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In this paper, we devise and analyse an unconditionally stable, second-order-in-time numerical scheme
for the Cahn—Hilliard equation in two and three space dimensions. We prove that our two-step scheme
is unconditionally energy stable and unconditionally uniquely solvable. Furthermore, we show that the
discrete phase variable is bounded in L% (0, 7; L*°) and the discrete chemical potential is bounded in
L>®(0,T;L?), for any time and space step sizes, in two and three dimensions, and for any finite final
time 7. We subsequently prove that these variables converge with optimal rates in the appropriate energy
norms in both two and three dimensions. We include in this work a detailed analysis of the initialization
of the two-step scheme.
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1. Introduction

Let 2 C R, d =2,3, be an open polygonal or polyhedral domain. For all ¢ € H'(£2), consider the
energy (Cahn & Hilliard, 1958)

Y I B e SR T
E(qﬁ)_/g{% (9> —1) +2|v¢| }dx, (1.1)

where ¢ is the concentration field and ¢ is a positive constant. The phase equilibria are represented by
the values ¢ = £1. One version of the celebrated Cahn—Hilliard equation is given by Cahn (1961) and
Cahn & Hilliard (1958):

0p=¢eAu, in 27, (1.2a)
p=e"'(¢>—¢) —eAp, inr, (1.2b)
9,0 =0, =0, onds2 x (0,T), (1.2¢)

(© The authors 2015. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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where u := 8, E is the chemical potential. The boundary conditions represent local thermodynamic equi-
librium (8,,¢ = 0) and no-mass-flux (3, = 0). Clearly E(¢) > 0 for all ¢ € H'(£2). Additionally, for all
e>0and ¢ € H'(£2), there exist positive constants K; = K, (¢) and K> = K> (¢) such that
0<Ki ol <E@) +Ko. (1.3)
A weak formulation of (1.2a—1.2c¢) may be written as follows: find (¢, ) such that

peL® (0,T;H'(2)) NL* (0,T;L7(2)), d¢pel*(0,T;H'(2)), nel®(0,T;H' (R2)),

and there hold for almost all r € (0, T)

(8,,v) +ea(u,v) =0 YveH (R2), (1.4a)
(ns ) —ea(, ) —e ' (¢° =, ¥) =0 VY eH (), (1.4b)
where
a(u,v) == (Vu, Vv), (1.5)
with the ‘compatible’ initial data
¢(0) =g € Hy(2):={ve H*(£2)| 3,y=00n3£2}. (1.6)

Here we use the notations H~!(£2) := (H'(£2))* and (-, -) as the duality paring between H~' and H'.
Throughout the paper, we use the notation @ (¢) := @ (-, 1) € X, which views a spatiotemporal function
as a map from the time interval [0, 7] into an appropriate Banach space, X. The system (1.4a) and
(1.4b) is mass conservative: for almost every ¢ € [0, T, (¢ (f) — ¢o, 1) = 0. This observation rests on the
fact that a (¢, 1) = 0, for all ¢ € L>(£2). Observe that the homogeneous Neumann boundary conditions
associated with the phase variables ¢ and p are natural in this mixed weak formulation of the problem.

The existence of weak solutions is a straightforward exercise using the compactness/energy method,
for example, Elliott & Zheng (1986). It is likewise straightforward to show that weak solutions of (1.4a)
and (1.4b) dissipate the energy (1.1). In other words, (1.2a—1.2c) is a mass-conservative gradient flow
with respect to the energy (1.1). Precisely, for any ¢ € [0, T], we have the energy law

E((iﬁ(t))Jr/0 e IVr(s)l7. ds= E(¢o). (1.7

The Cahn-Hilliard equation is one of the most important models in mathematical physics. On its
own, the equation is a model for spinodal decomposition (Cahn, 1961). However, the Cahn—Hilliard
equation is more often paired with equations that describe important physical behaviour of a given
physical system, typically through nonlinear coupling terms. Prominent examples include the Cahn—
Hilliard—Navier—Stokes equation, describing two-phase flow (Liu & Shen, 2003; Feng, 2006; Kay &
Welford, 2007; Shen & Yang, 2010b; Griin, 2013; Griin & Klingbeil, 2014), the Cahn-Hilliard—Hele—
Shaw equation (Lee et al., 2002a,b; Wise, 2010), which describes spinodal decomposition of a binary
fluid in a Hele-Shaw cell, and the Cahn-Larché equation (Larché & Cahn, 1982; Fratzl et al., 1999;
Garcke & Weikard, 2005; Wise ef al., 2005) describing solid-state, binary phase transformations
involving coherent, linear-elastic misfit.
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The Cahn-Hilliard equation is a challenging fourth-order, nonlinear parabolic-type partial differ-
ential equation. Naive explicit methods suffer from severe time-step restrictions for stability. On the
other hand, fully implicit numerical methods must contend with a potentially large, ill-conditioned non-
linear system of algebraic equations. There remains a great need for sophisticated stable and efficient
numerical schemes for the Cahn—Hilliard equation. Indeed, extensive research has been conducted in
this area, in particular for first-order-accurate-in-time schemes; see Aristotelous et al. (2013), Chen
& Shen (1998), Elliott & Larsson (1992), Elliott & Stuart (1993, 1996), Feng (2006), Feng & Prohl
(2004), Furihata (2001), Guan et al. (2014), He et al. (2006), Kay & Welford (2006, 2007), Kim
et al. (2003), Wise (2010) and the references therein. Less commonly investigated are second-order-
accurate-in-time numerical schemes. In general, the analysis of second-order schemes for nonlinear
equations can be significantly more difficult than that for first-order methods. Nevertheless, such work
has been reported in the following articles (Elliott, 1989; Du & Nicolaides, 1991; Chen & Shen, 1998;
Furihata, 2001; Shen & Yang, 2010a; Shen et al., 2012; BeneSova et al., 2014; Guillén-Gonzdlez &
Tierra, 2014; Wu et al., 2014; Aristotelous et al., 2015). We mention, in particular, the secant-type
algorithms described in Du & Nicolaides (1991) and Furihata (2001). With the notation ¥ (¢) :=
i(qﬁz — 1)2, the secant scheme of Du & Nicolaides (1991) for the Cahn-Hilliard equation may be
formulated as

M”+1/2 :=871 lI/(¢n+1) — l]/((pn) 3 E

n+l _ n__ n+1/2
¢ ¢ _SSAI'L ’ ¢n+l _¢n 2

(Ap™" + Ag").  (L.8)

This scheme is energy stable. However, it may not be unconditionally uniquely solvable with respect
to the time step size s. (See Elliott, 1989; Du & Nicolaides, 1991; Furihata, 2001 for details.) Lack of
unconditional solvability may be problematic, as coarsening studies using the Cahn—Hilliard equation
may involve very large time scales, requiring potentially very large time steps for efficiency.

There are few recent works examining second-order (in time) methods for the Cahn—Hilliard
equation that we should highlight. Very recently, BeneSova et al. (2014) introduced and analysed a
temporally second-order numerical scheme for the approximate solution of a modified Cahn—Hilliard
equation using an implicit midpoint rule and spatial discretization by the Fourier—Galerkin spectral
method. (The model is the same as was considered in Aristotelous et al. (2013) and Diegel et al. (2015)
using mixed finite element discretizations.) The stabilities proved in BeneSova et al. (2014) may be
viewed as conditional—in the sense that there is a restriction on the time step size for stability in
terms of the model parameters—but the authors emphasize that the stabilities also may be viewed as
unconditional, since the time step restrictions do not depend on any spatial discretization parameters.
(This terminology is inconsistent in the literature.) The solvability issue aside, one very nice feature
of the implicit midpoint rule is, of course, the small local truncation error, relative to the splitting-type
methods examined herein and elsewhere. The authors show existence and uniqueness of their scheme
along with several stability results, and they prove optimal convergence of their scheme. Specifically,
they are able to demonstrate the L°°(0, 7'; L*°) stability of their scheme, provided the time step is smaller
than a constant depending only on the model parameters, which, as in our paper, is the key to proving
convergence.

Wu et al. (2014) proposed a semi-discrete second-order convex-splitting scheme for a family of
Cahn—Hilliard-type equations with applications to diffuse interface tumour growth models. Taking
advantage of a (quadratic) cut-off of the double-well energy and artificial stabilization terms, they are
able to show unconditional energy stability for their scheme. Moreover, their scheme has the advan-
tage of being linear. However, they do not prove convergence of their scheme, and it is not clear if the
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analyses used here could be straightforwardly extended to gain the higher-order stabilities needed to
prove convergence. In particular, Wu et al. (2014) use the standard Crank—Nicolson method to handle
the highest-order linear diffusion term. Our analysis has suggested that, at least in the finite difference
and finite element contexts, a more dissipative treatment of this term may be required in order to gain
the higher-order stability estimates needed for convergence analysis.

Guillén-Gonzélez & Tierra (2014) made a careful examination of several second-order in time
numerical schemes for the Cahn—Hilliard problem (some of which have already been presented in the
literature) and study the constraints on the physical and discrete parameters to assure energy stability,
unique solvability, and in the case of nonlinear schemes, the convergence of Newton’s method to the
nonlinear schemes. To save computational cost, they develop a new adaptive time-stepping algorithm
based on the numerical dissipation introduced in the discrete energy laws at each time step. The authors
are able to show some useful energy stability estimates, but they do not establish higher-order stabilities
or the convergence of their schemes.

In contrast to the papers referenced above, we propose and analyse a new second-order-accurate-in-
time, fully discrete, mixed finite element scheme for the Cahn—Hilliard problem (1.2a—1.2¢), which is
closely related to the finite difference scheme proposed in Guo et al. (2015):

g =se A, (1.92)

n 1 n n n 2 n 173 n 1 n— 3 n 1 n—
g o) (0 °) = (30— g00) e (G o).
(1.9b)

where Aj, above is a finite difference stencil approximating the Laplacian, and ¢, and u, are grid
variables. The formulation of the scheme (1.9a) and (1.9b) uses a convex splitting of the energy (Elliott
& Stuart, 1993; Eyre, 1998; Wise et al., 2009; Feng & Wise, 2012). Observe that the energy (1.1) may
be represented as the difference between two purely convex energies:

1 4 € 2 |£2] 1 )
E(@) =Ec($) — E.($) = = s + 5 IVl + e 2 lolz: - (1.10)

The idea is then to treat the variation of E, implicitly and that of E,, explicitly. The advantages of the
scheme (1.9a) and (1.9b) are threefold. The scheme is unconditionally energy stable, unconditionally
uniquely solvable and converges optimally in the energy norm. The scheme is nonlinear, but it results as
the gradient of a strictly convex functional. In our finite element version of the scheme, the stability and
solvability statements we prove are completely unconditional with respect to the time and space step
sizes. In fact, all of our a priori stability estimates hold completely independently of the time and space
step sizes. We use a bootstrapping technique to leverage the energy stabilities to achieve unconditional
L>°(0,T; L®(£2)) stability for the phase field variable ¢, and unconditional L>(0, T; L?(£2)) stability
for the chemical potential w;. With these stabilities in hand, we are then able to prove optimal error
estimates for ¢, and 1, in the appropriate energy norms.

The remainder of the paper is organized as follows. In Section 2, we define our second-order mixed
finite element version of the scheme and prove the unconditional solvability and stability. In Section 3,
we prove error estimates for the scheme under suitable regularity assumptions for the PDE solution. In
Section 4, we present the results of numerical tests that confirm the rates of convergence predicted by
the error estimates.
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2. A mixed finite element convex splitting scheme
2.1 Definition of the scheme

Let M be a positive integer and 0 =1y <t <--- <ty =T be a uniform partition of [0,T], with
t=t—tiyandi=1,...,M. Suppose 7, = {K} is a conforming, shape-regular, quasi-uniform family
of triangulations of £2. For g € Z*, define S), := {ve C%(2) | v|x € P,(K), VK € Tj} C H'(£2). Define
Sp =Sy N L3(£2), with L3(£2) denoting those functions in L>(£2) with zero mean. Our mixed second-

order splitting scheme is defined as follows: for any 1 <m<M — 1, given ¢, ¢, l'es,, find
mel  mt1/2

% € S, such that
<5 o) +ea (P v) =0 woes, (2.12)
o)) = (677 )
(”"H/Z,w <m+1/2 ) 0 Yy €S, (2.1b)
where

m1
milz O — oy mrt2 Lo s/
Syt i= T Th g tl/2 gl ¢h P *¢h—*¢

) : , 2.2
T h 2 ( )

v m+1/2

1 1
b _ ¢m+l + Z(b;’n_l’ (¢m+1 ¢Zz) — E ((¢ZI+1)2 + (¢Zl)2) ¢m+1/2‘ (2.3)

Since this is a multi-step scheme, it requires a separate initialization process. For the first step, the
scheme is as follows: given ¢ € Sy, find ¢, ,u,11/2 € Sy such that

(5r¢;/2, v) tea (M}/z, u) =0 Vves, (2.42)
_ _ T
L (h o)) e (6 y) + Ja (uhy) +ea (070) = (mv) =0 vwes,
(2.4b)
where ¢0 := Ry, and the operator R, : H 1(2) — S, is a standard Ritz projection:
h
aRpp —¢.5)=0 VE€S,, (Rp—¢,1)=0. (2.5)

Note that the scheme requires initial data for the chemical potential, u‘}, € Sy, which is defined as
/12 := Ry, /L0, Where

no:=e""(¢5 — ¢o) — eAgy. (2.6)

THEOREM 2.1 The scheme (2.1a) and (2.1b), coupled with the initial scheme (2.4a) and (2.4b), is
uniquely solvable for any mesh parameters % and t, and for any model parameters.

Proof. The proof is based on convexity arguments and follows in a similar manner as that of Theorem
5 from Hu et al. (2009). We omit the details for brevity. O

REMARK 2.2 Note that it is not necessary for solvability and some basic energy stabilities that the
u-space and the ¢-space be equal. However, the proofs of the higher-order stability estimates, in
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particular, the proof in Lemma 2.9, do require the equivalence of these spaces. We do, however, use
the equality of the spaces to our advantage in Lemma 2.7, although it should be noted that a proof for
this lemma is possible without the equality of spaces.

REMARK 2.3 The elliptic projections are used in the initialization for simplicity in the forthcoming error
analysis. However, other (simpler) projections may be used in the initialization step, as long as they have
good approximation properties.

2.2 Unconditional energy stability

We now show that the solutions to our scheme enjoy stability properties that are similar to those of
the PDE solutions, and moreover, these properties hold regardless of the sizes of 4 and t. The first
property, the unconditional energy stability, is a direct result of the convex decomposition. We begin
the discussion with the definition of the discrete Laplacian, Ay : S, — S, as follows: for any v, € Sy,
Apvy, € S, denotes the unique solution to the problem

(Apvn, §) = —a(vp,§) V€S 2.7
In particular, setting & = Apvy, in (2.7), we obtain
| Apvilize = —a (v, Apva).
See, for example, Feng et al. (2007).

LEMmA 2.4 Let (q),l,, M,l/ 2) € S, x S, be the unique solution of the initialization scheme (2.4a) and
(2.4b). Then the following first-step energy stability holds for any &, t > 0:

172

2
E (¢3) + e ||V, +*H¢h o0 <E (69) + = [ ausf]l7-. 2:8)
4

where E(¢) is defined in (1.10).

1/2

Proof. Setting v = rm‘, in (2.4a) and ¥ = 18.¢," =} — qb},) in (2.4b) yields the following:

T (8 q&,i/z,u;l,/z) +1e HVML/Z

=0, 2.9)

.
(8. 90).0h — 8) — &7 (4501 — 90) +ea( 01— o)
+ Sa(uhoh— o) =7 (07.8:9,) =0 (2.10)
Adding Egs. (2.9) and (2.10), using Young’s inequality, and the following identities:
(x (8} 00). 9} = 90) = & (19413 — 931 )- e

(@98 = 00) = 3 (Il8h 17 = 98117 — lles — 911 ) 2.12)

the result is obtained. ]
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We now define a modified energy

F(¢,¥) —E(¢)+*|I¢ wlleJr IV¢ — Vyliz (2.13)

where E(¢) is defined as above.
LEMMA 2.5 Let ( ’”H,/LZHI/Z) €S, x S, be the unique solution of (2.1a-2.1b), and (¢, /,Ll/z) €

Sp x Sp, the unique solution of (2.4a) and (2.4b). Then the following energy law holds for any A, 7 > 0:

12

( 0+1 ¢h +T€ZHVM’"H/2

+Z|: ||¢m+1_2¢h +¢m 1

= me*‘ 2V + V! ||§z} =F (¢}, 95)- (2.14)
forall 1 <£<M — 1.

Proof. Setting v = m+1/2 in (2.1a) and ¢ = 8r¢m+1/2 in (2.1b) gives

(r m+1/2, m+1/2> +8HV m+1/2 y:O’ (2.15)
m " m _ ~ m+1/2 m
( (¢! +1 O). 8.0 +1/2) ¢ 1(¢ 500! +1/2)

tea (¢th+1/2 s ¢m+1/2) (Mm+l/2 s ¢m+1/2) —0. (2.16)

Combining (2.15) and (2.16), using the identities
( (¢m+1 ¢m> s ¢m+1/2) ((5 m+1/2 8 ¢m+1/2)

(H oy’ o)+ (o

H¢m+1 d)m + ¢Zn*1||iz (2.17)

o P [CA%

il =911z

and

(¢;hm+l/2 ¢m+l/2) (HV‘MInHHEZ — ||vep 27)
e (R A Nl
o ||V¢’"+‘ 2V + Ve (2.18)

and applying the operator T Zi:l to the combined equation result in (2.14). (]

9T0Z ‘0T 4200100 U0 ARlqi]aassauus | Jo Alisiealun e /Blo'sfeulnolployxoeufew//:dny wouy pspeojumoq


http://imajna.oxfordjournals.org/

1874 A.E. DIEGEL ET AL.

In the sequel, we will make the following stability assumptions for the initial data:

E(¢9) + 22 | Awsd]2 + | Angl] 2. < C. (2.19)

for some constant C > 0 that is independent of 4 and t. Here, we assume that ¢ > 0 is fixed. In fact,
from this point in the stability and error analyses, we will not track the dependence of the estimates on
the interface parameter ¢, though this may be of importance, especially if € tends to zero.

LEMMA 2.6 Let (¢, uzﬂ'l/z) € S), x S be the unique solution of (2.1a) and (2.1b), and (¢, l/2) c
Sy X Sy, the unique solution of (2.4a) and (2.4b). Then the following estimates hold for any 4, T > 0:

oLmem [HV‘MI”HZ + H(‘ﬁf)z -1 ;} <C, (2.20)
omax [len 5+ o 12+ llerll ] < . 2.21)
| hax, “W — o+ Ve - VW“HZZ} <C, (2.22)
r Z | Vi <C, 2.23)
o o
(et =26y + a0 |1 + [ Ve — 29y + vep~'|1.] < c. (2.24)

m=1

for some constant C > 0 that is independent of 4, T and 7.

Proof. Starting with the stability of the initial step, inequality (2.8), and considering the stability of the
initial data, inequality (2.19), we immediately have

2" <. (2.25)

12

2
] S e P e Ay P R L e

The triangle inequality immediately implies
1
F(84.98) =E@) + - |0k — #ill + £ 1|V0t - Vol <

This, together with (2.14) and the fact that F(¢]"™", ¢") > E(¢)"*"), for all 0 < m < M — 1, establishes
all of the inequalities. 0

We are able to prove the next set of a priori stability estimates without any restrictions on % and t.
See Diegel et al. (2015) for a definition of discrete negative norm ||-||_; .
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LEmMA 2.7 Let ()", ,U,ZH_I/Z) € S, x S}, be the unique solution of (2.1a) and (2.1b), and <¢h, u}/z)

Sp x Sy, the unique solution of (2.4a) and (2.4b). Then the following estimates hold for any A, t > O:

M—1
T { 8:9

m=0

m+1/2
H-!

m+1/2H }\ ’ (2.26)
1,h

M—1
2
> H,L;’“”HLZ <C(T+ 1), 2.27)
m=0

<C(T+1D), (2.28)

5[

for some constant C > 0 that is independent of &, T and 7.

. m+1/2H4(6 d)/d}

Proof. Let Q:L*(2)— S;, be the L? projection, i.e., (Quv —v,&)=0 for all £ €S,. Suppose
veH'(£2). Then, by (2.1a) and (2.4a), forall 0 <m <M — 1

(8 ¢m+1/2 ) (8 ¢m+l/2 th) (V m+1/2 VQ;,V) Hvumw/zH VOl

<Ce Hw’”“/ZH IV, (2.29)

where we used the H' stability of the L? projection in the last step. Applying t Z%;OL and using
(2.23) we obtain the first estimate of (2.26). The second estimate of (2.26) follows from the inequality
lvll—y ;s < Ilvllg-1, which holds for all v € Sj,.

To prove (2.27), for 1 <m <M — 1 we set ¢ = um+l/2 in (2.1b) to obtain

HMT”Z ;=8’1( (&1 i) '"“/2) (ﬁhmﬂ/z, ’"“/2)+8 (05 v MZ”“/Z)
<Cllx o) [+ 4H i +cH~"’*”2 1
wefwa ™+ 3 ]

And, similarly, setting v = j;* in (2.4b), we have
R A T Y R e L
+%HW,‘/2 HM1/2H 2+C12 | Anud]l7.

Hence, using the triangle inequality, (2.21), and the initial stability (2.19), we have for all
os<m<M —1,

m+1/2 CHX( m+1 ;,n)Hiz"i_%Hvﬂ;an/z 2

12

C.
3 s +
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Now, using Lemma 2.6, we have the following bound foral 0 <m <M — 1

2

e i) |1 = 1 )" + () + 0! (61)” + ()

12

2 2

m m m 2 m\3
<cljer [, +eforny ol + ¢ o o], + <o,
<C g2 + € llgillze < Clloy 5 + C Il < © (2:30)
where we used Young’s inequality and the embedding H'(£2) < L°($2), for d =2, 3. Hence,
H Zz+1/2 HV m+1/2H e 2.31)

Applying t ij‘:;ol , estimate (2.27) now follows from (2.23).

Setting ¥, = Ahq;hm+l/2 in (2.1b) and using the definition of the discrete Laplacian (2.7), it follows
thatforall 1 <m<M — 1

HAhva/zH (vm 1/2 vm+1/2>

Ay

1 v m+1/2 [~ mtl)2 v m1/2
=— (/Lher / , Apy ) —e! <¢hm , Apdp )
v m+1/2

+8—1( (m+1¢)Ah¢hm+/)
2 v m+1/2 _ ~ m+1/2 ~ m+1/2
=a< e ) —e! (¢hm s Andn )

bt (n o). a™ ")

1 m 2 v m+1/2 ~ m+1/2 v m+1/2
< v+ 5 lva 7 el + o
2 12 12
m m\ 112 ~ m+1/2
+C||X (¢ ! ¢h) L2+ZHAh¢h
Using the triangle inequality, (2.21) and (2.30), we have
~v m+1/2 m
HAh Y Hv e (2.32)

Applying T an/[:_ll, the first estimate of (2.28) now follows from (2.23).
To prove the second estimate of (2.28), we use the discrete Gagliardo—Nirenberg inequality Diegel
(2015):

3(4—d)/2(6—d)

d/2(6 d) ||w;;y,| ¢
L\

il < Cllanvi]l,

+Cllyl,e YU eSS, (@=23). (2.33)

Applying © Zﬁg;ll and using H' (£2) < L°(£2), (2.21) and the first estimate of (2.28), the second esti-
mate of (2.28) follows. ]
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REMARK 2.8 We point out that the T-dependence in the estimate (2.26) may not be optimal in the
finite element context. While one might expect that there should be no dependence upon T at all in the
estimates, other Galerkin finite element analyses, for example, Aristotelous et al. (2013), Diegel et al.
(2015) and Kay et al. (2009), have observed similar linear-in-7 stability estimates for first-order-in-time
schemes. We point out that when using finite differences in space on a cubic domain, one can eliminate
the T-dependence using techniques that may (or may not) extend to the Galerkin finite element setting;
see Guo et al. (2015). In any case, this linear dependence upon the final time in the estimate (2.26) will
propagate through the following stability estimates.

LEMMA 2.9 Let (¢>’”+1, w7y € S) x S, be the unique solution of (2.1a-2.1b), and (¢}, u1;’>) € S; x

Shs
estimates hold for any i, 7 > 0:

0 L < C, independent of . Then the following

m“/ZH <O+ 1), (2.34)
m=0
2
max HM;’“”H <C(T+ 1), (2.35)
0<m<M —1 2

for some constant C > 0 that is independent of 4, T and 7.

Proof. The proof is divided into three parts.
Part 1. We first establish

1/2

Sy <C. (2.36)

i+

To this end, setting v = rétqb,l in (2.4a) and ¥ = Z/Ll/ % in (2.4b) and, adding the resulting equations,
we have

1/2 1/2
2+ o]
2 ) () () 2 (k)
<t + €l (8l )+ C 81 + o2 s + €
Thus,
H 1/2H +1|8.¢,%| <cC. (2.37)
considering the initial stability (2.19), (2.21) and (2.30).
Part 2. Next we prove that
HMWH +18.0% <c. (2.38)
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Setting m =1 in (2.1b) and subtracting (2.4b), we obtain

3
(1 = wilwr) =ea (877 = 3.0) = 5 (61 = 909) = Ja ()

2
+e7! (x (¢2,¢,i) —x (¢1.00). %) (2.39)
3
=sa (ra L W,w) — o= (01— v) — a(uhv)
+e7' (x (¢h’¢h) — x (¢1-00).%). (2.40)

Additionally, we take a weighted average of (2.1a) with m =1 and (2.4a) with the weights % and i
respectively, to obtain,

(38607 + 10:0i" ) = —ea (3" + §v) - woes. 24D

Taking ¥ = 3p,/> + 1w,/ in (2.40), v = (3t/4)5.4,” + (t/4)8.¢,’” in (2.41), and adding the results
yields

3 1
3/2 2 3/2 2 3/2 2
(Mh/ — ! ’Z”h/ 4M;1,/> H ~8:00 + 5 ¢1/

12

T
=T 5. (¢ - ¢h’ 3I‘L3/2 + }11/2) 8 (/'Lh’ 3/1«3/2 + H«/ll/z)

+ s (0 @ ol) — x (0 o). 3% + i)

3
~ge (B =003+ )+ o (awdho 3 + 1)

1
+f( (¢2.9)) - <¢]1,¢;:> w1

32 172

,+Cloillz + €l + € | anal

+CHM

<5l
-l 6 el + €l )

S H“

where we have used Young’s inequality, (2.19), (2.21) and (2.30). Considering Part 1 and the
inequalities

12

32

R T

9

H 8¢>3/2+ 5¢1/2 9 3/2 g( ¢3/2 ¢1/2) 1/2 B}
LZ
9 32 3 32 12 172
E ‘[¢ 12 g t¢ 12 r¢ T r¢
§ 302 1 12
12 8 T¥h L29
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and
3 1 1
32 12 32 12 32 32 12 1/2
(“h T g 4“’1) 4” _5(“h ’“h> 4”
H 3/2 H 1/2
2 22 ’
we have
H;ﬂz /2 HM”Z + s WH +Cc<C. (2.42)
12 12 8
Part 3. Finally, we will establish
2
H L I 8 ’”“”H <CT+1). (2.43)

For 2 <m <M — 1, we subtract (2.1b) from itself at consecutive time steps to obtain

(s =) = <¢h AR ) Bl e Aty
Hx (et en) = x (ehen ) v)
=8a< ey frsegy w) — e (Jesegy ! = Srsegl Ry
= (o (g =) v), (2.44)
for all € Sy, where o == (¢, ¢". ¢}’ ') and
w(a,b,c):=a +b* +c* +ab + bc + ac.

Additionally, we take a weighted average of the m + % and m — % time steps with the weights % and 1,
respectively, of (2.1a) to obtain

(3000 Joca ™ v) = —ea (30717 4 Jui ™), 24

for all v € S, which is well defined for all 2 <m <M — 1. Taking ¥ = 4,u;f+1/2 + T~ 32 in (2.44),
v=1(38 ¢m+1/2 + 180 %/2) in (2.45), and adding the results yields

2

12 12 3 12 1 s 12 32
(s w2 ) e o0
LZ
T m—1/2 m-3/2 3 ol L s
__r - 75 2 -
< < T¢ T¢ 4 h 4“’]’1

1 m( m mey 3 mri2 b oaiap
+48<a)h(h+l_ h 1)’11‘}, Tt /
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< S 1/2—78 o 32, 3 m+1/2 1MZ1—3/2>
5 4

T 123 mri2 1 ouap
+48< naegn +4u’,;1 /)
OB 1/2 3 Pk L w3
3T ’ - 12 3 m+1/2+MZ173/2
L2
=32 m2 |3
3u + 1y, o
+7 Hwh HL3 S ¢m+1/2 m+1/2+ m—3/2 .
12 12 =y
+ 16 lon s Jo-si /H H3 AR
Hence,
(Mznﬂ/z Mlhn—l/z 3M1hn+1/2+1'uzt—3/2) H 5 ¢m+1/2+ 3 o 32
4 4 .
E‘ m+1/2 " 1/2 + T - 3/2
=8 2 32 12

+Co H/f”“”H +Co Hﬂ”” ’”Hm ’
where we use the H' (2) < L°(2) embedding to achieve the following bound:

el = ([ (1) + @) + (01" + 9y + a8 + g

o C e <

<C ey

1o+ Cllok|

Applying anzz and using the following properties:

(Mm+1/2_Mm1/2 3 w2 1Mm3/2>

h h ’4:‘% 4 Hn
1 1172 12 mt1)2 ~1/2
=§(u2" Py P /)
1 +172 12 mt1)2 ~12 3
+4(MZ"/ Mf/,MZ"/—ZMZ"/+M21/)
‘ mt1/2 H m—1/2 H mt12  m-172||?
2 2 2 8 12
12 32 172 —12 32
S H/f" R
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2

‘5 ¢m+1/2+ 5 i 3/2

L2
m+1/2 (8 ¢m+l/2 ¢m 3/2) e m 3/2
LZ
Ed m+1/2 et r¢m+1/2 m 3/2 e t¢m 3/2 .
§ /2 =32
2
we conclude
+1/2 T m+1/2 H 3/2 1/2 3/2 H 3/2
+
2 H 16 4 St b i ||t 2
5t 1/2

+ cr Z H ’”“/ZH <C(T+1),

for any 2 < £ <M — 1, where we have used Parts 1 and 2 and estimates (2.23) and (2.27). The proof is
completed by combining all three parts. (]

LEMMA 2.10 Let (¢!, 1) ""/?) € S;, x S}, be the unique solution of (2.1a) and (2.1b), and (¢}, u;*) €

Sp x Sy, the unique solution of (2.4a) and (2.4b). Then the following estimates hold for any A, t > O:

172

H Ah¢

+ H¢1/2Hm <c, (2.46)

. m+1/2H4(6 d)/d]

<C(T+1), (2.47)

v m+1/2
max HAh H
1<m<M —1

for some constant C > 0 that is independent of 4, T and 7.

Proof. To prove the first estimate of (2.46), set ¥ = Ahq);ll/ % in (2.4b) and use the definition of the
discrete Laplacian (2.7) to obtain

HA ¢1/2H = —¢a (¢1/2 ¢1/2)
=7 (x (84 90)- 211 ) =7 (90, 200,7) = (1 2083/ + Za (1) 218, %)
= |4 «»WH +Clx @) 2+ Cllafll + ¢t + e andl

172

HAh¢ el

12

The result now follows. The second estimate of (2.46) follows from (2.33), the embedding H' () <
L%(£2), (2.21) and the first estimate of (2.46).
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Setting ¥ = Ahd;hmﬂ/z in (2.1b) and using the definition of the discrete Laplacian (2.7), we get

HAh v m+1/2H = —sa ( v m+1/2 Ahd\)/hm+l/2)
m v m+1/2 _ ~ m+1/2 ~ m+1/2
=- (Mh+l/2» Apdn ) —e! (¢>hm > Andn )
. m v mt1/2
+e7 (x (¢ o), a7
m v m+1/2 ~ m+1/2
<+ 5 7+ €
+ 5 || Andn +C || b
+Cx (¢’"“ o)
C+CHMm+1/2 HAh v m+1/2 ’
LZ
. . . v m+1/2||2 m+1/2 2
where we have used the triangle inequality and (2.30). Hence, HA;,(]);, H <C+C ’ 7, L
2 L
for 1 <m <M — 1, and the first estimate of (2.47) follows from (2.35). The second estimate of (2.47)
follows from (2.33), the embedding H'(£2) < L°(£2), (2.21) and the first estimate of (2.47). O
LEmMA 2.11 Let (¢}, MZHI/Z) € S), x Sy, be the unique solution of (2.1a) and (2.1b), and (¢}, 1 l/2) c
Sp X Sp, the unique solution of (2.4a) and (2.4b). The following estimates hold for any £, 7 > 0:
4(6—d)/d
Jmax ([l a5 + el < o + b, (2.48)

for some constant C > 0 that is independent of &, T and 7.

Proof. We begin by proving the stability for the first time step. A simple application of the triangle
inequality gives the first estimate of (2.48) for m =1 as follows:

|| Ay

=]y + Aty — Andp|| > < || Aty + Aty || 2 + || Andy]]

<2|ad| |+ 2t <.

where we have used the stability of the initial data, inequality (2.19) and the first estimate of (2.46).
Next, using (2.33), H' (£2) < L°(£2), (2.21) and the first estimate of (2.48), we get the second estimate
of (2.48) form = 1. For 2 <m <M — 1, by definition:

m+1 1 m—1\1[2
=[an Gen™ + 30012

m m— m— 2
22 (Mt Ang ) + 6 || Andy ||

m+1 m+1 3 m—11|2 1 m—11|2
> S 12 = 5 12nor [ = % A" [ + 16 | a1

o] A PR Y

v m+1/2
[,

=2 HA ¢m+1
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With repeated application of the last estimate and using the first estimate of (2.47), we find

| Ang™

<) D)) e+ D+ (1) Al
<S3cT+n+ ()" -c<CT+,
and
lag o <5 (14 4+ () ++ ()" ) e+ D+ (3)" |2
<33T+ D+ (3)"-c<CT+1),

and the first estimate of (2.48) follows. The second estimate of (2.48) follows from (2.33), the first
estimate of (2.48) and the embedding H' () < L°(£2). O

3. Error estimates for the fully discrete convex splitting scheme

In this section, we provide a rigorous convergence analysis for our scheme in the appropriate energy
norms. We shall assume that weak solutions have the additional regularities

peL® (0, T; W (2)) NH' (0,T; HT(2)) N H*(0,T; H*(£2)) N H(0,T; L*(2)),

¢*eH* (0,T;H'(2)), 3.1)

pnel® (0, T;HT (),
where ¢ > 1. The norm bounds associated with the assumed regularities above are not necessarily
global-in-time, and therefore can involve constants that depend upon the final time 7. We also assume
that the initial data are sufficiently regular so that the stability (2.19) holds. Weak solutions (¢, i)
to (1.4a) and (1.4b) with the higher regularities (3.1) solve the following variational problem: for all
1€[0,7T1],

¢, v) +ea(u,v)=0 VYveH! (2), (3.2a)

() —ea(p, ) —e ' (¢° =, ) =0 VY e H'(Q). (3.2b)
We define the following: for any real number m € [0, M ],
twi=mt, @™ =), EFMi=¢" — Rugp",  ENi=p" — Ryp™s

and for any integer O <m <M — 1,
a @ — g /2, 12 12
S ¢m+/ S o 6 R ¢m+/ 51¢m+ / ,

T

2

UZHI/Z =y (¢m+l’¢m) _ (¢m+l/2)3'

0,erl/Z -5 ¢m+1/2 —9 ¢m+1/2 O_3m+1/2 — %¢m+1 + %¢m _ ¢m+1/2
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Then the PDE solution, evaluated at the half-integer time steps f,,,41,2, satisfies
(8cRug™ 12, 0) + ea (R 2, v) = (o712 4 12,0, (3.32)
ea (;Rm’"*' + %ths'", w) — (Rup"*'2, )
_ (55.,m+1/2’¢) _ é (x (¢m+l,¢m)’w) + é (¢m+1/2’¢)
+ea (ot y) + é (o 20), (3.3b)

for all v, ¥ € §j,. Restating the fully discrete splitting scheme, Egs. (2.1a), (2.1b), (2.4a) and (2.4b), we
have, for all v, ¥ € Sy,

(8,¢;l/2, v) + ¢ca (;L,l,/z, \1) =0, (3.4a)
1 1
ea (@) = (v ) === (c (1) v) + - (0 +500%0): (Bab)
and, for |l <m<M — 1,and all v,y €S},

(&4:;1"“/2, v) tea (p,;;’“/z, v) —0, (3.52)
a (o1 w) + Sa ot =20+ ) = (1w
= —é (x (& en).w) + é (" w). (3.5b)
Now let us define the following additional error terms: for any integers 0 <m < M,
EM=Rug" — @i, EPM =" — ¢}, (3.6)
and, for any integers 0 <m <M — 1
5;;,m+1/2 —

m+1/2 Mhm+1/2’ grmt1/2. _  m+1/2 MZHI/Z_ (3.7)

Rh w 122

Setting m = 0 in (3.3a) and (3.3b) and subtracting (3.4a) and (3.4b), we have
(582 0) +ea(gr2v) = (a1 +03%0), (3.82)

1
SalErt et ) = (8 ) = (€@ 2w) = 2 (0 (91.9") — x (91.9).¥)

+ (82— g = 200" w) +ea (o v)

+ (o). (3.8b)
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Similarly, subtracting (3.5a) and (3.5b) from (3.3a) and (3.3b), yields, for L <m <M — 1,
(5 g(/)m+1/2 ) T ea (gum+1/2 )=< m+1/2+aén+1/2’v>’ (3.9a)
Ca(Epm v epn) + a (e ) - ()
= (€)= = (x (6710 = x (6. 00). )
b (6= ) bea (o2 y)
+ é (a;”“/z, 1//) + ? a (820" ), (3.9b)

where T282y™ 1= L — 29y 4 L
Now, define the additional error terms

5m+1/2 (¢m+l ¢Zz) —y (¢m+1’¢m), (3.10)
0, %0
—0 s f =0
V2 /2 i+ 2 9 orm (3.11)
6 ~m+1/2 '
on , forI<m<M —1.

Then, setting v—é’“’l/z in (3.82) and ¥ =6, €¢’1/2 in (3.8b), setting v:é}’f’mH/z in (3.9a) and
¥ =58.£"""* in (3.9b), and adding the resulting equations, we have

’ 2
¢ et ) ;
Ea (5,?%#1 + 5;?”", STEZ”erl/z) + y’”Ta ((ngfm,afgzb, n+1/2) L “V5£L,71+1/2 )

— (0_1m+1/2+O_2m+l/2,g};lj,,m+l/2) + (5um+1/2 s g¢m+l/2> +ea ( m+1/2 Tg;f),m-H/Z)

1 m m m Sm mE'L' mn
+g(a4 +2 4 +1/2+ 6+1/2 5, 5(}5 +1/2>+VT (82¢ 5. ¢ +1/2)’ (3.12)

forall 0 <m <M — 1, where y,, := 1 — &y, and & ¢ is the Kronecker delta function. The terms involv-
ing y,, are ‘turned on’ only when m > 1. Expression (3.12) is the key error equation from which we will
define our error estimates.

LEMMA 3.1 Suppose that (¢, i) is a weak solution to (3.3a) and (3.3b), with the additional regularities
(3.1). Then for all ¢,, € [0, T] and for any A, T > 0, there exists a constant C > 0, independent of 4 and t
and 7, such that

2 h2q+2 1
m1/2 2
o2 < e [ 10l a5 0<men -1, G.13)
T Ju,
12 2 7:3 By )
oz, < MOL 10 I ds, 0<m<M — 1, (3.14)
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2 1—3 b1
VAo3'"+1/2HL2 <o / IVAdup(s) 2 ds, 0<m<M — 1,
I

m+1/2
Vo,

2 1-3 tm+1 )
Soe | IR s 0<m<n -1,

Im

2

1 1
E (¢m+1)2 + 5 (¢m)2 _ (¢m+l/2)2
H!
3 [l ) 5
<oe | s ds 0<m<m -1,
b

3 1
2 T
[r2vasie” |, < ?/ IVAd (Il ds, 1<m<M —1,
tn—1

3 b1
m||2 T
|e2vs2e HLzsg/ IVoup ()3 ds. 1<m<M — 1,
1,

m—1

3 1 2 3 tm+1
HV <¢m+1/2 ——¢" + d)m—l) < r ||V8Ss(j>(s)||%2 ds, 1<m<M —1,
2 2 e o2
T 3 rhp
V(l/z_ 0o_t4 0) < v, > 4.
H ¢ 9" = 508°)|| [ <5 : IVasp ()7 ds

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

Proof. The proof of each of the inequalities above is a direct application of Taylor’s theorem with

integral remainder. We suppress the details for the sake of brevity.

O

LEMMA 3.2 Suppose that (¢, ) is a weak solution to (3.3a) and (3.3b), with the additional regularities
(3.1). Then, there exists a constant C > 0 independent of & and T—but possibly dependent upon 7'

through the regularity estimates—such that, for any &, 7 > 0,

mi172)|? 3 [ 2 5 [ 2,12
Vo, <Ct Vo> ds + Ct Haxs¢ (S)H , ds.
5! . H

m

Proof. We begin with the expansion

Vot = (3 e — ") (5 () 4+ 5 07))
(™) + 5 @) V(397 + 407 — @)
+ "V (1 (67) + L@ - (672))
F(HO) + 5@ = (6771)7) Vg

(3.22)

(3.23)
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By the triangle inequality, Young’s inequality, and the embedding H' (£2) < L°(£2), we have

”V6f+1/2”Lz <L + Lo — g2,

oy st

L3
+ H% (¢m+])2 n % (¢m)2HLm HV G¢m+1 i %qu _qu+1/2)HL2

T H¢m+1/2||L°C v <% (¢m+1)2+ % @")? — (¢m+1/2)2>

12

+ H% (¢m+1)2 n % @™? — <¢m+1/2)2

L 1V

<C {07 [+ 1971 + &7 |5 V0™ + 18”5 196" s}
x ||V (%¢'n+1 4 %d)m _ ¢m+1/2)||L2

+C{H¢m+l/2HL°° n HV¢m+1/2HL3} % H% (¢m+1)2+ % (¢m)2 _ (¢m+1/2)2H

H

(3.24)

Using the assumed regularities (3.1) of the PDE solution, and appealing to the truncation error estimates
(3.16) and (3.17), the result follows. O

LeEmmMA 3.3 Suppose that (¢, i) is a weak solution to (3.3a) and (3.3b), with the additional regularities
(3.1). Then, there exists a constant C > 0 independent of . and t, but possibly dependent upon 7', such
that, for any A, 7 > 0,

2
m+1/2 dm+1(2 bm |2
|vore 2| <cllverm L + clve |, (3.25)
where EP 1= ¢™ — Pi1.
Proof. We begin with the detailed expansion

4vay = L (@) (o) 200 (91 )}V (g1 — )
F{ ) + @) 20 (9" +001) } ¥ (o —9")
T (@07 (g 9) £ 2997 (04 )
+ 20"V 20V (G — ¢
TV (67 07) - (9 + ") + 290" (6] + 97)

+ 2¢m+lv¢m+l + 2¢mv¢m} (¢]’1ﬂ _ ¢m) (3.26)
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Then, using the unconditional a priori estimates in Lemmas 2.6 and 2.11, the assumption that
¢ € L>®(0,T; W'°(£2)), and the embedding H'(£2) < L°(£2) we have, forany 0 <m <M — 1,

[wor 2] <c {1 + o2 } (19es s + [ve*]l,)

+C{([[Vo" o + V" I16)

10" s + 19" s + i 1 + 117116 }
< ([l€27H o+ [1€77]] )

<c||ver L+ Clver |, (3.27)
O

LEMMA 3.4 Suppose that (¢, ) is a weak solution to (3.3a) and (3.3b), with the additional regularities
(3.1). Then, there exists a constant C > 0 independent of / and t such that, for any &, 7 > 0,

2 Im Iyl
[vor 2| <mee [ ivapoi asv e [T 9apo ik @
Tn—1 1,

m

12
+ C||VE |2, + yuC || VE |7, + So.,mCH2 |20 (3.28)
where £9 .= ¢™ — ¢" and &, is the Kronecker delta.

Proof. For m =0, using the truncation error estimate (3.21) and a standard finite element estimate for
the Ritz projection, we have

[voa|}, <2[[v (' ~ g0~ S00@) [, +2]1¥ (90 - D)

3 rup

T 2 2 2
<23 V3@ ()2 ds -+ Ch* |0 (3.29)
fo

with the observation that ¢2 ‘= Ry¢o. For 1 <m <M — 1, using the truncation error estimate (3.20), we
obtain

P 'L’3 Im+1 27 ml2 3 m—
e A e L P L

m+1/2

HV% :. (3.30)

—1

O

We now proceed to estimate the terms on the right-hand-side of (3.12). We will need the following
technical lemmas. The proof of the next result can be found in Diegel et al. (2015).

LEMMA 3.5 Suppose g € H'(£2), and v € Sj,. Then
1@< CIVElE IVI-1h, (3.3

for some C > 0 that is independent of 4.

9T0Z ‘0T 4200100 U0 ARlqi]aassauus | Jo Alisiealun e /Blo'sfeulnolployxoeufew//:dny wouy pspeojumoq


http://imajna.oxfordjournals.org/

SECOND-ORDER MIXED FINITE ELEMENT METHOD 1889

LEMMA 3.6 Suppose that (¢, i) is a weak solution to (3.3a) and (3.3b), with the additional regularities
(3.1). Then, for any A, T > 0 and any « > 0, there exists a constant C = C(«, T) > 0, independent of &
and 7, such that, forO<m <M — 1,

5¢m+1 g s €¢,m+1/2 Vm8T2 s2ePm s 5¢,m+1/2 & Vgu,erl/Z 2
no>0t&y T a\%en 0 ) h L

&

2
¢,m+1 2 ¢.m 2 ¢,m—1 2

<c|ver|, +c|van], + me|ver], +o]
2 2 2

HZ —|—CRm+1/2s (3.32)
—1,h
where
mt1/2 A 2 2 |, mt1/2)2
R = ——— 1056 () 1701 ds 4 B> [ 2]
Im

2 _112
+ h2q ¢m+1 |Hq+1 + h2q |¢m|12'_1(1_'_l + ythq |¢m 1

Hat!

Imt1 Tmt1 2
+f3/ 15556 (5) 1122 ds+r3/ 9557 ()| 1 ds
1, I

m

Im Tint1
oyt / Vo (I ds +7° / IV ()11 ds
1, 1,

m—1 m

tm tnt1
+ Yo / IV Adssp (9)I72 ds + ©° / IV Adysp (9)I72 ds. (3.33)
Tm—1 1,

m— m

Proof. Define, for 0 <m < M — 1, time-dependent spatial mass average
g =121 (g, (3.34)
Using the Cauchy—Schwarz inequality, the Poincaré inequality, with the fact that

( m+1/2+ 2m+1/2 1) —0,

and the local truncation error estimates (3.13) and (3.14), we get the following estimate:

1/2 1/2 Jm+1/2 +1/2 1/2 m+1/2 m+-1/2
(o172 4 g2, 1) | = (012 o g2 e g |

<H0_1m+1/2 m+1/2H ’ grmt1/2 5};;,m+1/2
LZ
gC.Hainﬂ/z_’_ éﬂH/ZH va};;,mﬂ/z .
& 2
<clor e+ e
2 L2

h2at2 plue 5
<C / ||as¢(s)”[-]q+l ds
i
c 3 Int1 5 2 d & Vg”‘”’l+1/2 2 3.35
+ @ 1ossb @I ds+ 3 Va2 (339)
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Standard finite element approximation theory shows that

’|Vg£c,m+1/2||L2 _ HV (RhMerl/Z _ M;n+1/2) ||L2 < CHi |Mm+1/2|H

g+l -

Applying Lemma 3.5 and the last estimate, we have

‘(Eg,nwl/z’&gf,mﬂ/z)‘chvg(,;,mH/zHLz 5r5;?’m+l/2H y
—1,h
2
g Chq |:um+l/ |Hq+l H—lh
2
2 +1/2 dm+1/2
<o |2 s : ’ & H_Lh. (3.36)

Using Lemma 3.5 and estimate (3.15), we find

ca (03m+1/2’ Srg}?,m+1/2) (A m+1/2 Srgf,erl/Z)

+1/2 dm+1/2
<cvaoy 2| et

T3 [l dm+1/2|?
<Co [ IVAdp)2 ds+ — \ s (3.37)
9 J,, —Lh
Now, using Lemmas 3.2 and 3.5, we obtain
o ! ’( m+1/2 g¢m+1/2)‘<CHV m+1/2H 7 ‘argzs,mﬂ/zH h
o 2
<cvere] + 5 |
26 —1h
tmt1
<cr’ / V0@ ()7 ds
t/YX
It 2 o n
+Cr3/ [ ds+ < .88 *‘”H (3.38)
Im

Similarly, using Lemmas 3.3 and 3.5, the relation £9+! = gPmtl 4 Ef: +1 and a standard finite
element error estimate, we arrive at

ol ‘( m+1/2 ¥ g¢m+1/2)’<CHV m+1/2H 2+%‘

I
—1h

2
<clver |, + ¢ venl + o,

¢m+1/2H
Lh
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<clverm! Hiz +C va;f,mﬂHZq +C|ver|2,

2
wefvat], +5

¢m+l/2H
1,h

< Cth |¢m+l |Hq+] +C HV ¢m+1 H + Cth |¢m|12-1z1+l

wcfver], +

¢m+1/2H (3.39)
L

Applying Lemmas 3.4 and 3.5, the relation £#+1 = £4m+1 4 £+ "and a standard finite element
error estimate,

2
o ‘( m+1/2 ¥ g¢1n+1/2)‘ <CHV m+1/2H s gZ),m-H/ZH

*5l

tm fm+l
<ot (y / 1V (91 ds + / Vo ()12 ds)

Im—1 I

m 2 ¢,m—1 2
+CHVSh’ HL?+C7/,,,HVEh’

LZ

112 o
+ CH2 19" fyans + Crnh® |7 e + &

2
5’5’?’%1/2“71/{ (3.40)

To finish up, using (3.16),

WET? ” 3 o 2
yTa (5$¢"’,3,5;f” “”) <Crmg [ IVALGWIE s+ H L Gan
tm—1 -0
Combining the estimates (3.35-3.41) with the error equation (3.12), the result follows. U

LEmMA 3.7 Suppose that (¢, ) is a weak solution to (3.3a-3.3b), with the additional regularities (3.1).
Then, for any &, T > 0, there exists a constant C > 0, independent of / and t, such that

2 2
sEMMHAN < 2e? || vEpm A 4 oRmH2, (3.42)
h ~1h h 2
where R"*1/2 is the consistency term given in (3.33).

Proof. Define T,:S,— S, via the variational problem: given ¢ €S,, find & €S;, such that
a(Th(2), &) = (¢, ) for all £ € Sy Then, setting v =T,(5;£>""*) in (3.82) and v = T,(5:£7"'%) in
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(3.9a) and combining, we have

¢m+1/2H L= ( grm+1/2 T, (8 5¢m+1/2)) +( m+1/2+o_m+1/2 T, (8 g¢m+1/2)>
(8/}.m+1/2 Tg;fb,erl/Z) + <O_1m+1/2+02m+1/2’-|-h (8 g¢m+l/2>>

argzﬁ,m-ﬁ-l/ZH ‘ m+1/2 +G2m+l/2HL2 HT” <Srgg>,m+1/2)

12
g ||vepmt
12

LZ
vaun1+l/2H g¢m+1/2H
melj2 . mtl)2 2
+C [ 40 H + H
12 —1Lh
<e va“ m“”” H + CR™2, (3.43)
1.h
for 0 <m <M — 1 and where we have used Lemma 3.1. The result now follows. OJ

LemMA 3.8 Suppose that (¢, £) is a weak solution to (3.3a) and (3.3b), with the additional regulari-
ties (3.1). Then, for any A, v > 0, there exists a constant C > 0, independent of . and , but possibly
dependent upon 7, such that

2 2
g¢m+1 L EPM 5. g¢m+l/2 + YmT Sa s2€ s 5¢m+1/2 + £ Vg//,,m-H/Z
/l 4 T /’l 4 h L2

2 2
chg¢mHH vc|ver |+ mc|[veer |} + crmen, (.44

Proof. This follows upon combining the last two lemmas and choosing « in (3.32) appropriately. [

Using the last lemma, we are ready to show the main convergence result for our second-order
convex-splitting scheme.

THEOREM 3.9 Suppose (¢, i) is a weak solution to (3.3a) and (3.3b), with the additional regularities
(3.1). Then, provided 0 < 7 < 19, for some 7y sufficiently small,

2
¢.m+1 wmt172]|* 4 2
O<meM 1 va H +fZHVf H , SCDHE* + 1) (3.45)

for some C(T) > 0 that is independent of t and h.

Proof. Using Lemma 3.8, we have

2
¢ +1 P, m+1/2
@V L= vt + 5 lver

L2

2
HV ¢m+1 Vgh,mH _vahm_vgd)m 1
12

:)

2 2 2
CHV8¢""+1H +CHv5h’"H + nC |[vEpm IH ORI, (3.46)
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Letting m = 0 in the previous equation and noting that 8,? =0 and yo =0, then

2

1 o1l L 1 |genin o1 12
EHvsh L2+1Hv5h <G Hvsh HL2+CR . (3.47)

IfO<t<1:=1/2C; <1/Cy, it follows from the last estimate that

2 2
HVS,?’I HL + ‘Ve,’f'”zHﬂ <TCRV2 < C(e* + 1), (3.48)

:|
2

where we have used the regularity assumptions to conclude TCR!'/? < C(z* + h*?). Now, applying
T t0(3.46),

i e L A o N A S
(3.49)
f0<t<19:=1/2C, < 1/C,, it follows from the last estimate that
[vep| <cx ZZ:R'"“/Z LG ZZ: [vep=| + 2| wet|
L e 1 =Gt 2=~ 24 L
¢ 2
<CE + i+ cry Hvs,‘f”” . (3.50)

m=0

where we have used (3.48) and the regularity assumptions to conclude t Zi‘:;ol RMHZ L C(x* + h*).
Appealing to the discrete Gronwall inequality, it follows that, forany 0 < £ <M — 1,

2
va;f’”‘ HL <O + 1), (3.51)
Considering estimates (3.48), (3.49) and (3.51), we get the desired result. [

REMARK 3.10 From here it is straightforward to establish an optimal error estimate of the form

M—1
N e PR 2 [verm 2L, < ey + ), (3.52)

using the error splittings (for example, £¢ = 9 + 5}? ) the triangle inequality, and the standard spatial
approximations. We omit the details for the sake of brevity. Furthermore, one can show similar results
for the full H'-norm on the phase field variable by using a Poincaré inequality.

4. Numerical experiments

In this section, we provide some numerical experiments to gauge the accuracy and reliability of the
fully discrete finite element method developed in the previous sections. We use a square domain
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TaBLE | H' Cauchy convergence test. The final time is T =4.0 x 107!, and the refinement path is
taken to be T = 0.001v/2h with ¢ = 6.25 x 10~2. The Cauchy difference is defined via 8¢ = bn, — Pn,»
where the approximations are evaluated at time t =T, and analogously for §,,. (See the discussion in
the text.) Since q =2, i.e., we use P, elements for these variables, the norm of the Cauchy difference at
T is expected to be (’)(Ifz) + (’)(h}%) = (’)(h}%)

he hy 1186] 1 Rate 11811 Rate
V2/16 V2/32 1.148 x 107! — 1.307 x 107! —
V2/32 V2/64 2.939 x 1072 1.95 3.299 x 1072 1.98
V2/64 V2/128 7.468 x 1073 1.97 8.295 x 1073 1.99
V2/128 V'2/256 1.913 x 1073 1.95 2.087 x 1073 1.99

2 = (0,1)> C R? and take 7}, to be a regular triangulation of 2 consisting of right isosceles triangles.
To refine the mesh, we assume that 7,, £=0,1,...,L, is an hierarchy of nested triangulations of £2,
where 7, is obtained by subdividing the triangles of 7,_; into four congruent sub-triangles. Note that
he—y =2hg, £=1,...,L, and that {7;} is a quasi-uniform family. (We use a family of meshes 7, such
that no triangle in the mesh has more than one edge on the boundary.) We use the P, finite element
space for the phase field and chemical potential. In short, we take g = 2.

We solve the scheme (2.1a) and (2.4b) with € = 6.25 x 1072, The initial data for the phase field are
taken to be

¢ =7, {1(1.0 — cos(4.0mx)) - (1.0 — cos(2.0my)) — 1.0}, “.1)

where T, : H*(£2) — S, is the standard nodal interpolation operator. Recall that our analysis does not
specifically cover the use of the operator 7, in the initialization step. But, since the error introduced
by its use is optimal, a slight modification of the analysis shows that this will lead to optimal rates of
convergence overall. (See Remark 2.3.) To solve the system of equations above numerically, we are
using the finite element libraries from the FEniCS Project (Logg et al., 2012).

Note that source terms are not naturally present in the system of equations (1.2a) and (1.2c¢).
Therefore, it is somewhat artificial to add them to the equations in an attempt to manufacture exact
solutions. To circumvent the fact that we do not have possession of exact solutions, and therefore can-
not compute the exact error, we instead compute the rate at which the Cauchy difference of the field
converges to zero. Specifically, Let ¢ be a field variable (i.e., ¢ = ¢, u). The Cauchy difference of ¢
is precisely 6, := g“:fdf — {,’l‘:’ ¢, converges to zero, where hy =2h., 1 =27, and 77M; = t.M. =T. Then,
using a linear refinement path, i.e., t = Ch, and assuming g = 2 (piecewise quadratic approximations),
we have

<

I8¢l =|e” = o~ + | —en| =ow+p=om. @2

H

The results of the H' Cauchy error analysis are found in Table 1 and confirm second-order convergence
in this case. Additionally, we have proved that (at the theoretical level) the modified energy is non-
increasing at each time step. This is observed in our computations and shown in Fig. 1.
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2.45 . . . . . . . 2.42 .
24 2.415} O = E
. 235 . 2a41)
8 .5l S
2 - © 2.405¢
S 2250 o .
[} 4L
8 22| 3
S 2395
9 215} S
15 S 2.39}
Q .
g 21 g
© 205} S 2.385}
2L 2.38}
195 1 1 1 1 1 1 1 2375 1 1 1 1 1
0 0005 001 0015 002 0025 003 0035 004 0.5 1 15 2 25 3 3.5
time time x10™

FIG. 1. On the left, we show energy dissipation for the second-order numerical scheme for the Cahn—Hilliard problem, where we

have taken h = ;/—25 The initial data are given in (4.1). The other parameters are as given in the caption of Table 1. We plot both
the PDE energy E and the modified (numerical) energy F, though, at this resolution, the plots appear to overlap. On the right,
we show the same energy dissipation, magnifying the first five time steps. At the enhanced resolution, we are able to see the
difference between the modified energy F' and the Cahn—Hilliard energy E.
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