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OPTIMAL ERROR ESTIMATES OF A CRANK–NICOLSON FINITE ELEMENT
PROJECTION METHOD FOR MAGNETOHYDRODYNAMIC EQUATIONS

Cheng Wang1, Jilu Wang2, Zeyu Xia3 and Liwei Xu3,˚

Abstract. In this paper, we propose and analyze a fully discrete finite element projection method for
the magnetohydrodynamic (MHD) equations. A modified Crank–Nicolson method and the Galerkin
finite element method are used to discretize the model in time and space, respectively, and appropri-
ate semi-implicit treatments are applied to the fluid convection term and two coupling terms. These
semi-implicit approximations result in a linear system with variable coefficients for which the unique
solvability can be proved theoretically. In addition, we use a second-order decoupling projection method
of the Van Kan type [Van Kan, SIAM J. Sci. Statist. Comput. 7 (1986) 870–891] in the Stokes solver,
which computes the intermediate velocity field based on the gradient of the pressure from the previous
time level, and enforces the incompressibility constraint via the Helmholtz decomposition of the inter-
mediate velocity field. The energy stability of the scheme is theoretically proved, in which the decoupled
Stokes solver needs to be analyzed in details. Error estimates are proved in the discrete 𝐿8p0, 𝑇 ; 𝐿2

q

norm for the proposed decoupled finite element projection scheme. Numerical examples are provided
to illustrate the theoretical results.
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1. Introduction

The magnetohydrodynamic equations have been widely applied into metallurgy and liquid-metal processing,
and the numerical solutions are of great significance in practical scientific and engineering applications; see Asai
[2] and Unger et al. [38]. Such an MHD system could be formulated as [35]

𝜇B𝑡𝐻 ` 𝜎´1∇ˆ p∇ˆ𝐻q ´ 𝜇∇ˆ p𝑢ˆ𝐻q “ 𝜎´1∇ˆ 𝐽 , (1.1)
B𝑡𝑢` 𝑢 ¨∇𝑢´ 𝜈∆𝑢`∇𝑝 “ 𝑓 ´ 𝜇𝐻 ˆ p∇ˆ𝐻q, (1.2)

∇ ¨ 𝑢 “ 0, (1.3)

over Ω ˆ p0, 𝑇 s, where Ω is a bounded and convex polyhedral domain in R3 (polygonal domain in R2). In the
above system, 𝑢, 𝐻 and 𝑝 denote the velocity field, the magnetic filed, and the pressure, respectively; 𝐽 and
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𝑓 are the given source terms (𝐽 denotes a scalar function in R2); 𝜎 denotes the magnetic Reynolds number,
𝜈 denotes the viscosity of the fluid, and 𝜇 “ 𝑀2𝜈𝜎´1, where 𝑀 is the Hartman number. The initial data and
boundary conditions are given by

𝐻|𝑡“0 “ 𝐻0, 𝑢|𝑡“0 “ 𝑢0, in Ω, (1.4)
𝐻 ˆ 𝑛 “ 0, 𝑢 “ 0, on BΩˆ p0, 𝑇 s. (1.5)

It is assumed that the initial data satisfies

∇ ¨𝐻0 “ ∇ ¨ 𝑢0 “ 0. (1.6)

By taking the divergence of (1.1), one can easily get 𝜇B𝑡∇¨𝐻 “ 0, which together with the above divergence-free
initial condition implies that

∇ ¨𝐻 “ 0. (1.7)

The existence and uniqueness of the weak solution for this problem has been theoretically proved in [15, 33].
More regularity analysis of the MHD system could be referred in [17,25,26,32], etc.

There have been many existing works on the numerical approximations for the incompressible MHD system.
In bounded and convex domains, the solutions of the MHD model are generally in r𝐻1pΩqs𝑑 (𝑑 “ 2, 3, denotes
the dimension of Ω) and therefore people often use 𝐻1-conforming finite element methods (FEMs) to solve
the MHD equations numerically. For example, Gunzburger et al. [15] used 𝐻1-conforming FEMs for solving the
stationary incompressible MHD equations with an optimal error estimate being established. Later, He developed
𝐻1-conforming FEMs in [18] for solving the time-dependent MHD equations and proved error estimates of the
numerical scheme. More works on 𝐻1-conforming FEMs for the MHD equations can be found in [1,10,13,19,24].

While the spatial approximation has always been important, the temporal discretization also plays a signifi-
cant role for solving the MHD system. There have been quite a few existing stability and convergence analyses
for the first-order temporally accurate numerical schemes [9, 18, 28–30]. In most of these works, the stability
and convergence analyses have been based on a Stokes solver at each time step, i.e., the computation of the
pressure gradient has to be implemented with the incompressibility constraint being enforced, which in turn
leads to a non-symmetric linear system, and the computation costs turn out to be extremely expensive. To
overcome this difficulty, some “decoupled” techniques have been introduced. In [44], Zhao et al. dealt with a
binary hydrodynamic phase field model of mixtures of nematic liquid crystals and viscous fluids by designing a
decoupled semi-discrete scheme, which is linear, first-order accurate in time, and unconditionally energy stable.
In particular, a pressure-correction scheme [14] was used so that the pressure could be explicitly updated in
the velocity equation by introducing an intermediate function and thus two sub-systems are generated. In [27],
Liu et al. proposed a first-order decoupled scheme for a phase-field model of two-phase incompressible flows
with variable density based on a “pressure-stabilized” formulation, which treats the pressure term explicitly in
the velocity field equation, and only requires a Poisson solver to update the pressure. These works have mainly
focused on the design of energy-preserving schemes without presenting the convergence analysis. Meanwhile,
the first-order temporal accuracy may not be sufficient in the practical computations of the MHD system, and
therefore higher-order temporal numerical approximations have been highly desired.

In the development of temporally higher-order methods, a conditionally stable second-order backward dif-
ference formula (BDF2) algorithm was proposed in [23] for a reduced MHD model at small magnetic Reynolds
number, in which the coupling terms were explicitly updated, and other terms were implicitly computed. An
unconditionally stable BDF2 method was proposed in [20], where the method was proved convergent with opti-
mal order. In [43], a second-order scheme with Newton treatment of the nonlinear terms was proposed, where
the unconditional stability and optimal error estimates were obtained. Recently, a fully discrete Crank–Nicolson
(CN) scheme was studied in [21], where the unconditional energy stability and convergence (without error esti-
mates) were proved. For efficient large scale numerical simulations of incompressible flows, high-order projection
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methods are desired. In [34], Shen presented rigorous error analysis of second-order Crank–Nicolson projection
methods of the Van Kan type [39], i.e., second-order incremental pressure-correction methods, for the unsteady
incompressible Navier–Stokes equations. By interpreting the respective projections schemes as second-order time
discretizations of a perturbed system which approximates the Navier–Stokes equations, optimal-order conver-
gence in the discrete 𝐿2p0, 𝑇 ; 𝐿2q norm was proved for the semi-implicit schemes. Later, Guermond [12] proved
optimal error estimates in the discrete 𝐿2p0, 𝑇 ; 𝐿2q norm for the fully discrete case with BDF2 approximation
in time. However, whether second-order incremental pressure-correction methods have optimal convergence in
the discrete 𝐿8p0, 𝑇 ; 𝐿2q norm remains open for both Navier–Stokes and MHD equations.

In this article, we fill in the gap between numerical computation and rigorous error estimates for a Crank–
Nicolson finite element projection method for the MHD model. We first propose a fully discrete decoupled finite
element projection method for the MHD system (1.1)–(1.3), and then the following properties are theoretically
established: unique solvability, unconditional energy stability, and convergence analysis. In particular, a modi-
fied Crank–Nicolson method with an implicit Adams–Moulton interpolation in the form of 3

4𝐻𝑛`1
ℎ ` 1

4𝐻𝑛´1
ℎ ,

instead of the standard Crank–Nicolson approximation, is applied to discretize the magnetic diffusion term.
Such a technique leads to a stronger stability property of the numerical scheme, as will be demonstrated in the
subsequent analysis.

A second-order incremental pressure-correction method is used to decouple the computation of velocity and
pressure. Precisely, an intermediate velocity function p𝑢𝑛`1

ℎ is introduced in the numerical scheme, and its
computation is based on the pressure gradient at the previous time step. After solving the intermediate velocity
field, we decompose it into the divergence-free subspace by using the Helmholtz decomposition. This yields the
velocity field 𝑢𝑛`1

ℎ at the same time level. In the error analysis, we first introduce an intermediate projection
of the velocity, i.e., {𝑅ℎ𝑢𝑛`1 as introduced in (4.16) and (4.17), with which, estimate of an intermediate error
for the velocity is obtained. With such estimate and rigorous analysis of the discrete gradient of the Stokes
projection, second-order convergence in time is proved in the discrete 𝐿8p0, 𝑇 ; 𝐿2q norm for the velocity and
magnetic fields, independently of the mesh size ℎ in the case ∇𝑝|BΩ “ 0 and dependently on ℎ´

1
2 in the case

∇𝑝|BΩ ‰ 0, respectively. The techniques introduced in this paper would also work for other related projection
methods.

This paper is organized as follows. In Section 2, a variational formulation and some preliminary results are
reviewed. The fully discrete finite element scheme is introduced in Section 3, and its unconditional energy
stability is established in details. Section 4 provides the rigorous proof of the unique solvability and error
estimates. Several numerical examples are presented in Section 5. Finally, some concluding remarks are provided
in Section 6.

2. Variational formulation and stability analysis

For 𝑘 ě 0 and 1 ď 𝑝 ď 8, let 𝑊 𝑘,𝑝pΩq be the conventional Sobolev space of functions defined on Ω, with
abbreviations 𝐿𝑝pΩq “ 𝑊 0,𝑝pΩq and 𝐻𝑘pΩq “ 𝑊 𝑘,2pΩq. Then, we denote by 𝑊 1,𝑝

0 pΩq the space of functions in
𝑊 1,𝑝pΩq with zero traces on the boundary BΩ, and denote 𝐻1

0 pΩq “𝑊 1,2
0 pΩq. The corresponding vector-valued

spaces are

L𝑝pΩq “ r𝐿𝑝pΩqs𝑑, W𝑘,𝑝pΩq “ r𝑊 𝑘,𝑝pΩqs𝑑,

W1,𝑝
0 pΩq “ r𝑊 1,𝑝

0 pΩqs𝑑, H1
0pΩq “W1,2

0 pΩq,
8H1pΩq “ t𝑣 P H1pΩq : 𝑣 ˆ 𝑛|BΩ “ 0u,

where 𝑑 “ 2, 3, denotes the dimension of Ω. As usual, the inner product of 𝐿2pΩq is denoted by p¨, ¨q.
With the above notations, it could be seen that the exact solution p𝐻, 𝑢, 𝑝q of (1.1)–(1.3) satisfies

p𝜇B𝑡𝐻, 𝑤q `
`

𝜎´1∇ˆ𝐻,∇ˆ𝑤
˘

´ p𝜇𝑢ˆ𝐻,∇ˆ𝑤q “
`

𝜎´1∇ˆ 𝐽 , 𝑤
˘

, (2.1)
pB𝑡𝑢, 𝑣q ` p𝜈∇𝑢,∇𝑣q ` 𝑏p𝑢, 𝑢, 𝑣q ´ p𝑝,∇ ¨ 𝑣q “ p𝑓 , 𝑣q ´ p𝜇𝐻 ˆ p∇ˆ𝐻q, 𝑣q, (2.2)
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p∇ ¨ 𝑢, 𝑞q “ 0, (2.3)

for any test functions p𝑤, 𝑣, 𝑞q P p 8H1pΩq,H1
0pΩq, 𝐿

2pΩqq, where we have defined the trilinear form 𝑏p¨, ¨, ¨q as

𝑏p𝑢, 𝑣, 𝑤q :“ p𝑢 ¨∇𝑣, 𝑤q `
1
2
pp∇ ¨ 𝑢q𝑣, 𝑤q

“
1
2
“

p𝑢 ¨∇𝑣, 𝑤q ´ p𝑢 ¨∇𝑤, 𝑣q
‰

, @𝑢, 𝑣, 𝑤 P H1
0pΩq,

(2.4)

and 𝑢 ¨ 𝑣 denotes the Euclidean scalar product in R𝑑. Notice that the trilinear form 𝑏p¨, ¨, ¨q is skew-symmetric
with respect to its last two arguments, so that we further have

𝑏p𝑢, 𝑣, 𝑣q “ 0, @𝑢, 𝑣, 𝑤 P H1
0pΩq.

The energy stability of the continuous system (2.1)–(2.3) could be obtained in a straightforward manner. By
taking 𝑤 “ 𝐻, 𝑣 “ 𝑢 in (2.1)–(2.3) and adding the resulting equations together, we get

𝜇

2
d
d𝑡
}𝐻}2𝐿2 ` 𝜎´1}∇ˆ𝐻}2𝐿2 `

1
2

d
d𝑡
}𝑢}2𝐿2 ` 𝜈}∇𝑢}2𝐿2 “ p𝐽 , 𝜎´1∇ˆ𝐻q ` p𝑓 , 𝑢q

ď
1

4𝜎
}𝐽}2𝐿2 ` 𝜎´1}∇ˆ𝐻}2𝐿2 `

1
4𝜀
}𝑓}2𝐿2 ` 𝜀}𝑢}2𝐿2 ,

where 𝜀 is an arbitrary constant. Due to the zero boundary condition of 𝑢 in (1.5), we have }𝑢}2𝐿2 ď 𝐶}∇𝑢}2𝐿2 .
Since 𝜀 can be arbitrarily small, we obtain the following energy estimate

𝜇

2
d
d𝑡
}𝐻}2𝐿2 `

1
2

d
d𝑡
}𝑢}2𝐿2 ď

1
4𝜎
}𝐽}2𝐿2 `

1
4𝜀
}𝑓}2𝐿2 . (2.5)

If the sources terms 𝐽 “ 𝑓 “ 0, we further get

𝜇

2
d
d𝑡
}𝐻}2𝐿2 `

1
2

d
d𝑡
}𝑢}2𝐿2 ď 0, (2.6)

which implies the total energy is decaying.

3. Numerical method and theoretical results

3.1. Numerical method

In this subsection, we propose a fully discrete decoupled finite element method for solving the system (1.1)–
(1.3). Let ℑℎ denote a quasi-uniform partition of Ω into tetrahedrons 𝐾𝑗 in R3 (or triangles in R2), 𝑗 “
1, 2, . . . ,𝑀 , with mesh size ℎ “ max1ď𝑗ď𝑀tdiam𝐾𝑗u. To approximate 𝑢 and 𝑝 in the system (1.1)–(1.3), we
introduce the Taylor-Hood finite element space Xh ˆ𝑀ℎ, defined by

Xℎ “
 

𝑙ℎ P H1
0pΩq : 𝑙ℎ|𝐾𝑗

P P𝑟p𝐾𝑗q
(

,

𝑀ℎ “

"

𝑞ℎ P 𝐿2pΩq : 𝑞ℎ|𝐾𝑗
P 𝑃𝑟´1p𝐾𝑗q,

ż

Ω

𝑞ℎd𝑥 “ 0
*

,

for any integer 𝑟 ě 2, where 𝑃𝑟p𝐾𝑗q is the space of polynomials with degree 𝑟 on 𝐾𝑗 for all 𝐾𝑗 P ℑℎ and
P𝑟p𝐾𝑗q :“ r𝑃𝑟p𝐾𝑗qs

𝑑. To approximate the magnetic field 𝐻, we introduce the finite element space Sℎ defined
by

Sℎ “

!

𝑤ℎ P 8H1pΩq : 𝑤ℎ|𝐾𝑗
P P𝑟p𝐾𝑗q

)

.
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Let t𝑡𝑛 “ 𝑛𝜏u𝑁𝑛“0 denote a uniform partition of the time interval r0, 𝑇 s, with a step size 𝜏 “ 𝑇 {𝑁 , and
𝑣𝑛 “ 𝑣p𝑥, 𝑡𝑛q. For any sequences t𝑣𝑛u𝑁𝑛“0 and tp𝑣𝑛u𝑁𝑛“0, we define

q𝑣𝑛` 1
2 :“

3
4
𝑣𝑛`1 `

1
4
𝑣𝑛´1, 𝑣𝑛` 1

2 :“
1
2
p𝑣𝑛`1 `

1
2
𝑣𝑛, r𝑣𝑛` 1

2 :“
3
2
𝑣𝑛 ´

1
2
𝑣𝑛´1.

Then, a fully discrete decoupled Crank–Nicolson finite element projection method for the incompressible MHD
equations (1.1)–(1.3) is formulated as: find p𝐻𝑛`1

ℎ , 𝑢𝑛`1
ℎ , p𝑢𝑛`1

ℎ , 𝑝𝑛`1
ℎ q P pSℎ,Xℎ,Xℎ, 𝑀ℎq such that

𝜇

ˆ

𝐻𝑛`1
ℎ ´𝐻𝑛

ℎ

𝜏
, 𝑤ℎ

˙

` 𝜎´1
´

∇ˆ |𝐻
𝑛` 1

2
ℎ ,∇ˆ𝑤ℎ

¯

` 𝜎´1
´

∇ ¨ |𝐻𝑛` 1
2

ℎ ,∇ ¨𝑤ℎ

¯

´𝜇
´

𝑢
𝑛` 1

2
ℎ ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ𝑤ℎ

¯

“ 𝜎´1
´

∇ˆ 𝐽𝑛` 1
2 , 𝑤ℎ

¯

, (3.1)
ˆ

p𝑢𝑛`1
ℎ ´ 𝑢𝑛

ℎ

𝜏
, 𝑣ℎ

˙

` 𝜈
´

∇𝑢
𝑛` 1

2
ℎ ,∇𝑣ℎ

¯

` 𝑏
´

r𝑢
𝑛` 1

2
ℎ , 𝑢

𝑛` 1
2

ℎ , 𝑣ℎ

¯

´ p𝑝𝑛
ℎ,∇ ¨ 𝑣ℎq

`𝜇
´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ |𝐻
𝑛` 1

2
ℎ

¯

, 𝑣ℎ

¯

“

´

𝑓𝑛` 1
2 , 𝑣ℎ

¯

, (3.2)
ˆ

𝑢𝑛`1
ℎ ´ p𝑢𝑛`1

ℎ

𝜏
, 𝑙ℎ

˙

´
1
2
`

𝑝𝑛`1
ℎ ´ 𝑝𝑛

ℎ,∇ ¨ 𝑙ℎ
˘

“ 0, (3.3)
`

∇ ¨ 𝑢𝑛`1
ℎ , 𝑞ℎ

˘

“ 0, (3.4)

for any p𝑤ℎ, 𝑣ℎ, 𝑙ℎ, 𝑞ℎq P pSℎ,Xℎ,Xℎ, 𝑀ℎq and 𝑛 “ 1, 2, . . . , 𝑁 ´ 1. Here we have added a stabilization term

𝜎´1
´

∇ ¨ |𝐻𝑛` 1
2

ℎ ,∇ ¨𝑤ℎ

¯

to (3.1). This is consistent with (2.1) in view of (1.7).
In this paper, it is assumed that the system (1.1)–(1.3) admits a unique solution satisfying

}𝐻𝑡𝑡𝑡}𝐿8p0,𝑇 ;𝐿2q ` }𝐻𝑡𝑡}𝐿8p0,𝑇 ;𝐻1q ` }𝐻𝑡}𝐿8p0,𝑇 ;𝐻𝑟`1q ` }𝑢𝑡𝑡𝑡}𝐿8p0,𝑇 ;𝐿2q

` }𝑢𝑡𝑡}𝐿8p0,𝑇 ;𝐻1q ` }𝑢𝑡}𝐿8p0,𝑇 ;𝐻𝑟`1q ` }𝑝𝑡𝑡}𝐿8p0,𝑇 ;𝐿2q ` }𝑝𝑡}𝐿8p0,𝑇 ;𝐻𝑟q ď 𝐾. (3.5)

Here, the subscripts of 𝐻, 𝑢, 𝑝 denote the partial derivative to variable 𝑡.
Next, we present our main results, i.e., error estimates for scheme (3.1)–(3.4), in the following theorem.

Theorem 3.1. Suppose that the system (1.1)–(1.3) has a unique solution p𝐻, 𝑢, 𝑝q satisfying (3.5). Then there
exist positive constants 𝜏0 and ℎ0 such that when 𝜏 ă 𝜏0, ℎ ă ℎ0, and 𝜏 “ 𝒪pℎq, the fully discrete decoupled
FEM system (3.1)–(3.4) admits a unique solution p𝐻𝑛

ℎ , 𝑢𝑛
ℎ, 𝑝𝑛

ℎq, 𝑛 “ 2, 3, . . . , 𝑁 , which satisfies that

max
2ď𝑛ď𝑁

p}𝐻𝑛
ℎ ´𝐻𝑛}𝐿2 ` }𝑢

𝑛
ℎ ´ 𝑢𝑛}𝐿2q ď 𝐶0

`

ℓℎ𝜏2 ` ℎ𝑟`1
˘

, (3.6)

˜

𝜏
𝑁
ÿ

𝑛“2

´

}∇ˆ p𝐻𝑛
ℎ ´𝐻𝑛q}

2
𝐿2 ` }∇

´

𝑢
𝑛´ 1

2
ℎ ´ 𝑢𝑛´ 1

2

¯

}2𝐿2

¯

¸

1
2

ď 𝐶0

`

ℓℎ𝜏2 ` ℎ𝑟
˘

, (3.7)

where 𝑢𝑛´ 1
2 :“ 1

2

`

p𝑢𝑛 ` 𝑢𝑛´1
˘

and p𝑢𝑛 :“ 𝑢𝑛; ℓℎ “ 1 if ∇𝑝|BΩ “ 0, otherwise ℓℎ “ ℎ´
1
2 ; 𝐶0 is a positive

constant independent of 𝜏 and ℎ.

Remark 3.2. One feature of the proposed numerical scheme (3.1)–(3.4) is associated with its decoupled nature
in the Stokes solver. Motivated by the second-order projection method of the Van Kan type [39], i.e., second-
order incremental pressure-correction method, we introduce an intermediate velocity p𝑢𝑛`1

ℎ to decouple the
problem, and thus build two systems and both of them consist of two unknowns. More precisely, we first obtain
𝐻𝑛`1

ℎ and p𝑢𝑛`1
ℎ through (3.1) and (3.2), while treating the gradient of pressure explicitly. Then, we substitute
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p𝑢𝑛`1
ℎ into (3.3) and (3.4), so that 𝑝𝑛`1

ℎ and 𝑢𝑛`1
ℎ could be efficiently computed via solving a Darcy problem.

In comparison with the classical coupled solver that the full system contains three unknowns 𝐻𝑛`1
ℎ , 𝑢𝑛`1

ℎ and
𝑝𝑛`1

ℎ , which have to be solved simultaneously, such a decoupled approach will greatly improve the efficiency of
the numerical scheme.

There have been extensive analyses of decoupled numerical schemes for incompressible Navier–Stokes equa-
tions; see the pioneering works of Chorin [7], Temam [36], and many other related studies [3,22,31,40–42], etc.
In this work, second-order convergence in time is proved in the discrete 𝐿8p0, 𝑇 ; 𝐿2q norm for the velocity and
magnetic fields, independently of the mesh size ℎ in the case ∇𝑝|BΩ “ 0 and dependently on ℎ´

1
2 in the case

∇𝑝|BΩ ‰ 0, respectively. The techniques introduced in this paper would also work for other related projection
methods.

Remark 3.3. Another feature of scheme (3.1)–(3.4) is that we have used a modified Crank–Nicolson method
for temporal discretization, where the term ∇ ˆ 𝐻𝑛` 1

2 is approximated by ∇ ˆ
`

3
4𝐻𝑛`1 ` 1

4𝐻𝑛´1
˘

. This
enables us to obtain error estimates for the term ∇ˆ𝐻 at certain time steps, instead of an average of those at
two consecutive time levels; see (3.7). Such a modified Crank–Nicolson scheme has been extensively applied to
various gradient flow models [5, 6, 8, 16]. An application of this approach to the incompressible MHD system is
reported in this work, for the first time.

Remark 3.4. In (3.1), we have added a stabilization term 𝜎´1
´

∇ ¨ |𝐻𝑛` 1
2

ℎ ,∇ ¨𝑤ℎ

¯

to validate the coercivity
of the magnetic equation, with which, optimal error estimates for the magnetic field in energy-norm can be
proved.

Remark 3.5. It is noted that the numerical solutions at two previous time levels are needed for the imple-
mentation of (3.1)–(3.4). The starting values at time steps 𝑡0 and 𝑡1 are assumed to be given and satisfy the
estimate (3.6). An example of constructing the numerical schemes for starting values is an application of the
backward Euler FEM method at 𝑡1 and the Stokes and Maxwell projections of the initial data at 𝑡0. In such
case, the error estimate (3.6) holds at 𝑡1 and 𝑡0.

In the following subsection, we analyze the energy stability of scheme (3.1)–(3.4). In this paper, we denote
by 𝐶 a generic positive constant and by 𝜀 a generic small positive constant, which are independent of 𝑛, ℎ, 𝜏 ,
and 𝐶0.

3.2. Stability analysis of numerical scheme

In this subsection, we present the energy stability analysis for the numerical system (3.1)–(3.4). Here, we
introduce a discrete version of the gradient operator, ∇ℎ : 𝑀ℎ Ñ Xℎ, defined as

p𝑣ℎ,∇ℎ𝑞ℎq “ ´p∇ ¨ 𝑣ℎ, 𝑞ℎq, @𝑣ℎ P Xℎ, 𝑞ℎ P 𝑀ℎ. (3.8)

Through the definition of the discrete gradient operator ∇ℎ, we can rewrite the equation (3.3) in the following
equivalent form:

𝑢𝑛`1
ℎ ´ p𝑢𝑛`1

ℎ

𝜏
`

1
2
∇ℎ

`

𝑝𝑛`1
ℎ ´ 𝑝𝑛

ℎ

˘

“ 0. (3.9)

The abstract form (3.9) will be useful in the stability analysis of numerical scheme.

Theorem 3.6. The numerical solution p𝐻𝑛
ℎ , 𝑢𝑛

ℎ, 𝑝𝑛
ℎq to the fully discrete linearized FEM (3.1)–(3.4) satisfies

the following energy stability estimate

𝜇

2𝜏

´

›

›𝐻𝑛`1
ℎ

›

›

2

𝐿2 ´ }𝐻
𝑛
ℎ }

2
𝐿2

¯

`
𝜇

8𝜏

´

›

›𝐻𝑛`1
ℎ ´𝐻𝑛

ℎ

›

›

2

𝐿2 ´
›

›𝐻𝑛
ℎ ´𝐻𝑛´1

ℎ

›

›

2

𝐿2

¯
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`
1
2𝜏

´

›

›𝑢𝑛`1
ℎ

›

›

2

𝐿2 ´ }𝑢
𝑛
ℎ}

2
𝐿2

¯

`
𝜏

8

´

›

›∇ℎ𝑝𝑛`1
ℎ

›

›

2

𝐿2 ´ }∇ℎ𝑝𝑛
ℎ}

2
𝐿2

¯

ď 𝐶

ˆ

›

›

›
𝐽𝑛` 1

2

›

›

›

2

𝐿2
`

›

›

›
𝑓𝑛` 1

2

›

›

›

2

𝐿2

˙

, (3.10)

for 𝑛 “ 1, 2, . . . , 𝑁 ´ 1, where 𝐶 is a positive constant independent of 𝜏 and ℎ.

Proof. By taking 𝑤ℎ “ |𝐻
𝑛` 1

2
ℎ in (3.1) and 𝑣ℎ “ 𝑢

𝑛` 1
2

ℎ in (3.2), we get

𝜇

2𝜏

´

›

›𝐻𝑛`1
ℎ

›

›

2

𝐿2 ´ }𝐻
𝑛
ℎ }

2
𝐿2

¯

`
𝜇

8𝜏

´

›

›𝐻𝑛`1
ℎ ´𝐻𝑛

ℎ

›

›

2

𝐿2 ´
›

›𝐻𝑛
ℎ ´𝐻𝑛´1

ℎ

›

›

2

𝐿2

¯

`
𝜇

8𝜏

›

›𝐻𝑛`1
ℎ ´ 2𝐻𝑛

ℎ `𝐻𝑛´1
ℎ

›

›

2

𝐿2 ` 𝜎´1
›

›

›
∇ˆ |𝐻

𝑛` 1
2

ℎ

›

›

›

2

𝐿2
` 𝜎´1

›

›

›
∇ ¨ |𝐻𝑛` 1

2
ℎ

›

›

›

2

𝐿2

´ 𝜇
´

𝑢
𝑛` 1

2
ℎ ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ |𝐻
𝑛` 1

2
ℎ

¯

“ 𝜎´1
´

∇ˆ 𝐽𝑛` 1
2 , |𝐻

𝑛` 1
2

ℎ

¯

, (3.11)

and

1
2𝜏

´

›

›

p𝑢𝑛`1
ℎ

›

›

2

𝐿2 ´ }𝑢
𝑛
ℎ}

2
𝐿2

¯

` 𝜈
›

›

›
∇𝑢

𝑛` 1
2

ℎ

›

›

›

2

𝐿2
´

´

𝑝𝑛
ℎ,∇ ¨ 𝑢𝑛` 1

2
ℎ

¯

` 𝜇
´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ |𝐻
𝑛` 1

2
ℎ

¯

, 𝑢
𝑛` 1

2
ℎ

¯

“

´

𝑓𝑛` 1
2 , 𝑢

𝑛` 1
2

ℎ

¯

, (3.12)

respectively, where we have used the fact that 𝑏
´

r𝑢
𝑛` 1

2
ℎ , 𝑢

𝑛` 1
2

ℎ , 𝑢
𝑛` 1

2
ℎ

¯

“ 0, and

ˆ

𝐻𝑛`1
ℎ ´𝐻𝑛

ℎ

𝜏
, 𝑤ℎ

˙

“
1
2𝜏

´

›

›𝐻𝑛`1
ℎ

›

›

2

𝐿2 ´ }𝐻
𝑛
ℎ }

2
𝐿2

¯

`
1
8𝜏

´

›

›𝐻𝑛`1
ℎ ´𝐻𝑛

ℎ

›

›

2

𝐿2 ´
›

›𝐻𝑛
ℎ ´𝐻𝑛´1

ℎ

›

›

2

𝐿2

¯

`
1
8𝜏

›

›𝐻𝑛`1
ℎ ´ 2𝐻𝑛

ℎ `𝐻𝑛´1
ℎ

›

›

2

𝐿2 .

In turn, a substitution of 𝑙ℎ “ 𝑢𝑛`1
ℎ in (3.3) yields

1
2𝜏

´

›

›𝑢𝑛`1
ℎ

›

›

2

𝐿2 ´
›

›

p𝑢𝑛`1
ℎ

›

›

2

𝐿2 `
›

›𝑢𝑛`1
ℎ ´ p𝑢𝑛`1

ℎ

›

›

2

𝐿2

¯

“ 0, (3.13)

where we have used the divergence-free condition (3.4) for 𝑞ℎ being 𝑝𝑛`1
ℎ , 𝑝𝑛

ℎ.
Next, we choose 𝑙ℎ “ ∇ℎ𝑝𝑛

ℎ in (3.3) and obtain

´
`

∇ ¨ p𝑢𝑛`1
ℎ , 𝑝𝑛

ℎ

˘

“
𝜏

4

´

›

›∇ℎ𝑝𝑛`1
ℎ

›

›

2

𝐿2 ´ }∇ℎ𝑝𝑛
ℎ}

2
𝐿2 ´

›

›∇ℎ

`

𝑝𝑛`1
ℎ ´ 𝑝𝑛

ℎ

˘
›

›

2

𝐿2

¯

. (3.14)

Furthermore, we get the following result from (3.9)

1
4

›

›∇ℎ

`

𝑝𝑛`1
ℎ ´ 𝑝𝑛

ℎ

˘
›

›

2

𝐿2 “
1
𝜏2

›

›𝑢𝑛`1
ℎ ´ p𝑢𝑛`1

ℎ

›

›

2

𝐿2 . (3.15)

Summing up (3.11)–(3.15) leads to

𝜇

2𝜏

´

›

›𝐻𝑛`1
ℎ

›

›

2

𝐿2 ´ }𝐻
𝑛
ℎ }

2
𝐿2

¯

`
𝜇

8𝜏

´

›

›𝐻𝑛`1
ℎ ´𝐻𝑛

ℎ

›

›

2

𝐿2 ´
›

›𝐻𝑛
ℎ ´𝐻𝑛´1

ℎ

›

›

2

𝐿2

¯

`
𝜇

8𝜏

›

›𝐻𝑛`1
ℎ ´ 2𝐻𝑛

ℎ `𝐻𝑛´1
ℎ

›

›

2

𝐿2 ` 𝜎´1
›

›

›
∇ˆ |𝐻

𝑛` 1
2

ℎ

›

›

›

2

𝐿2
` 𝜎´1

›

›

›
∇ ¨ |𝐻𝑛` 1

2
ℎ

›

›

›

2

𝐿2
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`
1
2𝜏

´

›

›𝑢𝑛`1
ℎ

›

›

2

𝐿2 ´ }𝑢
𝑛
ℎ}

2
𝐿2

¯

` 𝜈
›

›

›
∇𝑢

𝑛` 1
2

ℎ

›

›

›

2

𝐿2
`

𝜏

8

´

›

›∇ℎ𝑝𝑛`1
ℎ

›

›

2

𝐿2 ´ }∇ℎ𝑝𝑛
ℎ}

2
𝐿2

¯

ď 𝜎´1
´

∇ˆ 𝐽𝑛` 1
2 , |𝐻

𝑛` 1
2

ℎ

¯

`

´

𝑓𝑛` 1
2 , 𝑢

𝑛` 1
2

ℎ

¯

. (3.16)

For the right-hand side of (3.16), we can easily see that

𝜎´1
´

∇ˆ 𝐽𝑛` 1
2 , |𝐻

𝑛` 1
2

ℎ

¯

“ 𝜎´1
´

𝐽𝑛` 1
2 ,∇ˆ |𝐻

𝑛` 1
2

ℎ

¯

ď
1

4𝜎

›

›

›
𝐽𝑛` 1

2

›

›

›

2

𝐿2
` 𝜎´1

›

›

›
∇ˆ |𝐻

𝑛` 1
2

ℎ

›

›

›

2

𝐿2
,

and
´

𝑓𝑛` 1
2 , 𝑢

𝑛` 1
2

ℎ

¯

ď
1
4𝜀

›

›

›
𝑓𝑛` 1

2

›

›

›

2

𝐿2
` 𝜀

›

›

›
𝑢

𝑛` 1
2

ℎ

›

›

›

2

𝐿2
ď

1
4𝜀

›

›

›
𝑓𝑛` 1

2

›

›

›

2

𝐿2
` 𝜀

›

›

›
∇𝑢

𝑛` 1
2

ℎ

›

›

›

2

𝐿2
,

where 𝜀 is an arbitrarily small constant. Substituting the above estimates into (3.16), we get the desired result
(3.10) immediately. This completes the proof of Theorem 3.6. �

4. Error estimates

We present the proof of the existence and uniqueness of numerical solution and the error estimates (3.6) and
(3.7) in Section 4.

4.1. Preliminary results

We introduce several types of projections. Let 𝑃ℎ : 𝐿2pΩq Ñ𝑀ℎ denote the 𝐿2 projection which satisfies

p𝑣 ´ 𝑃ℎ𝑣, 𝑞ℎq “ 0, 𝑣 P 𝐿2pΩq, @𝑞ℎ P 𝑀ℎ. (4.1)

For the sake of brevity, if 𝑣 is a vector function in L2pΩq, we use 𝑃ℎ𝑣 to denote the 𝐿2 projection of the vector
function 𝑣 onto Xℎ. Furthermore, let p𝑅ℎ𝑢, 𝑅ℎ𝑝q denote the Stokes projection of p𝑢, 𝑝q P H1

0pΩq ˆ 𝐿2pΩq{R
satisfying

𝜈p∇p𝑢´𝑅ℎ𝑢q,∇𝑣ℎq ´ p𝑝´𝑅ℎ𝑝,∇ ¨ 𝑣ℎq “ 0, @𝑣ℎ P Xℎ, (4.2)
p∇ ¨ p𝑢´𝑅ℎ𝑢q, 𝑞ℎq “ 0, @ 𝑞ℎ P 𝑀ℎ. (4.3)

We also introduce the Maxwell projection operator Πℎ : 8H1pΩq Ñ Sℎ, by

p∇ˆ p𝐻 ´Πℎ𝐻q,∇ˆ𝑤ℎq ` p∇ ¨ p𝐻 ´Πℎ𝐻q,∇ ¨𝑤ℎq “ 0, 𝐻 P 8H1pΩq,@𝑤ℎ P Sℎ. (4.4)

For the above projections, the following estimates are recalled [11,37].

Lemma 4.1. The following estimates are valid for the 𝐿2 projection, Stokes projection, and Maxwell projection:

}𝑃ℎ𝑣}𝐿𝑠 ď 𝐶}𝑣}𝐿𝑠 , @𝑣 P 𝐿2pΩq, (4.5)
}𝑃ℎ𝑣}𝐻1 ď 𝐶}𝑣}𝐻1 , @𝑣 P 𝐻1

0 pΩq, (4.6)

}𝑣 ´ 𝑃ℎ𝑣}𝐿2 ď 𝐶ℎℓ`1}𝑣}𝐻ℓ`1 , (4.7)

for 𝑚 “ 0, 1, 0 ď ℓ ď 𝑟, 1 ď 𝑠 ď 8, and

}𝑅ℎ𝑢}𝑊 1,𝑠 ` }𝑅ℎ𝑝}𝐿𝑠 ď 𝐶p}𝑢}𝑊 1,𝑠 ` }𝑝}𝐿𝑠q, (4.8)

}𝑢´𝑅ℎ𝑢}𝐿𝑠 ` ℎ}𝑢´𝑅ℎ𝑢}𝑊 1,𝑠 ď 𝐶ℎℓ`1p}𝑢}𝑊 ℓ`1,𝑠 ` }𝑝}𝑊 ℓ,𝑠q, (4.9)

}𝑝´𝑅ℎ𝑝}𝐿𝑠 ď 𝐶ℎℓp}𝑢}𝑊 ℓ`1,𝑠 ` }𝑝}𝑊 ℓ,𝑠q, (4.10)
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}B𝑡p𝑢´𝑅ℎ𝑢q}𝐿𝑠 ` ℎ}B𝑡p𝑝´𝑅ℎ𝑝q}𝐿𝑠 ď 𝐶ℎℓ`1p}B𝑡𝑢}𝑊 ℓ`1,𝑠 ` }B𝑡𝑝}𝑊 ℓ,𝑠q, (4.11)

for 0 ď ℓ ď 𝑟, 1 ă 𝑠 ă 8, and

}𝐻 ´Πℎ𝐻}𝐿2 ` ℎ}𝐻 ´Πℎ𝐻}𝐻1 ď 𝐶ℎℓ`1}𝐻}𝐻ℓ`1 , (4.12)

for 0 ď ℓ ď 𝑟, where 𝐶 is a positive constant independent of ℎ.

Next, we recall two lemmas that will be frequently used in this paper.

Lemma 4.2 ([4]). Given 𝑣ℎ in the finite element spaces Xℎ, 𝑀ℎ, or Sℎ, the following inverse inequality holds

}𝑣ℎ}𝑊 𝑚,𝑠 ď 𝐶ℎ𝑛´𝑚` 𝑑
𝑠´

𝑑
𝑞 }𝑣ℎ}𝑊 𝑛,𝑞 , (4.13)

for 0 ď 𝑛 ď 𝑚 ď 1, 1 ď 𝑞 ď 𝑠 ď 8, where 𝑑 denotes the dimension of the space and 𝐶 is a positive constant
independent of ℎ.

Lemma 4.3. The discrete gradient operator ∇ℎ : 𝑀ℎ Ñ Xℎ (defined in (3.8)) satisfies the following estimates

}∇ℎ𝑞ℎ}𝐿2 ď 𝐶ℎ´1}𝑞ℎ}𝐿2 , (4.14)
}∇ℎ𝑞ℎ}𝐿3 ď 𝐶ℎ´1}𝑞ℎ}𝐿3 , (4.15)

for any 𝑞ℎ P 𝑀ℎ, where 𝐶 is a positive constant independent of ℎ.

Proof. The estimate (4.14) follows immediately by substituting 𝑣ℎ “ ∇ℎ𝑞ℎ into (3.8) and inverse inequality
(4.13).

It remains to prove (4.15). Given 𝑞ℎ P 𝑀ℎ, it is easy to see that

p∇ℎ𝑞ℎ, 𝑣q “ p∇ℎ𝑞ℎ, 𝑃ℎ𝑣q “ ´p𝑞ℎ,∇ ¨ 𝑃ℎ𝑣q ď }𝑞ℎ}𝐿3}∇ ¨ 𝑃ℎ𝑣}
𝐿

3
2

ď 𝐶}𝑞ℎ}𝐿3ℎ´1}𝑃ℎ𝑣}
𝐿

3
2
ď 𝐶ℎ´1}𝑞ℎ}𝐿3}𝑣}

𝐿
3
2
,

for all 𝑣 P 𝐿
3
2 pΩq. Here, 𝑃ℎ is the 𝐿2 projection, which has a bounded extension to 𝐿𝑝pΩq for 1 ď 𝑝 ď 8,

with a bound independent of ℎ; see Lemma 6.1 of [37]. Then, using the duality between 𝐿3pΩq and 𝐿
3
2 pΩq, it is

straightforward to derive (4.15). The proof of Lemma 4.3 is completed. �

4.2. Error equations

To establish error estimates for the scheme (3.1)–(3.4), we introduce an intermediate function {𝑅ℎ𝑢𝑛`1 P 𝑋ℎ,
defined as

˜

𝑅ℎ𝑢𝑛`1 ´ {𝑅ℎ𝑢𝑛`1

𝜏
, 𝑙ℎ

¸

´
1
2
`

𝑅ℎ𝑝𝑛`1 ´𝑅ℎ𝑝𝑛,∇ ¨ 𝑙ℎ
˘

“ 0, @𝑙ℎ P 𝑋ℎ, (4.16)

or equivalently,
𝑅ℎ𝑢𝑛`1 ´ {𝑅ℎ𝑢𝑛`1

𝜏
“ ´

1
2
∇ℎ

`

𝑅ℎ𝑝𝑛`1 ´𝑅ℎ𝑝𝑛
˘

. (4.17)

With the intermediate function defined above and the projections introduced in the previous subsection, the
MHD system (1.1)–(1.3) can be rewritten as follows:

𝜇

ˆ

Πℎ𝐻𝑛`1 ´Πℎ𝐻𝑛

𝜏
, 𝑤ℎ

˙

` 𝜎´1
´

∇ˆΠℎ
|𝐻𝑛` 1

2 ,∇ˆ𝑤ℎ

¯

` 𝜎´1
´

∇ ¨Πℎ
|𝐻𝑛` 1

2 ,∇ ¨𝑤ℎ

¯

´ 𝜇
´

𝑢𝑛` 1
2 ˆ Ă𝐻𝑛` 1

2 ,∇ˆ𝑤ℎ

¯

“ 𝜎´1
´

∇ˆ 𝐽𝑛` 1
2 , 𝑤ℎ

¯

`𝑅𝑛`1
𝐻 p𝑤ℎq, (4.18)
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˜

{𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛

𝜏
, 𝑣ℎ

¸

` 𝜈

˜

∇

˜

{𝑅ℎ𝑢𝑛`1 `𝑅ℎ𝑢𝑛

2

¸

,∇𝑣ℎ

¸

` 𝑏
´

r𝑢𝑛` 1
2 , 𝑢𝑛` 1

2 , 𝑣ℎ

¯

´ p𝑅ℎ𝑝𝑛,∇ ¨ 𝑣ℎq ` 𝜇
´

Ă𝐻𝑛` 1
2 ˆ

´

∇ˆ |𝐻𝑛` 1
2

¯

, 𝑣ℎ

¯

“

´

𝑓𝑛` 1
2 , 𝑣ℎ

¯

`

˜

{𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛`1

𝜏
, 𝑣ℎ

¸

` 𝜈

˜

∇

˜

{𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛`1

2

¸

,∇𝑣ℎ

¸

´

ˆ

𝑅ℎ𝑝𝑛 ´
𝑅ℎ𝑝𝑛`1 `𝑅ℎ𝑝𝑛

2
,∇ ¨ 𝑣ℎ

˙

`𝑅𝑛`1
𝑢 p𝑣ℎq, (4.19)

`

∇ ¨ 𝑢𝑛`1, 𝑞ℎ

˘

“ 0, (4.20)

for any p𝑤ℎ, 𝑣ℎ, 𝑞ℎq P p𝑆ℎ, 𝑋ℎ, 𝑀ℎq and 𝑛 “ 1, 2, . . . , 𝑁 ´ 1, where we denote p𝑢𝑛`1 :“ 𝑢𝑛`1, 𝑅𝑛`1
𝐻 p𝑤ℎq and

𝑅𝑛`1
𝑢 p𝑣ℎq stand for the truncation errors satisfying

𝑅𝑛`1
𝐻 p𝑤ℎq “ 𝜇

ˆ

Πℎ𝐻𝑛`1 ´Πℎ𝐻𝑛

𝜏
´ B𝑡𝐻

𝑛` 1
2 , 𝑤ℎ

˙

` 𝜎´1
´

∇ˆ
´

Πℎ
|𝐻𝑛` 1

2 ´𝐻𝑛` 1
2

¯

,∇ˆ𝑤ℎ

¯

` 𝜎´1
´

∇ ¨
´

Πℎ
|𝐻𝑛` 1

2 ´𝐻𝑛` 1
2

¯

,∇ ¨𝑤ℎ

¯

´ 𝜇
´

𝑢𝑛` 1
2 ˆ Ă𝐻𝑛` 1

2 ´ 𝑢𝑛` 1
2 ˆ𝐻𝑛` 1

2 ,∇ˆ𝑤ℎ

¯

,

(4.21)

𝑅𝑛`1
𝑢 p𝑣ℎq “

ˆ

𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛

𝜏
´ B𝑡𝑢

𝑛` 1
2 , 𝑣ℎ

˙

` 𝜈

ˆ

∇
ˆ

𝑅ℎ𝑢𝑛`1 `𝑅ℎ𝑢𝑛

2
´ 𝑢𝑛` 1

2

˙

,∇𝑣ℎ

˙

`

´

𝑏
´

r𝑢𝑛` 1
2 , 𝑢𝑛` 1

2 , 𝑣ℎ

¯

´ 𝑏
´

𝑢𝑛` 1
2 , 𝑢𝑛` 1

2 , 𝑣ℎ

¯¯

´

ˆ

𝑅ℎ𝑝𝑛`1 `𝑅ℎ𝑝𝑛

2
´ 𝑝𝑛` 1

2 ,∇ ¨ 𝑣ℎ

˙

` 𝜇
´

Ă𝐻𝑛` 1
2 ˆ

´

∇ˆ |𝐻𝑛` 1
2

¯

´𝐻𝑛` 1
2 ˆ

´

∇ˆ𝐻𝑛` 1
2

¯

, 𝑣ℎ

¯

. (4.22)

Utilizing the projection error estimates presented in the previous subsection, we only need to estimate the
following error functions

𝑒𝑛
𝐻 “ Πℎ𝐻𝑛 ´𝐻𝑛

ℎ , 𝑒𝑛
𝑢 “ 𝑅ℎ𝑢𝑛 ´ 𝑢𝑛

ℎ,

p𝑒𝑛
𝑢 “

{𝑅ℎ𝑢𝑛 ´ p𝑢𝑛
ℎ, 𝑒𝑛

𝑝 “ 𝑅ℎ𝑝𝑛 ´ 𝑝𝑛
ℎ,

for 𝑛 “ 1, 2, . . . , 𝑁 . From the system (4.16)–(4.20) and the fully discrete numerical scheme (3.1)–(3.4), we
observe that the error functions p𝑒𝑛

𝐻 , 𝑒𝑛
𝑢, p𝑒𝑛

𝑢, 𝑒𝑛
𝑝 q satisfy the following equations:

𝜇

ˆ

𝑒𝑛`1
𝐻 ´ 𝑒𝑛

𝐻

𝜏
, 𝑤ℎ

˙

` 𝜎´1
´

∇ˆ q𝑒
𝑛` 1

2
𝐻 ,∇ˆ𝑤ℎ

¯

` 𝜎´1
´

∇ ¨ q𝑒𝑛` 1
2

𝐻 ,∇ ¨𝑤ℎ

¯

“ 𝜇

"

´

𝑢𝑛` 1
2 ˆ Ă𝐻𝑛` 1

2 ,∇ˆ𝑤ℎ

¯

´

´

𝑢
𝑛` 1

2
ℎ ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ𝑤ℎ

¯

*

`𝑅𝑛`1
𝐻 p𝑤ℎq, (4.23)

ˆ

p𝑒𝑛`1
𝑢 ´ 𝑒𝑛

𝑢

𝜏
, 𝑣ℎ

˙

` 𝜈
´

∇𝑒
𝑛` 1

2
𝑢 ,∇𝑣ℎ

¯

´
`

𝑒𝑛
𝑝 ,∇ ¨ 𝑣ℎ

˘

“

˜

{𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛`1

𝜏
, 𝑣ℎ

¸

` 𝜈

˜

∇

˜

{𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛`1

2

¸

,∇𝑣ℎ

¸

´

ˆ

𝑅ℎ𝑝𝑛 ´
𝑅ℎ𝑝𝑛`1 `𝑅ℎ𝑝𝑛

2
,∇ ¨ 𝑣ℎ

˙

´

"

𝑏
´

r𝑢𝑛` 1
2 , 𝑢𝑛` 1

2 , 𝑣ℎ

¯

´ 𝑏
´

r𝑢
𝑛` 1

2
ℎ , 𝑢

𝑛` 1
2

ℎ , 𝑣ℎ

¯

*

´ 𝜇

"

´

Ă𝐻𝑛` 1
2 ˆ

´

∇ˆ |𝐻𝑛` 1
2

¯

, 𝑣ℎ

¯

´

´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ |𝐻
𝑛` 1

2
ℎ

¯

, 𝑣ℎ

¯

*

`𝑅𝑛`1
𝑢 p𝑣ℎq, (4.24)
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ˆ

𝑒𝑛`1
𝑢 ´ p𝑒𝑛`1

𝑢

𝜏
, 𝑙ℎ

˙

´
1
2
`

𝑒𝑛`1
𝑝 ´ 𝑒𝑛

𝑝 ,∇ ¨ 𝑙ℎ
˘

“ 0, (4.25)
`

∇ ¨ 𝑒𝑛`1
𝑢 , 𝑞ℎ

˘

“ 0, (4.26)

for any p𝑤ℎ, 𝑣ℎ, 𝑙ℎ, 𝑞ℎq P p𝑆ℎ, 𝑋ℎ, 𝑋ℎ, 𝑀ℎq and 𝑛 “ 1, 2, . . . , 𝑁 ´ 1.

4.3. Proof of Theorem 3.1

In this subsection, we present a detailed proof of Theorem 3.1. The following lemma will be used in the
analysis.

Lemma 4.4. Under the regularity assumption (3.5), the Stokes projection defined in (4.2) and (4.3) satisfies
the following estimates:

}∇ℎ𝑅ℎB𝑡𝑝}𝐿3 ď 𝐶, (4.27)
}∇p∇ℎ𝑅ℎB𝑡𝑝q}𝐿2 ď 𝐶ℓℎ, (4.28)

where 𝐶 is a positive constant independent of ℎ; ℓℎ “ 1 if ∇𝑝|BΩ “ 0, otherwise ℓℎ “ ℎ´
1
2 .

Proof. By the regularity assumption (3.5) and the 𝐿3 stability estimate of the 𝐿2 projection, i.e., (4.5), we see
that

}𝑃ℎ∇B𝑡𝑝}𝐿3 ď 𝐶}∇B𝑡𝑝}𝐿3 ď 𝐶. (4.29)

Since

p𝑣ℎ, 𝑃ℎ∇B𝑡𝑝´∇ℎ𝑃ℎB𝑡𝑝q “ p𝑣ℎ,∇B𝑡𝑝q ` p∇ ¨ 𝑣ℎ, 𝑃ℎB𝑡𝑝q

“ ´p∇ ¨ 𝑣ℎ, B𝑡𝑝q ` p∇ ¨ 𝑣ℎ, 𝑃ℎB𝑡𝑝q

ď }∇ ¨ 𝑣ℎ}
𝐿

3
2
}B𝑡𝑝´ 𝑃ℎB𝑡𝑝}𝐿3

ď 𝐶ℎ´1}𝑣ℎ}
𝐿

3
2
ℎ}B𝑡𝑝}𝑊 1,3

ď 𝐶}𝑣ℎ}
𝐿

3
2
}B𝑡𝑝}𝑊 1,3 ,

for any 𝑣ℎ P Xℎ, by the duality between 𝐿
3
2 and 𝐿3, we conclude that

}𝑃ℎ∇B𝑡𝑝´∇ℎ𝑃ℎB𝑡𝑝}𝐿3 ď 𝐶. (4.30)

Consequently, with the help of the inverse inequality (4.15), we obtain

}∇ℎ𝑅ℎB𝑡𝑝}𝐿3 ď }∇ℎ𝑅ℎB𝑡𝑝´∇ℎ𝑃ℎB𝑡𝑝}𝐿3 ` }∇ℎ𝑃ℎB𝑡𝑝´ 𝑃ℎ∇B𝑡𝑝}𝐿3 ` }𝑃ℎ∇B𝑡𝑝}𝐿3

ď }∇ℎ𝑅ℎB𝑡𝑝´∇ℎ𝑃ℎB𝑡𝑝}𝐿3 ` 𝐶

ď 𝐶ℎ´1}𝑅ℎB𝑡𝑝´ 𝑃ℎB𝑡𝑝}𝐿3 ` 𝐶

ď 𝐶ℎ´1}𝑅ℎB𝑡𝑝´ B𝑡𝑝}𝐿3 ` 𝐶ℎ´1}B𝑡𝑝´ 𝑃ℎB𝑡𝑝}𝐿3 ` 𝐶

ď 𝐶ℎ´1ℎ2 ` 𝐶ℎ´1ℎ2 ` 𝐶 ď 𝐶,

in which (4.7) and the projection estimate (4.11) have been used in the second last inequality.
Inequality (4.28) could be proved in a similar manner. If ∇𝑝|BΩ “ 0, by the regularity assumption (3.5) and

the 𝐻1 stability estimate of the 𝐿2 projection, we have

}∇𝑃ℎ∇B𝑡𝑝}𝐿2 ď }𝑃ℎ∇B𝑡𝑝}𝐻1 ď 𝐶}∇B𝑡𝑝}𝐻1 ď 𝐶. (4.31)
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If ∇𝑝|BΩ ‰ 0, we estimate }∇𝑃ℎ∇B𝑡𝑝}𝐿2 in another way. Let 𝜒 be a smooth cut-off function such that

$

’

&

’

%

𝜒 “ 1 on BΩ,
𝜒 “ 0 at points 𝑥 such that distp𝑥, BΩq ě ℎ,
0 ď 𝜒 ď 1 in Ω,
›

›∇𝑘𝜒
›

›

𝐿8
ď 𝐶ℎ´𝑘 in Ω.

Then we let 𝑔 “ ∇B𝑡𝑝 and get

}∇𝑃ℎ𝑔}𝐿2 ď }∇𝑃ℎp𝑔 ´ 𝜒𝑔q}𝐿2 ` }∇𝑃ℎ𝜒𝑔}𝐿2 .

Since 𝑔 ´ 𝜒𝑔 “ 0 on BΩ, it follows that

}∇𝑃ℎp𝑔 ´ 𝜒𝑔q}𝐿2 ď 𝐶}∇p𝑔 ´ 𝜒𝑔q}𝐿2 ď 𝐶}∇𝑔}𝐿2 ` 𝐶}∇𝜒b 𝑔}𝐿2

ď 𝐶}∇𝑔}𝐿2 ` 𝐶ℎ´1

˜

ż

distp𝑥,BΩqďℎ

|𝑔|2d𝑥

¸
1
2

ď 𝐶ℎ´
1
2 .

By the inverse inequality, we have

}∇𝑃ℎ𝜒𝑔}𝐿2 ď 𝐶ℎ´1}𝑃ℎ𝜒𝑔}𝐿2 ď 𝐶ℎ´1}𝜒𝑔}𝐿2 ď 𝐶ℎ´1

˜

ż

distp𝑥,BΩqďℎ

|𝑔|2d𝑥

¸
1
2

ď 𝐶ℎ´
1
2 .

Therefore,

}∇𝑃ℎ𝑔}𝐿2 ď 𝐶ℎ´
1
2 , (4.32)

which together with (4.31) implies

}∇𝑃ℎ∇B𝑡𝑝}𝐿2 ď 𝐶ℓℎ. (4.33)

Using similar techniques in the derivation of (4.30), we get

}𝑃ℎ∇B𝑡𝑝´∇ℎ𝑃ℎB𝑡𝑝}𝐿2 ď 𝐶ℎ. (4.34)

By the inverse inequalities (4.13) and (4.14), it can be shown that

}∇p∇ℎ𝑅ℎB𝑡𝑝´ 𝑃ℎ∇B𝑡𝑝q}𝐿2 ď 𝐶ℎ´1}∇ℎ𝑅ℎB𝑡𝑝´ 𝑃ℎ∇B𝑡𝑝}𝐿2

ď 𝐶ℎ´1}∇ℎ𝑅ℎB𝑡𝑝´∇ℎ𝑃ℎB𝑡𝑝}𝐿2 ` 𝐶ℎ´1}∇ℎ𝑃ℎB𝑡𝑝´ 𝑃ℎ∇B𝑡𝑝}𝐿2

ď 𝐶ℎ´2}𝑅ℎB𝑡𝑝´ 𝑃ℎB𝑡𝑝}𝐿2 ` 𝐶ℎ´1ℎ

ď 𝐶ℎ´2}𝑅ℎB𝑡𝑝´ B𝑡𝑝}𝐿2 ` 𝐶ℎ´2}B𝑡𝑝´ 𝑃ℎB𝑡𝑝}𝐿2 ` 𝐶

ď 𝐶ℎ´2ℎ2 ` 𝐶ℎ´2ℎ2 ` 𝐶 ď 𝐶, (4.35)

in which (4.7) and (4.11) have been used again in the second to last inequality. Finally, by the triangle inequality
and (4.31)–(4.35), the estimate (4.28) follows immediately. �

Now we proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1. By Theorem 3.6, the existence and uniqueness of numerical solution p𝐻𝑛
ℎ , 𝑢𝑛

ℎ, 𝑝𝑛
ℎq, 𝑛 “

2, 3, . . . , 𝑁 , follows immediately since the scheme (3.1)–(3.4) is linearized and the corresponding homogeneous
equations only admit zero solutions.
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In the following, we present the analysis of the error equations (4.23)–(4.26) and then establish the error
estimates given in Theorem 3.1. First of all, we make the following induction assumption for the error functions
at the previous time steps:

}𝑒𝑚
𝐻}𝐿2 ` }𝑒

𝑚
𝑢 }𝐿2 ď 𝐶‹0

`

ℓℎ𝜏2 ` ℎ2
˘

, (4.36)

for 𝑚 ď 𝑛. Such an induction assumption will be recovered by the error estimate at the next time step 𝑡𝑛`1.
For 𝑚 “ 0, 1, (4.36) follows from Remark 3.5 immediately. The induction assumption (4.36) (for 𝑚 ď 𝑛)

yields

}𝐻𝑚
ℎ }𝑊 1,3 ď }𝐼ℎ𝐻𝑚}𝑊 1,3 ` }𝐼ℎ𝐻𝑚 ´Πℎ𝐻𝑚}𝑊 1,3 ` }𝑒

𝑚
𝐻}𝑊 1,3

ď 𝐶}𝐻𝑚}𝑊 1,3 ` 𝐶ℎ´
𝑑
6 }𝐼ℎ𝐻𝑚 ´Πℎ𝐻𝑚}𝐻1 ` 𝐶ℎ´1´ 𝑑

6 }𝑒𝑚
𝐻}𝐿2

ď 𝐶}𝐻𝑚}𝑊 1,3 ` 𝐶ℎ´
𝑑
6 }𝐼ℎ𝐻𝑚 ´𝐻𝑚}𝐻1 ` 𝐶ℎ´

𝑑
6 }𝐻𝑚 ´Πℎ𝐻𝑚}𝐻1

` 𝐶ℎ´1´ 𝑑
6 𝐶‹0

`

ℓℎ𝜏2 ` ℎ2
˘

ď 𝐶}𝐻𝑚}𝑊 1,3 ` 𝐶ℎ´
𝑑
6 ℎ2 ` 𝐶ℎ´

𝑑
6 ℎ2 ` 𝐶ℎ´1´ 𝑑

6 𝐶‹0
`

ℓℎ𝜏2 ` ℎ2
˘

ď 𝐾 ` 1, (4.37)
}𝑢𝑚

ℎ }𝐿8 ď }𝑅ℎ𝑢𝑚}𝐿8 ` }𝑒
𝑚
𝑢 }𝐿8

ď }𝑢𝑚}𝑊 1,3 ` 𝐶ℎ´
𝑑
2 }𝑒𝑚

𝑢 }𝐿2 pby (4.8)q

ď }𝑢𝑚}𝑊 1,3 ` 𝐶ℎ´
𝑑
2 𝐶‹0

`

ℓℎ𝜏2 ` ℎ2
˘

ď 𝐾 ` 1, (4.38)

for 𝜏 ď ℎ?
2𝐶𝐶‹0

and ℎ ă ℎ0, where 𝑑 “ 2, 3, denotes the dimension of Ω and ℎ0 is a small positive constant. Here,

𝐼ℎ denotes the standard Lagrange interpolation and its 𝑊 1,3 stability estimate has been used. Subsequently, we
will establish the error estimate at 𝑚 “ 𝑛` 1 and recover (4.36).

Step 1: Estimate of (4.23). Taking 𝑤ℎ “ q𝑒
𝑛` 1

2
𝐻 into (4.23) yields

𝜇

2𝜏

´

›

›𝑒𝑛`1
𝐻

›

›

2

𝐿2 ´ }𝑒
𝑛
𝐻}

2
𝐿2

¯

`
𝜇

8𝜏

´

›

›𝑒𝑛`1
𝐻 ´ 𝑒𝑛

𝐻

›

›

2

𝐿2 ´
›

›𝑒𝑛
𝐻 ´ 𝑒𝑛´1

𝐻

›

›

2

𝐿2

¯

` 𝜎´1
›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

2

𝐿2
` 𝜎´1

›

›

›
∇ ¨ q𝑒𝑛` 1

2
𝐻

›

›

›

2

𝐿2

ď 𝜇

"

´

𝑢𝑛` 1
2 ˆ Ă𝐻𝑛` 1

2 ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

´

´

𝑢
𝑛` 1

2
ℎ ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

*

`𝑅𝑛`1
𝐻

´

q𝑒
𝑛` 1

2
𝐻

¯

, (4.39)

where we have used the identity
ˆ

𝑒𝑛`1
𝐻 ´ 𝑒𝑛

𝐻

𝜏
, q𝑒

𝑛` 1
2

𝐻

˙

“
1
2𝜏

´

›

›𝑒𝑛`1
𝐻

›

›

2

𝐿2 ´ }𝑒
𝑛
𝐻}

2
𝐿2

¯

`
1
8𝜏

´

›

›𝑒𝑛`1
𝐻 ´ 𝑒𝑛

𝐻

›

›

2

𝐿2 ´
›

›𝑒𝑛
𝐻 ´ 𝑒𝑛´1

𝐻

›

›

2

𝐿2

¯

`
1
8𝜏

›

›𝑒𝑛`1
𝐻 ´ 2𝑒𝑛

𝐻 ` 𝑒𝑛´1
𝐻

›

›

2

𝐿2 . (4.40)

By (3.5) and (4.12), it can be shown that

𝑅𝑛`1
𝐻

´

q𝑒
𝑛` 1

2
𝐻

¯

ď 𝐶p𝜏2 ` ℎ𝑟`1q2 ` 𝐶
›

›

›
q𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
`

1
2𝜎

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

2

𝐿2
`

1
2𝜎

›

›

›
∇ ¨ q𝑒𝑛` 1

2
𝐻

›

›

›

2

𝐿2
.

Noticing that p𝑢𝑛`1 :“ 𝑢𝑛`1 and (4.17), we obtain

𝜇

"

´

𝑢𝑛` 1
2 ˆ Ă𝐻𝑛` 1

2 ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

´

´

𝑢
𝑛` 1

2
ℎ ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

*
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“ 𝜇
´

𝑢𝑛` 1
2 ˆ

´

Ă𝐻𝑛` 1
2 ´Πℎ

Ă𝐻𝑛` 1
2

¯

,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

` 𝜇
´

𝑢𝑛` 1
2 ˆ r𝑒

𝑛` 1
2

𝐻 ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

` 𝜇

ˆˆ

𝑢𝑛` 1
2 ´

𝑅ℎ𝑢𝑛`1 `𝑅ℎ𝑢𝑛

2

˙

ˆ Ă𝐻
𝑛` 1

2
ℎ ,∇ˆ q𝑒

𝑛` 1
2

𝐻

˙

` 𝜇

˜

𝑅ℎ𝑢𝑛`1 ´ {𝑅ℎ𝑢𝑛`1

2
ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¸

` 𝜇
´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

ď 𝜇
›

›

›
𝑢𝑛` 1

2

›

›

›

𝐿8

›

›

›

Ă𝐻𝑛` 1
2 ´Πℎ

Ă𝐻𝑛` 1
2

›

›

›

𝐿2

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

𝐿2
` 𝜇

›

›

›
𝑢𝑛` 1

2

›

›

›

𝐿8

›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

𝐿2

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

𝐿2

` 𝜇

›

›

›

›

𝑢𝑛`1 ` 𝑢𝑛

2
´

𝑅ℎ𝑢𝑛`1 `𝑅ℎ𝑢𝑛

2

›

›

›

›

𝐿3

›

›

›

Ă𝐻
𝑛` 1

2
ℎ

›

›

›

𝐿6

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

𝐿2

`
𝜇𝜏

4

›

›∇ℎ

`

𝑅ℎ𝑝𝑛`1 ´𝑅ℎ𝑝𝑛
˘
›

›

𝐿3

›

›

›

Ă𝐻
𝑛` 1

2
ℎ

›

›

›

𝐿6

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

𝐿2

` 𝜇
´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

ď 𝐶ℎ2p𝑟`1q `
1

4𝜎

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

2

𝐿2
` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
` 𝐶𝜏4 ` 𝜇

´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

,

where in the last inequality we have used the projection estimates (4.9) and (4.12), (4.37), Lemma 4.4 and
the following inequality:

𝜇𝜏

4

›

›∇ℎ

`

𝑅ℎ𝑝𝑛`1 ´𝑅ℎ𝑝𝑛
˘
›

›

𝐿3 ď 𝐶𝜏2.

With the above results, (4.39) is reduced to

𝜇

2𝜏

´

›

›𝑒𝑛`1
𝐻

›

›

2

𝐿2 ´ }𝑒
𝑛
𝐻}

2
𝐿2

¯

`
𝜇

8𝜏

´

›

›𝑒𝑛`1
𝐻 ´ 𝑒𝑛

𝐻

›

›

2

𝐿2 ´
›

›𝑒𝑛
𝐻 ´ 𝑒𝑛´1

𝐻

›

›

2

𝐿2

¯

`
1

4𝜎

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

2

𝐿2
`

1
4𝜎

›

›

›
∇ ¨ q𝑒𝑛` 1

2
𝐻

›

›

›

2

𝐿2

ď 𝐶p𝜏2 ` ℎ𝑟`1q2 ` 𝐶
›

›

›
q𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
` 𝜇

´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

. (4.41)

Step 2: Estimate of (4.24). Taking 𝑣ℎ “ 𝑒
𝑛` 1

2
𝑢 “ 1

2

`

p𝑒𝑛`1
𝑢 ` 𝑒𝑛

𝑢

˘

into (4.24) leads to

1
2𝜏

´

›

›

p𝑒𝑛`1
𝑢

›

›

2

𝐿2 ´ }𝑒
𝑛
𝑢}

2
𝐿2

¯

` 𝜈
›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
´

´

𝑒𝑛
𝑝 ,∇ ¨ 𝑒𝑛` 1

2
𝑢

¯

ď

˜

{𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛`1

𝜏
, 𝑒

𝑛` 1
2

𝑢

¸

` 𝜈

˜

∇

˜

{𝑅ℎ𝑢𝑛`1 ´𝑅ℎ𝑢𝑛`1

2

¸

,∇𝑒
𝑛` 1

2
𝑢

¸

´

ˆ

𝑅ℎ𝑝𝑛 ´
𝑅ℎ𝑝𝑛`1 `𝑅ℎ𝑝𝑛

2
,∇ ¨ 𝑒𝑛` 1

2
𝑢

˙

´

"

𝑏
´

r𝑢𝑛` 1
2 , 𝑢𝑛` 1

2 , 𝑒
𝑛` 1

2
𝑢

¯

´ 𝑏
´

r𝑢
𝑛` 1

2
ℎ , 𝑢

𝑛` 1
2

ℎ , 𝑒
𝑛` 1

2
𝑢

¯

*

´ 𝜇

"

´

Ă𝐻𝑛` 1
2 ˆ

´

∇ˆ |𝐻𝑛` 1
2

¯

, 𝑒
𝑛` 1

2
𝑢

¯

´

´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ |𝐻
𝑛` 1

2
ℎ

¯

, 𝑒
𝑛` 1

2
𝑢

¯

*

`𝑅𝑛`1
𝑢

´

𝑒
𝑛` 1

2
𝑢

¯

“:
6
ÿ

𝑗“1

ℐ𝑗 . (4.42)
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In the following, we estimate ℐ𝑗 , 𝑗 “ 1, 2, . . . , 6, respectively. By using (4.16), we have

ℐ1 ` ℐ3 “ ´

ˆ

𝑅ℎ𝑝𝑛`1 `𝑅ℎ𝑝𝑛

2
´

𝑅ℎ𝑝𝑛`1 `𝑅ℎ𝑝𝑛

2
,∇ ¨ 𝑒𝑛` 1

2
𝑢

˙

“ 0.

By (4.17), ℐ2 becomes

ℐ2 “
𝜈𝜏

4

´

∇
`

∇ℎ

`

𝑅ℎ𝑝𝑛`1 ´𝑅ℎ𝑝𝑛
˘˘

,∇𝑒
𝑛` 1

2
𝑢

¯

ď 𝐶𝜏2
›

›∇
`

∇ℎ

`

𝑅ℎ𝑝𝑛`1 ´𝑅ℎ𝑝𝑛
˘˘
›

›

2

𝐿2 ` 𝜀
›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2

ď 𝐶ℓ2ℎ𝜏4 ` 𝜀
›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
,

where we have used the second result in Lemma 4.4. By the definition of 𝑏p𝑢, 𝑣, 𝑤q in (2.4), we can rewrite
ℐ4 as

ℐ4 “
1
2

"

´

r𝑢
𝑛` 1

2
ℎ ¨∇𝑢

𝑛` 1
2

ℎ , 𝑒
𝑛` 1

2
𝑢

¯

´

´

r𝑢𝑛` 1
2 ¨∇𝑢𝑛` 1

2 , 𝑒
𝑛` 1

2
𝑢

¯

*

´
1
2

"

´

r𝑢
𝑛` 1

2
ℎ ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑢
𝑛` 1

2
ℎ

¯

´

´

r𝑢𝑛` 1
2 ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑢𝑛` 1
2

¯

*

“ ´
1
2

"

´

r𝑢
𝑛` 1

2
ℎ ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑒
𝑛` 1

2
𝑢

¯

`

´

r𝑢
𝑛` 1

2
ℎ ¨∇

´

𝑢𝑛` 1
2 ´𝑅ℎ𝑢

𝑛` 1
2
¯

, 𝑒
𝑛` 1

2
𝑢

¯

`

´

r𝑒
𝑛` 1

2
𝑢 ¨∇𝑢𝑛` 1

2 , 𝑒
𝑛` 1

2
𝑢

¯

`

ˆˆ

r𝑢𝑛` 1
2 ´Ć𝑅ℎ𝑢

𝑛` 1
2

˙

¨∇𝑢𝑛` 1
2 , 𝑒

𝑛` 1
2

𝑢

˙*

`
1
2

"

´

r𝑢
𝑛` 1

2
ℎ ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑒
𝑛` 1

2
𝑢

¯

`

´

r𝑢
𝑛` 1

2
ℎ ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑢𝑛` 1
2 ´𝑅ℎ𝑢

𝑛` 1
2
¯

`

´

r𝑒
𝑛` 1

2
𝑢 ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑢𝑛` 1
2

¯

`

ˆˆ

r𝑢𝑛` 1
2 ´Ć𝑅ℎ𝑢

𝑛` 1
2

˙

¨∇𝑒
𝑛` 1

2
𝑢 , 𝑢𝑛` 1

2

˙*

“:
1
2

8
ÿ

𝑘“1

ℐ4,𝑘.

In the estimate of ℐ4, the most difficult processing is the control of ℐ4,2, for which an application of integration
by parts implies that

ℐ4,2 “

´´

∇ ¨ r𝑢𝑛` 1
2

ℎ

¯´

𝑢𝑛` 1
2 ´𝑅ℎ𝑢

𝑛` 1
2
¯

, 𝑒
𝑛` 1

2
𝑢

¯

`

´

r𝑢
𝑛` 1

2
ℎ ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑢𝑛` 1
2 ´𝑅ℎ𝑢

𝑛` 1
2
¯

“

ˆˆ

∇ ¨Ć𝑅ℎ𝑢
𝑛` 1

2

˙

´

𝑢𝑛` 1
2 ´𝑅ℎ𝑢

𝑛` 1
2
¯

, 𝑒
𝑛` 1

2
𝑢

˙

´

´´

∇ ¨ r𝑒𝑛` 1
2

𝑢

¯´

𝑢𝑛` 1
2 ´𝑅ℎ𝑢

𝑛` 1
2
¯

, 𝑒
𝑛` 1

2
𝑢

¯

`

´

r𝑢
𝑛` 1

2
ℎ ¨∇𝑒

𝑛` 1
2

𝑢 , 𝑢𝑛` 1
2 ´𝑅ℎ𝑢

𝑛` 1
2
¯

ď

›

›

›

›

∇ ¨Ć𝑅ℎ𝑢
𝑛` 1

2

›

›

›

›

𝐿3

›

›

›
𝑢𝑛` 1

2 ´𝑅ℎ𝑢
𝑛` 1

2
›

›

›

𝐿2

›

›

›
𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿6

`

›

›

›
∇ ¨ r𝑒𝑛` 1

2
𝑢

›

›

›

𝐿3

›

›

›
𝑢𝑛` 1

2 ´𝑅ℎ𝑢
𝑛` 1

2
›

›

›

𝐿2

›

›

›
𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿6

`

›

›

›
r𝑢

𝑛` 1
2

ℎ

›

›

›

𝐿8

›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

𝐿2

›

›

›
𝑢𝑛` 1

2 ´𝑅ℎ𝑢
𝑛` 1

2
›

›

›

𝐿2

ď 𝐶p𝜏2 ` ℎ𝑟`1q2 ` 𝜀
›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

2

𝐿2
,
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where we have used (4.8), (4.17), (4.38),

›

›

›
𝑢𝑛` 1

2 ´𝑅ℎ𝑢
𝑛` 1

2
›

›

›

𝐿2
“

›

›

›

›

›

𝑢𝑛`1 ` 𝑢𝑛

2
´

{𝑅ℎ𝑢𝑛`1 `𝑅ℎ𝑢𝑛

2

›

›

›

›

›

𝐿2

phere use p𝑢𝑛`1 “ 𝑢𝑛`1q

ď

›

›

›

›

𝑢𝑛`1 ` 𝑢𝑛

2
´

𝑅ℎ𝑢𝑛`1 `𝑅ℎ𝑢𝑛

2

›

›

›

›

𝐿2

`

›

›

›

›

›

𝑅ℎ𝑢𝑛`1 ´ {𝑅ℎ𝑢𝑛`1

2

›

›

›

›

›

𝐿2

ď 𝐶ℎ𝑟`1 `
𝜏

4

›

›∇ℎp𝑅ℎ𝑝𝑛`1 ´𝑅ℎ𝑝𝑛q
›

›

𝐿2 pby (4.27)q

ď 𝐶ℎ𝑟`1 ` 𝐶𝜏2

and
›

›

›
∇ ¨ r𝑒𝑛` 1

2
𝑢

›

›

›

𝐿3

›

›

›
𝑢𝑛` 1

2 ´𝑅ℎ𝑢
𝑛` 1

2
›

›

›

𝐿2
ď 𝐶ℎ´1´ 𝑑

6

›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿2

›

›

›
𝑢𝑛` 1

2 ´𝑅ℎ𝑢
𝑛` 1

2
›

›

›

𝐿2

ď 𝐶ℎ´1´ 𝑑
6 pℎ𝑟`1 ` 𝜏2q

›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿2
pby 𝜏 “ 𝒪pℎqq

ď 𝐶
›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿2
.

The estimate for other terms of ℐ4 is straightforward. Clearly, ℐ4,1 and ℐ4,5 are cancelled. By (4.9) and
(4.38), we obtain

ℐ4,3 ` ℐ4,4 `

8
ÿ

𝑘“6

ℐ4,𝑘 ď 𝐶
›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

2

𝐿2
` 𝜀

›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
` 𝐶ℎ2p𝑟`1q ` 𝐶𝜏4.

Above all, we are led to

ℐ4 ď 𝐶
›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

2

𝐿2
` 𝜀

›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
` 𝐶ℎ2p𝑟`1q ` 𝐶𝜏4.

Similarly, we can rewrite ℐ5 as

ℐ5 “ ´𝜇

"

´´

Ă𝐻𝑛` 1
2 ´Πℎ

Ă𝐻𝑛` 1
2

¯

ˆ

´

∇ˆ |𝐻𝑛` 1
2

¯

, 𝑒
𝑛` 1

2
𝑢

¯

`

´

r𝑒
𝑛` 1

2
𝐻 ˆ

´

∇ˆ |𝐻𝑛` 1
2

¯

, 𝑒
𝑛` 1

2
𝑢

¯

`

´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ
´

|𝐻𝑛` 1
2 ´Πℎ

|𝐻𝑛` 1
2

¯¯

, 𝑒
𝑛` 1

2
𝑢

¯

`

´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

, 𝑒
𝑛` 1

2
𝑢

¯

*

“:
4
ÿ

𝑘“1

ℐ5,𝑘.

By (4.12), we have

ℐ5,1 ` ℐ5,2 ď 𝜇
›

›

›

Ă𝐻𝑛` 1
2 ´Πℎ

Ă𝐻𝑛` 1
2

›

›

›

𝐿2

›

›

›
∇ˆ |𝐻𝑛` 1

2

›

›

›

𝐿3

›

›

›
𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿6

` 𝜇
›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

𝐿2

›

›

›
∇ˆ |𝐻𝑛` 1

2

›

›

›

𝐿3

›

›

›
𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿6

ď 𝐶ℎ2p𝑟`1q ` 𝜀
›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
.

With an application of integration by parts, ℐ5,3 becomes

ℐ5,3 “

´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ ,∇ˆ
´

|𝐻𝑛` 1
2 ´Πℎ

|𝐻𝑛` 1
2

¯¯
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“

´

∇ˆ
´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ

¯

, |𝐻𝑛` 1
2 ´Πℎ

|𝐻𝑛` 1
2

¯

ď

›

›

›
∇ˆ

´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ

¯
›

›

›

𝐿2

›

›

›

|𝐻𝑛` 1
2 ´Πℎ

|𝐻𝑛` 1
2

›

›

›

𝐿2

ď 𝜀
›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
` 𝐶ℎ2p𝑟`1q,

where we have used (4.37) and
›

›

›
∇ˆ

´

𝑒
𝑛` 1

2
𝑢 ˆ Ă𝐻

𝑛` 1
2

ℎ

¯
›

›

›

𝐿2

“

›

›

›

´

∇ ¨ Ă𝐻𝑛` 1
2

ℎ

¯

𝑒
𝑛` 1

2
𝑢 ´

´

∇ ¨ 𝑒𝑛` 1
2

𝑢

¯

Ă𝐻
𝑛` 1

2
ℎ `

´

Ă𝐻
𝑛` 1

2
ℎ ¨∇

¯

𝑒
𝑛` 1

2
𝑢 ´

´

𝑒
𝑛` 1

2
𝑢 ¨∇

¯

Ă𝐻
𝑛` 1

2
ℎ

›

›

›

𝐿2

ď 𝐶
›

›

›

Ă𝐻
𝑛` 1

2
ℎ

›

›

›

𝑊 1,3

›

›

›
𝑒
𝑛` 1

2
𝑢

›

›

›

𝐿6
` 𝐶

›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

𝐿2

›

›

›

Ă𝐻
𝑛` 1

2
ℎ

›

›

›

𝐿8
.

Therefore, the following bound is available for ℐ5:

ℐ5 ď 𝐶ℎ2p𝑟`1q ` 𝜀
›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
´ 𝜇

´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

, 𝑒
𝑛` 1

2
𝑢

¯

.

A bound for the truncation error term ℐ6 is based on (4.9) and the regularity assumptions (3.5):

ℐ6 ď 𝐶
`

𝜏2 ` ℎ𝑟`1
˘2
` 𝜀

›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
.

With the above estimates, we obtain the following result from (4.42)

1
2𝜏

´

›

›

p𝑒𝑛`1
𝑢

›

›

2

𝐿2 ´ }𝑒
𝑛
𝑢}

2
𝐿2

¯

`
𝜈

2

›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
´

´

𝑒𝑛
𝑝 ,∇ ¨ 𝑒𝑛` 1

2
𝑢

¯

ď 𝐶
›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

2

𝐿2
` 𝐶pℓℎ𝜏2 ` ℎ𝑟`1q2 ` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
´ 𝜇

´

Ă𝐻
𝑛` 1

2
ℎ ˆ

´

∇ˆ q𝑒
𝑛` 1

2
𝐻

¯

, 𝑒
𝑛` 1

2
𝑢

¯

. (4.43)

Step 3: Estimate of the term ´

´

𝑒𝑛
𝑝 ,∇ ¨ 𝑒𝑛` 1

2
𝑢

¯

in (4.43). We rewrite (4.25) as

𝑒𝑛`1
𝑢 ´ p𝑒𝑛`1

𝑢

𝜏
“ ´

1
2
∇ℎ

`

𝑒𝑛`1
𝑝 ´ 𝑒𝑛

𝑝

˘

. (4.44)

With the above equality and the fact that 𝑒
𝑛` 1

2
𝑢 “ 1

2 pp𝑒
𝑛`1
𝑢 ` 𝑒𝑛

𝑢q, we have

´

´

𝑒𝑛
𝑝 ,∇ ¨ 𝑒𝑛` 1

2
𝑢

¯

“ ´
1
2
`

𝑒𝑛
𝑝 ,∇ ¨ p𝑒𝑛`1

𝑢

˘

pby (4.26)q

“
1
2
`

∇ℎ𝑒𝑛
𝑝 , p𝑒𝑛`1

𝑢

˘

“
𝜏

4
`

∇ℎ𝑒𝑛
𝑝 ,∇ℎ

`

𝑒𝑛`1
𝑝 ´ 𝑒𝑛

𝑝

˘˘

pby (4.44)q

“
𝜏

8

´

›

›∇ℎ𝑒𝑛`1
𝑝

›

›

2

𝐿2 ´
›

›∇ℎ𝑒𝑛
𝑝

›

›

2

𝐿2

¯

´
𝜏

8

›

›∇ℎ

`

𝑒𝑛`1
𝑝 ´ 𝑒𝑛

𝑝

˘
›

›

2

𝐿2

“
𝜏

8

´

›

›∇ℎ𝑒𝑛`1
𝑝

›

›

2

𝐿2 ´
›

›∇ℎ𝑒𝑛
𝑝

›

›

2

𝐿2

¯

´
1
2𝜏

›

›𝑒𝑛`1
𝑢 ´ p𝑒𝑛`1

𝑢

›

›

2

𝐿2 . (4.45)

Step 4. By taking 𝑙ℎ “ 𝑒𝑛`1
𝑢 into (4.25), we arrive at

1
2𝜏

´

›

›𝑒𝑛`1
𝑢

›

›

2

𝐿2 ´
›

›

p𝑒𝑛`1
𝑢

›

›

2

𝐿2 `
›

›𝑒𝑛`1
𝑢 ´ p𝑒𝑛`1

𝑢

›

›

2

𝐿2

¯

“ 0, (4.46)

in which (4.26) has been applied.
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Step 5. A summation of (4.41), (4.43), (4.45), and (4.46) leads to

𝜇

2𝜏

´

›

›𝑒𝑛`1
𝐻

›

›

2

𝐿2 ´ }𝑒
𝑛
𝐻}

2
𝐿2

¯

`
𝜇

8𝜏

´

›

›𝑒𝑛`1
𝐻 ´ 𝑒𝑛

𝐻

›

›

2

𝐿2 ´
›

›𝑒𝑛
𝐻 ´ 𝑒𝑛´1

𝐻

›

›

2

𝐿2

¯

`
1

4𝜎

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

2

𝐿2
`

1
4𝜎

›

›

›
∇ ¨ q𝑒𝑛` 1

2
𝐻

›

›

›

2

𝐿2

`
1
2𝜏

´

›

›𝑒𝑛`1
𝑢

›

›

2

𝐿2 ´ }𝑒
𝑛
𝑢}

2
𝐿2

¯

`
𝜈

2

›

›

›
∇𝑒

𝑛` 1
2

𝑢

›

›

›

2

𝐿2
`

𝜏

8

´

›

›∇ℎ𝑒𝑛`1
𝑝

›

›

2

𝐿2 ´
›

›∇ℎ𝑒𝑛
𝑝

›

›

2

𝐿2

¯

ď 𝐶
›

›

›
q𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝐻

›

›

›

2

𝐿2
` 𝐶

›

›

›
r𝑒
𝑛` 1

2
𝑢

›

›

›

2

𝐿2
` 𝐶pℓℎ𝜏2 ` ℎ𝑟`1q2. (4.47)

An application of discrete Gronwall’s inequality indicates that there exists a positive constant 𝜏0 such that

›

›𝑒𝑛`1
𝐻

›

›

2

𝐿2 ` 𝜏
𝑛
ÿ

𝑚“1

›

›

›
∇ˆ q𝑒

𝑚` 1
2

𝐻

›

›

›

2

𝐿2
` 𝜏

𝑛
ÿ

𝑚“1

›

›

›
∇ ¨ q𝑒𝑚` 1

2
𝐻

›

›

›

2

𝐿2

`
›

›𝑒𝑛`1
𝑢

›

›

2

𝐿2 ` 𝜏
𝑛
ÿ

𝑚“1

›

›

›
∇𝑒

𝑚` 1
2

𝑢

›

›

›

2

𝐿2
` 𝜏2

›

›∇ℎ𝑒𝑛`1
𝑝

›

›

2

𝐿2 ď 𝐶pℓℎ𝜏2 ` ℎ𝑟`1q2, (4.48)

if 𝜏 ă 𝜏0. By applying the Cauchy’s inequality

›

›

›
∇ˆ q𝑒

𝑛` 1
2

𝐻

›

›

›

2

𝐿2
ě

3
8

›

›∇ˆ 𝑒𝑛`1
𝐻

›

›

2

𝐿2 ´
1
8

›

›∇ˆ 𝑒𝑛´1
𝐻

›

›

2

𝐿2 , (4.49)
›

›

›
∇ ¨ q𝑒𝑛` 1

2
𝐻

›

›

›

2

𝐿2
ě

3
8

›

›∇ ¨ 𝑒𝑛`1
𝐻

›

›

2

𝐿2 ´
1
8

›

›∇ ¨ 𝑒𝑛´1
𝐻

›

›

2

𝐿2 , (4.50)

we further get the following result from (4.48)

›

›𝑒𝑛`1
𝐻

›

›

2

𝐿2 ` 𝜏
𝑛
ÿ

𝑚“1

›

›∇ˆ 𝑒𝑚`1
𝐻

›

›

2

𝐿2 ` 𝜏
𝑛
ÿ

𝑚“1

›

›∇ ¨ 𝑒𝑚`1
𝐻

›

›

2

𝐿2

`
›

›𝑒𝑛`1
𝑢

›

›

2

𝐿2 ` 𝜏
𝑛
ÿ

𝑚“1

›

›

›
∇𝑒

𝑚` 1
2

𝑢

›

›

›

2

𝐿2
` 𝜏2

›

›∇ℎ𝑒𝑛`1
𝑝

›

›

2

𝐿2 ď 𝐶pℓℎ𝜏2 ` ℎ𝑟`1q2. (4.51)

The above estimate implies that the induction assumption (4.36) could be recovered at 𝑚 “ 𝑛 ` 1 with
𝐶‹0 ě 𝐶. Thus the mathematical induction is closed. By the projection estimates (4.9), (4.12), and (4.17),
the error estimates (3.6) and (3.7) in Theorem 3.1 follow immediately.

�

Remark 4.5. In this work, we focus on the error estimates of the velocity and magnetic fields for a Crank–
Nicolson finite element projection method. The error estimate of the pressure may be obtained by using the
discrete inf-sup condition. From the numerical results in Section 4, we can see that the convergence for pressure

is consistent with that for
ˆ

𝜏
ř𝑁

𝑛“2

›

›

›
∇
´

𝑢
𝑛´ 1

2
ℎ ´ 𝑢𝑛´ 1

2

¯
›

›

›

2

𝐿2

˙
1
2

.

5. Numerical examples

In this section, we present several numerical examples to illustrate our theoretical results in Theorems 3.1
and 3.6. For the sake of simplicity, numerical results are tested for two-dimensional problems in a unit square
domain. All the numerical examples are computed by using FreeFEM++.
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Table 1. Temporal convergence at 𝑇 “ 1.

𝜏 𝑒p𝑢ℎq 𝑒p𝐻ℎq 𝑒p𝑝ℎq 𝑒p∇𝑢ℎq 𝑒p∇ˆ𝐻ℎq

1{40 5.971ˆ 10´4 1.862ˆ 10´3 3.136ˆ 10´2 1.167ˆ 10´2 7.659ˆ 10´3

1{80 1.495ˆ 10´4 4.695ˆ 10´4 8.487ˆ 10´3 3.193ˆ 10´3 1.906ˆ 10´3

1{160 3.741ˆ 10´5 1.179ˆ 10´4 2.167ˆ 10´3 8.176ˆ 10´4 4.755ˆ 10´4

Order 2.00 1.99 1.93 1.92 2.01

Example 5.1. First, we consider the MHD equations

𝜇B𝑡𝐻 ` 𝜎´1∇ˆ p∇ˆ𝐻q ´ 𝜇∇ˆ p𝑢ˆ𝐻q “ 𝑔, (5.1)
B𝑡𝑢` 𝑢 ¨∇𝑢´ 𝜈∆𝑢`∇𝑝 “ 𝑓 ´ 𝜇𝐻 ˆ p∇ˆ𝐻q, (5.2)

∇ ¨𝐻 “ 0, ∇ ¨ 𝑢 “ 0, (5.3)

in Ω “ r0, 1s ˆ r0, 1s, with the initial and boundary conditions (1.4) and (1.5), where the source terms 𝑔 and 𝑓
are chosen correspondingly to the exact solutions

𝑢 “ 𝑡4

˜

sin2
p𝜋𝑥q sinp2𝜋𝑦q

´ sinp2𝜋𝑥q sin2
p𝜋𝑦q

¸

,

𝐻 “ 𝑡4
ˆ

´ sinp2𝜋𝑦q cosp2𝜋𝑥q

sinp2𝜋𝑥q cosp2𝜋𝑦q

˙

,

𝑝 “ 𝑡4 sin2
p2𝜋𝑥q sin2

p2𝜋𝑦q ´
1
4
¨

(5.4)

For simplicity, all the coefficients 𝜈, 𝜎, 𝜇 in (5.1)–(5.3) are chosen to be 1, and we take the final time as 𝑇 “ 1.
Note that the above exact solutions 𝑢 and 𝐻 satisfy the divergence-free conditions and ∇𝑝|BΩ “ 0.

We solve the MHD system (5.1)–(5.3) by the modified Crank–Nicolson finite element projection scheme (3.1)–
(3.4) with a cubic finite element approximation for 𝐻 and 𝑢, and a quadratic finite element approximation for
𝑝. Here, the system (3.1) and (3.2) is a coupled, but linearized system for 𝐻𝑛`1

ℎ and p𝑢𝑛`1
ℎ . Thus we can solve

the linear system directly by using a sparse solver in FreeFEM++. To investigate the convergence rate in time,
we first choose 𝜏 “ 𝑇 {𝑁 with 𝑁 “ 40, 80, 160, with the spatial mesh size ℎ “ 2𝜏 . In Examples 5.1 and 5.2, we
compute the following errors:

𝑒p𝑢ℎq :“
›

›𝑢𝑁
ℎ ´ 𝑢𝑁

›

›

𝐿2 , 𝑒p𝐻ℎq :“
›

›𝐻𝑁
ℎ ´𝐻𝑁

›

›

𝐿2 , 𝑒p𝑝ℎq :“
›

›𝑝𝑁
ℎ ´ 𝑝𝑁

›

›

𝐿2 ,

𝑒p∇𝑢ℎq :“

˜

𝜏
𝑁
ÿ

𝑛“2

›

›

›
∇𝑢

𝑛´ 1
2

ℎ ´∇𝑢𝑛´ 1
2

›

›

›

2

𝐿2

¸

1
2

, 𝑒p∇ˆ𝐻ℎq :“

˜

𝜏
𝑁
ÿ

𝑛“2

}∇𝐻𝑛
ℎ ´∇𝐻𝑛}

2
𝐿2

¸

1
2

.

The numerical results at time 𝑇 “ 1 are presented in Table 1, which indicate that the proposed scheme has
second-order convergence in time.

Then we solve the problem (5.1)–(5.3) by the modified Crank–Nicolson FEM scheme (3.1)–(3.4) with a
sufficiently small temporal step size 𝜏 “ 1{5000, to focus on the spatial convergence rate. Again, a cubic finite
element approximation for 𝐻 and 𝑢 is applied, combined with a quadratic finite element approximation for 𝑝.
Here, we take ℎ “ 1{10, 1{20, 1{40. Numerical results at 𝑇 “ 1 are presented in Table 2. It is observed that the
spatial convergences are of optimal orders, which are consistent with the theoretical analysis in Theorem 3.1.
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Table 2. Spatial convergence at 𝑇 “ 1.

ℎ 𝑒p𝑢ℎq 𝑒p𝐻ℎq 𝑒p𝑝ℎq 𝑒p∇𝑢ℎq 𝑒p∇ˆ𝐻ℎq

1{10 1.312ˆ 10´4 2.481ˆ 10´4 3.344ˆ 10´3 2.386ˆ 10´3 1.485ˆ 10´3

1{20 8.184ˆ 10´6 1.507ˆ 10´5 5.186ˆ 10´4 3.153ˆ 10´4 1.727ˆ 10´4

1{40 5.202ˆ 10´7 9.320ˆ 10´7 7.097ˆ 10´5 4.068ˆ 10´5 2.086ˆ 10´5

Order 3.99 4.03 2.78 2.94 3.08

Table 3. Temporal convergence at 𝑇 “ 1.

𝜏 𝑒p𝑢ℎq 𝑒p𝐻ℎq 𝑒p𝑝ℎq 𝑒p∇𝑢ℎq 𝑒p∇ˆ𝐻ℎq

1{40 5.774ˆ 10´3 1.912ˆ 10´3 3.370ˆ 10´2 1.210ˆ 10´2 7.766ˆ 10´3

1{80 1.411ˆ 10´4 4.822ˆ 10´4 1.085ˆ 10´2 3.949ˆ 10´3 1.932ˆ 10´3

1{160 3.500ˆ 10´5 1.211ˆ 10´4 3.563ˆ 10´3 1.301ˆ 10´3 4.819ˆ 10´4

Order 2.02 1.99 1.62 1.61 2.01

Table 4. Spatial convergence at 𝑇 “ 1.

ℎ 𝑒p𝑢ℎq 𝑒p𝐻ℎq 𝑒p𝑝ℎq 𝑒p∇𝑢ℎq 𝑒p∇ˆ𝐻ℎq

1{10 1.304ˆ 10´4 2.481ˆ 10´4 1.996ˆ 10´3 2.306ˆ 10´3 1.485ˆ 10´3

1{20 7.878ˆ 10´6 1.507ˆ 10´5 2.504ˆ 10´4 2.859ˆ 10´4 1.727ˆ 10´4

1{40 4.867ˆ 10´7 9.321ˆ 10´7 3.112ˆ 10´5 3.560ˆ 10´5 2.086ˆ 10´5

Order 4.02 4.03 3.00 3.01 3.08

Example 5.2. Second, we solve the MHD model (5.1)–(5.3) by the scheme (3.1)–(3.4) with the source terms
𝑔 and 𝑓 chosen correspondingly to the following exact solutions

𝑢 “ 𝑡4

˜

sin2
p𝜋𝑥q sinp2𝜋𝑦q

´ sinp2𝜋𝑥q sin2
p𝜋𝑦q

¸

,

𝐻 “ 𝑡4
ˆ

´ sinp2𝜋𝑦q cosp2𝜋𝑥q

sinp2𝜋𝑥q cosp2𝜋𝑦q

˙

,

𝑝 “ 𝑡4 sinp2𝜋𝑥q sinp2𝜋𝑦q,

(5.5)

where we can see that ∇𝑝|BΩ ‰ 0. Here, we choose the same time step sizes and mesh sizes as those used in
Example 5.1, and compute the errors and convergence. The numerical results are given in Tables 3 and 4, which
are consistent with the theoretical results in Theorem 3.1.

Example 5.3. Third, we test the energy stability of the proposed scheme by solving the problem (1.1)–(1.5)
in Ω “ r0, 1s ˆ r0, 1s with 𝐽 “ 𝑓 “ 0 (𝐽 denotes a scalar function in R2) and 𝑇 “ 1. Here, all the coefficients
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Figure 1. Energy of the MHD system at each time level.

𝜈, 𝜎, 𝜇 in (1.1)–(1.5) are chosen to be 1 and the initial values are chosen as:

𝑢0 “

˜

sin2
p𝜋𝑥q sinp2𝜋𝑦q

´ sinp2𝜋𝑥q sin2
p𝜋𝑦q

¸

,

𝐻0 “

ˆ

´ sinp2𝜋𝑦q cosp2𝜋𝑥q

sinp2𝜋𝑥q cosp2𝜋𝑦q

˙

,

𝑝0 “ sinp2𝜋𝑥q sinp2𝜋𝑦q.

(5.6)

We solve the problem by the proposed scheme (3.1)–(3.4) with a quadratic finite element approximation
for 𝐻 and 𝑢, combined with a linear finite element approximation for 𝑝. The time step size and spatial mesh
size are chosen as 𝜏 “ 1{10 and ℎ “ 1{50, respectively. We define the energy function as 𝐸𝑛

ℎ :“ }𝑢𝑛
ℎ}

2
𝐿2 `

}𝐻𝑛
ℎ }

2
𝐿2`

1
4

›

›𝐻𝑛
ℎ ´𝐻𝑛´1

ℎ

›

›

2

𝐿2`
𝜏2

4 }∇ℎ𝑝𝑛
ℎ}

2
𝐿2 . The energy evolution curve, up to the final time 𝑇 “ 10, is displayed

in Figure 1, which clearly indicates the energy dissipation property, consistent with the theoretical result in
Theorem 3.6.

6. Conclusion

In this paper, we propose a fully discrete decoupled finite element projection method for the incompressible
magnetohydrodynamic equations (1.1)–(1.3). The primary difficulties are associated with the nonlinear and
coupled nature of the problem. In this work, a modified Crank–Nicolson method is used for the temporal dis-
cretization, and appropriate semi-implicit treatments are adopted for the approximation of the fluid convection
term and two coupled terms. Then a linear system with variable coefficients is presented and its unique solvabil-
ity is theoretically proved by the fact that the corresponding homogeneous equations only admit zero solutions.
One prominent advantage of the scheme is associated with a decoupling approach in the Stokes solver, which
computes an intermediate velocity field based on the pressure gradient at the previous time step, and then
enforces the incompressibility constraint via the Helmholtz decomposition of the intermediate velocity field.
As a result, this decoupling approach greatly reduces the computation of the MHD system. Furthermore, the
energy stability analysis and error estimates in the discrete 𝐿8p0, 𝑇 ; 𝐿2q norm are provided for the scheme, in
which the decoupled Stokes solver needs to be carefully estimated. Several numerical examples are presented to
demonstrate the robustness and accuracy of the proposed scheme. The extension of the energy stable projection
methods and its error estimates to two-phase MHD models will be investigated in the future.
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