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Abstract. The porous medium equation (PME) is a typical nonlinear degenerate
parabolic equation. We have studied numerical methods for PME by an energetic vari-
ational approach in [C. Duan et al., J. Comput. Phys., 385 (2019), pp. 13–32], where
the trajectory equation can be obtained and two numerical schemes have been devel-
oped based on different dissipative energy laws. It is also proved that the nonlinear
scheme, based on f log f as the total energy form of the dissipative law, is uniquely solv-
able on an admissible convex set and preserves the corresponding discrete dissipation
law. Moreover, under certain smoothness assumption, we have also obtained the sec-
ond order convergence in space and the first order convergence in time for the scheme.
In this paper, we provide a rigorous proof of the error estimate by a careful higher or-
der asymptotic expansion and two step error estimates. The latter technique contains
a rough estimate to control the highly nonlinear term in a discrete W 1,∞ norm and a
refined estimate is applied to derive the optimal error order.
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1. Introduction and background

One of the typical nonlinear degenerate parabolic equations is the porous medium
equation (PME):

∂tf = ∆x(fm), x ∈ Ω ⊂ Rd, m > 1,

where f = f(x, t) is a non-negative scalar function of space x ∈ Rd (d ≥ 1) and the
time t ∈ R+ and m is a constant larger than 1. It has been applied in many physical and
biological models, such as an isentropic gas flow through a porous medium, the viscous
gravity currents, nonlinear heat transfer and image processing [18], etc.

It is well known that the PME is degenerate at points where f = 0. In turn, the PME
has many special features: the finite speed of propagation, the free boundary, a possible
waiting time phenomenon [5, 18]. Various numerical methods have been studied for the
PME, such as finite difference approach [8], tracking algorithm method [3], a local dis-
continuous Galerkin finite element method [24], Variational Particle Scheme (VPS) [23]
and an adaptive moving mesh finite element method [13]. Many theoretical analyses have
been derived in the existing literature [1,12,14,16–18], etc.

Relevant detailed descriptions can be found in a recent paper [5], in which the numeri-
cal methods for the PME were constructed by an Energetic Variational Approach (EnVarA)
to naturally keep the physical laws, such as the conservation of mass, energy dissipation
and force balance. Meanwhile, based on different dissipative energy laws, two different nu-
merical schemes have been studied. In more details, based on the total energy form f log f
and 1

2f , a fully discrete nonlinear scheme and a linear numerical scheme could be appro-
priately designed for the trajectory equation, respectively. It has also been proved that the
former one is uniquely solvable on an admissible convex set and both schemes preserve
the corresponding discrete dissipation law. Numerical experiments have demonstrated
that both schemes have yielded a good approximation for the solution without oscillation
and the free boundary. The notable advantage is that the waiting time problem could be
naturally treated, which has been a well-known difficult issue for all the existing methods.
In addition, under certain smoothness assumption, the second order convergence in space
and the first order convergence in time have been reported for both schemes in [5]. The
aim of the paper is to provide a rigorous proof of the optimal rate convergence analysis
for the nonlinear scheme. On the other hand, the highly nonlinear nature of the trajectory
equation makes the convergence analysis every challenging. To overcome these difficulties,
we use a higher order expansion technique to ensure a higher order consistency estimate,
which is needed to obtain a discrete W 1,∞ bound of the numerical solution. Similar ideas
have been reported in earlier literature for incompressible fluid equations [6, 7, 15, 21],
while the analysis presented in this work turns out to be more complicated, due to the lack
of a linear diffusion term in the trajectory equation of the PME. In addition, we have to
carry out two step estimates to recover the nonlinear analysis:

Step 1 A rough estimate for the discrete derivative of numerical solution, namely (Dhx
n+1
h )
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at time tn+1, to control the nonlinear term;

Step 2 A refined estimate for the numerical error function to obtain an optimal conver-
gence order.

Different from a standard error estimate, the rough estimate controls the nonlinear term,
which is an effective approach to handle the highly nonlinear term.

This paper is organized as follows. The trajectory equation of the PME and the numer-
ical scheme are outlined in Section 2.1 and Section 2.2, respectively. Subsequently, the
proof of optimal rate convergence analysis is provided in Section 3. Finally we present a
simple numerical example to demonstrate the convergence rate of the numerical scheme
in Section 4.

2. Trajectory equation and the numerical scheme

In this section, we review the trajectory equation and the corresponding numerical
scheme.

2.1. Trajectory equation of the PME

In this part, the one-dimensional trajectory equation will be reviewed, derived by an
Energetic Variational Approach [5]. We solve the following initial-boundary problem:

∂tf + ∂x(fv) = 0, x ∈ Ω ⊂ R, t > 0, (2.1a)

fv = −∂x(fm), x ∈ Ω, m > 1, (2.1b)

f(x, 0) = f0(x) ≥ 0, x ∈ Ω, (2.1c)

∂xf = 0, x ∈ ∂Ω, t > 0, (2.1d)

where Ω is a bounded domain, f is a non-negative function, t is the time, x is the particle
position and v is the velocity of particle .

The following lemma is available.

Lemma 2.1. f(x, t) is a positive solution of (2.1a)-(2.1d) if and only if f(x, t) satisfies the
corresponding energy dissipation law:

d

dt

∫
Ω
f ln fdx = −

∫
Ω

f

mfm−1
|v|2dx. (2.2)

Proof. We first prove the energy dissipation law (2.2) if f is the solution of (2.1a)-
(2.1d). Multiplying by (1 + ln f) and integrating on both sides of (2.1a), we get∫

Ω
(1 + ln f)∂tfdx = −

∫
Ω

(1 + ln f)∂x(fv)dx.
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Using integration by parts, in combination with (2.1b), we have

d

dt

∫
Ω
f ln fdx =

∫
Ω

∂xf

f
(fv)dx = −

∫
Ω

f

mfm−1
|v|2dx ≤ 0. (2.3)

Subsequently, we are also able to derive (2.1b) from the energy dissipation law (2.2) by
EnVarA.

In addition, (2.1a) is the conservation law. In the Lagrangian coordinate, its solution
can be expressed by:

f(x(X, t), t) =
f0(X)
∂x(X,t)
∂X

, (2.4)

where f0(X) is the positive initial data and ∂Xx := ∂x(X,t)
∂X is the deformation gradient in

one dimension.
Based on an Energetic Variational Approach, we can obtain the trajectory equation.

Energy Dissipation Law.
The total energy of the PME is

Etotal :=

∫
Ω
f ln fdx. (2.5)

Least Action Principle Step.
With (2.4), the action functional in Lagrangian coordinate becomes

A(x) :=

∫ T ∗

0
(−H)dt = −

∫ T ∗

0

∫
Ω
f0(X) ln

(f0(X)

∂Xx

)
dXdt,

where T ∗ > 0 is a given terminal time and H is the free energy depending on x. Thus for
any test function y(X, t) = ỹ(x(X, t), t) ∈ C∞0 (Ω×(0, T ∗)) and ε ∈ R, taking the variational
of A(x) with respect to x, we have

d

dε

∣∣∣∣
ε=0

A(x+ εy) =

∫ T ∗

0

∫
Ω

f0(X)

∂Xx
· ∂Xy dXdt

=−
∫ T ∗

0

∫
Ω
∂xf · ỹ dxdt.

Then the conservation force turns out to be

Fcon =
δA
δx

= −∂xf,

in the Eulerian coordinate, and

Fcon = −∂X
(
f0(X)

∂Xx

)
,
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in the Lagrangian coordinate.

Maximal Dissipation Principle Step.
Define the entropy production

∆ :=

∫
Ω

f

mfm−1
|v|2dx.

Taking the variational of 1
2∆ with respect to the velocity v and xt, we obtain the dissipation

force

Fdis :=
δ 1

2∆

δv
=

f

mfm−1
v,

in the Eulerian coordinate and

Fdis :=
δ 1

2∆

δ(∂tx)
=

f0(X)

m
(f0(X)
∂Xx

)m−1
∂tx,

in the Lagrangian coordinate.

Force balance Step.
Based on the Newton’s force balance law, we get

f0(X)

m
(f0(X)
∂Xx

)m−1
∂tx = −∂X

(
f0(X)

∂Xx

)
, (2.6)

in the Lagrangian coordinate and the Darcy’s Law in the Eulerian coordinate

f

mfm−1
v = −∂xf.

Thus, we complete the proof. �

It is noticed that, there is an assumption that the value of initial state f0(x) is positive
in Ω to make

∫
Ω f ln fdx well-defined in (2.2). More details can be found in [5].

Since then, we should first settle the initial and boundary conditions for (2.6). From
(2.1a) and (2.1d), we have xt|∂Ω = 0, for t > 0. This means that the particles lying on
boundary will stay there forever, so a Dirichlet boundary condition should be subject to as
x|∂Ω = X|∂Ω, for t ≥ 0. As a result, the trajectory problem becomes

f0(X)

m
(f0(X)
∂Xx

)m−1
∂tx = −∂X

(
f0(X)

∂Xx

)
, X ∈ Ω, t > 0, (2.7a)

x|∂Ω = X|∂Ω, t > 0, (2.7b)

x(X, 0) = X, X ∈ Ω. (2.7c)

Finally, with a substitution of (2.7a) into (2.4), we obtain the solution f(x, t) to (2.1a)-
(2.1d).
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2.2. Numerical scheme of the trajectory equation

Let τ = T
N , where N ∈ N+, T is the final time and the grid points are given by tn = nτ ,

n = 0, · · · , N . Let X0 be the left point of Ω and h = |Ω|
M be the spatial step, M ∈ N+.

Denote by Xr = X(r) = X0 + rh, where r takes on integer and half integer values.
Let EM and CM be the spaces of functions whose domains are {Xi|i = 0, · · · ,M} and
{Xi− 1

2
|i = 1, · · · ,M}, respectively. In component form, these functions are identified via

li = l(Xi), i = 0, · · · ,M , for l ∈ EM and φi− 1
2

= φ(Xi− 1
2
), i = 1, · · · ,M for φ ∈ CM .

The difference operator Dh : EM → CM , dh : CM → EM and D̃h : EM → EM can be
defined as:

(Dhl)i− 1
2

= (li − li−1)/h, i = 1, · · · ,M, (2.8a)

(dhφ)i = (φi+ 1
2
− φi− 1

2
)/h, i = 1, · · · ,M − 1, (2.8b)

(D̃hl)i = (li+1 − li−1)/2h, i = 1, · · · ,M − 1, (2.8c)

(D̃hl)i = (4li+1 − li+2 − 3li)/2h, i = 0, (2.8d)

(D̃hl)i = (li−2 − 4li−1 + 3li)/2h, i = M, (2.8e)

respectively.
Let Q := {l ∈ EM |li−1 < li, 1 ≤ i ≤ M ; l0 = X0, lM = XM} with its boundary set

∂Q := {l ∈ EM |li−1 ≤ li, 1 ≤ i ≤M ; l0 = X0, lM = XM ; ∃ i ∈ {1, · · · ,M}, s.t. li−1 = li}.
Then Q̄ := Q ∪ ∂Q is a closed convex set. Its physical meaning indicates that particles are
arranged in the order without twisting or exchanging in Q.

A few more notations have to be introduced. Let l, g ∈ EM and φ, ϕ ∈ CM . We define
the inner product on space EM and CM respectively as:

〈l, g〉 := h

(
1

2
l0g0 +

M−1∑
i=1

ligi +
1

2
lMgM

)
, (2.9a)

〈φ, ϕ〉e := h

M−1∑
i=0

φi+ 1
2
ϕi+ 1

2
. (2.9b)

The following summation by parts formula is available:

〈l, dhφ〉 = −〈Dhl, φ〉e with l0 = lM = 0, φ ∈ CM , l ∈ EM . (2.10)

The inverse inequality is given by:

‖l‖∞ ≤ Cm
‖l‖2
h1/2

, ∀l ∈ EM with ‖l‖∞ := max
0≤i≤M

{li}, ‖l‖22 := 〈l, l〉. (2.11)
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The fully discrete scheme is formulated as follows: Given the positive initial state f0(X) ∈
EM and the particle position xn ∈ Q, find xn+1 = (xn+1

0 , · · · , xn+1
M ) ∈ Q such that

f0(Xi)

m
(f0(X)

D̃hxn

)m−1

i

·
xn+1
i − xni

τ
= −dh

[( f0(X)

Dhxn+1

)]
i
, 1 ≤ i ≤M − 1, (2.12)

with xn+1
0 = X0 and xn+1

M = XM , n = 0, · · · , N − 1.
It is noticed that (2.12) is still a nonlinear system which can be solved by Newton’s

iteration method [5]. Then we obtain the numerical solution f(xi, t
n) := fni by

fni =
f0(X)

D̃hx
n
i

, 0 ≤ i ≤M, (2.13)

which is the discrete scheme of (2.4).

3. Convergence analysis

In this section, the second order spatial convergence and the first order temporal con-
vergence will be theoretically justified for the numerical scheme (2.12). We first intro-
duce a higher order approximate expansion of the exact solution, since a consistency es-
timate (second order in space and first order in time) is not able to control the discrete
W 1,∞ norm of the numerical solution. Also see the related works in the earlier litera-
ture [2,6,7,9,10,15,19–22], etc.

Lemma 3.1. Assume a higher order approximate solution of the exact solution xe:

W := xe + τw(1)
τ + τ2w(2)

τ + h2wh, (3.1)

where w(1)
τ , w(2)

τ , wh ∈ C∞(Ω; 0, T ). Then there exists a small τ0 > 0, such that ∀τ, h ≤
τ0, D̃hW > 0, i.e., W ∈ Q, where τ and h are the time step and the spatial mesh sizes,
respectively.

Proof. Because of a point-wise condition for the exact solution, xe ∈ Q, i.e., ∃ε0 > 0,
such that Dhxe > ε0 > 0. For small τ0, such that

‖τDhw
(1)
τ ‖L∞ ≤

1

9
ε0, ‖τ2Dhw

(2)
τ ‖L∞ ≤

1

9
ε0 and ‖h2Dhwh‖L∞ ≤

1

9
ε0,

for ∀τ, h ≤ τ0. As a consequence, for ∀τ, h ≤ τ0, we have

DhW ≥
1

3
ε0 > 0, (3.2)

which in turn implies that W ∈ Q. �
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Theorem 3.1. Assume that the initial function f0(X) is positive and bounded, i.e., 0 < bf ≤
f0(X) ≤ Bf . Denote xe ∈ Ω as the exact solution to the original PDE (2.7a) (with enough
regularity) and xh ∈ Q as the numerical solution to (2.12). The numerical error function is
defined at a point-wise level:

eni = xnei − x
n
hi
, (3.3)

where xnei , x
n
hi
∈ Q, 0 ≤ i ≤ N , n = 0, · · · ,M .

Then we have

• en = (en0 , · · · , enM ) satisfies

‖en‖2 := 〈en, en〉 ≤ C(τ + h2).

• D̃he
n = (D̃he

n
0 , · · · , D̃he

n
M ) satisfies

‖D̃he
n‖2 ≤ C(τ + h2).

Moreover, the error between the numerical solution fnh and the exact solution fne of Eqs. (2.1a)-
(2.1d) can be estimated by:

‖fnh − fne ‖2 ≤ C(τ + h2),

where C is a positive constant, h is the spatial step, τ is the time step and n = 0, · · · , N .

Proof. A careful Taylor expansion of the exact solution in both time and space, in terms
of the numerical scheme (2.7a), gives that

f0(Xi)

m(f0(Xi)

D̃hxnei
)m−1

xn+1
ei − xnei

τ

= −dh
( f0(X)

Dhx
n+1
e

)
i
+ τ l

(1)
i + τ2l

(2)
i + τ3l

(3)
i + h2g

(1)
i + h4g

(2)
i , 1 ≤ i ≤M − 1,

with xn+1
e0 = X0, xn+1

eM
= XM , (3.4)

where ‖l(1)‖2, ‖l(2)‖2, ‖l(3)‖2, ‖g(1)‖2, ‖g(2)‖2 ≤ Ce, with Ce only dependent on the exact
solution.

To perform a higher order consistency analysis for an approximate solution of the exact
solution, we have to construct the approximation W as in (3.1).

The term w
(1)
τ ∈ C∞(Ω; 0, T ) is given by the following linear equation:

f0(X)

m(f0(X)
∂Xxe

)m−1
∂tw

(1)
τ +

m− 1

m(f0(X)
∂Xxe

)m−2
∂txe · ∂Xw(1)

τ = ∂X

( f0(X)

(∂Xxe)2
∂Xw

(1)
τ

)
− l(1), (3.5a)

w(1)
τ |∂Ω = 0, w(1)

τ (·, 0) = 0. (3.5b)
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The term w
(2)
τ ∈ C∞(Ω; 0, T ) is given by the following linear equation:

f0(X)

m(f0(X)
∂Xxe

)m−1
∂tw

(2)
τ +

m− 1

m(f0(X)
∂Xxe

)m−2
∂txe · ∂Xw(2)

τ

+
(m− 1)(m− 2)

2m(f0(X)
∂Xxe

)m−2∂Xxe
(∂Xw

(1)
τ )2 · ∂txe +

(m− 1)

m(f0(X)
∂Xxe

)m−2
∂tw

(1)
τ · ∂Xw(1)

τ

= ∂X

( f0(X)

(∂Xxe)2
∂Xw

(2)
τ

)
− ∂X

( f0(X)

(∂Xxe)3
(∂Xw

(1)
τ )2

)
− l(2), (3.6a)

w(2)
τ |∂Ω = 0, w(2)

τ (·, 0) = 0. (3.6b)

The term wh ∈ C∞(Ω; 0, T ) is given by the following linear equation:

f0(X)

m(f0(X)
∂Xxe

)m−1
∂twh +

(m− 1)∂txe

m(f0(X)
∂Xxe

)m−2
∂Xwh = ∂X

( f0(X)

(∂Xxe)2
∂Xwh

)
− g(1), (3.7a)

wh|∂Ω = 0, wh(·, 0) = 0. (3.7b)

Since w(1)
τ , w(2)

τ , wh are dependent only on W and xe, we have the following estimate:

‖W − xe‖Hm = τ‖w(1)
τ ‖Hm + τ2‖w(1)

τ ‖Hm + h2‖wh‖Hm ≤ C ′(τ + h2). (3.8)

With these expansion terms, the constructed approximation W ∈ Q satisfies the numerical
scheme with a higher order truncation error:

f0(Xi)

m
( f0(X)

D̃hWn

)m−1

i

·
Wn+1
i −Wn

i

τ
= −dh

( f0(X)

DhWn+1

)
i
+ τ3l∗i + h4g∗i , 1 ≤ i ≤M − 1,

with Wn+1
0 = X0, Wn+1

M = XM , n = 0, 1, · · · , N − 1, (3.9)

where l∗, g∗ are dependent only on l(1), l(2), l(3), g(1), g(2) and the derivatives of w(1)
τ , w(2)

τ ,
wh.

Then we define ẽni := Wn
i − xnhi , 0 ≤ i ≤ M , n = 0, 1, · · · , N . In other words, instead

of a direct comparison between the numerical solution and exact PDE solution, we evalu-
ate the numerical error between the numerical solution and the constructed solution W .
The higher order truncation error enables us to obtain a required W 1,∞

h of the numerical
solution, which is necessary in the nonlinear convergence analysis.

Note that the discrete L2 norm ‖ẽ0‖2 = 0 at time step t0. We make the following a-priori
assumption at time step tn:

‖ẽn‖2 ≤ (τ
11
4 + h

7
2 ). (3.10)
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In turn, the following estimates become available, by making use of inverse inequalities:

‖D̃hẽ
n‖2 ≤ C(τ

7
4 + h

5
2 ), (3.11a)

‖D̃hẽ
n‖∞ ≤ CCm

‖D̃hẽ
n‖2

h1/2
≤ CCm(τ

5
4 + h2), if h = O(τ), (3.11b)

‖D̃hx
n
h‖∞ = ‖D̃hW

n − D̃hẽ
n‖∞ ≤ C∗ + 1 := C∗0 , (3.11c)

with C∗ := ‖D̃hW
n‖∞, if CCm(τ

5
4 + h2) ≤ 1, (3.11d)∥∥∥D̃hx

n
h − D̃hx

n−1
h

τ

∥∥∥
∞

=
∥∥∥D̃hW

n − D̃hW
n−1

τ
− D̃hẽ

n − D̃hẽ
n−1

τ

∥∥∥
∞
≤ C̃∗t + 1, (3.11e)

with C̃∗t :=
∥∥∥D̃hW

n − D̃hW
n−1

τ

∥∥∥
∞
, if CCm(τ

1
4 + h) ≤ 1. (3.11f)

For xh,W ∈ Q, i.e., ∃δ0 > 0, such that D̃hW
n
i ≥ δ0, then D̃hx

n
hi
≥ δ0

2 > 0, 0 ≤ i ≤ M , if

Cmγ(τ
5
4 + h2) ≤ δ0

2 .
In turn, subtracting (3.9) from the numerical scheme (2.12) yields

f0(Xi)

m
(f0(X)

D̃hx
n
h

)m−1

i

·
ẽn+1
i − ẽni

τ

+
f0(Xi)

m[f0(Xi)]m−1
·
Wn+1
i −Wn

i

τ
· [
(
D̃hW

n
)m−1

i
−
(
D̃hx

n
h

)m−1

i
]

=dh

(
f0(X)

DhW
n+1
i Dhx

n+1
h

Dhẽ
n+1

)
i

+ τ3l∗i + h4g∗i , 1 ≤ i ≤M − 1,

with ẽn+1
0 = ẽn+1

M = 0, (3.12)

in which the form of the left term comes from the following identity:

f0(Xi)

m
( f0(X)

D̃hWn

)m−1

i

Wn+1
i −Wn

i

τ
− f0(X)

m
(f0(Xi)

D̃hx
n
h

)m−1

i

xn+1
hi
− xnhi
τ

=
f0(Xi)

τm[f0(Xi)]m−1
[(D̃hW

n)m−1
i (Wn+1

i −Wn
i )− (D̃hx

n
h)m−1
i (xn+1

hi
− xnhi)

+
(
D̃hx

n
h

)m−1

i
(Wn+1

i −Wn
i )−

(
D̃hx

n
h

)m−1

i
(Wn+1

i −Wn
i )]

=
f0(Xi)

m[f0(Xi)]m−1
·
Wn+1
i −Wn

i

τ
· [
(
D̃hW

n
)m−1

i
−
(
D̃hx

n
h

)m−1

i
]

+
f0(Xi)

m
(f0(X)

D̃hx
n
h

)m−1

i

·
ẽn+1
i − ẽni

τ
.
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Based on the preliminary results, taking a discrete inner product with (3.12) by 2ẽn+1

gives

2
〈
αn(ẽn+1 − ẽn), ẽn+1

〉
− 2τ

〈
dh

(
f0(X)

DhWn+1Dhx
n+1
h

Dhẽ
n+1

)
, ẽn+1

〉

=− 2τ

〈
f0(X)

m[f0(X)]m−1
· W

n+1 −Wn

τ
· [(D̃hW

n)m−1 − (D̃hx
n
h)m−1], ẽn+1

〉
+ 2τ

〈
τ3f∗ + h4g∗, ẽn+1

〉
, (3.13)

where

αn :=
f0(x)

m
(
f0(X)

D̃hx
n
h

)m−1 . (3.14)

For the first term of the left side, we get

2
〈
αn(ẽn+1 − ẽn), ẽn+1

〉
=αn‖ẽn+1‖22 + αn‖ẽn+1 − ẽn‖22 − αn‖ẽn‖22
≥αn‖ẽn+1‖22 − αn‖ẽn‖22. (3.15)

For the second term of the left side, we see that

− 2τ

〈
dh

(
f0(X)

DhWn+1Dhx
n+1
h

Dhẽ
n+1

)
, ẽn+1

〉

=2τ

〈
f0(X)

DhWn+1Dhx
n+1
h

Dhẽ
n+1, Dhẽ

n+1

〉
e

≥ 0, (3.16)

in which the summation by parts formula (2.10) is applied with ẽn+1
0 = ẽn+1

N = 0.
For the right side term, we have

− 2τ

〈
f0(X)

m[f0(X)]m−1
· W

n+1 −Wn

τ
· [(D̃hW

n)m−1 − (D̃hx
n
h)m−1], ẽn+1

〉
=− 2τ

〈
f0(X)

m[f0(X)]m−1
· W

n+1 −Wn

τ
· [(m− 1)(D̃hζ

n)m−2D̃hẽ
n], ẽn+1

〉
≤2τC1‖D̃hẽ

n‖2‖ẽn+1‖2
(
C1 :=

(m− 1)BfC
∗
t C

m−2
ζ

mb
(m−1)
f

)
≤τC1‖D̃hẽ

n‖22 + τC1‖ẽn+1‖22, (3.17)

in which C∗t = ‖Wt‖∞, D̃hζ is between D̃hx
n
h and D̃hW

n, ‖D̃hζ‖∞ ≤ Cζ , with

Cζ :=

{
C∗0 , m ≥ 2,

δ0/2, m < 2.
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The local truncation error term could be bounded by the standard Caught inequality:

2τ
〈
τ3l∗ + h4g∗, ẽn+1

〉
≤τ‖τ3l∗ + h4g∗‖22 + τ‖ẽn+1‖22
≤τC(τ3 + h4)2 + τ‖ẽn+1‖22. (3.18)

Next we estimate ‖Dhx
n+1
h ‖∞ roughly. Based on (3.14), αn can be estimated by

Cα :=
bf

m(
Bf
δ0/2

)m−1
≤ ‖α‖n ≤

Bf

mbm−1
f

(C∗0 )m−1 := C̄α.

A substitution of (3.15)-(3.18) into (3.13), in combination with (3.11a), leads to

(αn − τ(1 + C1))‖ẽn+1‖22
≤αn‖ẽn‖22 + τC1‖D̃hẽ

n‖22 + τC(τ3 + h4)2

≤τC̄(τ
7
4 + h

5
2 )2,

where C̄ is dependent on C, C1 and C̄α. Then we get

‖ẽn+1‖22 ≤ C̃2τ(τ
7
4 + h

5
2 )2, i.e., ‖ẽn+1‖2 ≤ C̃τ

1
2 (τ

7
4 + h

5
2 ), (3.19)

with

C̃ :=
( C̄

Cα/2

) 1
2
, if τ(1 + C1) ≤ Cα/2.

Based on the inverse inequality (2.11), we obtain that, by choosing h = O(τ),

‖ẽn+1‖∞ ≤
Cm‖ẽn+1‖2

h
1
2

≤ CmC̃(τ
7
4 + h

5
2 ). (3.20)

Then we have

‖Dhx
n+1
h ‖∞ =‖DhW

n+1 −Dhẽ
n+1‖∞

≤C∗ + CmC̃(τ
3
4 + h

3
2 ) ≤ C∗ + 1 := C∗0 , (3.21)

if CmC̃(τ + h2) ≤ 1.
As a result, (3.16) can be re-estimated as follows:

2τ

〈
f0(X)

DhWn+1Dhx
n+1
h

Dhẽ
n+1, Dhẽ

n+1

〉
e

≥ 2τC2‖Dhẽ
n+1‖22, (3.22)

with C2 :=
bf

C∗C∗0
.
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As a consequence, a substitution of (3.15)-(3.18) with (3.22) into (3.13) leads to

αn‖ẽn+1‖22 − αn‖ẽn‖22 + τC2‖D̃hẽ
n+1‖22

≤τ
(

1 +
C2

1

C2

)
‖ẽn+1‖22 + τC(τ3 + h4)2,

where the following estimates are applied: ‖D̃hx
n
h‖2 ≤ ‖Dhx

n
h‖2 and

2τC1‖D̃hẽ
n‖2‖ẽn+1‖2 ≤ τ

C2
1

C2
||ẽn+1||22 + τC2||D̃hẽ

n||22. (3.23)

Subsequently, a summation in time shows that

αn‖ẽn+1‖22 + τC2

n+1∑
k=1

||D̃hẽ
k||22

≤ τ
n∑
k=1

(αk − αk−1)

τ
‖ẽk‖22 + τ

(C2
1

C2
+ 1
) n+1∑
k=1

‖ẽk‖22 + CT (τ3 + h4)2,

‖ẽn+1‖22 + τ
C2

Cα

n+1∑
k=1

||D̃hẽ
k||22

≤ τ

Cα

(C2
1

C2
+ 1 + C̃α

) n+1∑
k=1

‖ẽk‖22 +
CT

Cα
(τ3 + h4)2,

where we have used the estimate∥∥αk − αk−1

τ

∥∥
∞ =

∥∥∥ f0(X)

m[f0(X)]m−1
·

(D̃hx
k
h)m−1 − (D̃hx

k−1
h )m−1

τ

∥∥∥
∞

=
∥∥∥ f0(X)

m[f0(X)]m−1
(m− 1)(D̃hϑ)m−2 D̃hx

k
h − D̃hx

k−1
h

τ

∥∥∥
∞

≤
(m− 1)Bf

mbm−1
f

(Cϑ)m−2(C̃∗t + 1) := C̃α.

It is noticed that T is the terminal time, (3.11f) is applied and D̃hϑ is between D̃hx
k
h and

D̃hx
k−1
h with

‖D̃hϑ‖∞ ≤ Cϑ :=

{
C∗0 , m ≥ 2,

δ0/2, m < 2.

In turn, an application of discrete Gronwall inequality yields the desired convergence
result:

‖ẽn+1‖22 + τ
C2

Cα

n+1∑
k=1

||D̃hẽ
k||22 ≤ eTC0

CT

Cα
(τ3 + h4)2,
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i.e.,

‖ẽn+1‖2 ≤ γ(τ3 + h4),

where C0 := 1
Cα

(
C2

1
C2

+ C̃α + 1) and

γ :=
(CT
Cα

) 1
2
e
C0T
2 . (3.24)

Therefore, the a-priori assumption (3.10) is also valid at tn+1:

‖ẽn+1‖2 ≤ γ(τ3 + h4) ≤ τ
11
4 + h

7
2 , (3.25)

provided that τ ≤ γ−4, h ≤ γ−2.
Based on the following estimate

‖D̃hẽ
n+1‖2 = ‖D̃hx

n+1
h − D̃hW

n+1‖2 ≤ Cγ(τ2 + h3), (3.26)

we obtain
‖D̃hx

n+1
h − D̃hx

n+1
e ‖2 ≤ C(τ + h2). (3.27)

Finally, we estimate the error between the numerical solution fn+1
h and the exact solution

fn+1
e of the problem (2.1a)-(2.1d):

‖fn+1
e − fn+1

h ‖2 =
∥∥∥ f0(X)

∂Xx
n+1
e
− f0(X)

D̃hx
n+1
h

∥∥∥
2

=

∥∥∥∥∥ f0(X)

∂Xx
n+1
e
− f0(X)

D̃hx
n+1
e

+
f0(X)

D̃hx
n+1
e

− f0(X)

D̃hx
n+1
h

∥∥∥∥∥
2

≤ C(τ + h2).

Thus, we complete the proof. �

4. Numerical results

In this section, we present some numerical results to demonstrate the convergence rate
of the numerical scheme.

Before that, we define the error of a numerical solution measured in the L2 and L∞
norms as:

‖eh‖22 =
1

2

(
e2
h0hx0 +

M−1∑
i=1

e2
hi
hxi + e2

hM
hxM

)
, (4.1a)

‖eh‖∞ = max
0≤i≤M

{|ehi |}, (4.1b)
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Figure 1: The evolution of f (h = 1/1000, τ = 1/1000).

where eh = (eh0 , eh1 , · · · , ehM ) and for the error of the density f − fh,

hxi = xi+1 − xi−1, 1 ≤ i ≤M − 1; hx0 = x1 − x0; hxM = xM − xM−1,

and for the error of the trajectory x− xh,

hxi = 2h, 1 ≤ i ≤M − 1, hx0 = hxM = h,

where h is the spatial step.
Consider the problem (2.1a)-(2.1d) in dimension one with a smooth positive initial

data
f0(x) =

1

2
(−x2 + 1.01), x ∈ Ω := [−1, 1]. (4.2)

Firstly, the trajectory equation (2.7a) with the initial and boundary condition (2.7b)-(2.7c)
can be solved by the fully discrete scheme (2.12). And then the density function f in (2.4)
can be approximated by (2.13). The reference “exact” solution is obtained numerically on
a much finer mesh with h = 1

10000 , τ = 1
10000 .

Table 1 shows the convergence rate with m = 1.5 and m = 3 at time T = 0.5. The
rate for density f and trajectory x in the L2 and L∞ norm is second order in space and
first order in time without dependence on m. Fig. 1 presents the density f at time t = 0.1
and t = 0.5 for both values of m. The results imply that the speed of diffusion decreases
as m increases. Fig. 2 displays the evolution of particles whose initial positions are X =
−0.001, 0.000, 0.001, respectively. We see that particles move outward at a finite speed.
However, the speed is lower as m increases, except for the center point which remains
stationary. As shown in Fig. 3, the total energy decays as time evolves for both values of m
and the decreasing rate is slowed down as m increases.

More interesting examples can be found in [5], such as a free boundary problem with a
exact Barenblatt solution, the waiting time phenomenon and the problem with two support
sets at the initial state.
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Figure 2: The evolution of particle with initial po-
sition X = −0.001, 0.000, 0.001 (h = 1/1000,
τ = 1/1000).
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Figure 3: The evolution of total energy (h =
1/1000, τ = 1/1000).

Table 1: Convergence rate of solution f and trajectory x at time T = 0.5.

m = 1.5

h τ L2-error (f) Order L∞-error(f) Order L2-error (x) Order L∞-error (x) Order
1/10 1/10 1.5683e-02 1.1680e-01 1.5122e-03 5.2129e-03
1/20 1/40 2.8389e-03 2.7621 3.8639e-02 1.5114 1.4812e-03 2.3315 1.1415e-03 2.2833
1/40 1/160 4.8401e-04 2.9327 1.0515e-02 1.8373 3.1765e-04 2.1501 2.6587e-04 2.1468
1/80 1/640 9.2853e-05 2.6063 2.6850e-03 1.9582 7.3867e-05 2.1474 6.1999e-05 2.1441

m = 3

h τ L2-error (f) Order L∞-error(f) Order L2-error (x) Order L∞-error (x) Order
1/10 1/10 1.7044e-02 1.1471e-01 1.9900e-03 7.1606e-03
1/20 1/40 3.0278e-03 2.8146 3.5746e-02 1.6045 4.9937e-04 1.9924 1.8319e-03 1.6045
1/40 1/160 5.5190e-04 2.7431 9.6637e-03 1.8495 1.2332e-04 2.0247 4.5340e-04 1.8495
1/80 1/640 1.1139e-04 2.4773 2.4584e-03 1.9655 2.9237e-05 2.1089 1.0757e-04 1.9655

L2-error and L∞-error is defined by (4.1a) and (4.1b), respectively.
τ is the time step and h is the space step.

5. Conclusions

The numerical methods of the PME based on EnVarA has been proposed and stud-
ied in [5], while a theoretical justification for optimal convergence analysis has not been
available. In this paper, we prove the second order spatial convergence and the first order
temporal convergence for the nonlinear numerical scheme. A careful asymptotic expansion
for the exact solution in terms of the numerical scheme is applied to obtain higher order
consistency. Furthermore, we use two step error estimates: a rough estimate to control a
discrete W 1,∞ bound of the numerical solution and a refined estimate to derive the desired
convergence result.

One obvious limitation of this work is associated with the one-dimensional nature of
the problem. In two or higher dimension, the determinant of the deformation gradient,
i.e., det ∂x

∂X , will arise in the trajectory equation, which is a complex nonlinear degenerate
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parabolic equation system. A suitable numerical method in multi-dimensional case, which
can satisfy the discrete energy dissipation law, is still in the investigation process. Solving
for multi-dimensional PME by this energetic method and the corresponding optimal error
estimate will be left to the future works. Another limitation is that the assumption of a
positive initial condition (f0 > 0), in which the convergence rate does not depend on the
constant m. It is well known that if the initial state has a compact support, the convergent
rate decreases with m. In this case, the trajectory equation with a free boundary makes
the convergence analysis more difficult. This problem will also be considered in the future
works.
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