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Abstract
We propose and analyze a second order accurate in time,

energy stable numerical scheme for the strongly anisotropic

Cahn–Hilliard system, in which a biharmonic regulariza-

tion has to be introduced to make the equation well-posed.

A convexity analysis on the anisotropic interfacial energy

is necessary to overcome an essential difficulty associated

with its highly nonlinear and singular nature. The second

order backward differentiation formula temporal approxi-

mation is applied, combined with Fourier pseudo-spectral

spatial discretization. The nonlinear surface energy part

is updated by an explicit extrapolation formula. Mean-

while, the energy stability analysis is enforced by the

fact that all the second order functional derivatives of the

energy stay uniformly bounded by a global constant. A

Douglas-Dupont type regularization is added to stabilize

the numerical scheme, and a careful estimate ensures a

modified energy stability with a uniform constraint for

the regularization parameter A. In turn, the combination

with an appropriate treatment for the nonlinear double well

potential terms leads to a weakly nonlinear scheme. More

importantly, such an energy stability is in terms of the inter-

facial energy with respect to the original phase variable,

which enables us to derive an optimal rate convergence

analysis.
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1 INTRODUCTION

The Cahn–Hilliard equation has been a very well-known gradient flow, modeling spinodal decomposi-

tion and phase separation in a binary alloy [5,6]. A prominent advantage of this model, narrow diffusive

transition layers replace sharp interfaces, so that a theoretical analysis of the equation becomes more

feasible than the sharp interface counterparts. In addition, the phase field model shows great advantage

over the sharp interface counterpart if the surface energy density is a smooth function of the interface

normal and the anisotropy becomes sufficiently strong. In such a case, the Wulff shape (the shape that

minimizes the total surface energy for a given volume [7,47]) may have missing orientations. Regu-

larizing the sharp interface model to avoid discontinuity requires a complicated highly nonlinear term

that depends upon the curvature [37]. Nonetheless, strong anisotropy plays important roles in the mate-

rial properties of heterogeneous solids, and efficient, stable, and accurate numerical simulations are

required.

In this article, we focus on the strongly anisotropic Cahn–Hilliard model over a bounded domain

Ω ⊂ R𝑑
, 𝑑 = 2, 3. The phase variable is given by 𝜙, and its gradient vector is denoted as p ∶= ∇𝜙, for

simplicity of presentation. In turn, the unit normal vector n ∶= p
|p|

(with respect to iso-contours of 𝜙)

has the following components, which is well-defined for any non-zero vector ∇𝜙:

ni =
𝜕xi𝜙

|∇𝜙|
= pi
|p|
, i = 1, … , 𝑑.

The strongly anisotropic, Kobayashi-type free energy [40] free energy is formulated as

E(𝜙) = ∫Ω
(

f (𝜙) + 𝜀
2

2
𝛾

2(n)|p|2 + 𝛽 𝜀
2

2
(Δ𝜙)2

)

𝑑x, f (𝜙) = 1

4
(𝜙2 − 1)2, 𝛾(n) = 1+ 𝛼Γ(n), (1.1)

where 𝜀 > 0, 𝛽 ≥ 0, and 𝛼 ≥ 0 stand for the interface transition width parameter, an anisotropy

regularization parameter (sometimes called a corner-rounding parameter), and the anisotropy strength,

respectively, and 𝛾(n) models the anisotropy in the interfacial energy function. The inclusion of the

higher order regularization term avoids the well-known difficulty associated with the possibility of

ill-posedness in the strong anisotropy regime due to a sign change of the surface stiffness [4,22,50,54].

Various options are available, including the simple bi-harmonic regularization [54] or the nonlinear

Willmore regularization [10,41,42,44,45,51]. A completely new formulation that uses the Willmore

regularization can be found in [46]. From the computational standpoint, at least, it is clear that the

biharmonic regularization is simpler, though the Willmore has better asymptotic properties. See the

relevant discussions in [51,53,54].

In the case of four-fold anisotropy, the anisotropy structure function Γ(n) takes the form as

Γ(n) = Γ4(n) ∶= 4

𝑑∑

i=1

n4

i − 3. (1.2)

 10982426, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23034 by Soochow
 U

niversity, W
iley O

nline L
ibrary on [06/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHENG ET AL. 4009

An extension of the analysis to more exotic forms of anisotropy, such as the eight-fold version, is

be straightforward, as will be demonstrated in later sections. If 𝛼 > 0 is sufficiently large, missing

orientations appear on the Wulff shape. Without regularization, discontinuities in the derivatives of 𝜙

appear, and the PDE model may no longer be well-posed.

For the sake of convenience, we assume periodic boundary condition in this article. The H−1

gradient flow of the anisotropic Cahn–Hilliard energy is

𝜕t𝜙 = Δ𝜇, 𝜇 = 𝜙3 − 𝜙 − 𝜀2∇ ⋅
(
𝛾

2(n)∇𝜙 + 𝛾(n)|∇𝜙|P∇n𝛾(n)
)
+ 𝛽𝜀2Δ2

𝜙, (1.3)

where ∇ n is the gradient with respect to n, and P ∶= I−n⊗n, is the interface projection matrix, and

I is the identity matrix.

Many numerical works have reported interesting computational results for the anisotropic

Cahn–Hilliard equation, including [10,26,43,54], to name a few. Meanwhile, a theoretical justification

of the energy stability has always very challenging issue, due to the highly singular nature of the sur-

face energy. Among the existing works to address this issue, a convex splitting approach is applied to

the anisotropic system with a Willmore regularization in [14], while a theoretical proof for the energy

stability is only available for the isotropic flow. A stabilized scalar auxiliary variable (SAV) approach

is studied in [9,56], and a stability analysis has been provided for a numerically modified energy. On

the other hand, a uniform in time bound for the original energy functional (1.1) (in terms of the origi-

nal phase variable) is not theoretically available in this approach, so that a convergence analysis would

face serious difficulty. In addition, it is worthy of mentioning a recent work [20], in which a convex-

ity analysis is performed for the anisotropic surface energy part, so that an explicit treatment could be

applied to the corresponding chemical potential, combined with a first order regularization. In turn,

an energy stability is derived for the corresponding numerical scheme, and the numerical algorithm

is only weakly nonlinear, in the sense that the nonlinearity only appears in the double well energy

potential part.

Of course, the direct application of linear convex splitting leads to only first order accurate (in time)

numerical schemes, similar to the one reported in [11] for the no-slope-selection epitaxial thin film

growth model. In this article, we propose and analyze second order accurate, energy stable numerical

schemes for the anisotropic Cahn–Hilliard system, with the stability in terms of the original energy

functional (1.1). The standard second order backward differential formula (BDF2) temporal stencil

is applied, with all the chemical potential terms evaluated or approximated at time step tn+1
. This is

combined with the Fourier pseudo-spectral spatial approximation. To overcome a well-known dif-

ficulty associated with the highly nonlinear nature in the chemical potential of the surface energy

part, we recall a convexity analysis for 𝛾(n), which reveals that all its second order functional deriva-

tives stay uniformly bounded by a global constant. As a result of this convexity analysis, we are able

to approximate the nonlinear surface energy parts by an explicit extrapolation formula, combined

with a second order accurate Douglas-Dupont type regularization, in the form of −AsΔN(𝜙n+1 − 𝜙n).
Since all the second order functional derivatives of the nonlinear surface diffusion part have a uni-

form bound, a theoretical justification of the energy stability becomes available, under a constraint

for the artificial regularization parameter. Furthermore, such an energy stability is in terms of the

original phase variable, and no auxiliary variable needs to be introduced. This approach avoids an

implicit treatment of the nonlinear surface energy part, so that computational efficiency can be greatly

improved.

In addition, we perform an optimal rate convergence analysis for the proposed second order numer-

ical scheme for the anisotropic Cahn–Hilliard system. In this analysis, the global bound for the second

order functional derivatives will also play an important role. This is the first such result for the second

order scheme for the anisotropic Cahn–Hilliard model, to the best of our knowledge.

 10982426, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23034 by Soochow
 U

niversity, W
iley O

nline L
ibrary on [06/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4010 CHENG ET AL.

This article is organized as follows. In Section 2, we review a convexity analysis for the surface

diffusion coefficients. The fully discrete numerical scheme for the strongly anisotropic system is con-

sidered in Section 3, with Fourier pseudo-spectral spatial discretization. The unique solvability and

energy stability are theoretically justified. Moreover, an optimal rate convergence analysis is presented

in Section 4. Some numerical results are presented in Section 5, and concluding remarks are made in

Section 6.

2 REVIEW OF THE CONVEXITY ANALYSIS
FOR THE SURFACE ENERGY

The highly singular and nonlinear nature of 𝛾(n) is a key difficulty for the anisotropic model. As stated

earlier, we focus on the four-fold anisotropy function

𝛾(n) = 1 − 3𝛼 + 4𝛼(n4

1
+ n4

2
+ n4

3
), 0 ≤ 𝛼 < 3

5
=∶ 𝛼1.

The minimum of 𝛾(n) occurs for n2

1
= n2

2
= n2

3
= 1

3
, and we observe that 𝛾(n) ≤ 0 for some orientations

n if 𝛼 ≥ 𝛼1. Thus, 𝛼1 = 3

5
can be considered a critical value of 𝛼. The eight-fold anisotropy function

would be treated similarly, though the precise details will differ.

For the four-fold function, a detailed expansion reveals that

𝛾
2(n) = (1 − 3𝛼)2 + 8𝛼(1 − 3𝛼)

p4

1
+ p4

2
+ p4

3

(p2

1
+ p2

2
+ p2

3
)2
+ 16𝛼

2
(p4

1
+ p4

2
+ p4

3
)2

(p2

1
+ p2

2
+ p2

3
)4
. (2.1)

This yields

(p) = 𝛾2(n)|p|2 = (1 − 3𝛼)2|p|2 + 8𝛼(1 − 3𝛼)g(1)(p) + 16𝛼
2g(2)(p), (2.2)

g(1)(p) ∶=
p4

1
+ p4

2
+ p4

3

p2

1
+ p2

2
+ p2

3

, g(2)(p) ∶=
(p4

1
+ p4

2
+ p4

3
)2

(p2

1
+ p2

2
+ p2

3
)3
. (2.3)

In more details, the first order derivatives of g(1) and g(2) become

𝜕pi g
(1)(p) =

4p3

i
∑3

j=1
p2

j − 2pi
∑3

j=1
p4

j
(∑3

j=1
p2

j

)2
, i = 1, 2, 3, (2.4)

𝜕pi g
(2)(p) =

2pi
∑3

j=1
p4

j

(

4p2

i
∑3

j=1
p2

j − 3
∑3

j=1
p4

j

)

(∑3

j=1
p2

j

)4
, i = 1, 2, 3. (2.5)

The following preliminary estimates are excerpted from a recent work [20]; they will be useful in

the energy theoretical analyses.

Lemma 2.1 ([20]). Define

D(1)
1
∶= 7

2
, D(1)

2
∶= 2, D(2)

1
∶= 6, D(2)

2
∶= 3.
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CHENG ET AL. 4011

The functions g(1), g(2), are twice continuously differentiable in R
3

⋆
∶= R3 ⧵ {0}, and

|𝜕2
pi g

(1)(p)| ≤ D(1)
1
, i = 1, 2, 3, |𝜕pi𝜕pj g

(1)(p)| ≤ D(1)
2
, i, j = 1, 2, 3, i ≠ j, (2.6)

|𝜕2
pi g

(2)(p)| ≤ D(2)
1
, i = 1, 2, 3, |𝜕pi𝜕pj g

(2)(p)| ≤ D(2)
2
, i, j = 1, 2, 3, i ≠ j, (2.7)

for all p ∈ R
3

⋆
. In addition, for any p

1
, p

2
∈ R3

, we have

|
|
|
𝜕pi g

(k)(p
1
) − 𝜕pi g

(k)(p
2
)||
|
≤ (D(k)

1
− D(k)

2

)

|qi| + D(k)
2

3∑

j=1

|qi|, k = 1, 2, i = 1, 2, 3, (2.8)

with D(1)
1
= 7

2
, D(1)

2
= 2, D(2)

1
= 6, D(2)

2
= 3, and q ∶= p

2
− p

1
.

To obtain a linear numerical scheme for the anisotropic model, we rewrite the surface free energy

as follows, which comes from the expansion for (p) = 𝛾2(n)|p|2 in (2.1)–(2.3):

ES(𝜙) ∶= ∫Ω (p) 𝑑x = (1 − 3𝛼)2||∇𝜙||2 + ES,1(𝜙), (2.9)

ES,1(𝜙) ∶= ∫Ω
(
8𝛼(1 − 3𝛼)g(1)(p) + 16𝛼

2g(2)(p)
)
𝑑x, p = ∇𝜙. (2.10)

In turn, the following functional is introduced

H2(𝜙) ∶= A2‖∇𝜙‖2 − ES,1(𝜙) = ∫Ω
(
A2|p|2 − 8𝛼(1 − 3𝛼)g(1)(p) − 16𝛼

2g(2)(p)
)
𝑑x. (2.11)

Therefore, the original energy (1.1) can be decomposed variously as

E(𝜙) = (f (𝜙), 1) + 𝜀
2

2
ES(𝜙) + 𝛽

𝜀
2

2
‖Δ𝜙‖2

= (f (𝜙), 1) + 𝜀
2

2
(1 − 3𝛼)2‖∇𝜙‖2 + 𝜀

2

2
ES,1(𝜙) + 𝛽

𝜀
2

2
‖Δ𝜙‖2

= (f (𝜙), 1) + 𝜀
2

2

[
(1 − 3𝛼)2 + A2

]
‖∇𝜙‖2 − 𝜀

2

2
H2(𝜙) + 𝛽

𝜀
2

2
‖Δ𝜙‖2

. (2.12)

In addition, the following convexity result is available.

Proposition 2.2 ([20]). The functional H2(𝜙) is convex on R
3

⋆
provided that

A2 ≥ A⋆
2
∶= 8𝛼

2A0 + 4𝛼|1 − 3𝛼|B0, (2.13)

where
A0 = 12 and B0 =

15

2
. (2.14)

Remark 2.3. For the remainder of the article, we will assume that A2 = A⋆
2

in the definition

of H2. For A2 ≥ A∗
2
, the convexity of H2 is still ensured, while a larger value of A2 may

bring more numerical diffusion, so that we prefer A2 = A∗
2
.

To facilitate the notation, we represent the variational derivative of ES,1 as

𝛿𝜙ES,1 = −∇ ⋅
(
(𝛾2(n) − (1 − 3𝛼)2)∇𝜙 + 𝛾(n)|∇𝜙|P∇n𝛾(n)

)
. (2.15)

Moreover, a more detailed expansion of this term is needed in the later derivation, based on the

expansion in (2.1)–(2.3):

 10982426, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23034 by Soochow
 U

niversity, W
iley O

nline L
ibrary on [06/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4012 CHENG ET AL.

𝛿𝜙ES,1 = −∇ ⋅
(
8𝛼(1 − 3𝛼)∇pg(1)(p) + 16𝛼

2∇pg(2)(p)
)

= −∇ ⋅
⎛
⎜
⎜
⎜
⎝

8𝛼(1 − 3𝛼)
⎛
⎜
⎜
⎜
⎝

𝜕p
1
g(1)(p)

𝜕p
2
g(1)(p)

𝜕p
3
g(1)(p)

⎞
⎟
⎟
⎟
⎠

+ 16𝛼
2

⎛
⎜
⎜
⎜
⎝

𝜕p
1
g(2)(p)

𝜕p
2
g(2)(p)

𝜕p
3
g(2)(p)

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

, (2.16)

in which ∇ p is the gradient with respect to p, and the expansions of 𝜕pi g
(j)

, i = 1, 2, 3, j = 1, 2, could

be obtained in (2.4) and (2.5).

3 THE PROPOSED NUMERICAL SCHEME

3.1 Fourier pseudo-spectral spatial approximations

In comparison with the standard Fourier spectral method, the Fourier pseudo-spectral method (Fourier

collocation spectral method) complements the basis by an additional pseudo-spectral basis, so that

discrete functions are evaluated on the quadrature grid points. As a result, the computation of

certain nonlinear operators, such as those involving point-wise products or quotients, can be con-

siderably sped up, with the help of the fast Fourier transform (FFT). See the related descriptions

in [3,8,15,17,18,21,29-31,38].

To simplify the notation, we set the domain as Ω = (0, 1)3, with Nx = Ny = Nz =∶ N ∈ N

and N ⋅ h = 1, and N = 2K + 1, for some K ∈ N. In fact, the analysis of an even inte-

ger N could be carried out in a similar manner, while more tedious details have to be included.

All the physical variables are evaluated on the standard 3D numerical grid ΩN , given by (xi, yj, zk),
with xi = ih, yj = jh, zk = kh, 0 ≤ i, j, k ≤ 2K + 1. In addition, the grid function space is

denoted as

N ∶=
{

f ∶ Z
3 → R

|
|
|

f is ΩN-periodic

}

. (3.1)

For any f ∈ N , its discrete Fourier expansion is given by

fi,j,k =
K∑

𝓁,m,n=−K
f̂ N
𝓁,m,n exp

(
2𝜋i(𝓁xi + myj + nzk)

)
, (3.2)

where

f̂ N
𝓁,m,n ∶= h3

N−1∑

i,j,k=0

fi,j,k exp
(
−2𝜋i

(
𝓁xi + mxj + nxk

))
. (3.3)

In turn, the collocation Fourier spectral first and second order derivatives of f turn out to be

xfi,j,k ∶=
K∑

𝓁,m,n=−K
(2𝜋i𝓁) f̂ N

𝓁,m,n exp
(
2𝜋i(𝓁xi + myj + nzk)

)
, (3.4)

2
x fi,j,k ∶=

K∑

𝓁,m,n=−K

(
−4𝜋

2𝓁2
)

f̂ N
𝓁,m,n exp

(
2𝜋i(𝓁xi + myj + nzk)

)
. (3.5)

Similar definitions could be made for y, 2
y , z, and 2

z , the differentiation operators in the y
and z directions, respectively. Of course, the discrete Laplacian, gradient and divergence operators

become
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CHENG ET AL. 4013

ΔNf ∶=
(2

x +2
y +2

z
)

f , ∇Nf ∶=
⎛
⎜
⎜
⎜
⎝

xf
yf
zf

⎞
⎟
⎟
⎟
⎠

, ∇N ⋅

⎛
⎜
⎜
⎜
⎝

f1
f2
f3

⎞
⎟
⎟
⎟
⎠

∶= xf1 +yf2 +zf3, (3.6)

at the point-wise level. It is obvious that ∇N ⋅ ∇Nf = ΔNf .

Detailed calculations show that the following summation-by-parts formulas are valid (see the

related discussions in [11,13,30,31]):

⟨f ,ΔNg⟩ = −⟨∇Nf ,∇Ng⟩, ⟨f ,Δ2

Ng⟩ = ⟨ΔNf ,ΔNg⟩, ∀f , g ∈ N . (3.7)

Definition 3.1. Define Cper(Ω,R) ∶=
{

f ∶ Ω→ R
|
|
|

f is periodic and continuous on Ω
}

.

The grid projection QN ∶ Cper(Ω,R) → N is defined via

QN(g)i,j,k ∶= g(xi, yj, zk). (3.8)

The discrete 𝓁2
inner product and norm are defined as follows:

⟨f , g⟩ ∶= h3

N−1∑

i,j,k=0

fi,j,k ⋅ gi,j,k, ‖f‖
2
∶=

√
⟨f , f ⟩, ∀ f , g ∈ N . (3.9)

In particular, the zero-mean grid function subspace is denoted as ̈N ∶=
{

f ∈ N
|
|
|
⟨f , 1⟩ =∶ f = 0

}

.

In addition to the standard 𝓁2
norm, we also introduce the 𝓁p

, 1 ≤ p < ∞, and 𝓁∞ norms for a grid

function f ∈ N :

‖f‖∞ ∶= max
i,j,k

|fi,j,k|, ‖f‖p ∶=

(

h3

N−1∑

i,j,k=0

|fi,j,k|p
) 1

p

, 1 ≤ p < ∞. (3.10)

For any periodic grid function f ∈ N , the discrete H1
and H2

norms are given by

||f ||2H1

N
= ||f ||2

2
+ ||∇Nf ||2

2
, ||f ||2H2

N
= ||f ||2H1

N
+ ||ΔNf ||2

2
. (3.11)

Since the anisotropic Equation (1.3) is an H−1
gradient flow, we need a discrete version of the

(⋅, ⋅)H−1 inner product and || ⋅ ||H−1 norm:

⟨f , g⟩−1,N ∶= ⟨f , (−ΔN)−1g⟩, ||f ||−1,N ∶=
√
⟨f , f ⟩−1,N , ∀f , g ∈ ̊N . (3.12)

For any 𝜙 ∈ N , the discrete energy for the PDE system (1.1) is defined as

EN(𝜙) ∶=
1

4
||𝜙||4

4
− 1

2
||𝜙||2

2
+ 1

4
|Ω| + ES,N(𝜙) +

𝛽𝜀
2

2
‖ΔN𝜙‖

2

2, (3.13)

where

ES,N(𝜙) ∶= (1 − 3𝛼)2||∇N𝜙||2 + ES,1,N(𝜙), (3.14)

ES,1,N ∶= 8𝛼(1 − 3𝛼)⟨g(1)(∇N𝜙), 1⟩ + 16𝛼
2⟨g(2)(∇N𝜙), 1⟩. (3.15)

Similarly, the following quantity is introduced

H2,N(𝜙) ∶= A2‖∇N𝜙‖
2

2 − ES,1,N(𝜙), (3.16)

so that the discrete energy functional could be rewritten as
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4014 CHENG ET AL.

EN(𝜙) = ⟨f (𝜙), 1⟩ + 𝜀
2

2

[
(1 − 3𝛼)2 + A2

]
‖∇N𝜙‖

2

2 −
𝜀

2

2
H2,N(𝜙) +

𝛽𝜀
2

2
‖ΔN𝜙‖

2

2. (3.17)

Similar to the proof of Proposition 2.2, the following convexity result can be derived.

Proposition 3.2. The functional H2,N(𝜙) is convex, provided that (2.13) is satisfied.

3.2 The fully discrete numerical scheme and the theoretical results

We propose the following semi-implicit, second-order-in-time numerical scheme, with Fourier

pseudo-spectral spatial approximation:

3

2
𝜙

n+1 − 2𝜙
n + 𝜙n−1

s
= ΔN𝜇

n+1
, (3.18)

𝜇
n+1 = (𝜙n+1)3 − (2𝜙n − 𝜙n−1) − (1 − 3𝛼)2𝜀2ΔN𝜙

n+1 − AsΔN(𝜙n+1 − 𝜙n) + 𝛽𝜀2Δ2

N𝜙
n+1

− 2𝜀
2∇N ⋅

(
4𝛼(1 − 3𝛼)∇pg(1)(∇N𝜙

n) + 8𝛼
2∇pg(2)(∇N𝜙

n)
)

+ 𝜀2∇N ⋅
(
4𝛼(1 − 3𝛼)∇pg(1)(∇N𝜙

n−1) + 8𝛼
2∇pg(2)(∇N𝜙

n−1)
)
. (3.19)

The following theoretical result of unique solvability and energy stability is available.

Theorem 3.3. Given 𝜙
n
, 𝜙

n−1 ∈ N with 𝜙n = 𝜙n−1, for any s > 0, there exists a
unique solution 𝜙n+1 ∈ N to the numerical scheme (3.18) and (3.19) satisfying the mass
conservation condition: 𝜙n+1 = 𝜙n = 𝜙n−1. Furthermore, provided that

A ≥ max

{

1

16
,

1

4

(
1

2
+ 1

8𝛽

[
3A⋆

2
− (1 − 3𝛼)2

]2

𝜀
2

)2
}

, (3.20)

the scheme is modified-energy stable, in the sense that, N(𝜙n+1
, 𝜙

n) ≤ N(𝜙n
, 𝜙

n−1),
where the modified energy functional is defined as

N(𝜙, 𝜓) ∶= EN(𝜙) +
1

4s
‖𝜙 − 𝜓‖2

−1,N +
A⋆

2
𝜀

2

2
||∇N(𝜙 − 𝜓)||22 +

1

2
||𝜙 − 𝜓||2

2
, (3.21)

for all 𝜙, 𝜓 ∈ N satisfying 𝜙 = 𝜓 .

Proof. Suppose that 𝜙
n
, 𝜙

n−1 ∈ N are given, with 𝜙n = 𝜙n−1. We observe that (3.18)

and (3.19) can be rewritten as the solution of the following equation:

N(𝜙) = qn
, (3.22)

where

N(𝜙) ∶=
1

s
(−ΔN)−1

(
3

2
𝜙 − 2𝜙

n + 1

2
𝜙

n−1

)

+ 𝜙3 − ((1 − 3𝛼)2𝜀2 + As)ΔN𝜙 + 𝛽𝜀2Δ2

N𝜙,

qn ∶= 2𝜙
n − 𝜙n−1 − AsΔN𝜙

n + 2𝜀
2∇N ⋅

(
4𝛼(1 − 3𝛼)∇pg(1)(∇N𝜙

n) + 8𝛼
2∇pg(2)(∇N𝜙

n)
)

− 𝜀2∇N ⋅
(
4𝛼(1 − 3𝛼)∇pg(1)(∇N𝜙

n−1) + 8𝛼
2∇pg(2)(∇N𝜙

n−1)
)
.

Of course, 𝜙 ∈ N and the mass conservation condition, 𝜙n+1 = 𝜙n = 𝜙n−1, is required.

SinceN(𝜙) − qn
is the gradient of a strictly convex functional, namely,
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CHENG ET AL. 4015

J(𝜙) = 1

3s
‖
‖
‖
‖

3

2
𝜙 − 2𝜙

n + 1

2
𝜙

n−1
‖
‖
‖
‖

2

−1,N
+ 1

4
‖𝜙‖4

4

+ 1

2
((1 − 3𝛼)2𝜀2 + As)‖∇N𝜙‖

2

2 +
𝛽𝜀

2

2
‖ΔN𝜙‖

2

2 − ⟨qn
, 𝜙⟩, (3.23)

the unique solvability of (3.18) and (3.19) comes from a standard convexity analysis.

To obtain the energy stability analysis, a discrete inner product with (3.18) by

(−ΔN)−1(𝜙n+1 − 𝜙n) is needed. An application of summation-by-parts yields

0 = ⟨(𝜙n+1)3, 𝜙n+1 − 𝜙n⟩ − ⟨2𝜙n − 𝜙n−1
, 𝜙

n+1 − 𝜙n⟩ − (1 − 3𝛼)2𝜀2⟨ΔN𝜙
n+1
, 𝜙

n+1 − 𝜙n⟩

+ 𝛽𝜀2⟨Δ2

N𝜙
n+1
, 𝜙

n+1 − 𝜙n⟩ − As⟨ΔN(𝜙n+1 − 𝜙n), 𝜙n+1 − 𝜙n⟩

+ 1

s

⟨
3

2
𝜙

n+1 − 2𝜙
n + 1

2
𝜙

n−1
, (−ΔN)−1(𝜙n+1 − 𝜙n)

⟩

− 𝜀2⟨∇N ⋅
(
4𝛼(1 − 3𝛼)∇pg(1)(∇N𝜙

n) + 8𝛼
2∇pg(2)(∇N𝜙

n)
)
, 𝜙

n+1 − 𝜙n⟩

− 4𝛼(1 − 3𝛼)𝜀2⟨∇N ⋅
(
∇pg(1)(∇N𝜙

n) − ∇pg(1)(∇N𝜙
n−1)

)
, 𝜙

n+1 − 𝜙n⟩

− 8𝛼
2
𝜀

2⟨∇N ⋅
(
∇pg(2)(∇N𝜙

n) − ∇pg(2)(∇N𝜙
n−1)

)
, 𝜙

n+1 − 𝜙n⟩. (3.24)

The following convexity estimates and identities are valid:

⟨(𝜙n+1)3, 𝜙n+1 − 𝜙n⟩ ≥ 1

4

‖
‖
‖
𝜙

n+1‖‖
‖

4

4

− 1

4
‖𝜙n‖4

4, (3.25)

− ⟨2𝜙n − 𝜙n−1
, 𝜙

n+1 − 𝜙n⟩ ≥ −1

2

(
‖
‖
‖
𝜙

n+1‖‖
‖

2

2

− ‖𝜙n‖2

2

)

− 1

2

‖
‖
‖
𝜙

n − 𝜙n−1‖‖
‖

2

2

, (3.26)

− ⟨ΔN𝜙
n+1
, 𝜙

n+1 − 𝜙n⟩ = 1

2

(
‖
‖
‖
∇N𝜙

n+1‖‖
‖

2

2

− ‖‖
‖
∇N𝜙

n‖‖
‖

2

2

)

+ 1

2

‖
‖
‖
∇N(𝜙n+1 − 𝜙n)‖‖

‖

2

2

, (3.27)

− ⟨ΔN(𝜙n+1 − 𝜙n), 𝜙n+1 − 𝜙n⟩ = ‖
‖
‖
∇N(𝜙n+1 − 𝜙n)‖‖

‖

2

2

. (3.28)

For the BDF2 temporal stencil term, the following inequality can be derived:

I1 ∶=
1

s

⟨
3

2
𝜙

n+1 − 2𝜙
n + 1

2
𝜙

n−1
, (−ΔN)−1(𝜙n+1 − 𝜙n)

⟩

= 1

s

⟨
3

2
(𝜙n+1 − 𝜙n) − 1

2
(𝜙n − 𝜙n−1), (−ΔN)−1(𝜙n+1 − 𝜙n)

⟩

−1,N

= 3

2s
||𝜙n+1 − 𝜙n||2−1,N −

1

2s
⟨𝜙n − 𝜙n−1

, (−ΔN)−1(𝜙n+1 − 𝜙n)⟩−1,N

≥ 3

2s
||𝜙n+1 − 𝜙n||2−1,N −

1

4s
(||𝜙n − 𝜙n−1||2−1,N + ||𝜙n+1 − 𝜙n||2−1,N)

≥ 1

s

(
5

4

‖
‖
‖
𝜙

n+1 − 𝜙n‖‖
‖

2

−1,N
− 1

4

‖
‖
‖
𝜙

n − 𝜙n−1‖‖
‖

2

−1,N

)

, (3.29)

in which the H−1
inner product and || ⋅ ||−1,N norm (3.12) have been utilized.

The rest of our work will be focused on the nonlinear surface diffusion terms.

The convexity property of the discrete quantity H2,N (given by Proposition 3.2)

reveals that

−⟨𝛿𝜙H2,N(𝜙n), 𝜙n+1 − 𝜙n⟩ ≥ −(H2,N(𝜙n+1) − H2,N(𝜙n)). (3.30)
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4016 CHENG ET AL.

Furthermore,

I2 ∶= −⟨∇N ⋅
(
8𝛼(1 − 3𝛼)∇pg(1)(∇N𝜙

n) + 16𝛼
2∇pg(2)(∇N𝜙

n)
)
, 𝜙

n+1 − 𝜙n⟩

+ 2A⋆
2
⟨ΔN𝜙

n
, 𝜙

n+1 − 𝜙n⟩

≥ ES,1,N(𝜙n+1) − ES,1,N(𝜙n) − A⋆
2
(||∇N𝜙

n+1||2
2
− ||∇N𝜙

n||2
2
). (3.31)

On the other hand, the following identity is always valid

2A⋆
2
⟨Δ𝜙n

, 𝜙
n+1 − 𝜙n⟩ = −A⋆

2
(||∇N𝜙

n+1||2
2
− ||∇N𝜙

n||2
2
) + A⋆

2
||∇N(𝜙n+1 − 𝜙n)||2

2
, (3.32)

which in turn implies that

I3 ∶= −⟨∇N ⋅
(
8𝛼(1 − 3𝛼)∇pg(1)(∇N𝜙

n) + 16𝛼
2∇pg(2)(∇N𝜙

n)
)
, 𝜙

n+1 − 𝜙n⟩

≥ ES,1,N(𝜙n+1) − ES,1,N(𝜙n) − A⋆
2
||∇N(𝜙n+1 − 𝜙n)||2

2
. (3.33)

For the last two terms associated with the nonlinear surface diffusion, we have to evalu-

ate the difference of∇ pg(i)(∇N𝜙) between time steps tn
and tn−1

, for i = 1, 2, respectively.

In more details, the first part could be expanded as

I4 ∶= ⟨∇N ⋅
(
∇pg(1)(∇N𝜙

n) − ∇pg(1)(∇N𝜙
n−1)

)
, 𝜙

n+1 − 𝜙n⟩

= −⟨∇pg(1)(∇N𝜙
n) − ∇pg(1)(∇N𝜙

n−1),∇N(𝜙n+1 − 𝜙n)⟩
= −⟨𝜕p

1
g(1)(pn) − 𝜕p

1
g(1)(pn−1), pn+1

1
− pn

1
⟩

− ⟨𝜕p
2
g(1)(pn) − 𝜕p

2
g(1)(pn−1), pn+1

2
− pn

2
⟩

− ⟨𝜕p
3
g(1)(pn) − 𝜕p

3
g(1)(pn−1), pn+1

3
− pn

3
⟩, (3.34)

in which we have introduced the notation pk = (pk
1
, pk

2
, pk

3
)T = ∇N𝜙

k =
(x𝜙

k
,y𝜙

k
,z𝜙

k)T , n − 1 ≤ k ≤ n + 1, for simplicity of presentation. For the first

expansion term, we apply (2.8) (from Lemma 2.1) and get

|𝜕p
1
g(1)(pn) − 𝜕p

1
g(1)(pn−1)| ≤ D(1)

1
|pn

1
− pn−1

1
| + D(1)

2

(
|pn

2
− pn−1

2
| + |pn

3
− pn−1

3
|
)
, (3.35)

at a point-wise level. A summation in space implies that

I4,1 ∶=
|
|
|
⟨𝜕p

1
g(1)(pn) − 𝜕p

1
g(1)(pn−1), pn+1

1
− pn

1
⟩
|
|
|

≤ D(1)
1

2

(
‖
‖
‖

pn+1

1
− pn

1

‖
‖
‖

2

2

+ ‖‖
‖

pn
1
− pn−1

1

‖
‖
‖

2

2

)

+
D(1)

2

2

(
‖
‖
‖

pn
2
− pn−1

2

‖
‖
‖

2

2

+ ||pn
3
− pn−1

3
||2

2
+ 2

‖
‖
‖

pn+1

1
− pn

1

‖
‖
‖

2

2

)

. (3.36)

The bounds for the two other nonlinear expansion terms could be similarly derived:

I4,2 ∶=
|
|
|
⟨𝜕p

2
g(1)(pn) − 𝜕p

2
g(1)(pn−1), pn+1

2
− pn

2
⟩
|
|
|

≤ D(1)
1

2

(
‖
‖
‖

pn+1

2
− pn

2

‖
‖
‖

2

2

+ ‖‖
‖

pn
2
− pn−1

2

‖
‖
‖

2

2

)

+
D(1)

2

2

(
‖
‖
‖

pn
1
− pn−1

1

‖
‖
‖

2

2

+ ||pn
3
− pn−1

3
||2

2
+ 2

‖
‖
‖

pn+1

2
− pn

2

‖
‖
‖

2

2

)

, (3.37)

and
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CHENG ET AL. 4017

I4,3 ∶=
|
|
|
⟨𝜕p

3
g(1)(pn) − 𝜕p

3
g(1)(pn−1), pn+1

3
− pn

3
⟩
|
|
|

≤ D(1)
1

2

(
‖
‖
‖

pn+1

3
− pn

3

‖
‖
‖

2

2

+ ‖‖
‖

pn
3
− pn−1

3

‖
‖
‖

2

2

)

+
D(1)

2

2

(
‖
‖
‖

pn
1
− pn−1

1

‖
‖
‖

2

2

+ ||pn
2
− pn−1

2
||2

2
+ 2

‖
‖
‖

pn+1

3
− pn

3

‖
‖
‖

2

2

)

. (3.38)

A combination of (3.36)–(3.38) leads to

I4 = ⟨∇N ⋅
(
∇pg(1)(∇N𝜙

n) − ∇pg(1)(∇N𝜙
n−1)

)
, 𝜙

n+1 − 𝜙n⟩

≤ D(1)
1

2

(
‖
‖
‖
∇N(𝜙n+1 − 𝜙n)‖‖

‖

2

2

+ ‖‖
‖
∇N(𝜙n − 𝜙n−1)‖‖

‖

2

2

)

+ D(1)
2

(
‖
‖
‖
∇N(𝜙n+1 − 𝜙n)‖‖

‖

2

2

+ ‖‖
‖
∇N(𝜙n − 𝜙n−1)‖‖

‖

2

)

= B0

2

(
‖
‖
‖
∇N(𝜙n+1 − 𝜙n)‖‖

‖

2

2

+ ‖‖
‖
∇N(𝜙n − 𝜙n−1)‖‖

‖

2

2

)

, (3.39)

since

B0 = D(1)
1
+ 2D(1)

2
.

The other nonlinear surface diffusion term can be analyzed in the same fashion, with the

help of inequality (2.8) in Lemma 2.1:

I5 ∶=
|
|
|
⟨∇N ⋅

(
∇pg(2)(∇N𝜙

n) − ∇pg(2)(∇N𝜙
n−1)

)
, 𝜙

n+1 − 𝜙n⟩
|
|
|

≤ A0

2

(
‖
‖
‖
∇(𝜙n+1 − 𝜙n)‖‖

‖

2

2

+ ‖‖
‖
∇(𝜙n − 𝜙n−1)‖‖

‖

2

2

)

. (3.40)

For the bi-harmonic regularization term, the following equality is available:

⟨Δ2

N𝜙
n+1
, 𝜙

n+1 − 𝜙n⟩ = 1

2
(||ΔN𝜙

n+1||2 − ||ΔN𝜙
n||2 + ||Δ(𝜙n+1

N − 𝜙n)||2). (3.41)

A substitution of all these estimates into (3.24) leads to

0 ≥ 1

4
(||𝜙n+1||4

4
− ||𝜙n||4

4
) − 1

2
(||𝜙n+1||2

2
− ||𝜙n||2

2
) + (1 − 3𝛼)2𝜀2

2
(||∇N𝜙

n+1||2
2
− ||∇N𝜙

n||2
2
)

+ 𝜀
2

2

(
ES,1,N(𝜙n+1) − ES,1,N(𝜙n)

)
− 1

2
||𝜙n − 𝜙n−1||2

2

+ 𝛽𝜀
2

2

(
||ΔN𝜙

n+1||2
2
− ||ΔN𝜙

n||2 + ||ΔN(𝜙n+1 − 𝜙n)||2
2

)

+
(
(1 − 3𝛼)2

2
− A⋆

2

)

𝜀
2||∇N(𝜙n+1 − 𝜙n)||2

2
−

A⋆
2
𝜀

2

2
||∇N(𝜙n − 𝜙n−1)||2

2

+ 1

s

(
5

4

‖
‖
‖
𝜙

n+1 − 𝜙n‖‖
‖

2

−1,N
− 1

4

‖
‖
‖
𝜙

n − 𝜙n−1‖‖
‖

2

−1,N

)

+ As||∇N(𝜙n+1 − 𝜙n)||2
2
. (3.42)

Meanwhile, an application of the Cauchy inequality reveals that

1

s
‖
‖
‖
𝜙

n+1 − 𝜙n‖‖
‖

2

−1,N
+ As‖‖

‖
∇N(𝜙n+1 − 𝜙n)‖‖

‖

2

2

≥ 2

√
A‖‖
‖
𝜙

n+1 − 𝜙n‖‖
‖

2

2

. (3.43)

Inserting this estimate, we have
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4018 CHENG ET AL.

0 ≥ 1

4
(||𝜙n+1||4

4
− ||𝜙n||4

4
) − 1

2
(||𝜙n+1||2

2
− ||𝜙n||2

2
) + (1 − 3𝛼)2𝜀2

2
(||∇N𝜙

n+1||2
2
− ||∇N𝜙

n||2
2
)

+ 𝜀
2

2
(ES,1,N(𝜙n+1) − ES,1,N(𝜙n)) + 1

4s

(
‖
‖
‖
𝜙

n+1 − 𝜙n‖‖
‖

2

−1,N
− ‖‖
‖
𝜙

n − 𝜙n−1‖‖
‖

2

−1,N

)

+ 𝛽𝜀
2

2

(
||ΔN𝜙

n+1||2
2
− ||ΔN𝜙

n||2
2

)
+ 𝛽𝜀

2

2
||ΔN(𝜙n+1 − 𝜙n)||2

2

+
(
(1 − 3𝛼)2

2
− 3

2
A⋆

2

)

𝜀
2||∇N(𝜙n+1 − 𝜙n)||2

2

+
A⋆

2
𝜀

2

2

(
||∇N(𝜙n+1 − 𝜙n)||2

2
− ||∇N(𝜙n − 𝜙n−1)||2

2

)

+
(

2

√
A − 1

2

)

||𝜙n+1 − 𝜙n||2
2
+ 1

2

(
||𝜙n+1 − 𝜙n||2

2
− ||𝜙n − 𝜙n−1||2

2

)
. (3.44)

Under the constraint (3.20) for A, we see that

I6 ∶=
𝛽𝜀

2

2
||ΔN(𝜙n+1 − 𝜙n)||2

2
+
(

2

√
A − 1

2

)

||𝜙n+1 − 𝜙n||2
2

≥ 2𝜀

√
𝛽

2

(

2

√
A − 1

2

)

||∇N(𝜙n+1 − 𝜙n)||2
2

≥ |||
|

(1 − 3𝛼)2
2

− 3

2
A⋆

2

|
|
|
|
𝜀

2||∇N(𝜙n+1 − 𝜙n)||2
2
. (3.45)

In turn, the desired energy estimate is obtained:

N(𝜙n+1
, 𝜙

n) − N(𝜙n
, 𝜙

n−1) ≤ 0. (3.46)

This finishes the proof of Theorem 3.3. ▪

Remark 3.4. For the strongly anisotropic flow, the energy stability has to rely on the

bi-harmonic surface diffusion term. This is expected, since bi-harmonic regularization is

required for well-posedness of the PDE. The constraint (3.20) for the artificial stabiliza-

tion parameter A depends on both 𝛽 and 𝜀. In more detail, we observe that a smaller value

of 𝛽 and larger value of 𝜀 would lead to a larger value of A to satisfy the constraint.

In most practical computational examples, both 𝛽 and 𝜀 are small parameters, of scale

10
−2

to 10
−3

. Extensive numerical experiments have demonstrated that selecting A = O(1)
is sufficient to ensure the energy stability in the simulations.

Remark 3.5. There have been extensive works related to second-order-accurate-in-time,

energy stable numerical schemes for various gradient flows. Most of these numerical meth-

ods are based on the standard Crank–Nicolson temporal discretization with certain modifi-

cations; see the related works for the isotropic Cahn–Hilliard model [21,24,34], phase field

crystal (PFC) equation and the modified phase field crystal (MPFC) equation [1,2,25,39];

epitaxial thin film growth models [13,17,48,52]; non-local gradient flow models [32,33];

phase field model coupled with fluid flow [12,23,35,36]; et cetera. In this approach, the

unique solvability is established by the convexity argument or the monotonicity analy-

sis, while the energy stability could be derived by an inner product with the numerical

chemical potential.

Meanwhile, a few more recent works of the BDF2-type schemes have been reported

for certain gradient flow models, such as Cahn–Hilliard [16,55], slope-selection thin film

equation [28], square phase field crystal [19], in which the energy stability was theoreti-

cally established. Similar to this article, a Douglas-Dupont type regularization has to be
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CHENG ET AL. 4019

included in the numerical scheme, while a careful analysis reveals its energy stability at a

modified level. Such a BDF2-type approach turns out to be a very robust numerical tool

in the study of gradient flows.

4 THE OPTIMAL RATE CONVERGENCE ANALYSIS

LetΦ be the exact periodic solution of the strongly anisotropic CH Equation (1.3). For the convenience

of the convergence analysis, we also defineΦN( ⋅ , t) ∶= NΦ( ⋅ , t) as the (spatial) Fourier projection

of the exact solution into the space

K ∶=
{

f is a trigonometric polynomial
|
|
|
deg(f ) ≤ K

}

, N = 2K + 1.

In more details, suppose that Φ has the following Fourier series representation on Ω:

Φ(x, y, z, t) =
∑∞

k,l,m=−∞Φ̂k,l,m(t)e2𝜋i(k x+l y+mz)
,

with Φ̂k,l,m(t) = 1

|Ω|
∫Ω Φ(x, y, z, t)e−2𝜋i(k x+l y+mz)

𝑑x 𝑑y 𝑑z.
(4.1)

The (finite Fourier) projection of Φ onto the space K
is defined as

ΦN(x, y, z, t) ∶= NΦ(x, y, z, t) ∶=
K∑

k,l,m=−K
Φ̂k,l,m(t)e2𝜋i(k x+l y+mz)

. (4.2)

In turn, the initial data for the numerical scheme (3.18) and (3.19) could be taken as the grid projections

of ΦN at t = 0 and t = s;

𝜙
0 = QNΦN( ⋅ , t = 0) and 𝜙

1 = QNΦN( ⋅ , t = s).

One advantage of this choice could be observed in the fact that, the || ⋅ ||−1,N norm is well defined for

the error function between the numerical solution 𝜙
n

and the exact projection solution ΦN , because

⟨𝜙k
, 1⟩ = ∫Ω Φ( ⋅ , k ⋅ s) 𝑑x, k = 0, 1.

If the initial data has sufficient regularity, the following regularity assumption is made for the exact

solution:

Φ ∈  ∶= H3
(
0,T;C0

per(Ω)
)
∩ H2

(
0,T;C6

per(Ω)
)
∩ L∞

(
0,T;Hm+6

per (Ω)
)
, with

Ck
per(Ω) =

{
f is periodic on Ω |f ∈ Ck(Ω)

}
, Hk

per(Ω) =
{

f is periodic on Ω |f ∈ Hk(Ω)
}
.

(4.3)

Theorem 4.1. Let Φ be the exact periodic solution with of the strongly anisotropic CH
Equation (1.3), with the initial data Φ(0) = 𝜙0 ∈ Hm+6

per (Ω), and with the regularity class
 given by (4.3). Suppose 𝜙 is the fully discrete numerical solution of (3.18) and (3.19).
Then the following error estimate is valid:

||Φn
N − 𝜙n||−1,N +

(

𝛽𝜀
2s

n∑

k=0

||ΔN(ΦN − 𝜙)||22

)1∕2

≤ C(s2 + hm), (4.4)

where the constant C > 0 is independent of s and h but depends on the exact solution.

Proof. A combination of Taylor expansion in time and Fourier projection estimate gives

the following truncation error
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4020 CHENG ET AL.

3

2
Φn+1

N − 2Φn
N +

1

2
Φn−1

N

s
= ΔN

(
(Φn+1

N )3 − (2Φn
N − Φn−1

N ) − (1 − 3𝛼)2𝜀2ΔNΦn+1

N + 𝛽𝜀2Δ2

NΦn+1

N

− 2𝜀
2∇N ⋅

(
4𝛼(1 − 3𝛼)∇pg(1)(∇NΦn

N) + 8𝛼
2∇pg(2)(∇NΦn

N)
)

+ 𝜀2∇N ⋅
(
4𝛼(1 − 3𝛼)∇pg(1)(∇NΦn−1

N ) + 8𝛼
2∇pg(2)(∇NΦn−1)

)

−AsΔN(Φn+1

N − Φn
N)
)
+ 𝜏n

, (4.5)

with ‖𝜏n‖ ≤ C(s2 + hm). The numerical error function is defined as

ek ∶= Φk
N − 𝜙k

, at a point-wise level.

Then, subtracting (3.18) and (3.19) from (4.5) yields

3

2
en+1 − 2en + 1

2
en−1

s
= ΔN

((
(Φn+1

N )2 + Φn+1

N 𝜙
n+1 + (𝜙n+1)2

)
en+1 − (2en − en−1)

− (1 − 3𝛼)2𝜀2ΔNen+1 + 𝛽𝜀2Δ2

Nen+1 − AsΔN(en+1 − en)
− 2𝜀

2∇N ⋅
(
4𝛼(1 − 3𝛼)

(
∇pg(1)(∇NΦn) − ∇pg(1)(∇N𝜙

n)
)

+ 8𝛼
2
(
∇pg(2)(∇NΦn) − ∇pg(2)(∇N𝜙

n)
))

+ 𝜀2∇N ⋅
(
4𝛼(1 − 3𝛼)

(
∇pg(1)(∇NΦn−1) − ∇pg(1)(∇N𝜙

n−1)
)

+ 8𝛼
2
(
∇pg(2)(∇NΦn−1) − ∇pg(2)(∇N𝜙

n−1)
))
+ 𝜏n

. (4.6)

Since the exact solution to the PDE system (1.3) is mass conservative, we conclude that

the projection solution ΦN preserves the same property:

∫Ω ΦN(x, t) 𝑑x = ∫Ω Φ(x, t) 𝑑x = ∫Ω Φ(x, 0) 𝑑x = ∫Ω ΦN(x, 0) 𝑑x, ∀ t > 0,

Φk
N = ∫Ω ΦN(x, t) 𝑑x = ∫Ω ΦN(x, 0) 𝑑x = Φ0

N , ∀ k ≥ 0,

(4.7)

in which the fact thatΦk
N ∈ K

has been applied. Meanwhile, the numerical solution (3.18)

and (3.19) is mass conservative at a discrete level, as proved in Theorem 3.3. These facts

imply that the numerical error function has zero-mean, at a discrete level:

ek = 0, that is, ek ∈ ̈N , ∀k ≥ 0. (4.8)

Subsequently, 𝜓
k ∶= (−ΔN)−1ek ∈ ̈N could be introduced. A discrete inner product with

the error evolutionary Equation (4.6) by 2𝜓
n+1

leads to

2

⟨
3

2
en+1 − 2en + 1

2
en−1

, (−ΔN)−1en+1

⟩

+ 2(1 − 3𝛼)2𝜀2s||∇Nen+1||2
2
+ 2𝛽𝜀

2s||ΔNen+1||2
2
− 2A𝜀2s2⟨ΔN(en+1 − en), en+1⟩

= −2s⟨
(
(Φn+1

N )2 + Φn+1

N 𝜙
n+1 + (𝜙n+1)2

)
en+1

, en+1⟩ + 2s⟨2en − en−1
, en+1⟩

− 16𝛼(1 − 3𝛼)𝜀2s⟨∇pg(1)(∇NΦn
N) − ∇pg(1)(∇N𝜙

n),∇Nen+1⟩

− 32𝛼
2
𝜀

2s⟨∇pg(2)(∇NΦn
N) − ∇pg(2)(∇N𝜙

n),∇Nen+1⟩

+ 8𝛼(1 − 3𝛼)𝜀2s⟨∇pg(1)(∇NΦn−1

N ) − ∇pg(1)(∇N𝜙
n−1),∇Nen+1⟩

+ 16𝛼
2
𝜀

2s⟨∇pg(2)(∇NΦn−1

N ) − ∇pg(2)(∇N𝜙
n−1),∇Nen+1⟩ + 2s⟨𝜏n

, 𝜓
n+1⟩. (4.9)

The BDF2 temporal stencil term could be analyzed as follows:

⟨
3

2
en+1 − 2en + 1

2
en−1

, (−ΔN)−1en+1

⟩

=
⟨

3

2
en+1 − 2en + 1

2
en−1

, en+1

⟩

−1,N
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CHENG ET AL. 4021

= 1

4

(
||en+1||2−1,N − ||en||2−1,N + ||2en+1 − en||2−1,N − ||2en − en−1||2−1,N

+ ||en+1 − 2en + en−1||2−1,N
)
. (4.10)

The bound for the truncation error term is standard:

⟨𝜏n
, 𝜓

n+1⟩ ≤ ||𝜏n||−1,N ⋅ ||∇N𝜓
n+1||2 = ||𝜏n||−1,N ⋅ ||en+1||−1,N ≤ 1

2

(
||en+1||2−1,N + ||𝜏n||2−1,N

)
.

(4.11)

For the last term on the left hand side of (4.9), the following inequality is available:

−⟨ΔN(en+1 − en), en+1⟩ = ⟨∇N(en+1 − en),∇Nen+1⟩ ≥ 1

2

(
||∇Nen+1||2

2
− ||∇Nen||2

2

)
. (4.12)

The first term on the right hand side always keeps non-positive:

−⟨
(
(Φn+1)2 + Φn+1

𝜙
n+1 + (𝜙n+1)2

)
en+1

, en+1⟩ ≤ 0, (4.13)

which comes from the fact that (Φn+1)2+Φn+1
𝜙

n+1+(𝜙n+1)2 ≥ 0. The Cauchy inequality

could be applied to the concave expansive term:

⟨2en − en−1
, en+1⟩ ≤ 1

2

(
3||en+1||2

2
+ 2||en||2

2
+ ||en−1||2

2

)

≤ 𝜀
2

4

(
3||∇Nen+1||2

2
+ 2||∇Nen||2

2
+ ||∇Nen−1||2

2

)

+ 𝜀
−2

4

(
3||en+1||2−1,N + 2||en||2−1,N + ||en−1||2−1,N

)
, (4.14)

since ||ek||2
2
≤ ||∇Nek||2 ⋅ ||ek||−1,N ≤𝜀2

2
||∇Nek||2

2
+ 𝜀

−2

2
||ek||2−1,N , k = n − 1, n, n + 1.

(4.15)

The next few estimates are focused on the nonlinear error terms. At time step tn
, the

following expansion is valid:

− ⟨∇pg(1)(∇NΦn
N) − ∇pg(1)(∇N𝜙

n),∇Nen+1⟩

= −⟨𝜕p
1
g(1)(∇NΦn

N) − 𝜕p
1
g(1)(∇N𝜙

n),xen+1⟩ − ⟨𝜕p
2
g(1)(∇NΦn

N) − 𝜕p
2
g(1)(∇N𝜙

n),yen+1⟩

− ⟨𝜕p
3
g(1)(∇NΦn

N) − 𝜕p
3
g(1)(∇N𝜙

n),zen+1⟩. (4.16)

For the first expansion term, we apply (2.8) from Lemma 2.1 and get

|𝜕p
1
g(1)(∇NΦn) − 𝜕p

1
g(1)(∇N𝜙

n)| ≤ D(1)
1
|xen| + D(1)

2

(
|yen| + |zen|

)
, (4.17)

at a point-wise level. This in turn implies that

|
|
|
⟨𝜕p

1
g(1)(∇NΦn

N) − 𝜕p
1
g(1)(∇N𝜙

n),xen+1⟩
|
|
|

≤ (D(1)
1
||xen||2 + D(1)

2
(||yen||2 + ||zen||2)

)

||xen||2

≤ D(1)
1

2
(||xen||2

2
+ ||xen+1||2

2
) +

D(1)
2

2

(
||yen||2

2
+ ||2en||2

2
+ 2||xen+1||2

2

)
. (4.18)

The bounds for the two other nonlinear expansion terms could be similarly derived:

|
|
|
⟨𝜕p

2
g(1)(∇NΦn

N) − 𝜕p
2
g(1)(∇N𝜙

n),yen+1⟩
|
|
|

≤ D(1)
1

2

(
||yen||2

2
+ ||xen+1||2

2

)
+

D(1)
2

2

(
||xen||2

2
+ ||zen||2

2
+ 2||yen+1||2

2

)
, (4.19)
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4022 CHENG ET AL.

|
|
|
⟨𝜕p

3
g(1)(∇NΦn

N) − 𝜕p
3
g(1)(∇N𝜙

n),zen+1⟩
|
|
|

≤ D(1)
1

2

(
||zen||2

2
+ ||zen+1||2

2

)
+

D(1)
2

2

(
||xen||2

2
+ ||yen||2

2
+ 2||zen+1||2

2

)
. (4.20)

A combination of (4.18)–(4.20) leads to

|
|
|
⟨∇pg(1)(∇NΦn

N) − ∇pg(1)(∇N𝜙
n),∇Nen+1⟩

|
|
|
≤ D(1)

1

2

(
||∇Nen||2

2
+ ||∇Nen+1||2

2

)

+ D(1)
2

(
||∇Nen||2

2
+ ||∇Nen+1||2

2

)

= B0

2

(
||∇Nen||2

2
+ ||∇Nen+1||2

2

)
, (4.21)

in which the identity, B0 = D(1)
1
+ 2D(1)

2
, has been applied again.

The other nonlinear error term could be analyzed in the same fashion, with the help of

inequality (2.8) in Lemma 2.1:

|
|
|
⟨∇pg(2)(∇NΦn

N) − ∇pg(2)(∇N𝜙
n),∇Nen+1⟩

|
|
|
≤ A0

2

(
||∇Nen||2

2
+ ||∇Nen+1||2

2

)
. (4.22)

Likewise, the estimates for the nonlinear surface diffusion error terms at time step tn−1
are

also available:

|
|
|
⟨∇pg(1)(∇NΦn−1

N ) − ∇pg(1)(∇N𝜙
n−1),∇Nen+1⟩

|
|
|
≤ B0

2

(
||∇Nen−1||2

2
+ ||∇Nen+1||2

2

)
, (4.23)

|
|
|
⟨∇pg(2)(∇NΦn−1

N ) − ∇pg(2)(∇N𝜙
n−1),∇Nen+1⟩

|
|
|
≤ A0

2

(
||∇Nen−1||2

2
+ ||∇Nen+1||2

2

)
. (4.24)

A substitution of all these inequalities into (4.9) yields

1

2

(
||en+1||2−1,N − ||en||2−1,N + ||2en+1 − en||2−1,N − ||2en − en−1||2−1,N

)

+ 2𝛽𝜀
2s||ΔNen+1||2

2
+ As2(||∇Nen+1||2

2
− ||∇Nen||2

2
)

≤ 𝜀2s
(
C̃1||∇Nen+1||2

2
+ C̃2||∇Nen||2

2
+ C̃3||∇Nen−1||2

2

)

+ 𝜀
−2

4
s
(
3||en+1||2−1,N + 2||en||2−1,N + ||en−1||2−1,N

)
+ s(||en+1||2−1,N + ||𝜏n||2−1,N), (4.25)

where

C̃1 ∶=
|
|
|
2(1 − 3𝛼)2 − 12𝛼|1 − 3𝛼|B0 − 24𝛼

2A0 − 3

2

|
|
|
,

C̃2 ∶= 8𝛼|1 − 3𝛼|B0 + 16𝛼
2A0 + 1,

C̃3 ∶= 4𝛼|1 − 3𝛼|B0 + 8𝛼
2A0 + 1

2
.

Meanwhile, based on the Sobolev interpolation inequality,

||∇Nf ||2 ≤ ||f ||1∕3

−1,N ⋅ ||ΔNf ||2∕3

2
,

we are able to apply Young’s inequality and obtain

C̃1||∇Nek||2
2
≤ C̃1||ek||

2∕3

−1,N ⋅ ||ΔNek||
4∕3

2
≤ C̃3

1𝛽
−2

3
||ek||2−1,N +

𝛽

2
||ΔNek||2

2
, (4.26)
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for k = n − 1, n, and n + 1. Going back (4.25), we arrive at

1

2

(
||en+1||2−1,N − ||en||2−1,N + ||2en+1 − en||2−1,N − ||2en − en−1||2−1,N

)

+ As2(||∇Nen+1||2
2
− ||∇Nen||2

2
) + 3

2
𝛽𝜀

2s||ΔNen+1||2
2
− 1

2
𝛽𝜀

2s(||ΔNen||2
2
+ ||ΔNen−1||2

2
)

≤ 𝛽
−2
𝜀

2

3
s
(

C̃3

1||en+1||2−1,N + C̃3

2||en||2−1,N + C̃3

3||en−1||2−1,N

)

+ 𝜀
−2

4
s
(
3||en+1||2−1,N + 2||en||2−1,N + ||en−1||2−1,N

)
+ s(||en+1||2−1,N + ||𝜏n||2−1,N). (4.27)

Consequently, an application of a discrete Gronwall inequality leads to the desired con-

vergence estimate of the numerical scheme (3.18) and (3.19), in the 𝓁∞(0,T;H−1

N ) ∩
𝓁2(0,T;H2

N) norm: provided s > 0 is sufficiently small, there is a constant C > 0,

independent of s and h, such that

||en||2−1,N +
𝛽𝜀

2

2
s

n∑

k=0

||ΔNek||2
2
≤ C(s4 + h2m), (4.28)

for any n ∈ N satisfying n ⋅ s ≤ T . The proof of Theorem 4.1 is finished. ▪

5 NUMERICAL RESULTS

5.1 Convergence order test

Some numerical tests are performed to verify the convergence and accuracy order of the numeri-

cal scheme (3.18) and (3.19), for a sufficiently large anisotropy value 𝛼 = 0.2. The biharmonic

regularization coefficient is taken as 𝛽 = 1. In particular, one distinguished advantage of the pro-

posed numerical scheme is associated with the explicit treatment for the nonlinear singular parts g(1)
and g(2), which leads to a great improvement in terms of numerical efficiency, in comparison with

an implicit computation. For the only nonlinear term in the numerical scheme, 𝜙
3
, we apply a pre-

conditioned steepest descent (PSD) solver [27] for the detailed implement, because this nonlinear

term corresponds to a strictly convex energy. The efficiency of the PSD solvers has been exten-

sively demonstrated in quite a few recent works [19,28] to deal with non-singular gradient flow

models.

In the convergence test, the exact solution for (1.3) is chosen as

𝜙e(x, y, t) =
1

2𝜋
sin(2𝜋x) cos(2𝜋y) cos(t), over a square domain Ω = (0, 1)2. (5.1)

The surface diffusion coefficient and the artificial diffusion coefficient are given by 𝜀 = 0.05, A = 1

16
,

respectively, and we take the final time as T = 1.

Because of the spectral accuracy in space, the convergence test is focused on the temporal numer-

ical error. We fix the spatial resolution as N = 256 so that the spatial numerical error is negligible. In

turn, the solutions with a sequence of time step sizes: s = T
NT

(with NT = 100 to NT = 800 in incre-

ments of 100), are computed with the final time T = 1. Figure 1 displays the discrete 𝓁2
norms of the

errors between the numerical solution (3.18) and (3.19) and exact solution (1.3). In more details, the

least square approximation to the CN−2

T curve is displayed as the straight line in the figure, and a care-

ful calculation gives an approximate value of the slope as −2.0062. Therefore, a perfect second order

temporal accuracy is demonstrated in this experiment.
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4024 CHENG ET AL.

FIGURE 1 Discrete 𝓁2
numerical errors for the 𝜙 at the final time T = 1, plotted versus NT , for the second order numerical

scheme (3.18) and (3.19), with a fixed spatial resolution N = 256. The physical parameters: 𝜀 = 0.05, 𝛽 = 1, 𝛼 = 0.2. The star

line represents the numerical error plot versus NT , while the straight line is the least square approximation to the CN−2

T curve.

The least square slope is calculated as −2.0062.

5.2 Simulation results of four-fold-anisotropy

The numerical simulation is performed for the anisotropic Cahn–Hilliard system (1.3) over Ω =
(0, 3.2)2, with the surface diffusion coefficient 𝜀 = 0.03 and anisotropic parameter 𝛼 = 0.2. The initial

data are given by

𝜙(x, y, t = 0) = − tanh

(
(x − x0)2 + (y − y0)2 − r0

0.25𝜀

)

, with x0 = y0 = 1.6, r0 = 0.8. (5.2)

In addition, the biharmonic regularization coefficient is chosen as 𝛽 = 0.0005, and the artificial regu-

larization parameter is taken to be A = 4. The temporal step size is given by s = 10
−3

, and the spatial

resolution is set as 512
2
.

The time evolution snapshots of the phase variable computed by the second order numerical scheme

(3.18) and (3.19) are displayed in Figure 2. The circular profile evolves to an anisotropic, four-fold

shape with missing orientation at the four corners.

5.3 Numerical comparison in terms of the biharmonic regularization parameter

The biharmonic regularization parameter 𝛽 has always played an important role in the solution struc-

ture. For the two-dimensional, strongly anisotropic equation (1.3) with the initial data (5.2), we perform

a numerical test by taking a sequence of parameters: 𝛽 = 0.004, 0.002, 0.001, and 0.0005. The

other physical parameters are taken the same as in Figure 2: 𝜀 = 0.03,Ω = (0, 3.2)2. At the final

time t = 30, in which a steady state solution is reached, a comparison of the computational results

around the left corner is presented in Figure 3. In fact, similar behaviors have also been reported

in [14,20,54]; a smaller regularization coefficient always gives less corner rounding and a sharper

profile.
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CHENG ET AL. 4025

FIGURE 2 Time evolution snapshots of the phase variable at the time sequence: t = 0.05, 0.1, and 30. The physical

parameters: 𝛼 = 0.2, 𝛽 = 0.0005, 𝜀 = 0.03,Ω = (0, 3.2)2.

FIGURE 3 Comparison of the 𝜙 = 0.0 iso-contour plots for numerical solutions obtained with four different corner

regularization parameters, 𝛽 = 0.004, 0.002, 0.001, and 0.0005, at the final time t = 30, with the initial data (5.2). The outer

solid line, the outer dashed line, the inner solid line and the inner dashed line stand for the numerical solutions 𝛽 = 0.0005,

0.001, 0.002, and 0.004, respectively. The physical parameters: 𝜀 = 0.03, Ω = (0, 3.2)2, and 𝛼 = 0.2.
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5.4 Simulation results of eight-fold-anisotropy

In this section, the numerical results of symmetric eight-fold-anisotropic function are presented; see

the more detailed formulation of anisotropic function [14,44,49]

𝛾(n) = 1 + 𝛼

(

8

𝑑∑

i=1

(
8n8

i − 10n6

i + n4

i
)
+ 9

)

. (5.3)

Again, the initial data (5.2) are taken, and the physical parameters are set as: 𝜀 = 0.03, 𝛼 = 0.2,

𝛽 = 0.002, s = 10
−4

. The time snapshots of the evolution computed by the second order numerical

scheme (3.18) and (3.19), with spatial resolution 512
2
, are presented in Figure 4. It is clear that an

octagonal shape has emerges. In terms of a comparison the four-fold and eight-fold anisotropic gradient

flows, which are presented in Figures 2 and 4, respectively, it is clear that the evolution dynamics is

similar. An early structure is observed at t = 0.05, an intermediate time scale structure becomes closer

to an anisotropic shape (t = 0.1 for the four-fold flow, t = 1 for the eight-fold flow), and a steady state

structure is reported at t = 30.

5.5 Three-dimensional simulation results

We present some three-dimensional numerical simulation results. Similarly, the four-fold anisotropic

function (1.1) is taken, and the initial data are given by

FIGURE 4 Time evolution snapshots of the phase variable at a time sequence: t = 0.05, 1, and 30, with an eight-fold

symmetric anisotropic function (5.3). The parameters are set as 𝜀 = 0.03, 𝛼 = 0.2, Ω = (0, 3.2)2.

FIGURE 5 The surface plots of 𝜙 = 0 for the 3-D anisotropic Cahn–Hilliard model at a time sequence: t = 0.05, 0.1, 1, and

10. The four-fold symmetric anisotropic function is taken, as well as the initial data (5.4). The parameters are given by:

𝜀 = 0.03, 𝛼 = 0.2, Ω = (0, 3.2)3.
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CHENG ET AL. 4027

𝜙(x, y, z, t = 0) = − tanh

(
(x−x

0
)2+(y−y

0
)2+(z−z

0
)2−r

0

0.25𝜀

)

,

x0 = y0 = z0 = 1.6, r0 = 0.8.

(5.4)

The physical parameters are set as: 𝜀 = 0.03, 𝛼 = 0.2, 𝛽 = 0.0005, s = 10
−3

. The surface plots of

𝜙 = 0 for the numerical solution computed by the second numerical scheme (3.18) and (3.19), with

spatial resolution 192
3
, are presented in Figure 5.

6 CONCLUDING REMARKS

A second order accurate in time, energy stable numerical scheme is proposed and analyzed for the

strongly anisotropic Cahn–Hilliard model, with Fourier pseudo-spectral spatial approximation. A

biharmonic regularization is included, to make the PDE system well-posed. A convexity analysis on

the anisotropic interfacial energy is reviewed, based on the subtle fact that all its second order func-

tional derivatives stay uniformly bounded by a global constant. Such a convexity analysis overcomes

a well-known difficulty associated with the highly nonlinear and singular nature of the anisotropic

surface energy, so that we are able to derive second order accurate numerical schemes while the-

oretically preserving the energy stability. In more details, the uniform bounds of the second order

functional derivatives lead to an explicit extrapolation for the nonlinear surface energy part, and a

Douglas-Dupont type regularization is added for the sake of numerical stability. A careful estimate

ensures a modified energy dissipation property with a uniform constraint for the regularization param-

eter A. Its combination with an implicit treatment for the nonlinear double well potential term makes

the numerical system weakly nonlinear. More importantly, the derived energy stability is in terms of

the energy potential in the original phase variable, with no auxiliary variable included in the numerical

scheme. In addition, an optimal rate convergence analysis and second order temporal error estimate are

derived for the proposed numerical scheme, which is the first such result for the strongly anisotropic

model.

A few numerical results have also been presented in this work, such as the convergence rate test,

simulation results of four-fold and eight-fold anisotropic functions, numerical comparison between

different biharmonic regularization parameters, et cetera.
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