulated analogously. Define ∇h· : E⃗Ω → CΩ

via

(A.13) ∇h · f := dxfx + dyfy + dzf
z,

where f = (fx, fy, fz)T . Define Ax :CΩ → Ex
Ω component-wise via

(A.14) Axφi+ 1
2 ,j,k :=

1

2
(φi,j,k + φi+1,j,k),

with Ay :CΩ → Ey
Ω and Az :CΩ → Ez

Ω formulated analogously. Define Ah :CΩ → E⃗Ω

via

(A.15) Ahφ := (Axφ, Ayφ, Azφ)T .

Define Dx :CΩ → Ex
Ω component-wise via

(A.16) Dxφi+ 1
2 ,j,k :=

1

h
(φi+1,j,k − φi,j,k).

Dy :CΩ → Ey
Ω and Dz :CΩ → Ez

Ω are similarly evaluated. Define ∇h :CΩ → E⃗Ω via

(A.17) ∇hφ := (Dxφ, Dyφ, Dzφ)T .

The standard discrete Laplace operator ∆h : CΩ → CΩ is just

(A.18) ∆hφ := ∇h · ∇hφ.

We define the following inner-products:

(φ,ψ) := h3
L∑

i=1

M∑

j=1

N∑

m=1

φi,j,kψi,j,k, ∀ φ,ψ ∈ CΩ,

(A.19)

[f, g]x :=
1

2
h3

L∑

i=1

M∑

j=1

N∑

m=1

(fi+ 1
2 ,j,kgi+ 1

2 ,j,k + fi− 1
2 ,j,kgi− 1

2 ,j,k), ∀ f, g ∈ Ex
Ω.

(A.20)

[·, ·]y and [·, ·]z can be formulated analogously. For f =(fx, fy, fz)T , g=(gx, gy, gz)T

∈ E⃗Ω we define the natural inner product

(A.21) (f , g) := [fx, gx]x + [fy, gy]y + [fy, gy]z ,

which gives the associated norm ∥f∥2 =
√

(f , f). Analogously, for φ,ψ ∈ CΩ, a
natural discrete inner product of their gradients is given by

(A.22) (∇hφ,∇hψ) := [Dxφ, Dxψ]x + [Dyφ, Dyψ]y + [Dzφ, Dzψ]z .

We also introduce the following norms for cell-centered functions φ ∈ CΩ:

∥φ∥∞ := max
i,j,k

|φi,j,k|,(A.23)

∥φ∥p := (|φ|p, 1)
1
p , 1 ≤ p < ∞.(A.24)

In addition, we define

(A.25) ∥∇hφ∥p :=
(
[|Dxφ|p , 1]x + [|Dyφ|p , 1]y + [|Dzφ|p , 1]z

) 1
p

.

In the case of p = 2, it is clear that (∇hφ,∇hφ) = ∥∇hφ∥2
2.
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A.3. Summation by parts formulas. For φ,ψ ∈ CΩ and a velocity vector field
u ∈ E⃗Ω, the following summation by parts formulas can be derived. If ψ satisfies
the homogeneous Neumann boundary conditions, we have

(A.26) (φ,∆hψ) = − (∇hφ,∇hψ) .

If u · n = 0 on the boundary, we get

(A.27) (φ,∇h · u) = − (∇hφ, u) .

Appendix B. Proof of the Gagliardo-Nirenberg inequality
in Lemma 2.2

For simplicity of presentation, we assume Nx = Ny = Nz =: N is odd and
Lx = Ly = Lz =: L. The general case can be analyzed in the same manner, with
more technical details involved.

Proof. Due to the discrete Neumann boundary conditions for φ and its cell-centered
representation, it has a corresponding discrete Fourier cosine transformation in
quarter wave sequence:

φi,j,k =
N−1∑

ℓ,m,n=0

αℓ,m,nφ̂
N
ℓ,m,n cos

ℓπxi

L
cos

mπyj

L
cos

nπzk

L
,(B.1)

with αℓ,m,n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if ℓ ̸= 0, m ̸= 0, n ̸= 0,√
1
2 , if one among ℓ, m, n is 0,

√
1
4 , if two among ℓ, m, n are 0,

√
1
8 , if ℓ = m = n = 0,

where xi = (i − 1
2 )h, yj = (j − 1

2 )h, zk = (k − 1
2 )h. Then we make its extension to

a continuous function:

(B.2) φF(x, y, z) =
N−1∑

ℓ,m,n=0

αℓ,m,nφ̂
N
ℓ,m,n cos

ℓπx

L
cos

mπy

L
cos

nπz

L
.

Parseval’s identity (at both the discrete and continuous levels) implies that

N∑

i,j,k=1

|φi,j,k|2 =
1

8
N3

N−1∑

ℓ,m,n=0

|φ̂N
ℓ,m,n|2,(B.3)

∥φF∥2
L2 =

1

8
L3

N−1∑

ℓ,m,n=0

|φ̂N
ℓ,m,n|2.(B.4)

Based on the fact that hN = L, this in turn results in

(B.5) ∥φ∥2
2 = h3

N∑

i,j,k=1

|φi,j,k|2 = ∥φF∥2
L2 =

1

8
L3

N−1∑

ℓ,m,n=0

|φ̂N
ℓ,m,n|2.
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For the comparison between the discrete and continuous gradient, we start with
the following Fourier expansions:

(Dxφ)i+1/2,j,k =
φi+1,j,k − φi,j,k

h

=
N−1∑

ℓ,m,n=0

αℓ,m,nµℓφ̂
N
ℓ,m,n sin

ℓπxi+1/2

L
cos

mπyj

L
cos

nπzk

L
,(B.6)

∂xφF(x, y, z) =
N−1∑

ℓ,m,n=0

αℓ,m,nνℓφ̂
N
ℓ,m,n sin

ℓπx

L
cos

mπy

L
cos

nπz

L
,(B.7)

with

(B.8) µℓ = −
2 sin ℓπh

2L

h
, νℓ = −ℓπ

L
.

In turn, an application of Parseval’s identity yields

∥Dxφ∥2
2 =

1

8
L3

N−1∑

ℓ,m,n=0

|µℓ|2|φ̂N
ℓ,m,n|2,(B.9)

∥∂xφF∥2
L2 =

1

8
L3

N−1∑

ℓ,m,n=0

|νℓ|2|φ̂N
ℓ,m,n|2.(B.10)

The comparison of Fourier eigenvalues between |µℓ| and |νℓ| shows that

(B.11)
2

π
|νℓ| ≤ |µℓ| ≤ |νℓ|, for 0 ≤ ℓ ≤ N − 1.

This indicates that

(B.12)
2

π
∥∂xφF∥L2 ≤ ∥Dxφ∥2 ≤ ∥∂xφF∥L2 .

Similar comparison estimates can be derived in the same manner to reveal

(B.13)
2

π
∥∇φF∥L2 ≤ ∥∇hφ∥2 ≤ ∥∇φF∥L2 .

It can be proved analogously that

4

π2
∥∆φF∥L2 ≤ ∥∆hφ∥2 ≤ ∥∆φF∥L2 ,(B.14)

8

π3
∥∇∆φF∥L2 ≤ ∥∇h∆hφ∥2 ≤ ∥∇∆φF∥L2 .(B.15)

Meanwhile, we observe that the discrete average of φ and the continuous average
of φF are identical:

φ̄ :=
h3

|Ω|

N∑

i,j,k=1

φi,j,k = α0,0,0φ̂
N
0,0,0 =

1

|Ω|

∫

Ω
φF(x) dx =: φF.(B.16)
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As a result, we see that
∥∥φ− φ̄

∥∥
∞ ≤

∥∥φF − φ̄
∥∥

L∞

≤ C
(
∥φF − φ̄∥

3
4

L6∥∇∆φF∥
1
4

L2 + ∥φF − φ̄∥L6

)

≤ C
(
∥∇φF∥

3
4

L2 ∥∇∆φF∥
1
4

L2 + ∥∇φF∥L2

)

≤ C1

(
∥∇hφ∥

3
4
2 ∥∇h∆hφ∥

1
4
2 + ∥∇hφ∥2

)
,

(B.17)

in which the 3-D Gagliardo-Nirenberg inequality, Sobolev embedding (see [1] for
more details) and Poincaré inequality were applied, and the equivalence estimates
(B.13), (B.15) were recalled in the derivation. The proof of Lemma 2.2 is complete.
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