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Abstract

In this paper, we consider the Cahn-Hilliard-Hele-Shaw (CHHS) system with the dy-
namic boundary conditions, in which both the bulk and surface energy parts play important
roles. The scalar auxiliary variable approach is introduced for the physical system; the mass
conservation and energy dissipation is proved for the CHHS system. Subsequently, a fully
discrete SAV finite element scheme is proposed, with the mass conservation and energy
dissipation laws established at a theoretical level. In addition, the convergence analysis
and error estimate is provided for the proposed SAV numerical scheme.
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1. Introduction

The Cahn-Hilliard-Hele-Shaw system (CHHS) has attracted more and more attentions in
recent years, since this model describes two phase flows in a simple way. This system turns out to
be the basic diffusion interface model for incompressible binary fluids confined in a Hele-Shaw
cell [42,43,50], and it has been proposed to simplify the well-known Cahn-Hilliard-Navier-
Stokes model, where the Navier-Stokes system is coupled with the convective Cahn-Hilliard
equation [19,38,39,59]. This model has also been used to describe spinodal decomposition of
a binary fluid in a Hele-Shaw cell [33], tumor growth and cell sorting [25,64], and two phase
flows in porous media [17], etc.

The CHHS system with Neumann boundary conditions has been extensively studied in
the existing literature [8,9,12,31,33,49,63]. On the other hand, the homogeneous Neumann
boundary condition turns out to unsatisfactory in some cases, due to the fact that this simple
boundary condition set-up ignores the effects of certain process on the boundary to the bulk
dynamics; in other words, separate chemical reactions on the boundary are not taken into
consideration. Nevertheless, in certain applications such as fluid dynamics and contact line
problems, a more accurate description of the short-range interaction of the binary mixture with
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the solid wall of the vessel turns out to be necessary. At present, various dynamic boundary
conditions have been derived and analyzed for the Cahn-Hilliard equation [5,40,41,52], while
the associated analysis for the CHHS system is very limited.

Let Q C RY (where d = 2, 3) be a bounded domain with a boundary I' := 2. The unit outer
normal vector on I" will be denoted by n = n(z). The standard CHHS system is formulated as

%Jrv-((bu)—eAu:O in Q x (0,77, (1.1)
pteAd—f(6)=0 i Qx(0,7) (12)
u+Vp+v9Vu =0 in Q x (0,77, (1.3)
V-u=0 in  x (0,7, (1.4)

where v > 0 is a dimensionless surface tension parameter, u is the advective velocity, and p is
the pressure. To describe a mixture of two materials, the phase field variable ¢ stands for the
difference of two local relative concentrations. In more details, ¢(x) (x € Q) takes the distinct
values, 1 and -1, in the respective pure phases of the materials, while {z € Q: —1 < ¢(z) < 1}
matches with the diffuse interface between them, whose thickness is proportional to the very
small positive constant e. The variable u stands for the chemical potential in the bulk, which
can be derived from the Fréchet derivative [16] of the following Ginzburg-Landau free energy

Bouid] = /Q (%!VW n F(¢)) dz,

where the functional F' denotes the bulk potential and f(¢) = F’(¢). Typically, F has a double
well form, which reaches its global minima at ¢ = £1 and a local maximum at ¢ = 0.

The homogeneous Neumann boundary conditions corresponding to the system (1.1)-(1.4)
are given by

dné=0 on T x (0,T], (1.5)
dup=0 on T x (0,T], (1.6)
u-n=0 on I'x(0,7]. (1.7)

However, especially for certain materials in the bounded region, boundary condition (1.5) is
not well-pleasing, since certain additional effects of the boundary to the bulk dynamics are
ignored. Meanwhile, several dynamic boundary conditions have been proposed in the existing
literatures [18, 46, 47, 53, 65], to replace the homogeneous Neumann condition. In order to
improve this phenomenon and to better describe the whole system, physicists put forward
a surface free energy

Esurflor] = /r (%‘Vréfﬂ? + G(¢F)) ds,

where Vr denotes the surface gradient operator on I and G is a surface potential. Furthermore,
k > 0 is related to the effects of surface diffusion. Some numerical works [2,3,52] have been
reported as well.

The total free energy corresponding to the dynamic boundary conditions becomes

E= Ebulk [¢] + Esurf[¢F]- (18)
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In this paper, we consider the CHHS system with dynamic boundary conditions

%+V~(¢u)76Au:0 in  x (0,7, (1.9)
w+eAd— f(¢) =0 in Q x (0,77, (1.10)
u+Vp+voVu =0 in Q x (0,77, (1.11)
V-ou=0 in Q x (0,77, (1.12)
% + VF . ((ﬁpllp) — €AFMF =0 on I' x (O,T], (113)
pr + keArgr + €dnd — g(ér) =0 on T x (0,77, (1.14)
ur + Vepr +vérVrpur =0 on T x (0,77, (1.15)
Vr - ur =0 on T x (0,77, (1.16)

where Ar denote the surface Laplace-Beltrami operator on I' and g(¢r) = G'(¢r). In addition,
this system is endowed with initial conditions

¢(0,z) = ¢o(z), (1.17)
¢r(0,z) = ¢éro(2). (1.18)
The boundary conditions are presented as follows
Onpt =0, Onp=0 on I' x (0,71, (1.19)
Oppttr =0, Opppr =0 on 9T x (0,77, (1.20)

where nr is the unit outer normal vector on I', and ¢r(+,t) is I-periodic. For the above system,
¢r and ur does not necessarily consistent with the trace of ¢ and y on I', respectively, but can
be understood as independent variables.

Similar to the compactness arguments in [26], since H*(2) is compactly embedded in L?(12),
the properties of subspaces and other basic definitions, theorems and properties in functional
analysis, the existence and uniqueness of the weak solution of this system can be established.
The more detailed procedure for the proof is left to interested readers.

Due to the second law of thermodynamics, dissipative physical systems are everywhere.
Maintaining the energy law allows the numerical solution of the physical model to fit the dy-
namics correctly for a long time. Therefore, it is vital and necessary to design numerical methods
to preserve discrete energy dissipation laws. Many efforts have been devoted to the develop-
ment of numerical methods for energy stability in this active research field, which include, but
are not limited to, the convex splitting method [4,23,28-30, 33,45, 54, 56], the average vector
field method [6, 55], exponential time differencing (ETD) method [10, 11, 13,22,36, 37,44, 51]
and the invariant energy quadratization (IEQ) method [34,66-68,70]. In addition, the scalar
auxiliary variable (SAV) method [1, 14, 15,27,57,58,62,69] has been successfully developed,
inspired by a similar idea of the IEQ method. Meanwhile, it has overcome many shortcomings,
while maintaining the basic advantages of the IEQ approach. The SAV method is not limited
to a specific form of the nonlinear part or the free energy, while it only requires the adoption of
scalar variables independent of the spatial variables to obtain a linear decoupled system with
constant coefficients.

Moreover, it is realized that the finite element spatial discretization is more advantageous
than the collocation approach when dealing with problems concerning dynamic boundary con-
ditions. In this paper, we adopt the combination of SAV method and finite element spatial
approximation for the CHHS system with dynamic boundary conditions.
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In the process of the numerical design, we adopt the SAV approach for the bulk free energy
and the surface free energy respectively to linearize the nonlinear term. Meanwhile, semi-
implicit treatment is applied to the convective and stress terms. The discrete format of the
combined finite element and SAV approach maintains the modified energy dissipation law,
which is theoretically justified in the paper. In addition, an error analysis is performed for the
fully discrete numerical scheme, with dynamic boundary conditions.

Throughout this paper, for s € Z; and 1 < ¢ < oo, let WP (Q) and W*P(T') stand for the
standard Sobolev spaces of € and T', respectively, with corresponding norms || - [[ys.» () and
|l - llwew@y. For any 1 < p < oo, the Lebesgue spaces on 2 and I' are denoted as LP(f2) and
LP(I), respectively, associated with the norms | - ||»(0) and || - || L»(r). Moreover, W% can be
identified with LP. An alternative notation of Sobolev spaces for p = 2 becomes H*(Q2) and
H*(T'), equipped with the norms || - || = (q) and || - || g=(q), respectively. Let H*() = [H*(Q)]<,
H*(T) = [H*(D)]¢, LP(Q) = [LP(2)]? and LP(T) = [LP(T)]¢ with bold faced letters for Sobolev
spaces or Lebesgue spaces of the vector-valued functions with d components. For a fixed time
T > 0, the space LP(0,T; X) represents the LP space on the interval (0,7) with values in the
Banana space X. If X is a Hilbert space, L?(2)—inner product on X is denoted by (-,-), and
L?(T")—inner product on X is denoted by (-,-). In addition, we set L3(Q) = {v € L?(Q)| (v,1) =
0}, and LE(T) = {vr € L*T)|{vr, 1) = 0}.

The structure of this paper is organized as follows. In Section 2, an equivalent physical
system based on the SAV formulation is introduced, and the corresponding weak form and
energy decreasing law are derived as well. In Section 3, the fully discrete numerical scheme with
the SAV formulation is constructed and a modified energy stability is proved. Subsequently,
a convergence analysis and error estimate in provided in Section 4, with the help of the regularity
assumption for the exact solution, Ritz projection and interpolation estimates, as well as the
stability analysis for the numerical error functions. The convergent order is obtained as O(h?+
At). Finally, some concluding remarks are given in Section 5.

2. Equivalent Physical System in the SAV Formulation and Its
Energy Dissipation Law

The SAV approach is an efficient way to solve a gradient flow, while the energy stability is
maintained [7,27,35]. The key point is an introduction of the scalar auxiliary variable. More
precisely, it is necessary to separately introduce the auxiliary variables of the bulk and surface
parts in this system. First, we set Ey and Er; in the following form:

Eilg] = / F(¢) dz, Erafér] = / Glor) dS, (2.1)

under assumption that Ej[¢] > —c; and Epj[¢r] > —cq, and let C; > ¢1,C2 > c2 so that
E1[¢]+C1 > 0 and Er 1[¢r]+C2 > 0. For simplicity of presentation, we replace Ey by Ey + C
without changing the gradient flow. In this setting, F1[¢] always has a positive lower bound
Cy — ¢ for any ¢, which we still denote as Cy. Similarly, we substitute Er 1 by Er 1+ Ca, and
apparently Er 1[¢r] is always bounded by a positive lower bound Cs — ¢z for any ¢r, which we
still denote as C3. Subsequently, the auxiliary variables of this system take the form of

r(t) = Er[¢], rr(t)=1/Eri[ér] (2.2)
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In turn, by applying (2.2), the equations can be equivalently rewritten as

% +V-(¢u) —eAp =0 in Q x (0,77, (2.3)
T .

M+€A¢_ Tlmﬁ]f((b) =0 in Qx (OaT]a (24)
u+Vp+y¢Vu =0 in Qx (0,77, (2.5)
V-u=0 in Q x (0,7, (2.6)
% + VF (d)pllp) — eAFMF =0 on I' x (O,T], (27)
pr + keArdr + €dnd — mg((br) =0 on I'x(0,7T], (2.8)
ur + Vrpr + ’)/(bFVF,LLF =0 on I' x (O,T], (2.9)
Vr-up =0 on I' x (0,77, (2.10)
dr 1 9¢

RN e Gk € 0.7, (211)
drr 5¢F

o = 2\/m/ e (0, 7). (2.12)

It is noticed that the transformed SAV system is exactly identical to the original system
(1.9)-(1.16), since (2.2) can be obtained by integrating (2.11) and (2.12) with respect to time,
which does not involve spatial derivative, so that the initial conditions (1.17), (1.18) and the
boundary conditions (1.19), (1.20) are still valid. In addition, the initial conditions of r and rp
turn out to be

r(0) = \/Er[¢o(z)], 7r(0) =/Er.1[éro(x)].

Inserting (2.6) into (2.5), (2.10) into (2.9), exploiting the boundary conditions (1.19), (1.20),
and using integration by parts, a weak formulation of the system (2.3)-(2.12) can be expressed
as follows: For any te (05 T]7 find (¢) 12y 2 ¢Fa Hr, pPr, T, TF),

2.13

¢ € L>(0,T; H'()) N L*(0,T; L>()),
Y 2.14

(2.13)
¢ € L*(0,T; H'()), (2.14)
pe L*(0,T; H(Q)), (2.15)
p € L*(0,T; H(Q) N L§(Q)), (2.16)
¢r € L=(0,T; H'(T')) N L*(0,T; L>(I)), (2.17)
(2.18)
(2.19)
(2.20)

d¢r € L*(0,T; H-1(T)), 2.18
pr € L*(0,T; HY(T)), 2.19
pr € L*(0,T; H(T') N L§(T)), 2.20
such that
oo} 1
(E,X> — (¢pu, Vx) +€(Vu,Vx) =0, Vx € H (), (2.21)

(1;€) = e(Vo, V() — €(0nd, () +

E”l = (£(¢),¢), V¢e HY(Q), (2.22)



A SAV Scheme for the Cahn-Hilliard-Hele-Shaw System 549

(Vp, V) +v(¢Vu, Vq) = 0, Vg € HY(Q), (2.23)
<%a¢> — {(¢rur, Vre) + (Vrur, Vry) =0, vy € HY(T), (2.24)
(pr, vy = ke(Vror, Vrv) + e(0,¢,v) + 7qir(g(qﬁp), v), Wve HY(T), (2.25)
Er1[¢r]

(Vropr, Vrgr) +v{(¢rVrur, Vrgr) = 0, Vqr € HY(T), (2.26)
dr 1 %

% 2 B (f(qﬁ), 8t)’ (2.27)
dTF - 1 %

NG <g(¢r), 5 > (2.28)

After solving the above system, u and ur can be defined by the following form:

(w,\) = —(Vp,\) —v(¢Vp, \) = 0, VA € L3(Q), (2.29)
(ur, Ar) = —(Vrpr, A\r) — ¥{¢rVrur, Ar) =0, VAr € L*(T). (2.30)

The above weak formulation (2.21)-(2.30) still preserves two significant features, mass con-
servation and energy dissipation.

Theorem 2.1. Let (¢, u,p, ¢r, pr,pr,r,rr) be the smooth solution of the weak formulation
(2.21)-(2.28). Then the solution satisfies the mass conservation identity

/ o(t,2) dz = / bo(z)dz, / or(t,z) dS = / or.0(2)dS, (2.31)
Q Q r r
and the energy dissipation law
d 1 1
Y- (e\vuf i _\uf) an [ (evaf i _\urf) as < 0. (2.32)
dt Q g r g

Proof. By choosing x =1 in (2.21) and ¢ = 1 in (2.24), respectively, we can obtain

d

d
il o(t,z) dv =0, E/FQsp(t,x) ds = 0. (2.33)

In turn, a combination of (1.17) and (1.18) gives (2.31). Taking x = p in (2.21), ( = —¢»
in (2.22), A = u/v in (2.29), ¥ = pr in (2.24), v = —(¢r): in (2.25), Ar = ur/v in (2.30),

multiplying (2.27), (2.28) by 2r and 2rp, respectively, and summarizing (2.21)-(2.30) except for
(2.23) and (2.26), we arrive at

d € 2 K€ 2
o (/Q§|v¢| dz+/rg|vp¢p\ ds+r2+r1%>

Jr/ (e}VM|2 + l|u}2> dx +/ (e}Vpup|2 + l|UF|2) dS = 0. (2.34)
Q Y r Y

This is exactly (2.32), by recalling the notations in (2.1) and (2.2). O
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3. The Fully Discrete SAV Numerical Scheme and the Energy
Stability Analysis

Let 0 = top < t1 < -+ < ty = T be a uniform partition of [0,T], i.e., t; = tAt,At =
T/N,i = 0,1,...,N, where N is a positive integer. Let T, = {K} be a conforming, shape-
regular, globally quasi-uniform family of triangulations or tetrahedrons of 2. For any positive
integer ¢ > 1, we introduce the finite element space

My, = {v, € C%Q) | vn|x € Py, VK € T} C H'(),
Sh—{thCO ‘Uh|K€ q,VKGTh}CHl(F),
where F; is the space of polynomials of degree not exceeding q. Furthermore, we define the
subspace My, := My, N L3(Q), S, := S, N L3(T).
The first order accurate (in time), finite element SAV scheme for the CHHS system with
dynamic boundary conditions is proposed as follows. For any 0 < n < N, find

1 1 1 1 1 1 1 1
(@t p L L i P i ) € (MO < [50)° < [R)?

such that
nH — o 1 1
( At axh) (¢h(vph +’Y¢hvun+ ) VX}L) + G(VMZJ’_ aVXh) = Oa VXh € Mha (31)
rnJrl
(Lt ) = € (Vortt,Ven) — € (Onep ™, Cr) + h DA (f(o7),¢n), V¢ € My, (3.2)
h
(Vorth, Van) + (erVup™, Van) = 0, Vagn € My, (3.3)
n+1 o n
<MTISF’}I, 1/1h> + (@t 1 (Vrpt s + 'ﬂb?,thM?j};l)a Vrn)
— €<VFM?EI, VF7/Jh> =0, Yo, € Sh, (3.4)
<MT§J217 V) = H€<VF¢?217 Vrvn) + e {(0nd) ™ vn)
!
+ ——=—=—=(9(¢F 1), vn), Vun € Sp,  (3.5)
Er (6t ]
(Vrppht, Vear ) + e(¢f , Veuht, Vrgr ) = 0, Yar.n € Su, (3.6)
n+1 n n+1 n
=y 1 — oF )
= ) 3.7
at = s (e g (3.7
T?TLI —TTh 1 n n+1 — o
Al = 9(¢F,h)a T ) (3.8)
2, /Er,1[¢713,h]
and the initial data are set as ¢; = Rp¢g and ng n = Rnor,o. The following identity is standard

for the Ritz projection operator Ry v € X' - Y (i =1,2) (with X! = HY(Q),Y}! = M,
while X2 = HY(I'), V2 = S)):

(V(Rpyp — ), Vv) =0, YoeYy, (Rpp—1,1)=0. (3.9)
In fact, for 1 € X!, the following estimates are valid for the Ritz projection [19,32]:
HRthWLP(Q) < CHwHWLp(Q)’ Vp € [2,00),  (3.10)

1~ Bl iy + 1l ~ Ba gy < OB urrniays W0 € 2o00). (311)
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Similarly, for 1r € X2, the following estimates could be derived:

HRthHWIYP(F) S C"wF"W1,p(F)7 Vp € [2700)7 (3]‘2>
l|lvr — RWFHLm) + h||yr — RWFval,p(p) < Chq“WFHWﬁwr)’ Vp € [2,00). (3.13)

To facilitate the nonlinear analysis, we introduce the following negative norms:

vl -2 () = sup {”(gﬁ’ij}(m;c € HS(Q)} for s> 0 integer,

and the corresponding norms over the boundary are defined as

(vr, Cr)

——————(r € HS(I‘)} for s >0 integer.
<ol = (r)

Jorlln-~qe) = su {
Lemma 3.1. Based on the above definitions, we have
[ollz-10) < lolle2@)s  llorlla—1r) < llorllpz- (3.14)
Lemma 3.2 ([61]). Suppose Rpt) is the Ritz projection of ¥, then it holds that
v = Rptl| - () < CR*T ||l gry for 0<s<q—-1, 1<r<gq+1. (3.15)

For the sake of further analysis, we need the following preliminary estimates, which have
been derived in the existing works [20,21,49], etc.
The projection operator P : L2(2) — W is defined by

P(w)=Vp+w, (3.16)
and p € H'(Q) := {v € H*(Q)| (v,1) = 0} is the unique solution of
(Vp+w,Vq) =0, Vqec H' (Q),
where W := {u € L?(Q)| (u,Vq) =0,Yq € H}(Q)}.
Lemma 3.3 ([49]). The projection P is linear, and for any given w € L?(), we have
(P(w) —w,v) =0, VveW. (3.17)
Moreover, since P(w) € W, by applying Cauchy-Schwarz inequality, we obtain
1Py < oo (3.18)
In a similar manner, we define the projection operator P L2 T — W via
P(wr) = Vrpr + wr, (3.19)
and pr € H*() := {vp € H(I')| (v,1) = 0} is the unique solution of
(Vrpr +wr, Vrgr) =0, Vgr € HY(I),

where W := {up € L%(I')| (ur, Vrqr) = 0,Vq € H'(I')}.
Similar to Lemma 3.3, the following estimates are available.
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Lemma 3.4. The projection P is linear, and for any given wr € L*(T'), we have

<;ﬁ(WF) — WF,VF> =0, Vvre W. (3.20)

It is clear that 73(Wp) € \7\7, and by using Cauchy-Schwarz inequality, we obtain
||73(WF)HL2(F) < [[wrllLz(r)- (3.21)

A discrete version of W is the space Wy, := {u;, € L?(Q)| (up, Vgn) = 0,Vqn, € My}. The
corresponding discrete projection operator Py, : w € L2(Q)) — Wy, is defined as follows:

Pr(w) = Vpi + w, (3.22)
where pj, € 1\04;1 is the unique solution of
(Vprn +w,Vq) =0, Vg, € M.
The projection Py, satisfies the following properties.
Lemma 3.5 ([49]). The projection Py, is linear, and for any given w € L2(Q), we have
(Ph(w) - w, vh) =0, Vv, e Wy (3.23)
It is easy to find that Prp(w) € Wp,, and consequently, we get
1Pa)l gy < IWlleage- (324

Lemma 3.6 ([49]). Suppose that w € H(Q) satisfies the compatible boundary condition
w-n=0onT andp € H(Q), then we have

th(w) - P(W)HL2(Q) = Hv(p _ph)HL2(Q) S Chq|p|Hq+1(Q)- (3'25)

Likewise, we can define the discrete forms of Wh and ’ﬁh.
Define Wy, := {ur, € L*T)| (urn,Vrgr.n) = 0,Vgr., € Sp}. The projection operator
Pp : wr € L2(I') — W, is given by

Pu(wr) = Vrpr,n + wr, (3.26)
in which pr, € §h is the unique solution of
(Vrpros +wr, Vegra) =0, Varn € Sh.
Certainly, 75h has similar properties as Py,.

Lemma 3.7. The projection Py, is linear, and for any wr € L2(T"), it follows that
(ﬁh(Wr) - WF,VF,}]) =0, VVF,}I S Wh. (3.27)
Due to 73}1 (wr) € VV;N clearly the following result holds:

1Pn (W) ||y < I1Wr ez (3.28)
()
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Lemma 3.8. Assume that wr € H(T') satisfies the compatible boundary condition wr-nr = 0
on O and pr € HI1(T), then we have

Hﬁh(WF) - ﬁ(WF)HLZ(F) = Hvl—‘(pl—‘ _pl—‘,h)HLQ(F) < Chq|pF|Hq+l(1"). (329)

Next, we provide the energy stability analysis of the fully discrete scheme. To facilitate the
analysis, the following notations are introduced:

= —Vpp —yep Vi aph = = Vepl, — 6k, Veuph (3.30)
wptt = =Vt — eVt upht = = Vepht — et , Vel (3.31)

y (3.3), (3.6), we see that
Vouptt =0, Vpeuphl=o. (3.32)

Theorem 3.1. Let ( "+1, ,uZH,pZH, qﬁ’;*;ll, u}“zl,p}}‘;l, TZ+1 7“173*,'11) be the solution of the pro-

posed numerical scheme (3.1)-(3.8). Then for any At > 0 and h > 0, the numerical solution
satisfies the discrete energy dissipation law

EGAy — Biav < —Atel| Vi |1 ) - HW"H Vi [pa = (" =rh)°
— Ate]| Ve gy Hqub”“ Vot ulgaq = (FR" = rita)”
B HHVPZ-H - VpZHLZ(Q) ||Vrpn+1 va?,hHLZ(F) <0, (3.33)

in which the modified discrete energy functional ESAV is defined as
Egav = §||V¢Z||i2(9) + () + HVPZHLZ(Q)
+ S Vet al gy + ()2 + I VEPE g - (3.:34)
Proof. From (3.30) and (3.31), the following identities are observed:
uptt — ot = —pptt + Vpp, upht —afh = —Vieplht + Vipt .- (3.35)

Taking xp = AtuZ'H in (3.1), ¢n = o) — "'H in (3.2), ¥ = Atu?";ll in (3.4), vy, = orp — 713";11
n (3.5), multiplying (3.7), (3.8) by 2ry*! and 27“17321, respectively, and adding them together,
we get

Ate|[ Vi oy + 5 (V6 20y = V605200 + IV = Véill (o))
(72 = )+ (= 1))+ At T
+ 2 (198t acey = V008 all o) + [ Vroi = Vrof ulza e
+ (012 = )+ 05 = ri)?) — At (g, Vet
— At(g paptt, Vepiht) = 0. (3.36)

Taking the inner products with the two equations in (3.30) by (At/y)a}™" and (At/7) ﬁ}“zl,
respectively, we have
At

v
At

(vpn An+1) (¢nvun+1, AnJrl)’ (337)

L P

an At o
+1 HL2 = 77<vfpl“ by U FJ;Ll> <¢F hvl‘urtﬁv ur—;l> (3.38)
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A substitution of (3.35) in (3.3) and (3.6) gives

— (@, Van) + (Vpp ™ = Vi, Van) =0, (3.39)
<ur b Vrar,n) + <VFP?,JZI — Vi, Vegron) = 0. (3.40)
In turn, by choosing gn, = (At/~)py™" in (3.39) and gr = (At/*y)p}"zl in (3.40), we obtain
_ %(ﬁn—kl, vpz-{-l)
At n+1 n+1 nll2
Jr o (HV Vph”m(g) + ||Vph HLZ(Q) vahHLZ(Q)) =0, (3.41)

_ %<u7§21,vrp"“>
5y (HVFP”H Vrpp hHLZ(F + HVFPF HLZ(F HVFPRhHiZ(F)) =0. (3.42)

Combined with the following Cauchy inequalities
At At

B a1 v o) = 2+ HVP”“ il @)
At ~n n At n n n
y < F—i};la \Y% p VFpF,h> < — H 1"+1HL2 F) HVFP w1 VFpl",hHi2(F)a (344)

we take the summation of (3.37), (3.38), (3.41) and (3.42) to further conclude that
HVp i vPhHLZ(Q) + 2y (HVph+1HL2(9 - vahHLZ(Q))

HVFPHH Vrpr h||L2(F) (HVF nHHI}(r) ||VFp7FL,h||L2(r))
< —At(qbZﬁZ“ Vuptt) — At{ef ,afh vw"“) (3.45)
As a consequence, a combination of (3.36) and (3.45) leads to
Ate]| Vi ga o) + 5 (HWZ“HLzm V67 20 + 9657 = Vor e
+((rn+1) _ (r;;)2 + (7“24‘1 ) ) + AteHVru? HLQ D)
(900 Py — 9068 alleay + V06 — Fralage)
+((7“17“Hir11) (Tr,h)2 + (T?Jirzl —rr h)2)

_vanﬂ Vb ooy + 3 (uw ooy — V70 eey)

HVFP"“ Veptulps oy + (HVrpr oy = [902E Al paey) <0, (3:46)
which is equlvalent to
Eghy = E’s’Av+At6HWZ“||i2(Q> SIVERT = Vi + (5 —rh)’
+At6HVru”“HLz<p) ||vr¢"“ Vedfallgaqe + (15— i)
PR~ Thlny + TNV + Viepkallage, <O (347

This completes the proof of Theorem 3.1. g
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Remark 3.1. Since the proposed SAV numerical scheme (3.1)-(3.8) is linear, the energy dissi-
pation estimate (3.33)-(3.34) reveals that, the linear system corresponding to homogeneous part
of the numerical scheme (3.1)-(3.8) has a trivial solution. As a result, the unique solvability of
the linear numerical scheme (3.1)-(3.8) is theoretically justified.

4. The Error Estimate

For the convergence analysis in this section, we assume that the weak solution (¢, u, p, ¢r,
ur, pr, 1, rr) of CHHS system satisfies the following regularity conditions:
¢ € H*(0,T;L*(Q)) N L>(0,T; WH8(Q)) n H' (0, T; HIT(Q)),
pe L0, T; H (Q)) N L*(0,T; HIT (), Vue L*(0,T; H(Q)),
ue L™ (O,T; HQ(Q)), ur € L™ (0, T; Hq(F)), (4.1)
¢r € H*(0,T; L*(T)) N L> (0, T; W4(I')) n H' (0, T; HITH(I)),
)

pr € L°(0,7; H'(I)) N L*(0,T; H**1(T')), Vrpur € L>(0,T; HY(D)).

Define the backward difference operator

Dt¢n+1 _ ¢n+1 _ d)n
At ’
and the approximation errors as follows:
et = optt = Rue™t, =t = Ryt my Tt =pp = Rup™ T,

92+1 — ¢n+1 _ Rh¢n+1; eﬁ-‘rl — un-{-l _ Rhlj/n-‘rl; 9;-{-1 — pn-‘,-l _ thn-i-l,

n+l _ n+l n+1 n+l _  n+l n+1 n+1 _ _n+l n+1
n¢r‘ — %Y1r,h T Rh¢F ) 77;@ - Ml",h Rh:u‘F ) Upr - pl"7h - thF )
n+1 _ n+1 n+1 n+1 _  n+l n+1 n+1l _  n+1 n+1
05t = op " — Rugp™, O =ur — Rapp™, O =pr —Rnpr,

ot = 00" — DRy,

n+1l __ n+1 n+1

Ud’ O'¢F = 8t¢r — DtRh¢F 5
n+l _ . n+1l n+1 n+l _ ,n+1 n+1
pr =T = , Pre =Tpp —Tp -

By the definition of Ritz projection, subtracting (3.1)-(3.8) from (2.21)-(2.28) (at t = t,11),

we obtain
(Deny ™t x) + (V™ Vx) = (03 x) + (6" ™ — gpaptt, V), (4.2)
(Dt o) + (Ve Vieg) = (ot o) + (o up ™ — o afht V), (4.3)
(UZH, 1/) — e(VnZH, Vl/) + <772;r1, l/> — ne<Vp77(Z:1, pr>
fle™h) f(¢") 1 f(n)
_ 9n+1’ _ n+l _ , + ;H— 7h’
(u l/) r <\/E1[¢)"+1] \/E1[¢n] V) P < ,—El[QbZ] 1/)
_ pntl f(¢n) _ f((bZ) >+ gnt+i
’ (mw] Ve ") )
e < g0t  _glop) V>+ - < 9(9tn) >
E1 [(b}‘H_l] \/El [QS?] " E1 [¢F,h]
n+1 9(¢r) 9(dF 1) >
) _ o). (4.4)
" <\/E1[¢?] \/El[ rn) ’
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1 f(eh) 1 f(on) 1
D n+1 D n+1 — O == <7h,D n+ ) — <7h,D en-i- >
R 2{ EBilopl Eiop]

flop) "t —gn n f(h) f(9") n
+ ( E1[¢Z]’ At — 09 ) + (\/E1[¢Z] — \/E1[¢n]’Dt¢ )}, (4.5)

1 9(oF 9(¢r
Dtpn-i-l + DtTnJrl _ 0,57“? _ 5{ <M Dth;r1> <M’Dte;ﬁ:l>
E1[6} 4] Er[0F ]

soa) o - o oot gl
¥ < bl OO gop) 4 (EAR IO b )b e
£y [(b?,h] \/El ¢p h] \/El [d)l‘]
Substituting x = 771}*‘1,77;“ into (4.2), ¥ = 771}:‘1,77;:1 into (4.3), v = —Dm"“,nﬁ“ into
(4.4), multiplying (4.5), (4.6) by 2o+ and 2p"H!, respectively, and summarizing all equalities,

T )

we immediately get the following equation:
AteHnuHHHI(Q + Atel|n,t 1HH1 )

(HnnH 77¢HH1(Q)+||77¢+1HH1(Q) Hnd)HHl(Q))

(Hn"”rl —77¢r||H1 F)+ ||77¢;F1HH1 HW:;FHHl(F))
+ ((p?“ o)+ (o) = (1))
6
(ot = o)+ (o) = (o)) = ALY (s + ) (4.7)
i=1
with
Av= (o™t +e(op™h ™), (4.8)
I = <J(Z:1, 772:1> + He<oZ:1, 77:;:1>, (4.9)
Ay = — (0, Do ™) + e (05 ), (4.10)
Iy, = <9Ll;rl, D nn+1> + €<9n+17n2:1>, (4.11)
n+1
Az = rn+1 f(¢ ) f ,
’ (\/El [pnt1] \/El qb”
fo™h)
+er™ it 412
<¢E1 6 1] ws ¢n T (4.12)
I3 = "'H ”+1) n+1
\/E1 ot \/El ¢r
e () e (4.13)
E n+1] \/El ¢F
and

nt1 [ f(@R) f(¢") ntl o1 [ f(9R) f(o") ntl
P— - ) + - Dyt
) (\/El (o] VEi[on] i ) o <\/E1 [on]  VEilo"] i )
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_erm( Flop) oM W)
VEIGR]  VEie] " )]

Lt (90D _9@R) n+1>+ n+1< 9(0ks)  _gop)
e <\/E1[¢?] NP R A

ern+1< 9(t) _glop) nn+1>
) VELoE ] VEg] ")

As = ppt! (—f W) pigrt - at(b”) -t (—f L0 ,Dteg“>
¢

Eql¢m]

=29 (Do = 0+ ep ( ffé [dzn] | ”Tl) |
1

Is = ptt <LF)WD%D?H - 3t¢7ﬁ> — it MthQZ:1>
Ey [‘?51“] Ey [¢F,h]

—9 n+1 D nJrlia n n+1 g(gb?) n+1
vt (Derp i) +eprt (===t )

VEE]

AG — (¢n+1un+1 _ QﬁZﬁZJrl) vnﬁ-l-l) + 6((bn—i-lun-l-l _ ¢Zﬁz+1a anJrl)’

_ n+1,.n+1 n asn+1l n+1 n+1_. . n+1 n n+1 n+1
I = (¢p " up = QP pUr s VI ) + re(op g = érpur ), » Vi, )-

For the estimates of (4.8)-(4.19), we start with the following lemma.

( _
\/El[ na o VEGR]
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(4.14)

D, ’;+1>

(4.15)

(4.16)

(4.17)

(4.18)
(4.19)

Lemma 4.1 ([19]). If the weak solution (¢, p, p, dr, ur, pr,r,rr) of (2.21)-(2.28) satisfies the

regularity assumption (4.1), we have

n 2 h,2q+2 tn’+1 )
HO—¢+1HL2(Q) < CTﬁ /tn Has(b(S)Hle(Q)ds
At
+? . ||3ss¢(S)HiZ(Q)ds, vt € (0,7,

where C' > 0 is a constant independent of h and At.

Similarly, we are able to derive the following estimate:
2 Tl

ot <c&/ [EXE] .
or L2y = At o Ha+1(T)

At )
+3 i [0ssbr(8)|| o pyds, Wt € (0,71,

Moreover, we assume that the potentials F' and G are bounded from below:
F'(s) = f'(s) < =Cv, sf(s) = bls|”™ — &,

Vp>0, if d=1,2,

"(s)| < C(|=P + 1),
’f(s)‘ (|$| ) {0<p<4, if d=3,

(4.20)

(4.21)

(4.22)

(4.23)
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Vg > 0, if d=1,2,
0<g<3, if d=3,

G"(s) = g'(s) < —Ca, sg(s) > bls|’* — &, (4.25)

|/ (s)| < C(lz|? + 1), { (4.24)

Vp>0, if d=1,2,
"(8) < C(|z|P + 1), 4.26
’9(8)’ (|x| ) {0<p<4, if d=3, ( )

Vg>0, if d=1,2,
"(s)] < C(|z]* + 1), 4.27
’g (8)’ (|$| ) {0<q<3, it d=3, ( )

where C' > 0, Cy > 0, Cy > 0,p1 > 0 and ps > 0 are all constants [60].
Last but not least, by the a-priori estimates [48], the following bounds are available:

HqﬁZHL“’(Q) < H(bHLOO(Loo(Q)) + 1a Hqﬁ?,hHLw(F) < H(bFHLOO (LW(F)) + 1. (428)

The proof is left to interested readers.

n+1 n+1 n+1 n+1 n+1 n+l n+l1 _n+1 1 1
Theorem 4.1. Suppose that (¢, ", Py Or g s HE gy s PEog s T o ) and (¢, u ™,

L ottt pr et ) e the solution of (3.1)-(3.8) and (2.3)-(2.12), respectively.
Under the reqularity assumption (4.1), we have the error estimate

og?%%(,l {H(lerl o (bgleiIl(Q) + H(bII‘Jrl - (blI‘J,r;Hijl(p) + (TlJrl - Tijl)Q + (T%Jrl — 7’??,%)2

1
3 (1 = o+ I = 8 ) |
n=1
< C((At)? + %), (4.29)
where C' > 0 is a constant independent of h, At.

Proof. Using the error estimate (4.20) and Young’s inequality, we are able to derive
Ay < O+ (A02) + el ey + 15178+ i - (4:30)
Taking a similar approach, by virtue of (4.21), it is easy to get
1< O+ (A02) + el sy + 76 175 s - (4.31)
By employing (3.11), (4.22) and Young’s inequality, we obtain

Ag < HGZ—H||H1(Q)||Dtnz+1||H*1(Q) + HHZHHHfl(Q)||77;7+1HH1(Q)

1 n € n
< CR 4 S 1Dy |+ 161 s - (4.32)
In a similar way, by applying (3.16), (4.23), we see that
I < H@Z;rlqu(r)HDmZ:lHHfl(r) + 6”92:1HH*l(F)Hnﬂ;rlHHl(F)
1 112 € nt1112
< Ch* + gHDt%:lHHfl(r) + 1_6H77H;FIHH1(F)' (4.33)
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To proceed further, from (4.23) and (4.26), we get the following estimates:

+< ICADINNIC )
\/E1[¢"+1] VE[¢"]

()

B I N (U
\/El [¢n+1] \/El ¢ Hs(Q)
|Ei[¢"] — Er[p" ]
< sup |r@)]{ [[f(oR)]| g
te[o,ﬁ' '(” Dl o VE 8" Er[0" T (Er[¢7] + Er[¢" 1))
n+1y _ n R
@D = Hee ) _ o s
Eq[¢"]
and
N G NI
T ] V/Eralof]
n r,1
\/EF,1[¢F ] r He (D)
<’ +1’ 9( n+1) 9(ot)
— 1—‘ n
\/Epl n+1] \/EF71[¢F]
H3 (D)
Er (o] — Era[¢pt]
< sup |7"r |<||g Or.n) ‘Hs(p) } Fl | -
t€lo.1) V Era[0p) B 1l )(Br 1 (7] + Eraop™))
n+1
Jr||9( ) — 9(¢r)||Hs(r) < OAt. (4.35)
Er 1[¢¢]
Then, from (4.34) and Young’s inequality, we see that
1 1
Az < C(At)? _||D1577¢>Jr HH 1(Q) 16H M HHl(Q)' (4.36)
Likewise, from (4.35) and Young’s inequality, we discover that
1 1
Iy < C(At)? —HDt%: HH 1(T) 16H77u: ||H1(F)' (4.37)
Meanwhile, it is observed that
tn+1
n+1 —1 n+1
HDt¢ + HH—l(Q) S (At) /tn Hat¢ + ‘ HmaX(l,qfl)(Q)ds S C (438)

By employing (4.38) and Young’s inequality, we get

f(éh) f(¢")
Al < 1 h Dt et 1
4 S (\/E1[¢h] VE "] ) . H Mg HH Q)
f(8h) f(e") 1
T ;H—l h _ D n+ .
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flon) — _f(o") nt1
NVE T VB I iz
< C(pp)? —HDt%HHH a0 16Hm‘+1”H1(Q)
f(on) f(")
+c _ | (4.39)

In order to estimate A4, we rewrite the gradient of last term on the right-hand side as follows:

o ( G N (G )
VEIG]  E[$]
n Er[¢"] — Eq[¢}] Vi(en) —Vfie")
=V
J@) VE1"EL[9p](Er[¢"] + Er[9}]) " E1[¢}]
=: Q1+ Q2. (4.40)

Using the fact that E4[¢}] > Cy with (4.23), combined with (4.24) and (4.28), we get

1Q1llL20) < CIVFGllkallo” = Shllzz@ < C (03] oy + 1051 2oy ) - (4.41)
|1Q2llpaoy < CUIVI@R) = V(") |Laq
< C (£ @) = £ @) V" |y oy + 1 @V |y + 17 @)V03 0
< O (199 ey + 1962 ey + 951120y + 119 12y ) - (4.42)

Hence, from (4.40)-(4.42), we have

V( f@n) ") )
\/E1[¢n] VE[p"

2(Q)

< O|6" | rass ) + € (995 gy + 108 2y ) - (4.43)
Similarly, the following estimate is valid:
— < Chi|lo ariron T ORI 2001 (4.44)
v LC L PR LT
It follows from (4.40)-(4.44) that
Ai < O+ O(pr)" + HDm oo+ gl e + 1l ey (@45)
Similarly, we are able to derive the following estimate
L < OR* 4 C(prf)" + HDt%ilHH vy + gl ey + ggle iy (446)
To obtain an estimate for As, we see that
f(¢n) n+1 n n+1 n
= D -0 —2(D -0,
|E7| < B tp t¢> (Dyr ")
tntt tntt
<C </ / |8tt¢ S, x |dxds+/ ‘8“7’(5)‘(15) < CAt. (4.47)
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A combination of (4.28) and (4.47) results in

f(o7) 1 f(o")
A ;r“erl h ,D 9n+ + ?+1En Ry n+1 , n+1

g ( &w1t¢> | Q@MﬂW N

<0l LG D), g+l B
[¢n] Hl Q)
f(o") 1
+C 77}-1-1 n+ )
p Eilo"] o) || HL ()

< O(h* + (A1) + C(p)? +—Hn +1HL2(Q (4.48)

Applying the above two inequalities (4.47) and (4.48), we find that

I < C(h* + (A1)?) + C(prh)? (4.49)

16“ ¢:—1HL2

In the estimate of Ag, the first part is rewritten as
AL = (¢t = grapt, vnn+1)
_ (¢"+1u"+1 — Ry a4 Ry tlant! — Ry gtunt?
FRpGM T = g 4 gt - gt vt
_ (GZHU"H,VH"H) (AtD Ryt +! vnnJrl)
(77"u"Jrl Vn"“) (qbZ (u"Jr1 "+1) Vn”“). (4.50)
By using (3.10), it is observed that
‘(9n+1 n+1 V??"H)’

< CHHHHHLB sz)Hu +1HL6(Q)anZ-HHLQ(Q)

< OW 4 [V - (4.51)
In virtue of (3.11), H*(Q) < L3(2) and the Taylor formula, we are able to acquire

‘ (AtD th)nJrl n+1 vnnJrl) ‘
= CHAtDtRh(bn-HHL3(Q)||un+1HL6(Q) ||VUZ+1||L2(Q)
< CAt[ Do +1HH1(Q) + 1_6||V77M+1HL2(Q)

g1 2 . "

<o/ Hamum(mds) I
< C(At)? ||v Fal| PN (4.52)

Similar to (4.52), the following 1nequahty could be derived:
(o)
< CH%HLB(Q)H“ +1HL6(Q)HV77;L+1HL2(Q)
= CH77¢HH1(Q) 1_6HV773+1HL2(Q)' (4.53)
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Just for the sake of the next process, we introduce
= vt = ygp vt (4.54)

By the the definition of projections P and Pj,, we get

g
= — (VP g I — (V) 4965V )
(u”“ V(- p))

Py 'V t) = Pu(vonVurtt) = V(optt — o)
P3¢ V) — Py (36" V) + P (16" T
—Pr(y6" V") + P (70" V") — Pu(von vttt
+Pn (YR ") = Pu(vrVup ) = V(pp T - pf)
=P(y¢" T VuTY) = Pr(ve" TV + P(yALD ¢ T V)
+P (0 +np) V) + P(ver V(0 +n10)) — V(o — ph)
= Qs + P(vorV (0] + 1)) (4.55)
A combination of (3.18), (3.24) and (3.25) yields
1Q5 1720y < 4P (v6" 101" Y) = Pu (16" Vi) 1oy + 4 [P (AED ™ V) [,

+4 [P (305 +n) Vi) 32

< CWPpl 13 ) + OO D™ iy [V g gy + BlIE V™ 2

+4[-V(py*™ *pZ)Hm(Q)

gt 2

[ o

+8H773v“n+1 Hi?(sz) +C

L2(©)

< C (R4 (At)?) + (4.56)

€1l ni2
1_6||77¢||L2(Q)'
In turn, the last term of A} could be bounded as follows:
‘ (‘bz (un+1 n+1) Vnn-i-l) ’
< |(65Qs Vo) | + | (1P (v (05 + ), V) |
= C"¢h||L°°(Q)"Q5||L2(Q)||VUZ+1HL2(Q) + C"¢Z||L°°(Q)H¢ZV(HZ + UZ)HN(Q)HVUZHHL%Q)

n n 2 € n 2
< C1Qsl3a(qy + C (105 ey + ) + 751197 sy

<C (R + (A1)?) + 1_6H77¢HL2(Q) + 1_6H77u||L2(Q) + 1_6||V77u+1HL2(Q)' (4.57)
Therefore, we get the estimate of A}
€ n 2 € n||2 € n |2
Ag < C (1 + (At)?) + EHVWH”L?(Q) + 1_6H77¢||L2(Q) + 1_6||77u||L2(Q)' (4.58)
The other part of Ag could be analyzed as follows:
Ag —¢ (¢n+1un+1 ¢nAn+1 ZJrl)
< O(R* + (A1)?) + 1_6HV77¢+1HL2<9> + 1—6Hn¢HL2(Q) + EHnMHLQ(Q). (4.59)
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Repeating a similar process as (4.50)-(4.59), we get
Iy <C(h* 4 (A1)?) + EHVFWZ#H; @ T T_;H”grui%r)
16H77urHL2 @t 16HVF77¢:1HL2(F (4.60)

Besides, we have to estimate HDt% Yar-1(0 in (4.32), (4.36) and (4.45).

The method outlined in [24] is adopted. Define Q, as the standard L? projection operator
into My,. For any x € H(R), setting x5, = Qnx in (4.2), by using Young’s inequality and
(4.20), we have

(D™, x) = (Den ™, xn)
= —€(V77"Jr1 Vxn) + (o™ xn) + (0" " = gpap T, V)

1oV oy IV gy + 175 oy Il oy + (870" = g, V)

(@ = g V) (461)

- 16
<C (1_6||V772+1||L2(Q) +ha 4 At) HXhHHl(Q)

Recalling the techniques applied in the process of proving A, we can give an estimate of the
last term in (4.61) as follows:

(¢" ™ — gpaptt, V)

= (05 ", V) + (AtD Ry ¢ Tt V)
— (npu™*, Vxn) — (67Qs, Vxn)
~(erP (v + 1), Vo)

< Cl05™H | oy 1™ ooy Va2
+CHAtDtRh¢n+1HLB(Q)HunHHmm)||VXh||L2(Q)
+C(m5 ]| o o 10l 0y VX 2y
+CH¢Z||L°°(Q)HQ5HL2(Q)HvthL2(Q)
+CH¢ZHL°°(Q)H/7¢ZV(GZ + nZ)HLZ(Q)HthHLQ(Q)

< (O(hq + At + ||77g||H1(Q)) + %anz—i_IHL%Q)) ||XhHH1(Q)' (4.62)

A combination of (4.61) and (4.62) yields
105 -0y < € (h+ A+ [0 10 ) + 76 1V ey (4.63)

As for the estimate of HDt%: l-1¢ry in (4.33), (4.37) and (4.46), repeating the process
(4.61)-(4.63), we are able to derive

1D s ey < € (A7 A+ s ) + 151V 07 ey (4.64)

With the help of all estimates of A;,I; (1 <7 <6) and (4.63), (4.64), we obtain

Atel|o; “HHIQ>+At6Hn”“HH1p>+ (Ul s o = s )

5 (1 ey = e ey ) + () = (02 + (05 = (o)
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For any positive integer [ (0 <! < N — 1), summing (4.65) up from n = 0 to [ and applying
the discrete Gronwall’s inequality, we arrive at

€ KRE
Sl sy 5 16 sy + (67 (o1’

Ate a2 12
5 20 (I s oy + st W )

n=1

< C(R*" 4 (A1)?). (4.66)

Finally, with the help of the error estimates of Ritz projection, we complete the proof of
Theorem 4.1. ]

5. Numerical Results

In this section we perform a numerical accuracy check for the proposed numerical scheme
(3.1)-(3.8). The computational domain is chosen as = (0,1)?, and the exact profiles for the
phase variable, the velocity vector, the pressure field, are set to be

Ge(x,y,t) = % (sin(27z) cos(2my), cos(2mx) sin(2ﬂ'y))T cos(t),

u(z,y,t) = %( — sin(27z) cos(2my), cos(2mx) sin(27ry))T cos(t), (5.1)

1
pe(x,y,t) = o cos(2mx) cos(2my) cos(t).

Of course, the chemical potential is given by p. = —eAd¢e + f(d.), and the boundary profiles
are determined as (¢|r)e = (de)r and (u|r)e = (pe)r. The physical parameters are taken as
e =0.5, k =1and vy = 1. To make (¢, u., p.) satisfy the original PDE system (1.9)-(1.16), we
have to add an artificial, time-dependent forcing term. Due to the square domain, the linear
element with a uniform triangular mesh is used. In this set-up, the proposed scheme (3.1)-(3.8)
could be efficiently implemented with the help of FFT.

In the accuracy check for the temporal accuracy, we fix the spatial resolution as N = 256
(with h = 1/256), so that there are 2 x 256> uniform triangular meshes. Because of this
fine mesh, the spatial numerical error is negligible. The final time is set as T = 1. Naturally,
a sequence of time step sizes are taken as At = T'/ Ny, with Ny = 100 : 100 : 1000. The expected
temporal numerical accuracy assumption e = CAt indicates that In|e] = In(CT) — In Ny, so
that we plot In|e| vs. In Ny to demonstrate the temporal convergence order. The fitted line
displayed in Fig. 5.1 shows an approximate slope of -0.9757, -0.9993, -0.9993, for the phase
variable and the two velocity component variables, respectively. This which in turn verifies
a very nice first order temporal convergence order, for all the physical variables, in both the
discrete L? and L* norms.
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*
Numerical error
*

Fig. 5.1. The discrete L? and L*™ numerical errors vs. temporal resolution Nt for N = 100 : 100 : 1000,
with a spatial resolution N = 256, so that there are 2 x 2562 uniform triangular meshes. The numerical
results are obtained by the computation using the proposed scheme (3.1)-(3.8). The physical parameters
are taken as e = 0.5, Kk = 1 and v = 1. The numerical errors for the three physical variables ¢, u and
v, are displayed. The data lie roughly on curves C N, ! for appropriate choices of C, confirming the
full first-order temporal accuracy of the scheme.

Notice that the dynamical boundary condition has been applied in the numerical scheme
(3.1)-(3.8), although the exact profile (5.1) also satisfies the homogeneous Neumann boundary
condition. In fact, if the homogeneous Neumann boundary condition is imposed for the physical
system, the corresponding numerical system becomes much simpler, and no coupling between
the interior solution and boundary profile is needed. With either the homogeneous Neumann
boundary condition and the dynamical boundary condition, the full first order temporal ac-
curacy is valid, while the one with the dynamical boundary condition corresponds to a larger
convergence constant, as expected.

Another interesting issue is the dependence of the numerical solution on the interfacial
width parameter e. Our numerical experiments have revealed that, the perfect convergence
rate still preserves up to € = 0.2 at the final time 7' = 1, while such a perfect convergence rate
is not available for smaller e. Meanwhile, as validated by the theoretical analysis, the numerical
stability is still preserved for smaller €, although a perfect numerical convergence rate may not
be valid at O(1) time scale. Also see the related work [69], which reported that a smaller time
step size is needed for the SAV numerical simulation of certain challenging physical model (such
as functionalized Cahn-Hilliard gradient flow) to achieve a desired numerical accuracy.

6. Conclusions

In this paper, the Cahn-Hilliard-Hele-Shaw (CHHS) system is considered with dynamic
boundary conditions, in which some influences of the boundary to the bulk dynamics are taken
into account. To facilitate the nonlinear analysis of the physical model, we adopt the SAV for-
mulation to construct an equivalent system (2.3)-(2.12), which is equivalent to the original PDE
system (1.9)-(1.16). The mass conservation identity and and energy dissipation law could be
similarly established at a PDE level. Furthermore, we propose the fully discrete SAV numerical
scheme, with mixed finite element spatial approximation. The discrete mass conservation and
energy dissipation law have been proved by a careful analysis. In addition, the convergence
analysis and error estimate is performed for the proposed finite element scheme, with the help
of Ritz projection estimate, a few appropriate regularization assumptions, as well as detailed
stability analysis for the nonlinear error terms.
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