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Abstract We study two numerical methods for the “Good” Boussinesq (GB) equation. Both
methods are designed to solve the spatial-temporal pseudo-spectral collocation formulations
of the GB equation using the deferred correction methods in one time marching step, where
the Fourier series based pseudo-spectral formulation is applied in the spatial direction. The
main idea is to iteratively apply a low order method to solve an error equation and refine the
provisional solutions until they converge to the high order pseudo-spectral solutions both in
space and time. In the first method, an operator splitting approach is introduced as the low
order preconditioner in the deferred correction procedure for the temporal Gauss collocation
formulation of the original GB equation. The method shows good numerical properties when
the deferred correction procedure is convergent and the accuracy requirement is achievable.
However, due to the stiffness of the linear differential operators, theKrylovdeferred correction
(KDC) method has to be applied in order to make the iterations converge. And also, due to
the spectral differentiation operator involved, the condition number of the algorithm scales
as O(N 4), where N is the number of Fourier terms in the spatial direction. To improve the
numerical stability and efficiency, an integral equation approach is applied to “precondition”
the GB equation in the second proposed numerical method, by inverting the linear terms
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of the GB equation analytically. As the nonlinear term of the GB equation is non-stiff, the
simple forward Euler’s method preconditioned spectral deferred correction (SDC) iterations
converge more efficiently than existing Jacobian-Free Newton–Krylov (JFNK) based KDC
implementations, and the condition number of the new formulation is O(1), which leads to
a machine precision accuracy at each discrete time step.

Keywords “Good” Boussinesq equation · Deferred correction methods · Collocation
formulations · Preconditioners · Integral equation method

Mathematics Subject Classification 65B05 · 65M70 · 65M12

1 Introduction

Similar to the Korteweg–de Vries (KdV) [8,22,43], Camassa-Holm [13], and cubic
Schödinger equations [39], the solitary traveling wave solutions have also been discovered
for the “Good” Boussinesq (GB) equation [7]

utt = −uxxxx + uxx + (u p)xx , integer p ≥ 2. (1)

Applications of the GB equation include the study of interactions between surface waves and
offshore structures in coastal engineering, and the design and control of water channels in
hydraulics studies; see the detailed descriptions in [28,47,50] and references therein.

There have been extensive numerical studies for the GB equation. For example, a few
numerical simulation results are presented in [2,9,10], while a theoretical analysis is not
available in these works. A closed form solution for the two soliton interaction was obtained
by Manoranjan et al. in [49] and a few numerical experiments were performed based on the
Petrov-Galerkin method with linear “hat” functions. Regarding the numerical analysis for the
GB equation, the stability and convergence analysis of a finite difference method is presented
in [53]. In the area of pseudo-spectral scheme with periodic boundary conditions, it is worth
mentioning Frutos et al.’s work [52], in which a second order temporal discretization was
proposed and analyzed, and a full order convergence was proved in a weak energy norm: an
L2 norm of u combined with an H−2 norm of v = ut . This energy norm is much weaker
than the one reported in [48], where the linear part was analyzed: an H2 norm of u combined
with an L2 norm of v = ut . An alternative second order (in time) scheme is proposed and
analyzed in a more recent article [17], and the convergence in the stronger energy norm
(given by [48]) is established, with the help of aliasing error control techniques in the Fourier
pseudo-spectral space.

Existing analytical and numerical results reveal that there exists a highly complicated
interaction mechanism for the soliton-producing GB equation. In order to capture the details
of the solitary wave interactions more accurately, we introduce two numerical methods for
solving the GB equation in this paper, using pseudo-spectral collocation formulations in
both space and time for one time marching step. In the spatial direction, the Fourier series is
applied to discretize the spatial differential operators, and the nonlinear term of the GB equa-
tion is computed using the pseudo-spectral collocation scheme; in the temporal direction, the
orthogonal polynomial based collocation formulations are applied so that the interpolating
polynomials satisfy the GB equation exactly at the node points. Instead of the expensive
Newton’s method with direct Gauss elimination, our approaches use different deferred cor-
rection techniques to efficiently solve the collocation formulations, by using a lower order
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method to derive the provisional solutions, and then iteratively refine the provisional solu-
tions by estimating the errors (defects) using (not necessarily the same) lower order method.
The two methods differ in the choices of deferred correction schemes, lower order method
based preconditioners, and most importantly, different error equation reformulations. In the
first method, an operator splitting scheme [62] is applied as the lower order method precon-
ditioner to solve the standard error equation for the temporal Gauss collocation formulation
of the original differential GB equation. Due to the stiffness of the spatial linear differential
operators, we show that the spectral deferred correction (SDC) method [24] cannot converge
efficiently to the collocation formulation solutions, and the Jacobian-Free Newton–Krylov
(JFNK) [41,42] based Krylov deferred correction (KDC) method [36,37] has to be used.
Also, for large number N of the Fourier series expansion terms, the condition number of the
first algorithm scales as O(N 4), resulting in larger errors for larger N . To further improve the
stability and accuracy, in the second method, we apply the integral equation method (IEM)
to analytically invert the linear terms in the error equation of the GB equation. The numerical
results reveal that the condition number of this IEM reformulation is O(1) and a machine
precision accuracy is achievable for the discretized algebraic system in one time marching
step. Also, as the nonlinear term in the GB equation is non-stiff, the SDC method with the
simple forward Euler’s scheme for the integral form error equation convergesmore efficiently
than existing JFNK based KDC solvers. To the authors’ knowledge, these spatial-temporal
pseudo-spectral formulations in our methods have not been applied to the GB equation in
previous research. This is the primary contribution of this paper.

This paper is organized as follows. In Sect. 2, we present the spatial-temporal pseudo-
spectral discretization of the GB equation. In Sect. 3, we show the general framework of the
spectral deferred correction and Krylov deferred correction methods. In Sect. 4, we present
our first method, which directly applies the lower order operator splitting technique based
Krylov deferred correction method to the original GB equation. Numerical results are also
presented to demonstrate the accuracy, efficiency, and stability properties of the algorithm.
To improve the stability and efficiency of the numerical solutions, we introduce our second
method in Sect. 5, based on an integral equation reformulation of GB’s error equation.
Numerical results are presented to show how the stiffness from the linear terms are removed
and the convergence of the SDC method compared with KDCmethod. In Sect. 6, we present
numerical results to compare our methods with a previously implemented temporal second
order operator splitting scheme in [62]. Finally in Sect. 7, we summarize our results and
discuss possible strategies to further improve the numerical algorithms for the GB equation
and generalization of the algorithms to other applications.

2 Spatial-Temporal Pseudo-spectral Formulation

We discuss the spatial-temporal pseudo-spectral discretization of the GB equation in this
section. We first reformulate the GB equation as a temporal first order system, by introducing
a new variable v = ut ,

{
ut = v, (x, t) ∈ [−L , L] × [0, T ],
vt = −uxxxx + uxx + (u p)xx , (x, t) ∈ [−L , L] × [0, T ],

(2)

with given initial values u(x, 0) = u0(x), v(x, 0) = v0(x), and periodic boundary condition
in the interval [−L , L].
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We look at one time marching step [0,!t]. To discretize Eq. (2), we divide the interval
[−L , L] uniformly into 2N subintervals, and the nodes xn , n = −N , · · · , N − 1 are given
by xn = nh where h = L/N is the spatial step size. In the temporal direction, we consider
K (linearly scaled) Gauss nodes {tk, k = 1, · · · , K } in the interval [0,!t]. The unknowns
are un,k and vn,k , representing the values of u and v in the physical domain at node point
(xn, tk).

In the pseudo-spectral formulation, given un,k and vn,k at different node points, one can
approximate the solutions u(x, t) and v(x, t) using (truncated) series expansions as

u(x, t) ≈
N−1∑

n=−N

an(t)einπx/L , v(x, t) ≈
N−1∑

n=−N

bn(t)einπx/L , (3)

where the Fourier series coefficients are given by

an(t) =
K∑

k=0

an,k Lk(t), bn(t) =
K∑

k=0

bn,k Lk(t), (4)

and Lk is the Legendre polynomial of degree k. Note that the coefficients an,k and bn,k can
be computed by first applying the fast Fourier transform (FFT) in space to {un,k}N−1

n=−N and
{vn,k}N−1

n=−N to derive an(tk) and bn(tk) at different temporal nodes tk , k = 0, · · · , K , and then
for each n, constructing the Legendre interpolating polynomial in Eq. (4) using the values
{an(tk)}Kk=0 and {bn(tk)}Kk=0 where the coefficients can be evaluated stably by applying the
Gaussian quadrature rule directly or by using the fast Legendre transform (FLT) algorithm
[25] when K is large. The temporal Gauss collocation formulation at each temporal node tk
for the spatial Fourier coefficients is therefore given by

{
a′
n(tk) = bn(tk),

b′
n(tk) =

(
−(nπ/L)4 − (nπ/L)2

)
an(tk) − (nπ/L)2 fn(tk)

(5)

for n = −N , · · · , N − 1, where fn(tk) is the n-th Fourier coefficient of the nonlinear
term u p(x, t) computed by applying the FFT algorithm to the function values {u p

j,k}N−1
j=−N

directly, and a′
n(tk) and b

′
n(tk) can be computed by differentiating the interpolating Legendre

polynomials in Eq. (4) and then evaluating the resulting polynomials at tk .
Assuming the solutions u(x, t) and v(x, t) are smooth functions and the collocation for-

mulation in Eq. (5) is solved exactly for the truncated Fourier series expansion, it is well
known that when the numbers N and K increase, the numerical errors in the time interval
[0,!t] decay exponentially fast [14,30]. Also, for each time marching step, the orthogo-
nal polynomial based collocation formulations for solving the ordinary differential equation
(ODE) system in Eq. (5) in the time interval [0,!t] have been well studied. When the Gauss
nodes are used in [0,!t], the temporal Gauss collocation method, also referred to as the
Gauss Runge–Kutta (GRK) or Gauss differential quadrature (GDQ) method [16,34,35], has
the following nice numerical properties for general ODE initial value problems:

Theorem 1 For ODE initial value problems, the Gauss collocation formulation using K
nodes is of order 2K (super convergence), A-stable, B-stable, symplectic (structure preserv-
ing), and symmetric (time reversible).

We refer interested readers to [5,35] for the proof of these properties, which allow very
large time step size !t when marching in time.
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We also want to mention that, instead of the differential equation form in Eq. (5) for the
temporal direction, the (discretized) Picard integral equation can be used as follows:

{
an(tk) = an(0)+

∫ tk
0 bn(τ )dτ,

bn(tk) = bn(0)+
∫ tk
0

((
−(nπ/L)4 − (nπ/L)2

)
an(τ ) − (nπ/L)2 fn(τ )

)
dτ.

(6)

In this integral equation formulation, instead of the numerically unstable spectral differenti-
ation, the backward stable spectral integration matrix can be precomputed for evaluating the
Legendre polynomial expansion

∫ tk
0 ck Lk(τ )dτ . Properties and applications of the spectral

integration based numerical schemes have been studied in [24,31].

3 Spectral and Krylov Deferred Correction Methods

Despite of the nice properties of the temporal pseudo-spectral collocation formulations for
initial value problems, higher order (K ≥ 10 node points) collocation formulations are rarely
used in most of today’s numerical simulations. The main reason is the algorithm efficiency.
Taking the ODE system in Eq. (5) as an example, if K Gauss nodes are used in the Gauss
collocation formulation, we see that the solutions at temporal node t j depend on the solutions
at all node points tk , k = 0, · · · , K (as the spectral differentiation and integration matrices
are dense). In turn, a direct calculation shows that O((NK )3) operations are required if
we use the Newton’s method and direct Gauss elimination for each linearized system. This
number increases cubicly as K increases. On the other hand, for most backward differenti-
ation formula (BDF) type methods [1,11,55], the number of operations is only O(Nα) for
each time step, with α ≤ 3 (α = 3 when Newton’s method and direct Gauss elimination
are applied to solve the spatial nonlinear equations, and α = 1 when fast algorithms are
applied to special systems). Another difficulty associated with the temporal pseudo-spectral
formulation is that, when the time step size becomes large, the initial values may no longer
serve as good initial guesses for the solutions in one time interval, resulting in bad conver-
gence in the nonlinear solver. Instead of direct Gauss elimination, an alternative approach
is to use deferred correction methods to improve the efficiency by solving the discretized
collocation formulations iteratively. This idea has been extensively studied mostly for ODE
initial value problems in the past [3,4,12,20,24,37,38,51,54], and numerical results show
that the deferred correction approaches are very competitive, in comparison with other types
of initial value problem solvers, especially when very high accuracy results are required. In
this section, we present the general frameworks of the spectral deferred correction (SDC)
and closely related Krylov deferred correction (KDC) methods.

3.1 Lower Order Operator Splitting Scheme for a Provisional Solution

The first step of a deferred correction method is to derive provisional solutions using a
lower order time march scheme. In both our algorithms, we apply the second order Strang
operator splitting scheme [59] to the first order temporal form of the GB equation presented
in Eq. (2). Assuming the solutions un,k and vn,k are available at time tk for all nodes xn ,
n = −N , · · · , N − 1, the Strang operator splitting derives the solutions un,k+1 and vn,k+1
at time tk+1 by the following three steps.

Strang Splitting Step 1 March the nonlinear term from tk to tk+1/2 = tk + 1
2!tk(!tk =

tk+1 − tk) by solving the initial value problem for u(1) and v(1):
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⎧
⎪⎨

⎪⎩

∂t u(1) = 0, t ∈ (tk, tk+1/2),

∂tv
(1) = D2

N ((u
(1))p), t ∈ (tk, tk+1/2),

u(1)(:, tk) = u:,k, v(1)(:, tk) = v:,k,

(7)

where DN is the discretized ∂x operator, computed by differentiating the truncated Fourier
series expansion in the frequency domain, and then evaluating the derivatives at the interpo-
lation points using FFT. Note that as ∂t u(1) = 0, the term D2

N ((u
(1))p) is a constant in time,

therefore the solutions of u(1) and v(1) can be analytically expressed as

u(1)(:, tk+1/2) = u(1)(:, tk), v(1)(:, tk+1/2) = v(1)(:, tk)+
1
2
!tD2

N ((u
(1)(:, tk))p). (8)

Strang Splitting Step 2 March the linear wave type equation from tk to tk+1 by solving the
following initial value problem for u(2) and v(2):

⎧
⎪⎨

⎪⎩

∂t u(2) = v(2), t ∈ (tk, tk+1),

∂tv
(2) = −D4

Nu
(2) + D2

Nu
(2), t ∈ (tk, tk+1),

u(2)(:, tk) = u(1)(: tk+1/2), v(2)(:, tk) = v(1)(:, tk+1/2).

(9)

Note that this is a constant coefficient linear system. In the spectral domain, the resulting
equations for the Fourier coefficients an(t) and bn(t) are (decoupled) ODE initial value
problems which can be solved analytically (and easily) in the spectral domain, and then
transformed back to the physical domain using FFT to derive u(2)(:, tk+1) and u(2)(:, tk+1).

Strang Splitting Step 3 March the nonlinear term from tk to tk+1/2 by finding the solutions
u(3) and v(3) of the following initial value problem:

⎧
⎪⎨

⎪⎩

∂t u(3) = 0, t ∈ (tk, tk+1/2),

∂tv
(3) = D2

N ((u
(3))p), t ∈ (tk, tk+1/2),

u(3)(:, tk) = u(2)(:, tk+1), v(3)(:, tk) = v(2)(:, tk+1).

(10)

Similar to Step 1, this system can be solved analytically as shown in the following formulas:

u(3)(:, tk+1/2) = u(3)(:, tk), v(3)(:, tk+1/2) = v(3)(:, tk)+
1
2
!tD2

N ((u
(3)(:, tk))p). (11)

We define the solutions at tk+1 as u:,k+1 = u(3)(:, tk+1/2) and v:,k+1 = v(3)(:, tk+1/2).
We refer interested readers to [62] for further details of this second order Strang opera-

tor splitting (OS2) scheme for the GB equation, where rigorous stability and convergence
analyses were performed and validated numerically.

3.2 Error Equation

For the collocation formulation of the GB equation in Eq. (5) in the time interval [0,!t],
starting from t0 = 0, one can march step by step from tk to tk+1 (k = 0, · · · , K − 1)
using the second order Strang operator splitting technique from previous section to derive
the discretized solutions {un,k}N−1

n=−N and {vn,k}N−1
n=−N at the Gauss nodes {tk}Kk=1 that are

spatially pseudo-spectrally accurate but only second order in time. Using these discretized
solutions, one can construct the continuous provisional solutions using the high order/degree
(order N in space and degree K in time) interpolating series expansions as in

ũ(x, t) =
N−1∑

n=−N

ãn(t)einπx/L , ṽ(x, t) =
N−1∑

n=−N

b̃n(t)einπx/L , (12)
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where the Fourier series coefficients are given by

ãn(t) =
K∑

k=0

ãn,k Lk(t), b̃n(t) =
K∑

k=0

b̃n,k Lk(t), (13)

and Lk is the kth degree Legendre polynomial. For these provisional solutions ũ(x, t) and
ṽ(x, t), we can define the error (or defect) functions ε(x, t) and δ(x, t) as the differences
between the exact and provisional solutions as

u(x, t) = ũ(x, t)+ ε(x, t) and v(x, t) = ṽ(x, t)+ δ(x, t). (14)

Substituting the errors into the original GB equation gives
{

∂(ũ+ε)
∂t = (ṽ + δ),

∂(ṽ+δ)
∂t = −(ũ + ε)xxxx + (ũ + ε)xx + ((ũ + ε)p)xx ,

and we derive the error equation
{

∂ε
∂t = δ + (ṽ − ũt ),
∂δ
∂t = −εxxxx + εxx + ((ũ + ε)p − ũ p)xx + (−ũxxxx + ũxx − ṽt + (ũ p)xx ) .

(15)

Further introducing the “residue” functions c(t) and d(t) as

c(t) = (ṽ − ũt ) and d(t) =
(
−ũxxxx + ũxx − ṽt + (ũ p)xx

)
,

and noticing that one can always reconstruct ũ(x, t) by integrating the approximate solution
ṽ(x, t) as ũ(x, t) = u(x, 0)+

∫ t
0 ṽ(x, τ )dτ to guarantee that c(t) = (ṽ− ũt ) = 0, we observe

that the error equation can be simplified as
{

∂ε
∂t = δ

∂δ
∂t = −εxxxx + εxx + ((ũ + ε)p − ũ p)xx + d(t),

(16)

with initial conditions ε(x, 0) = 0, δ(x, 0) = 0, and periodic boundary conditions.
In our numerical implementation, ũ(x, t) from the lower order solver is always replaced

by the reconstructed ũ(x, t) = u(x, 0)+
∫ t
0 ṽ(x, τ )dτ using the computed ṽ(x, t) and spec-

tral integration technique. This reconstruction projects the original lower order provisional
solutions to a manifold satisfying (up to spectral accuracy) ũt (x, t) = ṽ(x, t). This changes
the lower order solutions, however it keeps the convergence order of the provisional solutions.

We want to mention that, when the provisional solutions ũ and ṽ satisfy the collocation
formulation in Eq. (5), the residue function will satisfy d(t) = 0. As both ε and δ are zero
initially at t = 0, clearly the analytical solutions ε(x, t) and δ(x, t) will always be zero.
Also, when a lower order time marching scheme is applied to solve Eq. (16) in this case, the
numerical solutions are also zero, the same as the analytical solutions. Therefore, solving
Eq. (5) is equivalent to finding the provisional solutions ũ and ṽ such that when a lower order
method is applied to the error equation in Eq. (16), the numerical values of ε and δ are zero.

3.3 Spectral Deferred Correction and Krylov Deferred Correction Methods

In the deferred correction schemes, a lower order method (not necessarily the same one being
used to derive the provisional solutions as discussed in previous section) can be applied to
solve the error equation in Eq. (16). Denoting the discretized lower order solutions of the
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errors ε(x, t) and δ(x, t) as ε̃ and δ̃, these solutions can be considered as the outputs of an
implicit function H defined by

[
ε̃

δ̃

]
= H

([
ũ
ṽ

])
, (17)

and one deferred correction iteration for the given provisional solutions ũ and ṽ can be
considered as one evaluation of the function H , where the input variables are ũ and ṽ, and
the output values are the low order estimates ε̃ and δ̃ of the errors. Both the input variables
ũ and ṽ and output variables ε̃ and δ̃ are of size K × 2N , and the evaluation of the function
H consists of K marching steps to solve the error equation in (16) at each temporal node tk ,
k = 1, · · · , K . We want to mention that a numerically acceptable lower order method should
at least have the following two features: (1) it is easy to compute, and (2) when the residue
d(t) = 0 (i.e., the provisional solutions ũ and ṽ are the solutions to the Gauss collocation
formulation), the lower order estimates ε̃ and δ̃ should both be zero. Most existing linear
multistep or Runge–Kutta methods have these features, and a good example is the Euler’s
method for time marching. We leave the details of different lower order methods to Sects. 4
and 5.

The spectral deferred correction (SDC) and Krylov deferred correction (KDC) methods
apply different strategies to utilize the output lower order error estimates from the function H .
In SDC, the outputs ε̃ and δ̃ are added back to current provisional solutions ũ and ṽ to form
“improved” provisional solutions, which will be the new input variables for the function
H , and this procedure continues until ε̃ and δ̃ converge to 0, or a maximum number of
function evaluations (deferred corrections) is reached. In the latter case, one usually reduces
the step size !t and restarts the deferred correction method. In [36], it was shown that for
linear ODE initial value problems, the SDC method is equivalent to applying the Neumann
series expansion (fixed point iteration) to a low-order method preconditioned high order
collocation formulation. When the low-order method preconditioner is properly selected, the
SDCmethod can converge efficiently.However, for stiffODEsystemsor differential algebraic
equation (DAE) initial value problems, analytical and numerical studies reveal that due to
the existence of “bad” eigenvalues in the low-order method preconditioned system, order
reductions are often observed and for many settings, the SDC iterations become divergent
after the first few iterations. To remedy the slow convergence and divergence of the SDC
method, in [37], the least squares based Krylov subspace iterative methods are introduced
to replace the Neumann series type iterations, by applying existing Jacobian-Free Newton–
Krylov (JFNK) methods [41,42] directly to find the zeros of the preconditioned system

[
ε̃

δ̃

]
= H

([
ũ
ṽ

])
= 0.

It is interesting to compare the SDC method with KDC method. For a linear problem, we
assume the same provisional solutions are used to start the iterations and the same lower order
preconditioner is applied, and the resulting preconditioned system is denoted by (I−C)x = b.
The SDC method solves this system using the Neumann series

x = b+ Cb+ C2b · · · + C j−1b

in its first j iterations. The KDC method, on the other hand, searches for the optimal least
squares solution which minimizes ||Ax − b|| for x in the Krylov subspace

K j (C,b) = span{b,Cb,C2b, · · · ,C j−1b}.
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If the lower order preconditioner is effective, the spectral radius of C is small, both the SDC
and KDC methods should converge efficiently. However, the SDC method only requires
storage of the previous iteration solutions, while the KDC method usually needs the data
storage from all history deferred correction iterations when a GMRES type method is applied
as C is not symmetric in general. Also, an overhead cost is required by the KDC method
when searching for the optimal solutions in the Krylov subspace, although this cost is only
a small portion of the total number of operations, as the most expensive computations are
usually the evaluations of the function H for the given provisional solutions. When there are
a few “bad” eigenvalues in C (e.g., due to the stiffness of the initial value problem), the SDC
method may either converge slowly, or become divergent. The KDC method, on the other
hand, always converges.

We present the following guidelines for the choice between the SDC and KDC meth-
ods: When an optimized preconditioner designed specifically for the underling problem is
available and the Neumann series expansion converges efficiently, the SDC method is rec-
ommended since it requires much less storage and no overhead operation. However, for most
low-order preconditioners and general problems, we recommend the KDC method due to its
much improved convergence properties. These guidelines are further demonstrated in Sects. 4
and 5 next.

Remark 1 The second order Strang splitting algorithm in Eqs. (7)–(11) is a very effective
preconditioner for solving the standard error equation of the temporal pseudo-spectral collo-
cation formulation of theGBequation,where the equations at each splitting step can be solved
efficiently using the analysis based formulas. Other low-order preconditioning methods have
also been studied by the authors, to better understand how to choose an “optimal” low-order
preconditioner for a specific problem setting. Interested readers are referred to [46] for some
preliminary comparisons of several low-order preconditioners, and to [12,15,19,21,23] for
different differential and algebraic operator splitting based low-order preconditioning tech-
niques in the SDC or closely related integral deferred correction (IDC) methods [20]. In
particular, in [15,19], the alternating direction implicit (ADI) splitting technique has been
successfully applied to solving time-dependent differential equations in higher spatial dimen-
sions. Unfortunately for most low-order preconditioning techniques, due to the extreme
stiffness of the spatial linear differential operator D4

N , the SDC and IDC iterations cannot
efficiently converge to the solutions of the collocation formulation when using the standard
error equation, and the Krylov subspace based KDC approach has to be applied to overcome
this difficulty. This will be addressed in the next section.

4 Operator Splitting Preconditioned KDC Algorithm

For ease of notations and discussions, we consider a first order operator splitting technique
(instead of the 2nd order Strang splitting) for solving the error equation in Eq. (16), and
compare the SDC and KDC methods.

4.1 First Order Operator Splitting Preconditioner

We apply a differential operator splitting technique to solve the error equation using the
following two steps when marching from t = tk to t = tk+1.

Step I Using the initial values ε(x, t = tk) and δ(x, t = tk), march from t = tk to t = tk+1 =
tk + !tk by solving the linear partial differential equation system
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⎧
⎨

⎩

∂ε(1)

∂t = δ(1),

∂δ(1)

∂t = −ε
(1)
xxxx + ε

(1)
xx + d(t),

(18)

with periodic boundary conditions.

Step II Using the solutions ε(1)(:, t = tk+1) and δ(1)(:, t = tk+1) from Step I as the initial
values, march from t = tk to t = tk+1 by solving the nonlinear ordinary differential equation
system

{
∂ε
∂t = 0,
∂δ
∂t = ((ũ + ε)p − ũ p)xx .

(19)

In this operator splitting scheme, both Eqs. (18) and (19) can be solved analytically.
Similar to Steps 1 and 3 in the Strang splitting scheme, the system in Eq. (19) is a simple
ODE system and the analytical solutions are the simple constant function for ε, and linear
function for δ. The system in Eq. (18) is a linear partial differential equation, for periodic
boundary conditions, we can represent the solutions using the Fourier series as

ε(1)(x, t) =
N−1∑

n=−N

ηn(t)einπx/L ,

δ(1)(x, t) =
N−1∑

n=−N

θn(t)einπx/L ,

with ηn(tk) and θn(tk) the given initial conditions. To find the analytical solutions of Eq. (18)
at t = tk+1, we consider the ODE system in the spectral domain for the coefficients ηn(t)
and θn(t) given by

⎧
⎪⎨

⎪⎩

η′
n(t) = θn(t), t ∈ (tk, tk+1),

θ ′
n(t) = −((nπ/L)4 + (nπ/L)2)ηn(t)+ dn(t), t ∈ (tk, tk+1),

ηn(tk) = εn(tk), θn(tk) = δn(tk),
(20)

where dn(t) is the nth Fourier coefficient of the expansion

d(t) =
N−1∑

n=−N

dn(t)einπx/L .

The system in Eq. (20) can be solved analytically, and it is straightforward to verify that
⎧
⎪⎨

⎪⎩

ηn(t) = ηn(tk) cos(Mn(t − tk))+ θn(tk )
Mn

sin(Mn(t − tk))+
∫ t
tk

sin(Mn(t−τ ))
Mn

dn(τ )dτ,

θn(t) = −Mnηn(tk) sin(Mn(t − tk))+ θn(tk) cos(Mn(t − tk))
+

∫ t
tk
cos(Mn(t − τ ))dn(τ )dτ,

(21)

where Mn =
√
(nπ/L)4 + (nπ/L)2. For the integrals
∫ t

tk
sin(Mn(t − τ ))dn(τ )dτ,

∫ t

tk
cos(Mn(t − τ ))dn(τ )dτ,

product rules can be applied, with the function dn(t) approximated by its linear interpolating
polynomial using the function values dn(tk) and dn(tk+1), and the integrals are then evaluated
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analytically. Note that the coefficients which map the function values to the integral values
can be precomputed and stored in the memory.

Applying this first order operator splitting technique, one can derive the lower order
estimates of the errors, which are the outputs of the function H for the given provisional
solutions. We then apply either the KDC or SDC method to find the roots of H , which
represent the solutions of the collocation formulation at the discretized spatial and temporal
nodes. If the KDC or SDC iterations are convergent and the end point !t is not one of the
node points in the collocation formulation, i.e., when the Gauss collocation formulation is
applied, we define the final solutions at time !t as

{
an(!t) = an(0)+

∫ !t
0 bn(τ )dτ,

bn(!t) = bn(0)+
∫ !t
0

((
−(nπ/L)4 − (nπ/L)2

)
an(τ ) − (nπ/L)2 fn(τ )

)
dτ,

(22)

where the integrals are evaluated using the Gauss quadrature rule and the collocation formu-
lation solutions an , bn and corresponding fn at the Gauss node points. When !t is one of
the collocation node points (i.e., Radau IIa or Lobatto nodes), the solutions at the end point
are used directly as the initial value for next time marching step.

4.2 Convergence, Stability, and Numerical Results

The SDC and KDC numerical algorithms are implemented in Matlab and the source codes
are available upon request. In order to test their performance, we consider the following exact
soliton solution from [17] when p = 2,

uexact (x, t) = −Asech2
(
P
2
(x − c0t)

)
. (23)

where 0 < P ≤ 1 is a constant, the amplitude A and wave speed c0 are functions of P
respectively, given by

A = 3P2

2
, c0 =

(
1 − P2)1/2 . (24)

Notice that the analytical solution decays exponentially fast when |x | → ∞, we can therefore
choose a large enough number L , and consider the GB equation on the interval [−L , L]with
periodic boundary conditions. In our numerical experiments, we set A = 0.5 and L = 80.
The numbers P and C0 are determined accordingly.

We first compare the analytical solution uexact and numerically computed ũ to validate
our KDC solver. On the left of Fig. 1, we show the analytical and numerical values of u(x, t)
at time t = 4, and on the right, we plot the error. Our KDC method utilizes the JFNK solver
downloaded from the website of the author of [40,41]. For the pseudo-spectral collocation
formulation for each time interval, we use K = 5 Gauss nodes for each time step of size
!t = 4/12 (a total of 12 steps to march from t = 0 to t = 4) and N = 128 in the spatial
discretization. The second order Strang splitting is applied to derive the provisional solutions
initially, and the first order operator splitting is applied to get the lower order estimates of
the errors in the Krylov deferred correction iterations (evaluations of H ).

To understand the convergence properties of the temporal Gauss collocation formulation,
we test the KDC solver for different step sizes !t for the cases K = 3, K = 4, and K = 5.
In the experiment, we fix N = 128 so that the spatial direction is resolved approximately to
12 digits accuracy as show in Fig. 1. We plot the errors for different settings in Fig. 2, where
the number of time steps to march from t = 0 to t = 4 is used for the x-axis instead of !t .
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Fig. 1 Analytical and numerical solutions at t = 4 (left) and the numerical error (right)
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Fig. 2 Temporal convergence for different number of Gauss nodes and time step sizes

We also numerically estimate the slope of each curve corresponding to different numbers of
Gauss nodes. ForGauss 3 (3Gauss nodes), the slope is approximately 6.33,whichmatches the
result (from traditional study ofODE initial value problemswhen!t is small, see Theorem 1)
that when K nodes are used, the Gauss collocation formulation should be order 2K in time.
However, for Gauss 4 and Gauss 5, we observed much faster convergence and the slope
of each curve (before reaching achievable accuracy) is approximately 15 for both cases.
We believe this phenomenon is due to the pseudo-spectral nature of the Gauss collocation
formulation. This issue is currently being further studied and more rigorous analysis will be
provided in the future. In Table 1, we fix N = 128 and study how the errors decay when the
number of temporal Gauss nodes increases in a single marching step from t = 0 to t = 1
(!t = 1). From the numerical results, we see that the error decreases almost exponentially
when the number of Gauss nodes increases, until it reaches the maximal achievable accuracy.

However, we also observe that when the error reaches approximately O(10−12), no further
error reduction can be achieved by addingmoreGauss nodes (see K = 12 and K = 13 results
in Table 1). To test if this is caused by the spatial resolution, we fix K = 12 and !t = 1, and
study how the errors in one time marching step decay for different numbers of spatial nodes
N . The numerical results in Table 2 show that when N increases, the errors first decay, but
increase rapidly after certain N (N = 128 in this case).
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Table 1 One marching step errors for different number of Gauss nodes, KDC, N = 128, !t = 1

# Gauss nodes 5 6 7 8 9

L∞error 2.86 × 10−7 5.54 × 10−8 4.65 × 10−9 6.45 × 10−10 1.14 × 10−10

# Gauss nodes 10 11 12 13 14

L∞error 1.63 × 10−11 4.86 × 10−12 2.13 × 10−12 2.04 × 10−12 2.18 × 10−12

Table 2 Error for different number of Fourier terms, KDC method, K = 12, !t = 1

N 32 64 128 256 512 1024

L∞ error 2.01 × 10−3 5.90 × 10−6 2.13 × 10−12 3.46 × 10−10 7.93 × 10−9 3.57 × 10−7
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Fig. 3 N4-instability: errors for N = 64 (left), N = 128 (middle), and N = 512 (right)

Our analysis shows that this error behavior is caused by the application of the differential
operator on the Fourier series. Notice that both FFT and IFFT introduce machine errors
(O(10−15) relative error) in the computation. These errors will be magnified by the factor
N 4 when computing ũxxxx to derive d(t) = (−ũxxxx + ũxx − ṽt + (ũ p)xx ) in the deferred
correction methods for the spatial-temporal pseudo-spectral formulation. In Fig. 3, we fix
K = 12 and !t = 1, and study this numerical N 4-instability in one time marching step
for large N values. When N = 64, the solution is under-resolved and the corresponding
resolution error is greater than the error from the N 4-instability (left of Fig. 3),when N = 512,
the N 4-instability can be observed, and the best result is when N = 128 where the resolution
errors and instability errors are balanced. The N 4-instability is not an inherent problem of
the original GB equation, it is the result of the differential equation based formulation and
the ill-conditioned numerical differentiation operator. In next section, we show how to avoid
the N 4-instability by reformulating the GB equation into its integral form in the frequency
domain.

In the previous numerical experiments, for the spatial-temporal pseudo-spectral formula-
tion in each time step [0,!t], the KDC method is applied to the preconditioned system and
the Newton–Krylov iterations are controlled by the black-box JFNK solver. As discussed
in Sect. 3.3, in comparison with the SDC method, the KDC method usually requires more
storage and some overhead operations to find the optimal solution in the Krylov subspace. In
the following, we study the convergence of the KDC method and compare it with the SDC
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Fig. 4 Convergence of the KDC and SDC iterations, N = 128, K = 12, !t = 1

Table 3 L∞ error for different number of deferred corrections, SDC method, N = 256, K = 12, !t = 1

Iteration # 1 2 3 4 5 6

Norm([ε, δ]) 8.44 × 10−7 2.13 × 10−8 7.46 × 10−10 1.06 × 10−10 2.25 × 10−10 1.29 × 10−9

Iteration # 7 8 9 10 15 20

Norm([ε, δ]) 9.44 × 10−9 6.46 × 10−8 5.85 × 10−7 5.89 × 10−6 2.20 × 10−1 NaN

Table 4 L∞ error for different number of deferred corrections, KDC method, N = 256, K = 12, !t = 1

Iteration # 1 3 5 7 18 84

Norm([ε, δ]) 1.97 × 10−5 3.88 × 10−7 8.03 × 10−9 1.44 × 10−9 3.25 × 10−10 3.47 × 10−10

approach. In Fig. 4, we plot how the errors change as a function of the number of deferred
corrections for the settings N = 128, !t = 1 and K = 12. In Table 3, we show how the
errors decay for different number of deferred correction iterations in the SDC method for
the settings N = 256, !t = 1, and K = 12. Notice that setting N = 256 will introduce
more serious N 4-instability that propagates in the deferred correction iterations. It can be
observed that the black box JFNK based KDC solver is always convergent, but due to the
overhead function evaluations to search for the optimal solutions in the Newton and Krylov
iterations, it requires more deferred correction iterations (H evaluations) to converge to the
optimal accuracy allowed by the resolution and instability. The SDC method, on the other
hand, effectively utilizes the fact that the outputs from the function evaluation H are lower
order estimates of the errors and converges faster than the black box JFNK solver in the first
few iterations, but becomes asymptotically divergent. When N = 256, our numerical results
show that the solutions blow up after 20 deferred correction iterations. We refer interested
readers to [56] for more detailed analysis of the divergence behaviors of the Neumann series
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type SDCmethods. In comparison, we show the convergence of theKDCapproach in Table 4.
It can be observed that the KDC method is always convergent, due to the use of the Krylov
subspace to control the growth of the few bad eigenmodes. A current research topic is how to
revise the black box JFNK solver, so it can have better convergence properties for finding the
zeros of the “special structured” deferred correction preconditioned function H . Research
along this direction will be reported in the future.

5 Integral Equation Reformulation and SDC Algorithm

For better stability, accuracy and efficiency, in this section, we introduce a reformulated GB
equation using the integral equation method (IEM) and discuss its efficient solution using
the SDC and KDC methods.

The IEMbased numerical schemes for differential equations have been extensively studied
in recent years, a small sample of existing results include the Picard integral equation based
SDC, IDC, and KDC methods for ODE and DAE systems [19,24,37]; the fast algorithms
accelerated integral equation formulations for the Laplace, Poisson, Yukawa, Stokes, and
Helmholtz equations [18,27,45,57,61]; the fast Gauss transform and fast marching schemes
for the time-dependent diffusion type equations [32,33]; and the time-domain fast multi-
pole methods (FMMs) for the Maxwell and elastic wave equations [26,58]. Compared with
traditional finite difference and finite element methods, as the Green’s function is the analyt-
ical inverse of the corresponding differential operator, one immediate advantage of the IEM
reformulation is its better numerical stability. The better conditioned reformulation usually
allows the design of backward stable numerical schemes [60].

5.1 Integral Equation Reformulation of the GB Equation in the Fourier Domain

We present the integral equation reformulation of the GB equation in the Fourier domain,
by considering the truncated Fourier series expansion of u(x, t) given by u(x, t) =∑N−1

n=−N an(t)einπx/L . For the nonlinear term u p(x, t), we represent its Fourier series as
u p(x, t) = ∑N−1

n=−N fn(t)einπx/L , where fn(t) can be (backward) stably computed from
{an(t)}N−1

n=−N using the FFT and IFFT transforms (the nonlinear term u p is computed in the
physical domain). Using the truncated series, theGB equation becomes a new set of equations
for the coefficients an(t) given by

a′′
n (t) = −M2

n an(t) − fn(t)(nπ/L)2 (25)

with Mn =
√
(nπ/L)4 + (nπ/L)2. For the moment, assuming fn(t) is given and the initial

conditions an(tk), a′
n(tk) are known at time t = tk , then the solutions an(t) and a′

n(t) can be
written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

an(t)= an(tk) cos(Mn(t−tk))+
a′
n(tk)
Mn

sin(Mn(t−tk))−
∫ t

tk

M̃n sin(Mn(t−τ ))

Mn
fn(τ )dτ,

a′
n(t) = −Mnan(tk) sin(Mn(t − tk))+ a′

n(tk) cos(Mn(t − tk))

− M̃n

∫ t

tk
cos(Mn(t − τ )) fn(τ )dτ,

(26)
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with M̃n = (nπ/L)2. To further avoid any scaling problems due to the use of Mn and M̃n ,
we define yn(t) = an(t), zn(t) = a′

n(t)
Mn

, and a much better conditioned equation system can
be derived as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yn(t)= yn(tk) cos(Mn(t−tk))+zn(tk) sin(Mn(t−tk))−
M̃n

Mn

∫ t

tk
sin(Mn(t−τ )) fn(τ )dτ,

zn(t) = −yn(tk) sin(Mn(t − tk))+ zn(tk) cos(Mn(t − tk))

− M̃n

Mn

∫ t

tk
cos(Mn(t − τ )) fn(τ )dτ.

(27)

As the density function fn(t) in the integral is also a function of the coefficients {an(t)}N−1
n=−N ,

this equation system can be considered as a nonlinear integral equation system for the
unknowns an(t). Note that M̃n/Mn < 1 and both kernels sin(Mn(t−τ )) and cos(Mn(t−τ ))

are bounded functions. The machine errors from the FFT and IFFT will therefore not be
magnified.

5.2 Error Equation and its Lower Order Solution

For the nonlinear integral Eq. (27), assuming the provisional solutions ỹn(t) and z̃n(t) are
derived (e.g., using the Strang operator splitting), we can derive the error equation as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εn(t) = − ỹn(t)+(ỹn(tk)+εn(tk)) cos(Mn(t − tk))+(z̃n(tk)+δn(tk)) sin(Mn(t − tk))

− M̃n

Mn

∫ t

tk
sin(Mn(t − τ ))((ỹ + ε)p − ỹ p)n(τ )dτ

− M̃n

Mn

∫ t

tk
sin(Mn(t − τ ))(ỹ p)n(τ )dτ,

δn(t) = − z̃n(t) − (ỹn(tk)+εn(tk)) sin(Mn(t − tk))+(z̃n(tk)+δn(tk)) cos(Mn(t − tk))

− M̃n

Mn

∫ t

tk
cos(Mn(t − τ ))((ỹ + ε)p − ỹ p)n(τ )dτ

− M̃n

Mn

∫ t

tk
cos(Mn(t − τ ))(ỹ p)n(τ )dτ,

(28)

where the errors are defined as the differences between the solutions {yn(t), zn(t)} and the
provisional solutions {ỹn(t), z̃n(t)}.

To solve the unknown errors {εn(t), δn(t)}, we apply the simple forward Euler typemethod
(approximating the density function by a constant) to the integral terms

∫ t

tk
sin(Mn(t − τ ))((ỹ + ε)p − ỹ p)n(τ )dτ and

∫ t

tk
cos(Mn(t − τ ))((ỹ + ε)p − ỹ p)n(τ )dτ
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as in
∫ t

tk
sin(Mn(t − τ ))((ỹ + ε)p − ỹ p)n(τ )dτ

= ((ỹ(tk)+ ε(tk))p − (ỹ(tk))p)n

∫ t

tk
sin(Mn(t − τ ))dτ

= 1
Mn

((ỹ(tk)+ ε(tk))p − (ỹ(tk))p)n(1 − cos(Mn(t − tk))),

and
∫ t

tk
cos(Mn(t − τ ))((ỹ + ε)p − ỹ p)n(τ )dτ

= ((ỹ(tk)+ ε(tk))p − (ỹ(tk))p)n

∫ t

tk
cos(Mn(t − τ ))dτ

= 1
Mn

((ỹ(tk)+ ε(tk))p − (ỹ(tk))p)n sin(Mn(t − tk)),

where the function ((ỹ + ε)p − ỹ p)n(τ ) is approximated by a constant function using the
values at the left end point t = tk , and the integrals are then evaluated analytically. The lower
order estimates of the errors at tk+1 are then given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εn(tk+1) = − ỹn(tk+1)+ (ỹn(tk)+ εn(tk)) cos(Mn!tk)+ (z̃n(tk)+ δn(tk)) sin(Mn!tk)

− M̃n

M2
n

(
(ỹ(tk)+ ε(tk))p − (ỹ(tk))p

)
n (1 − cos(Mn!tk))

− M̃n

Mn

∫ tk+1

tk
sin(Mn(tk+1 − τ ))(ỹ p)n(τ )dτ,

δn(tk+1) = − z̃n(tk+1) − (ỹn(tk)+ εn(tk)) sin(Mn!tk)+ (z̃n(tk)+ δn(tk)) cos(Mn!tk)

− M̃n

M2
n
((ỹ(tk)+ ε(tk))p − (ỹ(tk))p)n sin(Mn!tk)

− M̃n

Mn

∫ tk+1

tk
cos(Mn(tk+1 − τ ))(ỹ p)n(τ )dτ,

(29)

where !tk = tk+1 − tk . When n = 0, we have
{

ε0(tk+1) = − ỹ0(tk+1)+ ỹ0(tk)+ ε0(tk)+ (z̃0(tk)+ δ0(tk))!tk,

δ0(tk+1) = − z̃0(tk+1)+ z̃0(tk)+ δ0(tk).
(30)

We want to point out that higher order integration rules have to be applied to evaluate
∫ tk+1

tk
sin(Mn(tk+1 − τ ))(ỹ p)n(τ )dτ.

In our algorithm, the interpolating Legendre polynomial of ỹ p can be constructed using the
Gaussian quadrature rules, and for better efficiency, a set of coefficients Bj , j = 1, · · · , K ,
are precomputed such that

∫ tk+1

tk
sin(Mn(tk+1 − τ )) f (τ )dτ =

K∑

j=1

Bj f (t j ),
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for any polynomial f with degree no more than K . The integral
∫ tk+1

tk
cos(Mn(tk+1 − τ ))(ỹ p)n(τ )dτ

is treated similarly.
Applying the formulas in Eqs. (29) and (30), we can efficiently derive the lower order

estimates of the errors, i.e., the output of the deferred correction function H , and then apply
either the SDC or KDC method to find the zero of H as discussed in Sect. 3.3. Once the
iterations are convergent and as the end point !t is not one of the Gauss collocation nodes,
we define the final solutions at time !t as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

yn(!t) = yn(0) cos(Mn!t)+ zn(0) sin(Mn!t) − M̃n

Mn

∫ !t

0
sin(Mn(!t − τ )) fn(τ )dτ,

zn(!t)=−yn(0) sin(Mn!t)+zn(0) cos(Mn!t)− M̃n

Mn

∫ !t

0
cos(Mn(!t−τ )) fn(τ )dτ,

(31)

where
∫ !t
0 sin(Mn(!t − τ )) fn(τ )dτ is evaluated by a precomputed mapping matrix which

analytically integrates the product of the kernel function sin(Mn(!t − τ )) and the interpo-
lating polynomial of the density function fn . The integral

∫ !t
0 cos(Mn(!t − τ )) fn(τ )dτ is

treated similarly. We want to mention that, similar to the original Gauss collocation formu-
lation, super-convergence (order 2K ) can be obtained when defining the solution at t = !t
using Eq. (31), and this integral equation reformulation can also be considered as a “change
of variable” version of a particular symplectic method.

5.3 Convergence, Stability, and Numerical Results

We first apply the SDC method to the integral equation reformulation, where the SDC
iterations are terminated whenever the output of H is smaller than a prescribed accuracy
requirement. We find that the SDC method converges efficiently, and it is no longer nec-
essary to use the JFNK based KDC method for a guaranteed convergence. Similar to the
previous section, we first fix N = 256 and test the SDC solver for different step sizes !t
for the cases K = 3, K = 4, and K = 5. We plot the errors for different settings in Fig. 5,
where the number of time steps to march from t = 0 to t = 4 is used for the x-axis. We also
numerically estimate the slope of each curve corresponding to different number of Gauss
nodes. For Gauss 3 (3 Gauss nodes), Gauss 4, and Gauss 5, the slopes are respectively 7.01,
8.49, and 10.82.

To compare the error dependency on the number of temporal Gauss nodes, in Table 5, we
fix N = 256 and study how the errors decay in a single marching step from t = 0 to t = 1
(!t = 1) for different number of nodes. From the numerical results, we see that the error
decreases to machine precision when the number of Gauss nodes increases.

Next,wefix K = 12 and!t = 1, and study how the errors in one timemarching step decay
for different number N of spatial nodes. The numerical results in Table 6 show that when
N increases, the errors decay to machine precision. Unlike the differential equation based
formulation in Sect. 4, no N 4-instability is observed (compare with Table 2). In Fig. 6, we fix
K = 12 and !t = 1, and study the error behaviors in one time marching step for different
N values. When N = 64, due to insufficient resolution, a numerical error of O(10−7) is
observed. When N increases, the error decays rapidly. Unlike the differential equation case,
no N 4-instability is observed when N = 512. Notice that when enough spatial and temporal
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Fig. 5 Temporal convergence for different number of Gauss nodes and time step sizes, IEM-SDC

Table 5 One marching step errors for different number of Gauss nodes, IEM-SDC, N = 256, !t = 1

# Gauss nodes 5 6 7 8

L∞error 5.23 × 10−9 2.15 × 10−10 9.20 × 10−12 4.07 × 10−13

# Gauss nodes 9 10 11 12

L∞error 1.80 × 10−14 8.74 × 10−16 1.67 × 10−16 1.67 × 10−16

Table 6 Error for different number of Fourier terms, IEM-SDC method, K = 12, !t = 1

N 64 128 256 512

L∞ error 5.90 × 10−6 2.27 × 10−12 1.67 × 10−16 1.67 × 10−16
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Fig. 6 Stability of SDC for the IEM reformulated GB equation: errors for N = 64 (left), N = 128 (middle),
and N = 512 (right)
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nodes are used, we achieve machine precision accuracy. These numerical results strongly
suggest that the SDC solver for the IEM reformulation of the GB equation is backward
stable.

Finally, we compare the convergence of the SDC method with the black box JFNK solver
based KDC approach. In Fig. 7, we plot how the errors change as a function of the number of
deferred corrections for the settings N = 256, !t = 1 and K = 12. It can be observed that,
due to the overhead function evaluations to search for the optimal solution in the Newton and
Krylov iterations, the black box JFNK solver requires more deferred correction iterations
(H evaluations) to converge to the optimal accuracy allowed by the resolution. The SDC
method, on the other hand, converges faster than the black box JFNK based KDC approach.
And also, because of the better conditioned integral equation reformulation and the non-stiff
nonlinear term, the SDC method is always convergent.

6 Preliminary Comparison of Different Methods

In this section, we present some preliminary results to compare the accuracy and efficiency
performance of three different methods: the second order Strang operator splitting method
(OS2) as discussed in [62]; the high orderKDCandoperator splitting collocationmethod (H1-
KDC) for the original GB equation discussed in Sect. 4; and the high order SDC collocation
method (H2-SDC) for the IEM reformulated GB equation in Sect. 5.

By combining Figs. 2 and 5, we first compare the accuracy of the solutions from two
different collocation formulations in Eqs. (22) and (31). The results are shown in Fig. 8. We
see that both formulations have nice accuracy properties. However, due to the N 4-instability,
the original formulation can only achieve 12 digits accuracy for the specified settings, while
the IEM reformulation is more stable numerically and allows machine precision accuracy
when the resolution is sufficient.

Next, we compare the efficiency of the three algorithms. In Fig. 9, we consider the GB
equationwith analytical solution given in Eq. (23) from t = 0 to t = 4, and show the achieved
accuracy as a function of the number of times the lower order timemarching scheme is applied
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Fig. 9 Comparing the efficiency of three different algorithms

in different algorithms. Each curve represents the results using different time step sizes, and
different numbers of Gauss nodes (Gauss 5, 6 and 7) are used for the original GB based KDC
method (H1-KDC) and IEM-SDC formulation (H2-SDC). For H1-KDC, we set N = 128
to achieve the best spatial accuracy allowed by the N 4-instability as shown in Table 2. For
H2-SDC, N = 256 is also used to fully resolve the solution tomachine precision in the spatial
direction. We see that for lower accuracy requirements, the second order in time operator
splittingmethod performswell. However for higher accuracy requirements (6 ormore correct
digits), H2-SDC becomes the method of choice due to its efficiency and stability properties.
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Fig. 10 Two solitons interact with each other

For H1-KDC, we observe that it is in general less efficient and less accurate, compared with
H2-SDC scheme. There are several reasons for the poor performance, including (1) the N 4-
instability due to spectral differentiation, (2) its relatively poor convergence properties due
to the stiffness from the differential operators, and (3) the use of general purpose Jacobian-
Free Newton–Krylov solver which may require some overhead function evaluations. One of
our current research topics is to fine-tune the JFNK solver to take advantage of the special
structures in the deferred correction formulations; results along this direction will be reported
in the future.

Finally in this section, we apply these three different methods to a case where two solitons
interact with each other. Utilizing the function

utwo(x, t)=−A1sech2
(
P1
2
((x − x0) − c1t)

)
− A2sech2

(
P2
2
((x + x0)+ c2t)

)
, (32)

where

Ai =
3P2

i

2
, ci =

(
1 − P2

i
)1/2

, i = 1, 2, (33)

with parameters A1 = 0.125, A2 = 0.25, x0 = 10, we set the initial values of the GB
equation as

u0 = utwo(x, 0), and v0 = ∂t utwo(x, 0).

In our simulation, we set L = 200 so that the solution is close to zero at the boundary
during the simulation and the error from using the periodic boundary condition is within
machine precision. In Fig. 10, we show the reference solution computed using the stable
IEM-SDC (H2-SDC) method with N = 256 Fourier expansion terms and K = 12 Gauss
nodes. In Fig. 11, we show how the errors grow for the collocation methods using different
number of Gauss nodes (K = 5 and K = 9) with time step size!t = 1 and N = 256 Fourier
terms. As a comparison, we also show the results from the OS2 method with sufficient small
time step size !t = 2 × 10−3. It can be observed that, in comparison with the reference
solution, the accuracy of H1-KDC with 5 Gauss nodes is similar to that of H2-SDC with
the same number of Gauss nodes. With 9 Gauss nodes, H2-SDC outperforms H1-KDC in
accuracy. Our numerical experiments also show that N = 256 is the optimal choice for
H1-KDC. For larger N settings (e.g., N = 1024), the numerical solution blows up due
to N 4-instability for H1-KDC. The H2-SDC algorithm, on the other hand, provides stable
solutions for all tested N values, and it also outperforms the OS2 algorithm in efficiency in
the tested accuracy regime.
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7 Conclusions and Future Work

In this paper, we present two numerical methods for the GB equation. The first method
applies the Krylov deferred correction method to solve the spatial-temporal pseudo-spectral
formulation of the original GB equation; and the second method reformulates the GB equa-
tion into a better conditioned integral equation system, which allows the Neumann series
expansion based SDC to be applied, and leads to much better stability and efficiency for
certain settings. Currently, the IEM reformulation is performed in the frequency domain. For
non-periodic boundary conditions, it is possible to generalize the IEM approach to physical
domain by using the physical spatial-temporal domain Green’s function for the linear terms
of the GB equation. Note that the nonlinear term is non-stiff, simple explicit lower order
marching scheme (e.g., the forward Euler’s method) can be applied in the correction proce-
dure to derive lower order estimates of the errors, and the Neumann series expansion based
SDC method converges satisfactorily.

This paper addresses the numerical solution of the one dimensionalGB equation, however
many of the numerical ideas can be generalized to higher dimensions, including the operator
splitting techniques, SDC and KDC approaches, and integral equation reformulations. Of
particular interest is the algebraic alternating direction implicit (ADI) splitting technique
(see [15,19]), which can be considered as a special preconditioning technique so that higher
dimension solutions can be derived by iteratively solving one dimensional problems.Also, for
multi-dimensional problems, a better conditioned integral equation reformulation becomes
even more important to reduce the storage and operations in the computer system.

The KDC, SDC, and IEM reformulation ideas can be generalized to other types of time
dependent partial differential equations. Currently, these techniques are being applied to the
nonlinear Schrödinger equation and time-dependent density function theory (TD-DFT). The
IEM method can be applied to the linear constant coefficient terms of these equations, and if
the remaining variable coefficients and nonlinear terms are non-stiff, the explicit low-order
method based SDC approach can be applied to the integral equation reformulation and will
yield good convergence properties. The integral equation reformulation can be considered as
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an analytical preconditioner to the original PDE,whichmay effectively remove any numerical
stiffness coming from the linear constant coefficient terms of the original equation. However,
for general time dependent partial differential equations with variable coefficients or stiff
nonlinear terms, the IEMpreconditionermay be hard to find or inefficient to evaluate. In these
cases, the KDC based approaches have to be applied in order to get better deferred correction
convergence. We want to mention that there are increasing interests in fast algorithms for
time-domain integral equations and integral equation based spatial variable coefficient elliptic
PDE solvers, results along these directions may be adapted to further improved the accuracy
and efficiency of both the SDC and KDC algorithms for more general problems.

Finally, we want to mention that other types of collocation formulations are also possible,
e.g., the uniform nodes based formulation in the integral deferred correctionmethods [20], the
exponential sums and skeletonization based collocation formulations [29,44], and those using
the “prolate spheroidal wave functions” designed for “band-limited” functions in [6]. Prelim-
inary numerical studies reveal that different formulations demonstrate different numerical
behaviors, e.g., some formulations may show better accuracy properties but the convergence
may be slower. It is also possible to use one particular collocation formulation for the final
convergent solutions but apply several different error equation formulations in the conver-
gence procedure. We are currently studying the mathematical and numerical properties of
these formulations and their efficient combinations for optimal performance. Results along
these directions will be reported in the future.
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