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A SECOND-ORDER ACCURATE, OPERATOR SPLITTING SCHEME
FOR REACTION-DIFFUSION SYSTEMS IN AN ENERGETIC

VARIATIONAL FORMULATION\ast 

CHUN LIU\dagger , CHENG WANG\ddagger , AND YIWEI WANG\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . A second-order accurate in time, positivity-preserving, and unconditionally energy
stable operator splitting scheme is proposed and analyzed for reaction-diffusion systems with the
detailed balance condition. The scheme is designed based on an energetic variational formulation,
in which the reaction part is reformulated in terms of the reaction trajectory, and both the reaction
and diffusion parts dissipate the same free energy. At the reaction stage, the reaction trajectory
equation is approximated by a second-order Crank--Nicolson type method. The unique solvability,
positivity-preserving property, and energy stability are established based on a convexity analysis.
In the diffusion stage, an exact integrator is applied if the diffusion coefficients are constant, and a
Crank--Nicolson type scheme is constructed if the diffusion part is nonlinear. In either case, both
the positivity-preserving property and energy stability could be theoretically established. Moreover,
a combination of the numerical algorithms at both stages by the Strang splitting approach leads
to a second-order accurate, structure-preserving scheme for the original reaction-diffusion system.
Numerical experiments are presented, which demonstrate the accuracy and the energy stability of
the proposed scheme.
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1. Introduction. In this work, we consider the reaction-diffusion system

(1.1) \partial tci = \nabla \cdot (Di(ci,\bfitx )\nabla ci) + ri(\bfitc ), i = 1, . . . , N,

where ci > 0 is the concentration of ith species, Di(ci,\bfitx ) are diffusion coefficients,
and ri(\bfitc ) are nonlinear reaction terms for the chemical reactions
(1.2)
\alpha l
1X1 + \alpha l

2X2 + \cdot \cdot \cdot + \alpha l
NXN  -  - \rightharpoonup \leftharpoondown  -  - \beta l

1X1 + \beta l
2X2 + \cdot \cdot \cdot + \beta l

NXN , l = 1, . . . ,M.

Reaction-diffusion systems of this type can be found in many mathematical models
in chemical engineering, biology, soft matter physics, and combustion theory; see
[11, 32, 33, 37, 41, 50, 56, 57, 58, 63, 65] for examples.

Numerical simulation for the reaction-diffusion system (1.1) is often challenging,
due to the nonlinearity and stiffness brought by the reaction term. Moreover, a naive
discretization to (1.1) may fail to preserve the positivity of ci and the conservation
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OPERATOR SPLITTING FOR REACTION-DIFFUSION SYSTEMS A2277

property in the original system [25]. To overcome these difficulties, many numerical
schemes have been developed to solve reaction kinetics and reaction-diffusion systems
[6, 25, 36, 67], including some operator splitting approaches [9, 16, 28, 29, 67].

It has been discovered that if the reaction term in (1.1) satisfies the law of
mass action with the detailed balance condition, the whole system admits an energy-
dissipation law, which opens a door to develop structure-preserving numerical schemes
for such a system. In more detail, under certain conditions, which will be specified
in the next section, the reaction-diffusion system (1.1) can be reformulated as a com-
bination of a gradient flow of the reaction trajectory \bfitR (\bfitx , t) and a gradient flow of
species concentration \bfitc (\bfitx .t) for a single free energy [64]. Since the reaction and dif-
fusion parts dissipate the same free energy, it is natural to use an operator splitting
approach to develop an energy stable scheme for the whole system. Based on this
variational structure, a first-order accurate operator splitting scheme has been con-
structed in a recent work [45], with the variational structure theoretically preserved
for the numerical solution. In this approach, since the physical free energy is in the
form of logarithmic functions of the concentration \bfitc (\bfitx ), which is a linear function of
reaction trajectories \bfitR (\bfitx ), the positivity-preserving analysis of the numerical scheme
at both stages has been established. Similar to the analysis in a recent article [10] for
the Flory--Huggins Cahn--Hilliard flow, an implicit treatment of the nonlinear singular
logarithmic term is crucial to theoretically justify its positivity-preserving property.
A more careful analysis reveals that the convex and the singular natures of the im-
plicit nonlinear parts prevent the numerical solutions from approaching the singular
limiting values, so that the positivity-preserving property is available for the density
variables of all the species. A detailed convergence analysis and error estimate have
also been reported in a recent work [46]. However, it is a not trivial task to develop a
second-order accurate operator splitting scheme based on this idea, since most existing
second-order energy stable schemes for gradient flows are multistep algorithms based
on either modified Crank--Nicolson or BDF2 temporal discretization. Moreover, to
ensure both the unique solvability and energy stability, a multistep approximation to
the concave terms is usually needed. Furthermore, a single-step, second-order approx-
imation has to be accomplished at each stage in the operator splitting approach, and
a theoretical justification of the positivity-preserving property and energy stability is
also very challenging.

The purpose of this paper is to propose and analyze a second-order accurate op-
erator splitting scheme for the reaction-diffusion system with the detailed balance
condition. Following the energetic variational formulation, the splitting scheme solves
the reaction trajectory equation of \bfitR at the reaction stage, and solves the diffusion
equation for \bfitc in the diffusion stage. To overcome the above-mentioned difficulties, we
make use of a numerical profile created by the first-order convex splitting algorithm,
which is proved to be a second-order accurate approximation to the physical quantity
at time step tn+1, to construct a second-order approximation to the mobility part.
Then an application of a modified Crank--Nicolson formula leads to a second-order
approximation to the mobility function at the intermediate time instant tn+1/2. Mean-
while, the physical energy does not contain any concave part in the reaction-diffusion
system, so that a single-step, modified Crank--Nicolson method leads to a second-order
accurate algorithm. In addition, an artificial second-order Douglas--Dupont type regu-
larization term [10], in the form of \Delta t

\sum N
i=1 \sigma i(\mu i(R

n+1) - \mu i(R
n)), is added to ensure

the positivity-preserving property. The energy stability is derived by a careful energy
estimate because of the choice in the modified Crank--Nicolson approximation. These
techniques lead to a second-order accurate, positivity-preserving, and energy stable
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A2278 CHUN LIU, CHENG WANG, AND YIWEI WANG

algorithm in the reaction stage.
In the diffusion stage, an exact integrator, the so-called exponential time differ-

encing (ETD) method, is applied if the diffusion coefficients are constant. Such an
ETD method solves the diffusion stage equation exactly (by keeping the finite dif-
ference spatial discretization), so that both the positivity-preserving property and
energy stability are ensured. If the diffusion coefficients are nonlinear, we have to fol-
low an idea from the reaction stage and apply a predictor-corrector approach in the
mobility approximation and a modified Crank--Nicolson algorithm for the chemical
potential. In either case, both the positivity-preserving property and energy stabil-
ity could be theoretically justified for the numerical solution in the diffusion stage.
Finally, a combination of the numerical algorithms at both stages by the Strang split-
ting approach leads to a second-order accurate, structure-preserving scheme for the
original reaction-diffusion system.

The rest of this paper is organized as follows. The energetic variational approach
for the reaction-diffusion systems with the detailed balance condition is reviewed in
section 2. Subsequently, the second-order operator splitting scheme is presented in
section 3. The positivity-preserving and energy stability analyses will be provided at
each stage as well. Some numerical results will be presented in section 4 to demon-
strate the performance of the second-order operator splitting scheme.

2. Preliminary. In this section, we briefly review the energetic variational for-
mulation for reaction-diffusion systems with detailed balance, which will be the foun-
dation of the second-order operator splitting schemes developed in section 3. We refer
the interested reader to [45, 64] for more detailed descriptions.

2.1. EnVarA for diffusions. Inspired by the seminal works of Rayleigh [60]
and Onsager [52, 53], the energetic variational approach (EnVarA) [24, 30, 44] derives
the dynamics of a complicated system from a prescribed energy-dissipation law. In
more detail, an energy-dissipation law, which comes from the first and second laws of
thermodynamics [30], can be written as

d

dt
Etotal =  - \bigtriangleup ,

for an isothermal closed system, where Etotal is the total energy, including both
the kinetic energy \scrK and the Helmholtz free energy \scrF , and \bigtriangleup \geq 0 is the rate of
energy dissipation which is equal to the entropy production in this case. Starting
with an energy-dissipation law, the EnVarA derives the dynamics of the systems
through two variational principles, the least action principle (LAP) and the maximum
dissipation principle (MDP). The LAP, which states the equation of motion for a
Hamiltonian system, can be derived from the variation of the action functional \scrA =\int T

0
\scrK  - \scrF dt, with respect to the flow maps, and gives a unique procedure for deriving

the conservative force in the system. The dissipation force in the system can be
derived by the MDP, i.e., taking the variation of the dissipation potential \scrD , which
equals 1

2\bigtriangleup in the linear response regime, with respect to the rate (such as velocity).
In turn, the force balance condition leads to the evolution equation of the system

(2.1)
\delta \scrD 
\delta \bfitx t

=
\delta \scrA 
\delta \bfitx 

.

The energetic variational approach has been successfully applied to build up many
mathematical models [30], including systems with chemical reactions [64, 65]; it has
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OPERATOR SPLITTING FOR REACTION-DIFFUSION SYSTEMS A2279

also provided a guideline for designing structure-preserving numerical schemes for
systems with variational structures [45, 48, 49].

The classical EnVarA formulation is a variational principle for continuum me-
chanics, and the variable \bfitx in (2.1) should be understood as the flow map \bfitx (X, t)
from a reference domain \Omega 0 to a physical domain \Omega at time t. Here X \in \Omega 0 is the
Lagrangian coordinate, and \bfitx \in \Omega is the Eulerian coordinate. An important feature
of a continuum mechanical system is that the evolution of physical variables, such
as density, is determined by the evolution of the flow map \bfitx (X, t) through a kine-
matic relation. To define the kinematic relation, it is convenient to introduce the
deformation tensor associated with the flow map \bfitx (X, t) by

\~\sansF (\bfitx (X, t), t) = \sansF (X, t) = \nabla \bfX \bfitx (X, t),

which carries all the transport/kinematic information of the microstructures, patterns,
and configurations in continuum mechanical systems. Without ambiguity, we will not
distinguish \sansF and \~\sansF in the following. For a density function \rho (\bfitx , t), which satisfies the
conservation of mass, the kinematics can be written as

(2.2) \rho (\bfitx , t) = \rho 0(X)/ det\sansF (X, t)

in Lagrangian coordinates. Here \rho 0(X) is the initial density. The kinematics (2.2) is
equivalent to \rho t +\nabla \cdot (\rho u) = 0 in Eulerian coordinates.

Diffusion is one of the simplest mechanical processes, in which \scrK = 0. In the
framework of EnVarA, a diffusion can be described by the energy-dissipation law

(2.3)
d

dt
\scrF [\rho ] =  - 

\int 
\Omega 

\eta (\rho )| u| 2 d\bfitx , \scrF [\rho ] =

\int 
\Omega 

\omega (\rho ) d\bfitx ,

where \rho is a conserved quantity, \scrF [\rho ] is the free energy, \omega (\rho ) is the free energy density,
and \eta (\rho ) is the friction coefficient. Due to the kinematics (2.2), the free energy can
be reformulated as a functional of \bfitx (X, t) in Lagrangian coordinates, i.e.,

(2.4) \scrF [\bfitx ] =

\int 
\Omega 0

\omega 

\biggl( 
\rho 0(X)

det\sansF 

\biggr) 
det\sansF dX.

A direct computation leads to

(2.5)
\delta \scrA 
\delta \bfitx 

=  - \nabla 
\biggl( 
\partial \omega 

\partial \rho 
\rho  - \omega 

\biggr) 
=  - \rho \nabla \mu ,

where \mu = \delta \scrF 
\delta \rho is the chemical potential. Formally, one can obtain (2.5) by using the

relation \delta \rho = \nabla \cdot (\rho \delta \bfitx ) in the notion of the principle of virtual work [4]. For the
dissipation part, since \scrD = 1

2

\int 
\eta (\rho )| u| 2d\bfitx , it is easy to compute \delta \scrD 

\delta \bfu = \eta (\rho )u. As a
consequence,

(2.6) \eta (\rho )u =  - \rho \nabla \mu .

Combining the force balance equation (2.6) with the kinematics \rho t+\nabla \cdot (\rho u) = 0, one
obtains a generalized diffusion equation

(2.7) \rho t = \nabla \cdot 
\biggl( 
\rho 2

\eta (\rho )
\nabla \mu 
\biggr) 
, \mu =

\delta \scrF 
\delta \rho 
.
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A2280 CHUN LIU, CHENG WANG, AND YIWEI WANG

2.2. EnVarA for reaction kinetics. Next, we show how to extend the EnVarA
framework to reaction kinetics, which is not a mechanical process determined by the
flow map.

Consider a system with N species \{ X1, X2, . . . , XN\} and M reversible chemical
reactions given by
(2.8)
\alpha l
1X1 + \alpha l

2X2 + \cdot \cdot \cdot + \alpha l
NXN  -  - \rightharpoonup \leftharpoondown  -  - \beta l

1X1 + \beta l
2X2 + \cdot \cdot \cdot + \beta l

NXN , l = 1, . . . ,M.

Denote \bfitc = (c1, c2, . . . , cN )T, the concentrations of all species. The reaction kinetics
of the system is often described by a system of ODEs

(2.9)
d

dt
ci =

M\sum 
l=1

\sigma ilrl(\bfitc ),

where rl(\bfitc ) is the reaction rate for the lth chemical reaction, and \sigma il = \beta l
i  - \alpha l

i is the
stoichiometric coefficients. From (2.9), note that

(2.10)
d

dt
(\bfite \cdot c) = \bfite \cdot \bfitsigma \bfitr (\bfitc (t), t) = 0 for \bfite \in Ker(\bfitsigma T).

In turn, one can define N -rank (\bfitsigma ) linearly independent conserved quantities for the
reaction network. In classical chemical kinetics, rl(\bfitc ) is determined by the law of
mass action (LMA), which states that the reaction rate is directly proportional to the
product of the reactant concentrations, i.e.,

(2.11) rl(\bfitc ) = k+l \bfitc 
\bfitalpha l

 - k - l \bfitc 
\bfitbeta l

, \bfitc \bfitalpha 
l

=

N\prod 
i=1

c
\alpha l

i
i , \bfitc \bfitbeta 

l

=

N\prod 
i=1

c
\beta l
i

i ,

in which k+l and k - l are the forward and backward reaction constants for the lth
reaction.

It has been shown that the reaction kinetics (2.9), along with the LMA (2.11),
admits a Lyapunov function if there exists a strictly positive equilibrium point \bfitc \infty \in 
\BbbR N

+ satisfying

(2.12) k+l \bfitc 
\bfitalpha l

\infty = k - l \bfitc 
\bfitbeta l

\infty , l = 1, . . . ,M.

Such an equilibrium point is called a detailed balance equilibrium. We say a reac-
tion network satisfies the detailed balance condition if it admits a detailed balance
equilibrium. Within \bfitc \infty , one can define the Lyapunov function as

(2.13) \scrF [\bfitc ] =

N\sum 
i=1

ci

\biggl( 
ln

\biggl( 
ci
c\infty i

\biggr) 
 - 1

\biggr) 
.

The Lyapunov function (2.13) can be reformulated as [51, 64]

(2.14) \scrF [\bfitc ] =

N\sum 
i=1

(ci(ln ci  - 1) + ciUi) ,

where the first part stands for the entropy, and Ui is the internal energy associated
with each species. For the free energy (2.14), the chemical potential associated with
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each species can be computed as \mu i(ci) = ln ci + Ui. According to the definition of

a chemical equilibrium [40], we have
\sum N

i=1 a
l
i\mu i(c

\infty 
i ) =

\sum N
i=1 \beta 

l
i\mu i(c

\infty 
i ) \forall l, which gives

the relation between Ui and c
\infty 
i , i.e.,

(2.15)

N\sum 
i=1

\alpha l
i(ln c

\infty 
i + Ui) =

N\sum 
i=1

\beta l
i(ln c

\infty 
i + Ui), l = 1, . . . ,M.

To formulate the reaction kinetics into a variational form, it is important to
introduce another state variable \bfitR \in \BbbR M , known as the reaction trajectory [54, 64]
or the extent of reaction [13, 40]. The lth component of \bfitR (t) corresponds to the
number of lth reactions that have happened by time t in the forward direction. For
any initial condition \bfitc (0) \in \BbbR N

+ , the value of \bfitc (t) can be represented in terms of \bfitR as
the following formula:

(2.16) \bfitc (t) = \bfitc (0) + \bfitsigma \bfitR (t), \bfitsigma \in \BbbR N\times M is the stoichiometric matrix.

This equation can be viewed as the kinematics of a reaction kinetics, which embod-
ies the conservation properties (2.10). In particular, the positivity of \bfitc requires a
constraint on \bfitR as follows:

\bfitsigma \bfitR (t) + \bfitc (0) > 0.

Subsequently, the reaction rate \bfitr can be defined as \.\bfitR , known as the reaction velocity
[40]. In the framework of the EnVarA, we can describe the reaction kinetics through
the energy-dissipation law in terms of \bfitR (t) and \.\bfitR (t) as

(2.17)
d

dt
\scrF [\bfitc (\bfitR )] =  - \scrD chem[\bfitR , \.\bfitR ],

where \scrD chem[\bfitR , \.\bfitR ] is the rate of energy dissipation in the chemical reaction process.
Unlike mechanical systems, the rate of energy dissipation for reaction kinetics may
not be quadratic in terms of \.\bfitR , since the system is often far from equilibrium [5, 15].
For a general nonlinear energy dissipation

(2.18) \scrD chem[\bfitR , \.\bfitR ] =
\Bigl( 
\Gamma (\bfitR , \.\bfitR ), \.\bfitR 

\Bigr) 
=

M\sum 
l=1

\Gamma l(\bfitR , \.\bfitR ) \.Rl \geq 0,

since

(2.19)
d

dt
\scrF =

\biggl( 
\delta \scrF 
\delta \bfitR 

, \.\bfitR 

\biggr) 
=

M\sum 
l=1

\delta \scrF 
\delta Rl

\.Rl,

one can specify

(2.20) \Gamma l(\bfitR , \.\bfitR ) =  - \delta \scrF 
\delta Rl

such that the energy-dissipation law (2.17) holds. Equation (2.20) is the reaction rate
equation obtained by an energetic variational approach. It is interesting to note that

(2.21)
\delta \scrF 
\delta Rl

=

N\sum 
i=1

\delta \scrF 
\delta ci

\delta ci
\delta Rl

=

N\sum 
i=1

\sigma l
i\mu i,

D
ow

nl
oa

de
d 

08
/1

0/
22

 to
 1

04
.1

94
.1

05
.1

37
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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which turns out to be the chemical affinity, and \mu i = \delta \scrF 
\delta ci

is the chemical potential
of ith species. The chemical affinity is the driving force of the chemical reaction
[13, 14, 40], and the dissipation makes a connection between the reaction rate \.\bfitR and
the chemical affinity. A typical choice of \scrD chem[\bfitR , \.\bfitR ] is given by

(2.22) \scrD chem[\bfitR , \.\bfitR ] =

M\sum 
l=1

\.Rl ln
\Bigl( \.Rl

\eta l(\bfitc (\bfitR ))
+ 1
\Bigr) 
.

One can derive the LMA by taking \eta l(\bfitc (\bfitR )) = k - l \bfitc (R)
\bfitbeta l . Since \.Rl \approx 0 near an

equilibrium, we see that

(2.23) \scrD chem[\bfitR , \.\bfitR ] =

M\sum 
l=1

\.Rl ln

\Biggl( 
\.Rl

\eta l(\bfitc (\bfitR ))
+ 1

\Biggr) 
\approx 

M\sum 
l=1

1

\eta l(\bfitc (\bfitR ))
\.R2
l , Rl \ll 1.

In turn, the energy-dissipation law (2.17) becomes an L2-gradient flow in terms of \bfitR .
The reaction kinetics can be viewed as a generalized gradient flow, with a non-

linear mobility in terms of the reaction trajectory. Hence, it is expected that the
numerical techniques for L2-gradient flows can be applied to reaction kinetics.

2.3. EnVarA for reaction-diffusion systems. For a reaction-diffusion system
with N species and M reactions, the concentration \bfitc \in \BbbR N satisfies the kinematics

(2.24) \partial tci +\nabla \cdot (ciui) =
\Bigl( 
\bfitsigma \.\bfitR 

\Bigr) 
i
, i = 1, 2, . . . , N,

where ui is the average velocity of each species by its own diffusion, and \bfitR \in \BbbR M

represents various reaction trajectories involved in the system, with \bfitsigma \in \BbbR N\times M being
the stoichiometric matrix as defined in section 2.1. The equations for ui and \.\bfitR can
be obtained through an energy-dissipation law [7, 64]

(2.25)
d

dt
\scrF [\bfitc (\bfitR )] =  - (2\scrD mech +\scrD chem),

which leads to a reaction-diffusion equation. Here \scrF [\bfitc ] is the free energy given by

(2.26) \scrF [\bfitc ] =

\int 
\Omega 

N\sum 
i=1

(ci(ln ci  - 1) + ciUi) d\bfitx ,

as in (2.14) for the ODE case, and 2\scrD mech and \scrD chem are dissipations for the mechan-
ical and reaction parts, respectively. One key point is that the reaction and diffusion
parts of the system dissipate the same free energy. To derive the reaction-diffusion
equation (1.1), \scrD mech could be taken as

2\scrD mech =

\int 
\Omega 

N\sum 
i=1

\xi i(ci)| ui| 2d\bfitx , \xi i(ci) is the friction coefficient,

and \scrD chem could be taken as

\scrD chem =

\int 
\Omega 

M\sum 
l=1

\.Rl ln

\Biggl( 
\.Rl

\eta l(\bfitc (\bfitR ))
+ 1

\Biggr) 
d\bfitx .
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The energetic variational approach could be applied to the reaction and diffusion
parts, respectively. A direct computation shows that the ``force balance equations""
for the chemical and mechanical subsystems are given by

(2.27)

\Biggl\{ 
\xi i(ci)ui =  - ci\nabla \mu i, i = 1, 2, . . . , N,

ln
\Bigl( 

\.Rl

\eta l(\bfitc (\bfitR ))

\Bigr) 
=  - 

\sum N
i=1 \sigma 

l
i\mu i, l = 1, . . . ,M.

In particular, a linear reaction-diffusion system can be obtained by choosing \xi i(ci) =
1
Di
ci as follows:

(2.28) \partial tci = Di\Delta ci + (\sigma \partial t\bfitR )i, (\bfitsigma \partial t\bfitR )i is the reaction term.

Other choices of \xi i(ci) can result in some porous medium type nonlinear diffusion
equation [48]

(2.29) \partial tci = \nabla \cdot (D(ci)\nabla ci) + (\sigma \partial t\bfitR )i,

where D(ci) =
ci

\eta (ci)
is the concentration-dependent diffusion coefficient.

In this formulation, the reaction part is reformulated in terms of reaction trajec-
tories R, and the reaction and diffusion parts impose different dissipation mechanisms
for the same physical energy.

3. The second-order operator splitting scheme. In this section, we con-
struct a second-order operator splitting scheme to a reaction-diffusion system based
on the energetic variational formulation outlined in section 2.3, in which the numer-
ical discretization for the reaction part is applied to the reaction trajectory R in the
reaction space, while the numerical method for the diffusion part is designed for the
concentration \bfitc in the species space. To illustrate the idea, we focus on a case with
one reversible detailed balance reaction, given by

(3.1) \alpha 1 X1 + \cdot \cdot \cdot +\alpha r Xr

k+
1 -  - \rightharpoonup \leftharpoondown  -  - 

k - 
1

\beta r+1 Xr+1 + \cdot \cdot \cdot +\beta N XN,

where k+1 and k - 1 are constants. Moreover, we assume that the reaction-diffusion
system can be derived from an energy-dissipation law (2.25). Numerical schemes
for systems involving multiple reversible reactions can be constructed in the same
manner, although the theoretical justifications, especially the unique solvability, might
be difficult to establish.

To simplify the numerical description, the reaction-diffusion equation (2.29) can
be rewritten as

(3.2) \partial t\bfitc = \scrA \bfitc + \scrB \bfitc ,

where \scrA is a reaction operator and \scrB is a diffusion operator. Throughout this section,
the computational domain is taken as \Omega = (0, 1)3 with a periodic boundary condi-
tion, and \Delta x = \Delta y = \Delta z = h = 1

N0
with N0 being the spatial mesh resolution; a

computational domain with a different boundary condition or numerical mesh could
be analyzed in a similar fashion. In addition, the discrete free energy is defined as
follows, with the given spatial discretization:

(3.3) \scrF h(\bfitc ) :=

\Biggl\langle 
N\sum 
i=1

(ci(ln ci  - 1) + ciUi) ,1

\Biggr\rangle 
,
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where \langle f, g\rangle = h3
\sum N0 - 1

i,j,k=0 fi,j,kgi,j,k denotes the discrete L2 inner product.

Following the second-order Strang splitting formula \bfitc n+1 = e
1
2\Delta t\scrA e\Delta t\scrB e

1
2\Delta t\scrA \bfitc n

[62], the numerical solution \bfitc n+1 can be obtained through three stages. Given \bfitc n

with \bfitc ni,j,k \in \BbbR N
+ , we update \bfitc n+1 via the following three stages.

Stage 1. First, we set \bfitc 0 = \bfitc n and solve the reaction trajectory equation,
subject to the initial condition Rn = 0, with a second-order, positivity-preserving,
energy stable scheme, with the temporal step-size \Delta t/2. An intermediate numerical
profile is updated as

(3.4) \bfitc n+1,(1) = \bfitc n + \bfitsigma Rn+1,(1).

Stage 2. Starting with the intermediate variable \bfitc n+1,(1), we solve the diffusion
equation \partial t\bfitc = \scrB \bfitc by a second-order, positivity-preserving, and energy stable scheme
with the temporal step-size \Delta t to obtain \bfitc n+1,(2).

Stage 3. We set \bfitc 0 = \bfitc n+1,(2) and repeat Stage 1, i.e., solving the reaction
trajectory equation, subject to the initial condition Rn = 0 with the temporal step-
size \Delta t/2 to obtain Rn+1,(2). The numerical solution at tn+1 is updated as

(3.5) \bfitc n+1 = \bfitc n+1,(2) + \bfitsigma Rn+1,(2).

More details of the numerical algorithms at each stage will be provided in the
following subsections.

3.1. Second-order algorithm for reaction kinetics. We first develop a second-
order algorithm for the reaction stage, which only needs to be constructed in a point-
wise sense. The discrete free energy can be reformulated in terms of R at each mesh
point, and is denoted by

(3.6) F (R) =

N\sum 
i=1

ci(R)(ln ci(R) - 1) + ci(R)Ui.

For simplicity of presentation, we omit the grid index throughout this subsection. Fol-
lowing the earlier discussions, for a given initial condition \bfitc 0, the reaction trajectory
equation is given by

(3.7)

\Biggl\{ 
ln
\Bigl( 

Rt

\eta (\bfitc (R)) + 1
\Bigr) 
=  - \mu (R),

\mu (R) = \delta F
\delta R =

\sum N
i=1 \sigma i\mu i(ci(R)),

where \eta (\bfitc (R)) is the nonlinear mobility that takes the form \eta (\bfitc (R)) = k - 1
\prod N

i=r+1 c
\beta i

i ,

\bfitc (R) = \bfitc 0 + \bfitsigma R with \bfitsigma = ( - \alpha 1, - \alpha 2, . . . , - \alpha r, \beta 1, \beta 2, . . . , \beta N )T is the stoichiometric
vector, and \mu i(ci) = ln ci + Ui is the chemical potential associated with i species.
Similar to an L2-gradient flow, a second-order algorithm for the reaction trajectory
equation (3.7) can be constructed through a Crank--Nicolson type discretization

(3.8) ln

\biggl( 
Rn+1  - Rn

\eta (\bfitc (R\ast ))\Delta t
+ 1

\biggr) 
=  - \mu n+1/2,

where \mu n+1/2 is a suitable approximation to the chemical affinity, F \prime (R), at tn+1/2,

and R\ast is an approximation to Rn+1/2, which needs to be independent of Rn+1. The
primary difficulty is focused on the construction of R\ast and \mu n+1/2 to ensure the unique
solvability as well as the positivity of Rn+1  - Rn + \eta (\bfitc (R\ast ))\Delta t and \bfitc (Rn+1).
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First, we use a first-order scheme to obtain a rough ``guess"" to Rn+1, denoted by\widehat Rn+1, as a numerical solution to

(3.9) ln

\Biggl( \widehat Rn+1  - Rn

\eta (\bfitc (Rn))\Delta t
+ 1

\Biggr) 
=

N\sum 
i=1

\sigma i\mu i( \widehat Rn+1)

in the admissible set. This first-order scheme was proposed in [45], while the unique

solvability and the positivity-preserving property have been proved. With \widehat Rn+1 at
hand, we introduce R\ast = (Rn + \widehat Rn+1)/2. Although (3.9) corresponds to a first-order

truncation error, we see that \widehat Rn+1 is a second-order approximation to Rn+1, locally
in time, due to the \Delta t term in the denominator. In turn, R\ast becomes a second-

order approximation to Rn+1/2. To approximate
\bigl( 
\delta \scrF 
\delta R

\bigr) n+1/2
, we apply the idea of the

discrete variational derivative method [23, 27]. More specifically, the function

(3.10) \phi (p, q) =

\Biggl\{ 
F (p) - F (q)

p - q , p \not = q,

F \prime (p), p = q,

is introduced as a second-order approximation to F \prime (p+q
2 ). In fact, it is also known

as the discrete variation of F (R) [27].
With the combined arguments, the second-order algorithm is constructed as

(3.11)

\left\{   ln
\Bigl( 

Rn+1 - Rn

\eta (\bfitc ( \widehat Rn+1/2))\Delta t
+ 1
\Bigr) 
=  - \mu n+1/2

R , \widehat Rn+1/2 = 1
2 (R

n + \widehat Rn+1),

\mu 
n+1/2
R = \phi (Rn+1, Rn) + \Delta t

\sum N
i=1 \sigma i(\mu i(R

n+1) - \mu i(R
n)).

The term \Delta t
\sum N

i=1 \sigma i(\mu i(R
n+1) - \mu i(R

n)) is the Douglas--Dupont type regularization
term [10], which is added for the theoretical analysis of the positivity-preserving prop-
erty. This O(\Delta t2) term is artificial, and it will not affect the second-order accuracy
in the temporal discretization.

This algorithm can be reformulated as an optimization problem

(3.12)

\left\{       
R = argminR\in \scrV n

Jn(R),

Jn(R) = \Psi n(R,R
n) +

\int R

Rn \phi (s,R
n)ds+ \lambda (\Delta tF (R) - (\gamma n, R)),

\scrV n =
\Bigl\{ 
R | ci(R) > 0, R - Rn + \eta (c( \^Rn+1/2))\Delta t > 0

\Bigr\} 
,

where \gamma n = \Delta t
\sum N

i=1 \sigma i\mu i(ci(R
n)), and

(3.13) \Psi n(R,R
n) = (R - Rn+\eta (\bfitc ( \^Rn+1/2))\Delta t) ln

\Biggl( 
R - Rn

\eta (\bfitc ( \^Rn+1/2))\Delta t
+ 1

\Biggr) 
 - (R - Rn)

is a function that measures the ``distance"" between R and Rn. Although an explicit
form of Jn(R) is not available, we can prove that Jn(R) admits a unique minimizer
in the admissible set. More precisely, the following theorem is valid.

Theorem 3.1. Given \bfitc n > 0 and Rn = 0, there exists a unique solution Rn+1

for the minimization problem (3.12), which turns out to be the unique solution for

the numerical scheme (3.11), with \bfitc (Rn+1) > 0 and Rn+1 + \eta (c( \widehat Rn+1/2))\Delta t > 0.
Therefore, the numerical scheme is well defined.
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To facilitate the proof of this result, the following smooth functions are introduced
for fixed a > 0:

(3.14)

G1
a(x) =

x lnx - a ln a

x - a
,

G0
a(x) =

\int x

a

G1
a(s)ds,

G2
a(x) = (G0

a)
\prime \prime (x) = (G1

a)
\prime =

x - a+ a(ln a - lnx)

(x - a)2
.

By a direct calculation, it is straightforward to prove the following results, which will
be used in the proof of Theorem 3.1.

Lemma 3.1. For any fixed a > 0, we have that (1) G2
a(x) \geq 0 for any x > 0;

(2) G0
a(x) is convex in terms of x; (3) there exists \xi between a and x such that

(G1
a)

\prime (x) = 1
\xi ; and (4) since G1

a(x) increases in terms of x, we have G1
a(x) \leq G1

a(a)
for any 0 < x \leq a.

Now we can proceed to the proof of Theorem 3.1.

Proof. Recall the minimization problem (3.12); it is clear that Jn(R) is a strictly
convex function over \scrV n. We need only prove that the minimizer of Jn(R) over \scrV 
could not occur on the boundary of \scrV , so that a minimizer corresponds to a numerical
solution of (3.11) in \scrV n.

The following closed domain is considered in the analysis:

\scrV \delta =
\Bigl\{ 
R | ci(R) \geq \delta , R - Rn + \eta (c( \^Rn+1/2))\Delta t \geq \delta 

\Bigr\} 
\subset \scrV .(3.15)

A careful calculation indicates that, for any R \in \scrV \delta , the following bounds are satisfied:

(3.16) max
1

\beta i
(\delta  - c0i ) \leq R \leq min

1

\alpha i
(c0i  - \delta ), R \geq Rn  - \eta (c( \^Rn+1/2))\Delta t+ \delta ,

i.e., \scrV \delta = [max 1
\beta i
(\delta  - c0i ),min 1

\alpha i
(c0i  - \delta )] or \scrV \delta = [Rn - \eta (c( \^Rn+1/2))\Delta t+\delta ,min 1

\alpha i
(c0i  - 

\delta )]. Since \scrV \delta is a bounded, compact set, there exists a (may not be unique) minimizer
of Jn(R) over \scrV \delta . Moreover, we have to prove that such a minimizer could not occur
on the boundary points in \scrV \delta if \delta is sufficiently small; we do so by using the singular
property of logarithmic function approaches to 0.

Without loss of generality, the minimization point is assumed to be R\ast = Rn  - 
\eta (c( \^Rn+1/2))\Delta t+ \delta . A direct calculation gives

(3.17) J \prime 
n(R) | R=R\ast = ln \delta + \phi (R\ast , Rn) + \Delta t(\mu (R\ast ) - \gamma n).

Next, we show that \phi (R\ast , Rn) +\Delta t(\mu (R\ast ) - \gamma n) is bounded, so that we can choose \delta 
sufficiently small with

J \prime 
n(R) | R=R\ast < 0,(3.18)

which leads to a contradiction since there will be R\ast \prime 
= Rn - \eta (c( \^Rn+1/2))\Delta t+\delta +\delta \prime \in 

V\delta such that

Jn(R
\ast \prime 
) < Jn(R

\ast ).(3.19)
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To derive a bound for \phi (R\ast , Rn) + \Delta t(\mu (R\ast ) - \gamma n), we note that

(3.20) \phi (R\ast , Rn) =

N\sum 
i=1

\sigma iG
1
cni
(c0i + \sigma iR

\ast ) +

N\sum 
i=1

\sigma i(Ui  - 1),

where cni = c0i +\sigma iR
n, and

\sum N
i=1 \sigma i(Ui - 1) is a constant. Since G1

a(x) is an increasing
function of x for any a > 0, the following inequality is valid:
(3.21)
G1

cni
(c0i + \sigma iR

\ast ) = G1
cni
(c0i + \sigma i(R

n  - \^\eta n\ast \Delta t - \delta )) = G1
cni
(c0i + \sigma iR

n  - \sigma i(\^\eta 
n\ast \Delta t - \delta ))

\geq G1
cni
(c0i + \sigma iR

n) = ln cni + 1, \sigma i < 0,

in which \delta is sufficiently small such that \^\eta n\ast \Delta t - \delta > 0. Similarly, we have

(3.22) G1
cni
(c0i + \sigma iR

\ast ) \leq G1
cni
(c0i + \sigma iR

n) = ln cni + 1, \sigma i > 0,

with \delta sufficiently small such that \^\eta n\ast \Delta t - \delta > 0. Hence,

(3.23)

\phi (R\ast , Rn) =

N\sum 
i=1

\sigma iG
1
cni
(c0i + \sigma iR

\ast ) +

N\sum 
i=1

\sigma i(Ui  - 1)

\leq 
N\sum 
i=1

\sigma i ln c
n
i + C0, C0 =

N\sum 
i=1

\sigma iUi.

Following the same argument, we could derive the inequality

(3.24)
\mu (R\ast ) =

N\sum 
i=1

\sigma i\mu i(ci + \sigma iR
\ast ) =

N\sum 
i=1

\sigma i ln(c
0
i + \sigma iR

\ast ) +

N\sum 
i=1

\sigma iUi

\leq \sigma i ln(c
n
i ) + C0,

since lnx is an increasing function of x. A combination of (3.23) and (3.24) gives

(3.25) J \prime 
n(R) | R=R\ast \leq ln \delta + C1,

where Ci = (1 + \Delta t)
\sum N

i=1 \sigma i ln(c
n
i ) + (1 + \Delta t)C0  - \Delta t\gamma n is a constant. So we can

choose \delta small enough such that J \prime 
n(R) | R=R\ast < 0, which leads to the contradiction

inequality (3.19).
Using similar arguments, if R\ast = min 1

\alpha i
(c0i  - \delta ) = 1

\alpha q
(c0q  - \delta ), we can prove that

(3.26) J \prime 
n(R) | R=R\ast \geq C2 +\Delta t( - \alpha q) ln \delta .

Then \delta can be chosen sufficiently small such that J \prime 
n(R) | R=R\ast > 0, which leads to a

contradiction. Meanwhile, if R\ast = max 1
\beta i
(\delta  - c0i ), we will have J \prime 

n(R) | R=R\ast < 0.

As a result, the global minimum of Jn(R) over V\delta could only possibly occur at
an interior point if \delta is sufficiently small. In turn, there is a minimizer R\ast \in (V\delta )

o

in the interior region V\delta of Jn(R
\ast ), so that J \prime 

n(R) = 0. In other words, R\ast has to
be the numerical solution of (3.11), provided that \delta is sufficiently small. Therefore,
the existence of a ``positive"" numerical solution is proved. In addition, since J(R) is
a strictly convex function over V , the uniqueness of this numerical solution follows
from a standard convexity analysis. The proof of Theorem 3.1 is finished.
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The energy stability of the numerical scheme (3.11) is stated below.

Theorem 3.2. For a given Rn, the numerical solution Rn+1 to (3.11) satisfies
the energy-dissipation estimate

(3.27) F (Rn+1) \leq F (Rn) at a pointwise level.

Proof. Multiplying both side of (3.11) by Rn+1 - Rn and rearranging terms yields

(3.28)

F (Rn+1) - F (Rn)

\Delta t
= - Rn+1  - Rn

\Delta t
ln

\Biggl( 
Rn+1  - Rn

\eta (\bfitc ( \widehat Rn+1/2))\Delta t
+ 1

\Biggr) 

 - 
N\sum 
i=1

\sigma i(\mu 
n+1
i  - \mu n

i )(R
n+1  - Rn)

\leq  - Rn+1  - Rn

\Delta t
ln

\Biggl( 
Rn+1  - Rn

\eta (\bfitc ( \widehat Rn+1/2))\Delta t
+ 1

\Biggr) 
\leq 0.

In the derivation of the above inequality, the following fact has been used:
(3.29)
\sigma i(\mu 

n+1
i  - \mu n

i )(R
n+1  - Rn) = \sigma i(ln(c

0
i + \sigma iR

n+1) - ln(c0i + \sigma iR
n))(Rn+1  - Rn) \geq 0,

which comes from the monotonic property of the logarithmic function.

Remark 3.1. Without the additional term \Delta t
\sum N

i=1 \sigma i(\mu i(R
n+1)  - \mu i(R

n)), the
discrete energy dissipation law (3.28) is an exact time discretization to the continuous
energy-dissipation law, which is the advantage of the discrete variational derivative
method. It is crucial to add this term to establish the positivity-preserving property of
the numerical solution in the admissible set. Also see the related numerical analysis for
the Cahn--Hilliard gradient flow with Flory--Huggins energy potential [10, 18, 19, 20],
and the Poisson--Nernst--Planck (PNP) system [47, 59].

Remark 3.2. There have been extensive works of second-order accurate, energy
stable numerical schemes to various gradient flows, based on either the modified
Crank--Nicolson [1, 2, 17, 31, 35, 61] or the BDF2 [42, 66] approach. Meanwhile,
most existing works are multistep methods, since a multistep approximation to the
concave terms is usually needed to ensure both the unique solvability and the energy
stability. However, for the operator splitting method, a single-step, second-order ap-
proximation has to be accomplished at each stage, so that these standard approaches
are not directly available. To overcome this difficulty, we construct a numerical profile\widehat Rn+1, a local-in-time second-order approximation of R at time step tn+1, so that a
multistep approximation to the mobility function is avoided. In addition, the fact
that the physical energy does not contain any concave part enables one to derive a
single-step, modified Crank--Nicolson method while preserving the energy stability.
Recently, some single-step, second-order accurate, and energy stable schemes for gra-
dient flow problems have been developed, based on a second-order exponential time
differencing Runge--Kutta method (ETDRK2) [21, 26]. This approach may also be
used to develop second-order, energy stable schemes to reaction-diffusion systems,
which will be explored in future work.

3.2. Second-order schemes in the diffusion stage. Since the cross-diffusion
is not considered, the N diffusion equations of ci are fully decoupled. Therefore, we
need only construct numerical algorithms for a diffusion equation

(3.30) \rho t = \nabla \cdot (D(\rho ,\bfitx )\nabla \rho ), D(\rho ,\bfitx ) is the diffusion coefficient.
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In this subsection, we present two positivity-preserving and energy stable numerical
algorithms for linear and nonlinear diffusion equations, respectively. The schemes
could be used in the diffusion stage for the operator splitting scheme.

The diffusion equation (3.30) satisfies an energy-dissipation law

(3.31)

\int 
\rho ln \rho + C\rho d\bfitx =  - 

\int 
\scrM (\rho ,\bfitx )| \nabla \mu | 2d\bfitx ,

where \scrM (\rho ,\bfitx ) = D(\rho ,\bfitx )\rho is known as the mobility, C is an arbitrary constant, and
\nabla \mu = \nabla (ln \rho ) turns out to be the gradient of the chemical potential \mu = \rho ln \rho +C\rho +1.
With a careful spatial discretization, the discrete energy is defined as

(3.32) \scrF h(\rho ) := \langle \rho ln \rho + C\rho ,1\rangle .

3.2.1. An exponential time differencing scheme for a linear diffusion.
We first consider a linear diffusion with a constant coefficient, given by

(3.33) \rho t = \scrL \rho , \scrL = D\Delta , D > 0,

subject to the periodic boundary condition. Of course, the solution of linear diffusion
equation (3.33) satisfies the following maximum principle:

(3.34) max
\Omega 

\rho (\bfitx , t) \leq max
\Omega 

\rho (\bfitx , 0), min
\Omega 
\rho (\bfitx , t) \geq min

\Omega 
\rho (\bfitx , 0) \forall t > 0.

An easy way to obtain a high-order scheme to a linear diffusion equation is to
apply the ETD method [12, 39], which is indeed exact in time. More precisely, we
can introduce the spatial discretization to (3.33) by the standard centered difference
method, which leads to

(3.35) \partial t\rho = \scrL h\rho .

Integrating the above equation over a single time step from t = tn to tn+1, we get

(3.36) \rho n+1 = e\scrL h\Delta t\rho n,

which is known as the ETD scheme [12].
Due to the discrete maximum principle [22], the following positivity-preserving

property is obvious.

Theorem 3.3. Given \rho n, with \rho ni,j,k > 0, 0 \leq , i, j, k \leq N0  - 1, there exists

a unique solution \rho n+1 for the numerical scheme (3.36), with the discrete periodic
boundary condition, with \rho n+1

i,j,k > 0, 0 \leq i, j, k \leq N0  - 1.

With the positivity-preserving property and unique solvability for the numerical
scheme (3.36), it is straightforward to prove an unconditional energy stability.

Theorem 3.4. For the numerical solution (3.36), we have

(3.37) \scrF h(\rho 
n+1) \leq \scrF h(\rho 

n),

so that \scrF h(\rho 
n) \leq \scrF h(\rho 

0
h), an initial constant.

Proof. Taking a discrete inner product with (3.35) by ln \rho gives

(3.38)

\biggl\langle 
d

dt
\rho , ln \rho 

\biggr\rangle 
=  - \langle \nabla h\rho ,\nabla h(ln \rho )\rangle .
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By a direct calculation, we have

(3.39)
d

dt
\scrF h(\rho ) =

\biggl\langle 
d

dt
\rho , ln \rho 

\biggr\rangle 
=  - \langle \nabla h\rho ,\nabla h(ln \rho )\rangle \leq 0,

where the last inequality is due to the monotone property of the logarithmic function.
This completes the proof.

In fact, such a stability is available not only for \scrF h(\rho ) given by (3.32), but also
for all the convex energies. The following estimate could be derived using similar
techniques.

Corollary 3.1. For the numerical solution (3.35), we have \scrF h(\rho 
n+1) \leq \scrF h(\rho 

n)
for any n \geq 0, and \scrF h(\rho ) taking the form

\scrF (\rho ) = \langle F (u),1\rangle , in which F is a convex function of \rho for \rho > 0.

3.2.2. Second-order scheme for a nonlinear diffusion equation. The ETD
scheme is not suitable for nonlinear diffusion equations. The construction of a second-
order accurate, positivity-preserving, and energy stable scheme for a generalized non-
linear diffusion equation has always been very challenging. Here we present a general
approach to achieve this goal. For simplicity of presentation, it is assumed that the
diffusion coefficient D(\rho ) depends only explicitly on \rho . The case of \bfitx -dependent co-
efficients could be handled in a similar manner.

The idea is quite similar to the scheme (3.11) in the reaction stage. First, we need
a rough guess \^\rho n+1, which has to be pointwise positive, as a second-order temporal
approximation to \rho n+1. The simplest way to obtain such a rough guess \^\rho n+1 is to use
the classical semi-implicit scheme

(3.40)
\^\rho n+1  - \rho n

\Delta t
= \nabla h \cdot 

\Bigl( 
\scrA h[D(\rho n)]\nabla h\^\rho 

n+1,(2)
\Bigr) 
,

where \nabla h and \nabla h\cdot stand for the discrete gradient and the discrete divergence, respec-
tively, and \scrA h[D(\rho n)] is a spatially averaging operator introduced to obtain the value
of D(\rho n) at staggered mesh points. As proved in a recent work, the semi-implicit
scheme (3.40) satisfies the following uniquely solvable and positivity-preserving prop-
erties.

Proposition 3.1 (see [45]). Given \rho n, with \rho ni,j,k > 0, 0 \leq i, j, k \leq N0, there ex-

ists a unique solution \rho n+1 for the numerical scheme (3.40), with the discrete periodic
boundary condition, with \rho n+1

i,j,k > 0, 0 \leq i, j, k \leq N0.

It is observed that, although the truncation error for (3.40) is only O(\Delta t) in
the temporal discretization, a single-step computation would lead to an O(\Delta t2) ap-
proximation to the PDE solution of \rho t = \scrB \rho at time step tn+1, as long as \rho n re-
tains a second-order temporal accuracy. Within the rough guess \^\rho n+1, we define
\^\rho n+1/2 = 1

2 (\rho 
n + \^\rho n+1), which is an O(\Delta t2) approximation to \rho at the time instant

tn+1/2. Thus, a second-order accurate scheme can be constructed through a Crank--
Nicolson type discretization, along with the discrete variational derivative method
[23, 27]

(3.41)

\left\{     
\rho n+1 - \rho n

\Delta t = \nabla h(\scrM n+1/2
h \nabla h\mu 

n+1/2),

\mu n+1/2 = F (\rho n+1) - F (\rho n)
\rho n+1 - \rho n +\Delta t(ln \rho n+1  - ln \rho n),

\scrM n+1/2
h = \scrA h(D(\^\rho n+1/2)\^\rho n+1/2),
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where F (\rho ) = \rho ln \rho +C\rho is the free energy density. Similar to the derivation of (3.11),
the artificial regularization term \Delta t(ln \rho n+1 - ln \rho n), which does not affect the overall
accuracy, is needed in the theoretical justification of the positivity-preserving prop-
erty; see the following theorem.

Theorem 3.5. Given \rho n, with \rho ni,j,k > 0 \forall 0 \leq i, j, k \leq N0  - 1, there exists

a unique solution \rho n+1 for the numerical scheme (3.41), with the discrete periodic
boundary condition satisfying \rho n+1

i,j,k > 0.

To simplify notation, we introduce an average operator,

f =
h3

| \Omega | 

N - 1\sum 
i,j,k=0

fi,j,k,

and define a hyperplane in RN3
0 , with dimension (N3

0  - 1),

H =
\Bigl\{ 
\rho i,j,k = \beta 0 + \psi i,j,k :

\sum N0 - 1
i,j,k=0\psi i,j,k = 0

\Bigr\} 
.(3.42)

Meanwhile, we recall a preliminary estimate, which has been proved in a recent work
[10]. Let \scrC \Omega be the space of grid functions on \Omega . For any

(3.43) \varphi \in \r \scrC \Omega = \{ \nu \in \scrC \Omega | \=\nu = 0\} ,

there exists a unique \xi \in \r \scrC \Omega that solves

(3.44) \scrL \u \scrM (\xi ) = \varphi , where \scrL \u \scrM (\xi ) :=  - \nabla h \cdot ( \v \scrM \nabla h\xi ).

In turn, we can define the discrete norm

(3.45) \| \varphi \| \scrL  - 1
\u \scrM 
=
\sqrt{} 

\langle \varphi ,\scrL  - 1
\v \scrM (\varphi )\rangle ,

which is a discrete weighted H - 1-norm associated with a nonconstant mobility.

Lemma 3.2 (see [10]). Suppose that \varphi 1, \varphi 2 \in \scrC per, with \langle \varphi 1  - \varphi 2, 1\rangle = 0, i.e.,

\varphi 1  - \varphi 2 \in \r \scrC per, and assume that \| \varphi 1\| \infty , \| \varphi 2\| \infty \leq Mh, and \scrM \geq \scrM 0 at a pointwise
level. Then we have the inequality

(3.46) \| \scrL  - 1
\v \scrM (\varphi 1  - \varphi 2)\| \infty \leq C2 := \~C2\scrM  - 1

0 h - 1/2,

where \~C2 > 0 depends only upon \scrM h and \Omega .

Now we proceed to the proof of Theorem 3.5.

Proof. The mass conservation property of the numerical solution (3.41) is obvious:

(3.47) \rho n+1 = \rho n := \beta 0.

A direct calculation implies that if \rho n+1 with \rho n+1
i,j,k > 0 is the numerical solution

of (3.41), then \rho n+1 is a minimization of the discrete energy functional

(3.48) Jn(\rho ) =
1

2\Delta t
\| \rho  - \rho n\| \scrL  - 1

\v \scrM n
+ \langle G0

\rho n(\rho ) + \Delta t(\rho ln \rho + Cn\rho ),1\rangle 

over the admissible set

V H
h :=

\bigl\{ 
\rho = \beta 0 + \psi | \=\psi = 0, 0 < \rho i,j,k < Mh \forall (i, j, k)

\bigr\} 
.(3.49)
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Here Cn = C  - 1 - \Delta t(1 + ln \rho n), G0
\rho n(\rho ) is defined as in (3.14), and Mh = \beta 0

h3 .
To this end, we consider the following closed domain:

V H
h,\delta =

\bigl\{ 
\psi : \psi = 0, \delta \leq \rho i,j,k \leq Mh

\bigr\} 
\subset V H

h .(3.50)

Since V H
h,\delta is a bounded, compact set in the hyperplane H, there exists a (may not be

unique) minimizer of Jh(\psi ) over V
H
h,\delta . The key point of the positivity analysis is that

such a minimizer could not occur on the boundary points (in H) if \delta is small enough.
For a given \rho n with \rho ni,j,k > 0, we can assume that \rho n satisfies the following

bounds:

(3.51) \epsilon 0 \leq \rho ni,j,k \leq Mh  - \epsilon 0 \forall 0 \leq i, j, k \leq N0  - 1.

Assume a minimizer of Jn(\rho ) occurs at a boundary point of V H
h,\delta . Without loss of

generality, we set the minimization point as \rho \ast i,j,k, with \rho \ast i0,j0,k0
= \delta . In addition,

we denote the grid point at which \rho \ast reaches the maximum value as (i1, j1, k1). It is
obvious that \rho \ast i1,j1,k1

\geq \beta 0, because of the fact that \rho \ast = \beta 0.
To obtain a contradiction, we compute the direction derivative of Jn(\rho ) along the

direction
(3.52)

\delta \psi = \delta i,i0\delta j,j0\delta k,k0  - \delta i,i1\delta j,j1\delta k,k1 \in \r \scrC per, \delta k,l is the Kronecker delta function,

and the following identity is valid:

1

h3
Jn(\rho 

\ast + s\delta \psi ) - Jn(\rho 
\ast )

s

\bigm| \bigm| \bigm| 
s=0

=
1

\Delta t
((\scrL \v \scrM n(\rho \ast  - \rho n))i0,j0,k0

 - (\scrL \v \scrM n(\rho \ast  - \rho n))i1,j1,k1
)

+ (G1
\rho n(\rho \ast ))i0,j0,k0  - (G1

\rho n(\rho \ast ))i1,j1,k1 +\Delta t(ln \rho \ast i0,j0,k0
 - ln \rho \ast i1,j1,k1

) + \langle Cn, \delta \psi \rangle .

In addition, by the facts that \rho \ast i0,j0,k0
= \delta and \rho \ast i1,j1,k1

\geq \beta 0, we get

(3.53) ln \rho \ast i0,j0,k0
 - ln \rho \ast i1,j1,k1

\leq ln \delta  - ln\beta 0.

In the meantime, the following inequality could be derived, based on Lemma 3.2:

1

\Delta t
| ((\scrL \v \scrM n(\rho \ast  - \rho n))i0,j0,k0

 - (\scrL \v \scrM n(\rho \ast  - \rho n))i1,j1,k1
)| \leq 2 \~C2\scrM  - 1

0 h - 1/2\Delta t - 1.

Since G1
a(x) is an increasing function in terms of x > 0 for any fixed a > 0, and \rho n

satisfies the bound (3.51), it is straightforward to obtain

(G1
\rho n(\rho \ast ))i0,j0,k0

 - (G1
\rho n(\rho \ast ))i1,j1,k1

+ \langle Cn, \delta \psi \rangle 
\leq lnMh + 1 - G1

\epsilon 0(\beta 0) + \Delta t(lnMh  - ln \epsilon 0).

As a consequence, a combination of the above estimates leads to

(3.54)
1

h3
Jn(\rho 

\ast + s\delta \psi ) - Jn(\rho 
\ast )

s

\bigm| \bigm| \bigm| 
s=0

\leq D0 +\Delta t(ln \delta  - ln\beta 0),

where D0 = 2 \~C2\scrM  - 1
0 h - 1/2\Delta t - 1+lnMh+1 - G1

\epsilon 0(\beta 0)+\Delta t(lnMh - ln \epsilon 0), a constant
for fixed \Delta t and h. Hence, we can choose \delta sufficiently small such that

(3.55)
1

h3
Jn(\rho 

\ast + s\delta \psi ) - Jn(\rho 
\ast )

s

\bigm| \bigm| \bigm| 
s=0

< 0.
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This inequality contradicts the assumption that \rho \ast is a minimizer of Jn(\rho ). Therefore,
a minimizer of Jn(\rho ) cannot occur on the boundary of V H

h,\delta if \delta is small enough. In

other words, the minimizer of Jn(\rho ) over V
H
h could only possibly occur at its interior

point, which gives a solution of the numerical scheme (3.41). The uniqueness of this
numerical solution comes from a direct application of the strict convexity of Jn(\rho ).
The proof of Theorem 3.5 is complete.

Remark 3.3. In both Theorem 3.1 and Theorem 3.5, the positivity-preserving
property is established by using the singular nature of the logarithmic function. It
is worth mentioning that the positivity-preserving property could also be proved by
other classical methods, such as the method of upper and lower solutions [55].

With the positivity-preserving property and the unique solvability established,
we can further prove the following unconditional energy stability.

Theorem 3.6. For the numerical solution (3.41), we have

\scrF h(\rho 
n+1) \leq \scrF h(\rho 

n), with \scrF h(\rho 
n) = \langle \rho n ln \rho n + C\rho n,1\rangle .(3.56)

Proof. Taking a discrete inner product with (3.41) by \mu n+1/2 yields

1

\Delta t
\langle \rho n+1  - \rho n, \mu n+1/2\rangle =  - \langle \scrM n+1/2

h \nabla h\mu 
n+1/2,\nabla h\mu 

n+1/2\rangle \leq 0.(3.57)

Note that

(3.58)
\langle \rho n+1  - \rho n, \mu n+1/2\rangle = \scrF h(\rho 

n+1) - \scrF h(\rho 
n) + \Delta t\langle \rho n+1  - \rho n, ln \rho n+1  - ln \rho n\rangle 

\geq \scrF h(\rho 
n+1) - \scrF h(\rho 

n),

due to the monotonic property of the logarithmic function. Then we arrive at

(3.59) \scrF h(\rho 
n+1) - \scrF h(\rho 

n) \leq  - \langle \scrM n+1/2
h \nabla h\mu 

n+1/2,\nabla h\mu 
n+1/2\rangle \leq 0.

Remark 3.4. It is worth emphasizing that the discretization presented in (3.41)
is based on the H - 1-gradient flow structure of the diffusion equations. One can also
construct a variational structure-preserving scheme for diffusion equations by using
the Lagrangian methods [8, 38, 48], which treat diffusion equations as an L2-gradient
flow in the space of diffeomorphism, or the numerical methods for Wasserstein gradient
flows in the space of probability measure [3].

3.3. The second-order accurate operator splitting scheme. The second-
order operator splitting scheme could be formulated as follows, based on the previous
analyses.

Given \bfitc n with \bfitc ni,j,k \in \BbbR N
+ , we update \bfitc n+1 via the following three stages.

Stage 1. We set \bfitc 0 = \bfitc n and solve the reaction trajectory equation, subject to
the initial condition Rn = 0, using scheme (3.11) with a temporal step-size \Delta t/2. An
intermediate numerical profile is updated as

(3.60) \bfitc n+1,(1) = \bfitc n + \bfitsigma Rn+1,(1).

Stage 2. Starting with the intermediate variable \bfitc n+1,(1), we solve the diffusion
equation \partial t\bfitc = \scrB \bfitc by applying either scheme (3.36) (for constant diffusion coefficient)
or scheme (3.41) (for nonlinear diffusion coefficient), with a temporal step-size \Delta t, to
obtain \bfitc n+1,(2).
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Stage 3. We set \bfitc 0 = \bfitc n+1,(2) and repeat the numerical algorithm at Stage 1,
i.e., solving the reaction trajectory equation, subject to the initial condition Rn = 0,
by scheme (3.11) with the temporal step-size \Delta t/2 to obtain Rn+1,(2). The numerical
solution at tn+1 is updated as

(3.61) \bfitc n+1 = \bfitc n+1,(2) + \bfitsigma Rn+1,(2).

The following theoretical result for the second-order operator splitting scheme can be
established, based on Theorems 3.1--3.6.

Theorem 3.7. Given \bfitc n with \bfitc ni,j,k \in \BbbR N
+\forall 0 \leq i, j, k \leq N0  - 1 and the discrete

periodic boundary condition,, there exists a unique solution \bfitc n+1 with \bfitc n+1
i,j,k \in \BbbR N

+ \forall 0 \leq 
i, j, k \leq N0  - 1 for the second-order accurate operator splitting numerical scheme. In
addition, we have the energy dissipation estimate

\scrF h(\bfitc 
n+1) \leq \scrF h(\bfitc 

n),

so that \scrF h(\bfitc 
n) \leq \scrF h(\bfitc 

0), which is a constant independent of h.

4. The numerical results. In this section, we present some numerical results
to demonstrate the performance of the proposed numerical schemes.

4.1. Reaction kinetics. We first test the accuracy for the algorithm (3.11) by
considering a simple reaction kinetics (with \alpha > 0),

(4.1)

\left\{     
dc1
dt

= c2  - \alpha c1,

dc2
dt

= \alpha c1  - c2,

which describes a simple reversible chemical reaction X1
a -  - \rightharpoonup \leftharpoondown  -  - 
1

X2. For any given

initial value ci(0) = c0i , the exact solution is given by

(4.2) c1(t) =

\biggl( 
1 +

\biggl( 
c01
c\infty 1

 - 1

\biggr) 
exp( - (a+ 1))t

\biggr) 
c\infty 1 , c2(t) = c01 + c02  - c1(t),

with c\infty 1 = (c01 + c02)/(\alpha + 1) being the equilibrium concentration of X1. Following
the earlier analysis, we introduce R as the reaction trajectory, so that the energy-
dissipation law of the system becomes

(4.3)
d

dt

\Biggl( 
2\sum 

i=1

ci(ln ci  - 1) + c1 ln a+ c2 ln(1)

\Biggr) 
=  - \.R ln

\Biggl( 
\.R

c2
+ 1

\Biggr) 
.

To test the order of the numerical accuracy, we display the errors between the
numerical solution and exact solution at T = 1 in Table 4.1, with a sequence of step-
sizes \Delta t. An almost perfect second-order temporal accuracy is observed.

4.2. A reaction-diffusion system. In this subsection, we consider the reaction-
diffusion system

(4.4)

\Biggl\{ 
\partial tu = Du\Delta u

\alpha  - k+1 uv
2 + k - 1 v

3,

\partial tv = Dv\Delta v + k+1 uv
2  - k - 1 v

3,
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Table 4.1
Error table for the linear ODE system (4.1).

\Delta t Error Order
1/20 2.0882e-3
1/40 5.3413e-4 1.9670
1/80 1.3577e-4 1.9760
1/160 3.4279e-5 1.9858
1/320 8.6159e-6 1.9923
1/640 2.1600e-06 1.9960

U�V U#V U+V

U/V U2V U7V

Fig. 4.1. Numerical solutions for the reaction-diffusion system (4.4) with \alpha = 1 (a)--(c) and
\alpha = 2 (d)--(f) at t = 0.2 (a) and (d), t = 0.5 (b) and (e), and t = 0.7 (c) and (f).

where \alpha \geq 1 is a constant, and Du > 0 and Dv > 0 are diffusion coefficients. The
reaction part of (4.4) describes the chemical reaction

U + 2V
k1

+

 -  -  - \rightharpoonup \leftharpoondown  -  -  - 
k1

 - 
3V

with the LMA. The whole system satisfies the energy-dissipation law

d

dt

\int 
\Omega 

u(lnu - 1 + Uu) + v(ln v  - 1 + Uv)d\bfitx 

=  - 
\int 
\Omega 

\.R ln

\Biggl( 
\.R

k - 1 v
3
+ 1

\Biggr) 
+ \alpha u\alpha Du| \nabla \mu u| 2 +Dv| \nabla \mu v| 2d\bfitx .

The internal energies can be taken as Uu = ln k+1 and Uv = ln k - 1 so that \.R =
k+1 uv

2  - k - 1 v
3.

For \alpha = 1, we apply the ETD scheme (3.36) to solve the diffusion parts for both
u and v. Otherwise, we use scheme (3.41) for u and use the ETD scheme for v. The
computational domain is taken as \Omega = ( - 1, 1)2, and a periodic boundary condition
is imposed for both u and v. The initial value is set as

u = ( - tanh((
\sqrt{} 
x2 + y2  - 0.4)/0.1) + 1)/2 + 1;

v = (tanh((
\sqrt{} 
x2 + y2  - 0.4)/0.1) + 1)/2 + 1.

Other parameters are taken as Du = 0.2, Dv = 0.1, k+1 = 1, and k - 1 = 0.1.
Figure 4.1 shows the numerical solutions at t = 0.2, 0.5, and 0.7 for \alpha = 1 and

\alpha = 2, respectively, which are obtained by taking h = \Delta t = 1/20. The discrete
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0 0.2 0.4 0.6 0.8 1
-28

-27

-26

-25

-24

Time

Fig. 4.2. The discrete free energy evolutions corresponding to numerical solutions for the
reaction-diffusion system (4.4) with \alpha = 1 and \alpha = 2 (h = \Delta t = 1/20).

free energy evolutions corresponding to these two numerical solutions are displayed in
Figure 4.2, which clearly demonstrates the energy stability of the operator splitting
scheme in both linear and nonlinear diffusion cases.

Next, we test for numerical accuracy of the operator splitting scheme. As analyt-
ical forms of the exact solutions are not available, we perform a Cauchy convergence
test for numerical simulations for \alpha = 1 and \alpha = 2, respectively, at T = 0.2, before
the systems reach their constant equilibria. We compute the \ell \infty differences between
numerical solutions with consecutive spatial resolutions hj - 1, hj , and hj+1, with
\Delta tj = hj . Since we expect the numerical scheme to preserve a second-order spatial
accuracy, we could compute the quantity

ln
\Bigl( 

1
A\ast \cdot \| uhj - 1

 - uhj
\| \infty 

\| uhj
 - uhj+1

\| \infty 

\Bigr) 
ln

hj - 1

hj

, A\ast =
1 - h2

j

h2
j - 1

1 - h2
j+1

h2
j

, for hj - 1 > hj > hj+1,

to check the convergence order [47]. As demonstrated in Tables 4.2 and 4.3, an almost
perfect second-order accuracy has been achieved for both the linear and nonlinear
diffusion cases.

4.3. Reversible Gray--Scott model. The Gray--Scott model is one of the most
famous reaction-diffusion models, due to the complex pattern formulation phenome-
non [32, 56]. The classical Gray--Scott system is given by

(4.5)

\Biggl\{ 
ut = Du\Delta u - k+1 uv

2 + \alpha (1 - u),

vt = Dv\Delta v + k+1 uv
2  - k+2 v,

which corresponds to the two reactions

(4.6) U + 2V
k1 -  - \rightarrow 3V, V

k2
+

 -  - \rightarrow P,

where P is the inert product. Additionally, there exists a birth-death process that
feeds and drains U with the rate \alpha in the system. The chemical reactions in the
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Table 4.2
The \ell \infty differences and convergence order for the numerical solutions of u and v for (4.4) with

\alpha = 1. Various mesh resolutions are used: h1 = 1
20

, h2 = 1
30

, h3 = 1
40

, h4 = 1
50

, h5 = 1
60

, and the
temporal step-size is taken as \Delta tj = hj .

--- \psi = u Order \psi = v Order
\| \psi h1

 - \psi h2
\| \infty 4.1625e-3 - 3.6818e-3 -

\| \psi h2
 - \psi h3

\| \infty 1.5357e-3 1.8700 1.3581e-3 1.8705
\| \psi h3

 - \psi h4
\| \infty 7.3080e-4 1.9036 6.4788e-4 1.8950

\| \psi h3
 - \psi h4

\| \infty 4.0386e-4 1.9230 3.5830e-4 1.9197

Table 4.3
The \ell \infty differences and convergence order for the numerical solutions of u and v for (4.4) with

\alpha = 2 at T = 0.2. Various mesh resolutions are used: h1 = 1
20

, h2 = 1
30

, h3 = 1
40

, h4 = 1
50

,

h5 = 1
60

, and the temporal step-size is taken as \Delta tj = hj .

--- \psi = u Order \psi = v Order
\| \psi h1

 - \psi h2
\| \infty 4.4205e-3 - 2.6961e-3 -

\| \psi h2
 - \psi h3

\| \infty 1.4508e-3 2.1586 9.4864e-4 1.9870
\| \psi h3

 - \psi h4
\| \infty 6.1387e-4 2.3120 4.3720e-4 2.0150

\| \psi h3
 - \psi h4

\| \infty 3.1575e-4 2.2446 2.4420e-4 1.8752

classical Gray--Scott model are not reversible. However, one can view the irreversible
Gray--Scott as a certain limit of a reversible Gray--Scott system, given by [43]

(4.7)

\left\{         
\partial tu = Du\Delta u - k+1 uv

2 + k - 1 v
3  - k+3 u+ k - 3 q,

\partial tv = Dv\Delta v + k - 1 uv
2  - k - 1 v

3  - k+2 v + k - 2 p,

\partial tp = Dp\Delta p+ k+2 v  - k - 2 q,

\partial tq = Dq\Delta q + k+3 u - k - 3 q,

in which the reversible chemical reactions are given by

(4.8) U + 2V
k+
1 -  - \rightharpoonup \leftharpoondown  -  - 

k - 
1

3V; V
k+
2 -  - \rightharpoonup \leftharpoondown  -  - 

k - 
2

P; U
k+
3 -  - \rightharpoonup \leftharpoondown  -  - 

k - 
3

Q.

Formally, the reversible system converges to the classical Gray--Scott system if k - 1 \rightarrow 
0, k - 2 \rightarrow 0, k+3 = \alpha , and k - 3 q \rightarrow \alpha . In this subsection, we perform a numerical
simulation of the reversible Gray--Scott model (4.7), which can be derived from the
energy-dissipation law
(4.9)
d

dt

\int 
u(lnu - 1) + uUu + v(ln v  - 1) + vUv + p(ln p - 1) + pUp + q(ln q  - 1) + qUq

=  - 
\int 

1

Du
u| uu| 2 +

1

Dv
v| uv| 2 +

1

Dp
p| up| 2 +

1

Dq
q| uq| 2

+ \.R1 ln

\Biggl( 
\.R1

k - 1 v
3
+ 1

\Biggr) 
+ \.R2 ln

\Biggl( 
\.R2

k - 2 p
+ 1

\Biggr) 
+ \.R3 ln

\Biggl( 
\.R3

k - 3 q
+ 1

\Biggr) 
d\bfitx ,

where Uu, Uv, Up, and Uq are internal energies that determine the reaction rates. One
can take

(4.10)
Uu = ln k+3 , Uv = ln k+3 + ln k - 1  - ln k+1 ,

Up = ln k+3 + ln k - 1 + ln k - 2  - ln k+1  - ln k+2 , Uq = ln k - 3 .
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In the numerical simulation, we set the computational domain as (0, 2.5)2 and
take

k+1 = 1, k+2 = 0.084, k - 1 = k - 2 = 10 - 6, k+3 = 0.024, k - 3 = 10 - 2,

Du = 8\times 10 - 4, Dv = 4\times 10 - 4, Dp = Dq = 10.

The initial conditions are

(4.11)
v(x, y, 0) =

\Biggl\{ 
1
4 sin

2(4\pi x) sin2(4\pi y) + 0.1, 1 \leq x, y \leq 1.5,

0.1 otherwise,

u(x, y, 0) = 1 - 2v(x, y, 0), p(x, y, 0) = 1, q(x, y, 0) = 2.4.

The nonflux boundary condition is imposed for all variables. The numerical example
is modified from a numerical example in [34]. The initial condition of q is chosen such
that k - 3 q(x, y, 0) = k+3 . Figure 4.3(a)--(f) shows the time evolution of the v-component
at various times with \Delta t = 0.1 and h = 1/50. The solutions are only displayed in
0.5 \leq x, y \leq 2 for visualization. The evolution of the discrete free energy is shown in
Figure 4.3(g).

(a) (b) (c)

(d) (e) (f)

0 10 20 30 40 50
-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

-7.4
10

5(g)

Fig. 4.3. Time evolution of v in the reversible Gray--Scott model at various times: (a) t = 0, (b)
t = 1, (c) t = 5, (d) t = 10, (e) t = 15, (f) t = 20. The solutions are only displayed in 0.5 \leq x, y \leq 2
for visualization. (g) Evolution of the discrete free energy with respect to time.

One can see that the proposed numerical scheme works well for a system with
multiple chemical reactions. Unfortunately, under the current initial conditions and
parameters, we didn't observe the pattern formulation as in [34]. It is still unclear
whether the reversible Gray--Scott model can capture the pattern formation in the
classical Gray--Scott model. A detailed numerical study will be carried out in future
work.

5. Concluding remarks. A second-order accurate, operator splitting numer-
ical scheme is developed for reaction-diffusion equations with the detailed balance
condition based on their variational structures. The key idea is to design an operator
splitting scheme such that each stage dissipates the same free energy, according to
the variational structure associated with the original system. In the reaction part,
the reaction trajectory equation is solved by using the numerical techniques from L2-
gradient flows, based on a modified Crank--Nicolson approach. In the diffusion part,
an ETD algorithm gives an exact time integration for a linear diffusion, while a semi-
implicit algorithm is applied for a nonlinear diffusion. A combination of the numerical
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algorithms at both stages by the Strang splitting approach leads to the proposed oper-
ator splitting scheme. Moreover, the unique solvability and the positivity-preserving
property, as well as an unconditional energy stability, can be proved for each stage;
as a result, the combined splitting scheme also satisfies these theoretical properties.
Similar ideas can be applied to other dissipative systems with multiple dissipation
mechanisms. A few numerical results have also been presented to demonstrate the
numerical performance.

Acknowledgment. Y. Wang would like to thank the Department of Applied
Mathematics at Illinois Institute of Technology for their generous support and stim-
ulating environment.
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