
Journal of Computational Physics 518 (2024) 113331

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Efficient finite element schemes for a phase field model of 

two-phase incompressible flows with different densities

Jiancheng Wang a, Maojun Li a, Cheng Wang b,∗

a School of Mathematical Sciences, University of Electronic Science and Technology of China, Sichuan, 611731, PR China
b Mathematics Department, University of Massachusetts, North Dartmouth, MA 02747, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Two-phase incompressible flows

Multiple scalar auxiliary variables (MSAV)

Energy stability

Phase field

Variable density

In this paper, we present two multiple scalar auxiliary variable (MSAV)-based, finite element 
numerical schemes for the Abels-Garcke-Grün (AGG) model, which is a thermodynamically 
consistent phase field model of two-phase incompressible flows with different densities. Both 
schemes are decoupled, linear, second-order in time, and the numerical implementation turns 
out to be straightforward. The first scheme solves the Navier-Stokes equations in a saddle point 
formulation, while the second one employs the artificial compressibility method, leading to a fully 
decoupled structure with a time-independent pressure update equation. In terms of computational 
cost, only a sequence of independent elliptic or saddle point systems needs to be solved at each 
time step. At a theoretical level, the unique solvability and unconditional energy stability (with 
respect to a modified energy functional) of the proposed schemes are established. In addition, 
comprehensive numerical simulations are performed to verify the effectiveness and robustness of 
the proposed schemes.

1. Introduction

Two-phase incompressible flows are fundamental components of numerous real-life physical phenomena and play a pivotal role in 
multiphysics simulations, with diverse industrial applications, such as bubble column modeling in chemical and biological engineering 
processes [34], and bubble dynamics modeling in metallurgy processes [81]. Meanwhile, accurately capturing the dynamic interface 
is of paramount importance in numerical simulations of two-phase incompressible flows, as it enables a comprehensive understanding 
of the intricate dynamics exhibited by such a system. Among various interface modeling methods (such as the volume of fluid method 
[46], level set method [72], arbitrary Lagrange-Eulerian method [24]), we are particularly interested in the phase field approach, 
due to its ability to circumvent difficulties associated with simulating discontinuities in physical quantities across interfaces and its 
adherence to an energy law.

The classical phase field model of two-phase incompressible flows (the so-called Model H) originates from the seminal work of 
Hohenberg and Halperin [47], and was subsequently refined in a thermodynamically consistent manner by Gurtin et al. [43]. There 
have been enormous outstanding achievements for Model H, see [6,13,14,22,28,29,45,44] and the references therein. On the other 
hand, such a model is based on a critical assumption that the density ratio is equal to one. Although the Boussinesq approximation 
[58] is applicable for different densities, it does not hold in the presence of a large density ratio. Furthermore, incorporating density 
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variation directly into the momentum equation is inappropriate, as it is crucial to ensure the model is thermodynamically consistent 
in the case of a large density ratio. Therefore, it is not suitable to employ Model H for simulating many engineering problems, 
such as the behavior of rising gas bubbles in liquid metal flows under external magnetic fields [81]. Various thermodynamically 
consistent phase field models (Cahn-Hillard-Navier-Stokes system) have been proposed in the literature; see [2,3,25,42,59,61,70,73], 
and a comprehensive exploration can be found in [73]. Among these available phase field models, our specific focus lies on the 
so-called Abels-Garcke-Grün (AGG) model, proposed by Abels et al. [2]. This model employs volume-averaged velocity to ensure 
solenoidal velocity, while refining the conventional continuity equation and momentum equation by incorporating a diffusive mass 
flux determined by the density ratio and chemical potential. In turn, gravitational energy cannot be taken into consideration as the 
conventional continuity equation is no longer valid, and such an approach leads to an energy dissipation law in the absence of external 
gravity forces. On the other hand, designing efficient numerical schemes for the AGG model is much easier, in comparison with other 
models mentioned above, since it is a generalization of Model H in unmatched density cases. The theoretical results (such as the 
global well-posedness and regularity analysis) of this model have been exhaustively investigated; see [1] and the references therein. 
Also, the AGG model has been generalized to many complex multi-physics problems [7,23,37,66], etc.

Now, our literature review will focus exclusively on the numerical schemes for the AGG model. Grün and Klingbeil [36] proposed 
a second-order in time and unconditionally energy stable scheme, with its convergence established in [35]. However, their scheme is 
nonlinear and coupled, so a theoretical justification of unique solvability is not available in their work. Additionally, the convergence 
rate analysis is absent. Shen and Yang [69] employed the pressure stabilization method [40,41] to construct a fully decoupled, linear, 
first-order in time, and unconditionally energy stable semi-implicit scheme; also see [16]. Gong et al. [33] introduced a novel energy 
quadratization technique to derive a linear and second-order in time scheme, and unconditional energy stability was proved, subject 
to periodic boundary conditions. Yang and Dong [80] employed a scalar auxiliary variable (SAV) approach, which combines the 
kinetic energy and the potential free energy to reformulate the model, and proposed a second-order in time and unconditionally 
energy stable scheme. In fact, the momentum equation is transformed into a curl form in their work, and the vorticity variable is 
introduced to decouple the velocity and pressure gradient. Such an effort leads to a fully decoupled structure, and only a sequence 
of time-independent coefficient linear systems and one nonlinear algebraic equation need to be solved at each time step. However, a 
very small time step is needed in their scheme to obtain a reliable simulation result. Khanwale et al. [53] proposed an unconditionally 
energy stable Crank-Nicolson type scheme, while a residual-based variational multiscale method was used in the Navier-Stokes part for 
pressure stabilization, and a massively parallel adaptive octree-based meshing framework was also developed. Moreover, the pressure 
projection idea was employed and a projection-based semi-implicit scheme was derived in [54]. Meanwhile, a linear, second-order 
in time and unconditionally energy stable scheme was proposed by Fu and Han [31], and a classical residual-based stabilization 
was applied in the advection-dominated regime. On the other hand, this is a coupled numerical scheme, which leads to a higher 
computational cost. And they failed to utilize the “zero-energy-contribution” (ZEC) approach [78] in constructing a decoupled scheme, 
as an order one constancy error was observed in their numerical experiments. Nevertheless, the ZEC approach is still very useful in 
obtaining a decoupled structure. For example, following the work [69], Chen and Yang [8] proposed a fully decoupled, linear, and 
unconditionally energy stable scheme, while the pressure stabilization method, Strang operator splitting method, and ZEC approach 
were utilized to decouple the system; also see the related work [9]. The primary shortcoming of this numerical effort is associated 
with the fact that their schemes were only limited to first-order accuracy in time.

Inspired by the previous studies, our objective in this paper is to develop decoupled, linear, second-order in time, and uncon-

ditionally energy stable, fully discrete finite element numerical schemes for the AGG model. In particular, such an effort is based 
on decoupling methods for incompressible flows, such as projection and quasi-compressibility approaches. This numerical effort is 
undoubtedly very challenging, since the densities and dynamic viscosities in the momentum equation are determined by the order 
parameter, and more coupled terms are involved than in Model H. Moreover, a theoretical justification of energy stability also poses 
a formidable challenge, especially for second-order in time, fully decoupled schemes. In fact, the numerical scheme presented in [80]

is the only one that fulfills all the aforementioned properties. However, this algorithm encounters significant challenges in numeri-

cal simulation and lacks scalability for more intricate two-phase incompressible flows. In order to accomplish these objectives, the 
following strategies are implemented:

• The conventional numerical techniques, such as semi-implicit methods, are not ideal to achieve the objectives outlined above. 
To facilitate the numerical design and theoretically obtain a discrete energy law, we reformulate the dimensionless AGG model 
by some suitable identical transformations. Afterwards, the MSAV approach [17,57] is employed to rewrite the system into an 
equivalent form in the continuous sense. Of course, the nonlinear potential in the Cahn-Hillard equation can be linearized by 
this approach. In comparison with the standard SAV approach [68], the MSAV formulation can effectively capture the disparate 
evolution process in the total energy [17].

• To ensure unconditional energy stability in developing a linear scheme, we incorporate the ZEC feature into the scalar auxiliary 
variables of the MSAV approach, and treat all the coupled terms explicitly. In addition, extrapolation formulas are utilized to 
linearize all variables related to the order parameter in the momentum equation, such as the density and dynamic viscosity.

• The backward difference formula (BDF) is used as the temporal discretization. The first scheme is derived by a direct ap-

plication of Galerkin finite element spatial approximation. To further develop a fully decoupled finite element scheme with 
a time-independent pressure update equation, we employ the artificial compressibility method [27] and follow the ideas in 
[20,32,41] to deal with the Navier-Stokes equations. The second proposed scheme is based on a combination of these numerical 
2

ideas.



Journal of Computational Physics 518 (2024) 113331J. Wang, M. Li and C. Wang

The rest of this paper is organized as follows. In Section 2, we introduce the dimensionless governing equations and employ the 
MSAV approach for an equivalent reformulation. In Section 3, we propose the associated numerical schemes, and prove the unique 
solvability and unconditional energy stability. The numerical implementation is outlined as well. In Section 4, various numerical 
simulation results are presented to validate the robustness of the proposed schemes, and the impact of different mobility forms is 
investigated. Finally, some concluding remarks are made in Section 5, and the related future works are mentioned.

2. Governing equations and MSAV reformulation

2.1. Governing equations

Let Ω ⊂ℝ𝑑 (𝑑 = 2, 3) be a bounded and connected domain with Lipschitz continuous boundary 𝜕Ω. The following dimensionless 
thermodynamically consistent phase field model of two-phase incompressible flows is considered, with different densities (for the 
dimensional AGG model, see [2] for details):

𝜙𝑡 +∇ ⋅ (𝒖𝜙) = 1
Pe

∇ ⋅ (𝑚∇𝜇) , (1a)

−Cn2Δ𝜙+ 𝐹 ′(𝜙) = 𝜇, (1b)

𝜌𝑡 +∇ ⋅ (𝜌𝒖+ 𝑱 ) = 0, (1c)

𝜌𝒖𝑡 + (𝜌𝒖+ 𝑱 ) ⋅∇𝒖 = 1
Re

∇ ⋅ (2𝜂𝔻(𝒖)) − ∇𝑝− Cn
We

∇ ⋅ (∇𝜙∇𝜙) + 1
Fr

𝒇 , (1d)

∇ ⋅ 𝒖 = 0. (1e)

In the above equations, 𝜙 is the order parameter that labels the two immiscible fluids such that

𝜙(𝒙, 𝑡) =

{
1, fluid 1,

−1, fluid 2.
(2)

Moreover, 𝜇 is the chemical potential, 𝑚 = 𝑚(𝜙) ≥ 0 is the mobility, 𝐹 (𝜙) = 1
4 (𝜙

2 − 1)2 is the Ginzburg-Landau double-well potential, 
𝜌 and 𝜂 are the density and dynamic viscosity defined by

𝜌 ∶=
𝜌1 − 𝜌2
2𝜌𝑟

𝜙+
𝜌1 + 𝜌2
2𝜌𝑟

and 𝜂 ∶=
𝜂1 − 𝜂2
2𝜂𝑟

𝜙+
𝜂1 + 𝜂2
2𝜂𝑟

, (3)

where 𝜌1 (respective to 𝜌2) and 𝜂1 (respective to 𝜂2) are the density and dynamic viscosity of fluid 1 (respective to fluid 2), and 𝜌𝑟, 𝜂𝑟
stand for the reference density and reference dynamic viscosity. The variable 𝒖 is the velocity, 𝑝 is the pressure, 𝔻(𝒖) = 1

2 (∇𝒖+∇𝒖𝑇 ) is 
the deformation tensor, 𝒇 = 𝒇 (𝜌) is the external gravity force. In equation (1c), 𝑱 is the diffusion flux related to the density difference, 
given by

𝑱 = −
𝜌1 − 𝜌2
2𝜌𝑟Pe

𝑚∇𝜇. (4)

For the details of non-dimensional form, let 𝐿𝑟, 𝑢𝑟, 𝜖, 𝜆, 𝑀, 𝑔 denote the reference length, reference velocity, interface thickness, 
surface tension, reference mobility and gravity acceleration, respectively. In turn, the dimensionless numbers are given by the fol-

lowing parameters:

• Cahn number Cn = 𝜖

𝐿𝑟

• (effective) Péclet number Pe =
2
√
2𝜖𝐿𝑟𝑢𝑟
3𝜆𝑀

• Reynolds number Re =
𝐿𝑟𝜌𝑟𝑢𝑟
𝜂𝑟

• Weber number We =
2
√
2𝐿𝑟𝜌𝑟𝑢2𝑟
3𝜆

• Froude number Fr =
𝑢2𝑟
𝑔𝐿𝑟

Remark 1. Here we give the details to determine these dimensionless numbers. In fact, the Froude number Fr is set to one, and 
this fixes the reference velocity to be 𝑢𝑟 =

√
𝑔𝐿𝑟. Subsequently, Re and We can be determined by setting appropriate 𝐿𝑟, 𝜌𝑟, 𝜂𝑟, with 

given 𝜎. In general, Pe is assumed to be a function of Cn. In the case of constant mobility, the scaling law 1∕Pe = 3Cn is preferred 
in the literature [53,54,62]; while in the degenerate mobility case (as a typical choice of (𝜙2 − 1)2), the scaling law 1∕Pe = constant 
is preferred in the literature [4,31,75]. Following the above scaling laws, we are able to complete the parameter setting by choosing 
3

the interface thickness 𝜖.
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To facilitate the numerical design, we first make use of the identity

∇ ⋅ (∇𝜙∇𝜙) = 1
2
∇ |∇𝜙|2 + Δ𝜙∇𝜙, (5)

and transform the right-hand side of (1d) into

RHS = 1
Re

∇ ⋅ (2𝜂𝔻(𝒖)) − ∇𝑃 − 1
WeCn

𝜙∇𝜇 + 1
Fr

𝒇 , (6)

in which the so-called effective pressure has been introduced:

𝑃 ∶= 𝑝+ Cn
2We

|∇𝜙|2 + 1
WeCn

(𝐹 (𝜙) − 𝜇𝜙) . (7)

In turn, we multiply (1c) by 12𝒖 and add it to (1d). By introducing a new variable 𝜎 =
√
𝜌, the left-hand side of (1d) turns out to be

LHS = 𝜎(𝜎𝒖)𝑡 + (𝜌𝒖+ 𝑱 ) ⋅∇𝒖+ 1
2
∇ ⋅ (𝜌𝒖+ 𝑱 )𝒖. (8)

Hence, system (1) could be rewritten as the following form:

𝜙𝑡 +∇ ⋅ (𝒖𝜙) = 1
Pe

∇ ⋅ (𝑚∇𝜇) , (9a)

−Cn2Δ𝜙+ 𝐹 ′(𝜙) = 𝜇, (9b)

𝜎(𝜎𝒖)𝑡 + (𝜌𝒖+ 𝑱 ) ⋅∇𝒖+ 1
2
∇ ⋅ (𝜌𝒖+ 𝑱 )𝒖 = 1

Re
∇ ⋅ (2𝜂𝔻(𝒖)) − ∇𝑃 − 1

WeCn
𝜙∇𝜇 + 1

Fr
𝒇 , (9c)

∇ ⋅ 𝒖 = 0. (9d)

To form a closed PDE system, we take the following boundary conditions:

𝒏 ⋅∇𝜙|𝜕Ω = 0,

𝒏 ⋅∇𝜇|𝜕Ω = 0,

𝒖|𝜕Ω = 0,

(10)

and the initial conditions:

𝜙(0) = 𝜙0,

𝒖(0) = 𝑢0.
(11)

Notice that other appropriate physical boundary conditions could also be adopted, such as periodic and free-slip ones.

By taking 𝒇 = 0, system (9) with boundary condition (10) and initial condition (11) satisfies the following energy dissipation law:

d
d𝑡
ℰ(𝑡) = −𝒫(𝑡) ≤ 0, (12)

or in an equivalent integral form:

sup
0≤𝑡≤𝑇

ℰ(𝑡) +

𝑇

∫
0

𝒫(𝑡)d𝑡 ≤ 𝐶, (13)

where 𝑇 ∈ (0, ∞) is the final time and 𝐶 is a generic constant dependent on the initial data and dimensionless numbers. The dimen-

sionless total energy and the energy dissipation density are given by

ℰ = ∫
Ω

[
1
2
|𝜎𝒖|2 + 1

WeCn

(
Cn2

2
|∇𝜙|2 + 𝐹 (𝜙))]

d𝒙,

𝒫 = ∫
Ω

( 1
PeWeCn

𝑚|∇𝜇|2 + 2
Re
𝜂|𝔻(𝒖)|2)d𝒙. (14)

2.2. The MSAV reformulation

For the convenience of numerical design, we introduce the following scalar auxiliary variables [57]:

𝑅(𝑡) =𝑈 (𝑡) =
√√√√∫

Ω

𝐺(𝜙)d𝒙+ 𝑆, 𝐺(𝜙) = 𝐹 (𝜙) − 𝑠
2
𝜙2, (15a)
4

𝜉1 =𝑅∕𝑈, (15b)
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𝑄(𝑡) = 𝑒−𝑡∕𝑇 , (15c)

𝜉2 = 𝑒𝑡∕𝑇𝑄, (15d)

where 𝑠, 𝑆 are positive constants. In turn, system (9) can be reformulated as

𝜙𝑡 + 𝜉1∇ ⋅ (𝒖𝜙) = 1
Pe

∇ ⋅ (𝑚∇𝜇) , (16a)

−Cn2Δ𝜙+ 𝑠𝜙+ 𝜉1𝐺′(𝜙) = 𝜇, (16b)

𝑅𝑡 =
1
2𝑈 ∫

Ω

𝐺′(𝜙)𝜙𝑡d𝒙, (16c)

𝜎(𝜎𝒖)𝑡 + 𝜉2
[
(𝜌𝒖+ 𝑱 ) ⋅∇𝒖+ 1

2
∇ ⋅ (𝜌𝒖+ 𝑱 )𝒖

]
= 1

Re
∇ ⋅ (2𝜂𝔻(𝒖)) − ∇𝑃 −

𝜉1
WeCn

𝜙∇𝜇 + 1
Fr

𝒇 , (16d)

∇ ⋅ 𝒖 = 0, (16e)

𝑄𝑡 = − 1
𝑇
𝑄. (16f)

Remark 2. In fact, we have introduced the term 𝑠2𝜙
2 to simplify the analysis [57,67], which will be explored in our future work.

It is obvious that, the reformulated system (16), together with the boundary and initial conditions (10), (11), supplemented with 
two extra initial conditions for 𝑅(𝑡) and 𝑄(𝑡), i.e.,

𝑅(0) =
√√√√∫

Ω

𝐺(𝜙0)d𝒙+ 𝑆,

𝑄(0) = 1,

(17)

is equivalent to the original PDE system.

Multiplying (16c) by 2𝑅 and (16f) by 𝑄, we can easily obtain an equivalent energy dissipation law:

d
d𝑡
ℰ(𝑡) = −𝒫(𝑡) ≤ 0, (18)

or in an equivalent integral form:

sup
0≤𝑡≤𝑇

ℰ(𝑡) +

𝑇

∫
0

𝒫(𝑡)d𝑡 ≤ 𝐶, (19)

where

ℰ = 1
2 ∫

Ω

(|𝜎𝒖|2 + Cn
We

|∇𝜙|2 + 𝑠

WeCn
|𝜙|2)d𝒙+ 1

WeCn
𝑅2 + 1

2
𝑄2,

𝒫 = ∫
Ω

( 1
PeWeCn

𝑚|∇𝜇|2 + 2
Re
𝜂|𝔻(𝒖)|2)d𝒙+ 𝑄

2

𝑇
.

(20)

In the subsequent section, we will present fully discrete finite element schemes for system (16) with provable unconditional 
energy stability (in terms of a modified energy) for both schemes. Some related works of SAV-type numerical methods that preserve 
the original energy have been reported in [52,82], while this effort has been beyond the scope of this paper, and we only focus on 
the modified energy stability in this work. For simplicity, the mobility 𝑚 is set to be a constant, while a degenerate mobility (such 
as 𝑚 = (𝜙2 − 1)2) is also applicable. In particular, we will investigate their impact on interface dynamics through several numerical 
simulations in Section 5, since a degenerate mobility could reduce the non-physical effect of bulk diffusion in two-phase flows, as 
mentioned in [31].

3. Fully discrete schemes and their properties

Let 𝐻𝑘(Ω) be the Sobolev spaces equipped with inner product (⋅, ⋅)𝑘 and norm ‖ ⋅ ‖𝑘; of course, it becomes the Lebesgue space 
𝐿2(Ω) with inner product (⋅, ⋅) and norm ‖ ⋅ ‖ if 𝑘 = 0. Then we introduce the following spaces:

𝑉 ∶=𝐻1(Ω),

𝑿 ∶=𝐻1
0 (Ω)

𝑑 , (21)
5

𝑁 ∶=𝐿2(Ω) ∩𝐻1(Ω).
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In the spatial discretization, let ℎ be a quasi-uniform triangulation of Ω with mesh size ℎ, and 𝑉ℎ ⊂ 𝑉 , 𝑿ℎ ⊂ 𝑿, 𝑁ℎ ⊂ 𝑁, 𝑀ℎ =
𝑁ℎ ∩𝐿2

0(Ω) be the finite element spaces. It is assumed that the pair 𝑿ℎ ×𝑁ℎ satisfies the corresponding LBB condition [26]: there 
exists a positive constant 𝐶 which is independent of ℎ, such that

inf
𝑞∈𝑁ℎ

sup
𝒗∈𝑿ℎ

(∇ ⋅ 𝒗, 𝑞)‖𝒗‖1‖𝑞‖ ≥ 𝐶. (22)

In terms of the temporal discretization, let 𝑡𝑛, 𝑛 = 0, 1, ⋯ , 𝑁 be a uniform partition of the time interval [0, 𝑇 ] with time step size 
𝜏 = 𝑇

𝑁
, and the following BDF operator is defined:

𝛿𝜏𝜒
𝑛+1 =

𝛾0𝜒
𝑛+1 − �̂�
𝜏

, (23)

where 𝜒 is a generic variable and

�̂� =

{
𝜒𝑛, 𝐽 = 1,
2𝜒𝑛 − 1

2𝜒
𝑛−1, 𝐽 = 2,

; 𝛾0 =

{
1, 𝐽 = 1,
3∕2, 𝐽 = 2.

(24)

We also recall the extrapolation formulas

𝜒𝑛+1 =

{
𝜒𝑛, 𝐽 = 1,
2𝜒𝑛 − 𝜒𝑛−1, 𝐽 = 2,

(25)

and use the following notations in the numerical design:

𝒟𝜒𝑛+1 = 𝜒𝑛+1 − 𝜒𝑛,

𝒟2𝜒𝑛+1 = 𝜒𝑛+1 − 2𝜒𝑛 + 𝜒𝑛−1,

𝒟3𝜒𝑛+1 = 𝜒𝑛+1 − 3𝜒𝑛 + 3𝜒𝑛−1 − 𝜒𝑛−2.

(26)

3.1. The standard Galerkin scheme

The Galerkin finite element method can be directly applied to system (16) for spatial discretization, i.e., solving velocity and 
pressure in a saddle point formulation. Its combination with the BDF temporal discretization results in the following fully discrete 
finite element scheme: find (𝜙𝑛+1

ℎ
, 𝜇𝑛+1
ℎ

) ∈ 𝑉ℎ × 𝑉ℎ, (𝒖𝑛+1ℎ , 𝑃 𝑛+1
ℎ

) ∈𝑿ℎ ×𝑀ℎ, 𝑅𝑛+1 ∈ℝ+, 𝑄𝑛+1 ∈ℝ+, such that for all (𝜓ℎ, 𝜔ℎ) ∈ 𝑉ℎ ×
𝑉ℎ, (𝒗ℎ, 𝑞ℎ) ∈𝑿ℎ ×𝑀ℎ,

(𝛿𝜏𝜙𝑛+1ℎ ,𝜔ℎ) = 𝜉𝑛+11 (𝜙𝑛+1
ℎ

�̃�
𝑛+1
ℎ ,∇𝜔ℎ) −

1
Pe

(∇𝜇𝑛+1
ℎ
,∇𝜔ℎ), (27a)

(𝜇𝑛+1
ℎ
,𝜓ℎ) = Cn2(∇𝜙𝑛+1

ℎ
,∇𝜓ℎ) + 𝑠(𝜙𝑛+1ℎ ,𝜓ℎ) + 𝜉𝑛+11 (𝐺′(𝜙𝑛+1

ℎ
), 𝜓ℎ), (27b)

𝛿𝜏𝑅
𝑛+1 = 1

2𝑈𝑛+1

(
(𝐺′(𝜙𝑛+1

ℎ
), 𝛿𝜏𝜙𝑛+1ℎ ) − (𝜙𝑛+1

ℎ
�̃�
𝑛+1
ℎ ,∇𝜇𝑛+1

ℎ
) + (𝜙𝑛+1

ℎ
∇𝜇𝑛+1

ℎ
,𝒖𝑛+1
ℎ

)
)
, (27c)

(𝜎𝑛+1
ℎ
𝛿𝜏 (𝜎𝒖)𝑛+1ℎ ,𝒗ℎ) +

2
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+1
ℎ

),𝔻(𝒗ℎ)
)
− (𝑃 𝑛+1

ℎ
,∇ ⋅ 𝒗ℎ) +

(
∇ ⋅ 𝒖𝑛+1

ℎ
, 𝑞ℎ

)
= −

𝜉𝑛+12
2

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒗ℎ

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒗ℎ, �̃�

𝑛+1
ℎ

)]
−
𝜉𝑛+11
WeCn

(𝜙𝑛+1
ℎ

∇𝜇𝑛+1
ℎ
,𝒗ℎ) +

1
Fr

(𝒇
𝑛+1
ℎ ,𝒗ℎ), (27d)

𝛿𝜏𝑄
𝑛+1 = − 𝑄

𝑛+1

𝑇
+ 1

2
𝑒𝑡
𝑛+1∕𝑇

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒖𝑛+1

ℎ

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+1

ℎ
, �̃�𝑛+1ℎ

)]
. (27e)

In the above equations, we denote 𝜒𝑛+1 = 𝜒(𝜙𝑛+1
ℎ

) for simplicity.

Remark 3. In fact, the ZEC approach has been utilized in the construction of (27c) and (27e), to ensure the energy stability property.

Remark 4. Although 𝜙 is bounded in the continuous PDE analysis, the discrete solution 𝜙ℎ may not obey this bound. The dynamics 
of 𝜙 would not be influenced by this deviation, while the strict positivity of the associated physical parameters may be destroyed, 
which is especially pivotal here since 𝜎 =

√
𝜌 is introduced. To avoid such a numerical error caused by an excursion of 𝜙ℎ , the cut-off 

approach is applied:

𝒞

{
𝜙ℎ, if |𝜙ℎ| ≤ 1,
6

𝜙
ℎ
=

sign(𝜙ℎ), otherwise,
(28)
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and 𝜌ℎ, 𝜂ℎ could be evaluated by

𝜌ℎ =
𝜌1 − 𝜌2
2𝜌𝑟

𝜙𝒞
ℎ
+
𝜌1 + 𝜌2
2𝜌𝑟

and 𝜂ℎ ∶=
𝜂1 − 𝜂2
2𝜂𝑟

𝜙𝒞
ℎ
+
𝜂1 + 𝜂2
2𝜂𝑟

, (29)

with suitable time discretization for 𝜙ℎ . In practice, we first use extrapolations to get 𝜙𝑛+1
ℎ

, then the cut-off variables, 𝜌𝑛+1
ℎ

and 𝜂𝑛+1
ℎ

, 
can be updated afterwards. Via this method, the bound of 𝜌 and 𝜂 will be inherited by discrete solutions. In addition, the theoretical 
proof of discrete energy law will not be affected, since it is employed only to make 𝜌𝑛+1

ℎ
and 𝜂𝑛+1

ℎ
bounded in the bulk by 𝜌𝑘 and 𝜂𝑘, 

𝑘 = 1, 2.

Now we look at the numerical implementation process. With the notations⎧⎪⎪⎨⎪⎪⎩
𝜙𝑛+1
ℎ

= 𝜙𝑛+10 + 𝜉𝑛+11 𝜙𝑛+11 ,

𝜇𝑛+1
ℎ

= 𝜇𝑛+10 + 𝜉𝑛+11 𝜇𝑛+11 ,

𝒖𝑛+1
ℎ

= 𝒖𝑛+10 + 𝜉𝑛+11 𝒖𝑛+11 + 𝜉𝑛+12 𝒖𝑛+12 ,

𝑃 𝑛+1
ℎ

= 𝑃 𝑛+10 + 𝜉𝑛+11 𝑃 𝑛+11 + 𝜉𝑛+12 𝑃 𝑛+12 ,

(30)

we are able to decompose (27) into the following steps.

Step 1: Find (𝜙𝑛+10 , 𝜇𝑛+10 ) ∈ 𝑉ℎ × 𝑉ℎ, such that for all (𝜓ℎ, 𝜔ℎ) ∈ 𝑉ℎ × 𝑉ℎ,

𝛾0(𝜙𝑛+10 ,𝜔ℎ) +
𝜏

Pe
(∇𝜇𝑛+10 ,∇𝜔ℎ) = (�̂�,𝜔ℎ),

(𝜇𝑛+10 , 𝜓ℎ) − Cn2(∇𝜙𝑛+10 ,∇𝜓ℎ) − 𝑠(𝜙𝑛+10 , 𝜓ℎ) = 0.
(31)

In addition, we solve for (𝜙𝑛+11 , 𝜇𝑛+11 ) ∈ 𝑉ℎ × 𝑉ℎ, such that for all (𝜓ℎ, 𝜔ℎ) ∈ 𝑉ℎ × 𝑉ℎ,

𝛾0(𝜙𝑛+11 ,𝜔ℎ) +
𝜏

Pe
(∇𝜇𝑛+11 ,∇𝜔ℎ) = 𝜏(𝜙𝑛+1ℎ �̃�

𝑛+1
ℎ ,∇𝜔ℎ),

(𝜇𝑛+11 , 𝜓ℎ) − Cn2(∇𝜙𝑛+11 ,∇𝜓ℎ) − 𝑠(𝜙𝑛+11 , 𝜓ℎ) = (𝐺′(𝜙𝑛+1
ℎ

), 𝜓ℎ).
(32)

Step 2: Obtain (𝒖𝑛+10 , 𝑃 𝑛+10 ) ∈𝑿ℎ ×𝑀ℎ, such that for all (𝒗ℎ, 𝑞ℎ) ∈𝑿ℎ ×𝑀ℎ,

𝛾0((𝜌ℎ𝒖0)𝑛+1,𝒗ℎ) +
2𝜏
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+10 ),𝔻(𝒗ℎ)
)
−𝜏(𝑃 𝑛+10 ,∇ ⋅ 𝒗ℎ)

+𝜏(∇ ⋅ 𝒖𝑛+10 , 𝑞ℎ) = (𝜎𝑛+1
ℎ
̂̃𝜎𝒖,𝒗ℎ) +

𝜏

Fr
(𝒇
𝑛+1
ℎ ,𝒗ℎ).

(33)

Similarly, we get (𝒖𝑛+11 , 𝑃 𝑛+11 ), (𝒖𝑛+12 , 𝑃 𝑛+12 ) ∈𝑿ℎ ×𝑀ℎ, such that for all (𝒗ℎ, 𝑞ℎ) ∈𝑿ℎ ×𝑀ℎ,

𝛾0((𝜌ℎ𝒖1)𝑛+1,𝒗ℎ) +
2𝜏
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+11 ),𝔻(𝒗ℎ)
)
− 𝜏(𝑃 𝑛+11 ,∇ ⋅ 𝒗ℎ) + 𝜏(∇ ⋅ 𝒖𝑛+11 , 𝑞ℎ) = − 𝜏

WeCn
(𝜙𝑛+1
ℎ

∇𝜇𝑛+1
ℎ
,𝒗ℎ), (34)

𝛾0((𝜌ℎ𝒖2)𝑛+1,𝒗ℎ) +
2𝜏
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+12 ),𝔻(𝒗ℎ)
)
− 𝜏(𝑃 𝑛+12 ,∇ ⋅ 𝒗ℎ) + 𝜏(∇ ⋅ 𝒖𝑛+12 , 𝑞ℎ) = − 𝜏

2

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒗ℎ

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒗ℎ, �̃�

𝑛+1
ℎ

)]
.

(35)

Step 3: Once 𝜙𝑛+1𝑖 , 𝜇𝑛+1𝑖 , 𝒖𝑛+1𝑖 are obtained, we are able to determine 𝜉𝑛+1𝑖 by(
𝐴1 𝐴2
𝐵1 𝐵2

)(
𝜉𝑛+11
𝜉𝑛+12

)
=
(
𝐴0
𝐵0

)
, (36)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪

𝐴0 = �̂�+ 1
2𝑈𝑛+1

(
(𝐺′(𝜙𝑛+1

ℎ
), 𝛾0𝜙𝑛+10 − �̂�) − 𝜏(𝜙𝑛+1

ℎ
�̃�
𝑛+1
ℎ ,∇𝜇𝑛+10 ) + 𝜏(𝜙𝑛+1

ℎ
∇𝜇𝑛+1

ℎ
,𝒖𝑛+10 )

)
,

𝐴1 = 𝛾0𝑈𝑛+1 −
1

2𝑈𝑛+1

(
(𝐺′(𝜙𝑛+1

ℎ
), 𝛾0𝜙𝑛+11 ) − 𝜏(𝜙𝑛+1

ℎ
�̃�
𝑛+1
ℎ ,∇𝜇𝑛+11 ) + 𝜏(𝜙𝑛+1

ℎ
∇𝜇𝑛+1

ℎ
,𝒖𝑛+11 )

)
,

𝐴2 = − 𝜏

2𝑈𝑛+1
(𝜙𝑛+1
ℎ

∇𝜇𝑛+1
ℎ
,𝒖𝑛+12 ),

𝐵0 = �̂�+ 𝜏
2
𝑒𝑡
𝑛+1∕𝑇

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒖𝑛+10

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+10 , �̃�𝑛+1ℎ

)]
,

𝐵1 = − 𝜏
2
𝑒𝑡
𝑛+1∕𝑇

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒖𝑛+11

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+11 , �̃�𝑛+1ℎ

)]
,

𝐵2 = 𝑒−𝑡
𝑛+1∕𝑇

(
𝛾0 +

𝜏

𝑇

)
− 𝜏

2
𝑒𝑡
𝑛+1∕𝑇

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒖𝑛+12

)
(

𝑛+1 𝑛+1 𝑛+1
)]

(37)
7

⎪⎩ − (𝜌𝑛+1
ℎ

�̃�ℎ + 𝑱ℎ ) ⋅∇𝒖𝑛+12 , �̃�ℎ .
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In practice, all coefficient matrices and load vectors could be computed in a single element traversal at each time step. Meanwhile, 
we need to solve two mixed systems and three saddle point systems with the same coefficient matrix, and one linear algebraic system 
of two equations. Although this scheme requires additional computations for load vectors and finite element solutions, the advantage 
of the decoupled nature, ease of implementation, and unconditional energy stability makes it very attractive. Moreover, the systems 
in Steps 1 and 2 could be solved in parallel since all of them are independent from each other.

Now we look at the well-posedness and energy stability of (27) in the following theorems.

Theorem 1. The numerical scheme (27) is globally mass conservative:

∫
Ω

𝜙𝑛+1
ℎ

d𝒙 = ∫
Ω

𝜙𝑛
ℎ
d𝒙. (38)

Proof. This identity could be easily derived by taking 𝜔ℎ = 1 in (27a). □

Theorem 2. The numerical scheme (27) admits a unique solution.

Proof. The well-posedness of (31)-(32) in Step 1 cannot be directly derived from Lax-Milgram theorem [26], since there is no 
guarantee for the 𝐻1 stability of 𝜇 (the bilinear form only involves ∇𝜇). In fact, they are well-posed in �̄�1(Ω) × �̄�1(Ω), where 
�̄�1(Ω) ∶=

{
𝜑 ∈𝐻1(Ω) ∶ ∫Ω𝜑 = 0

}
. By defining �̂� = 𝜙 − ∫Ω 𝜙, �̂� = 𝜇 − ∫Ω 𝜇, we are able to recover (𝜙, 𝜇) from (�̂�, �̂�), which implies 

the well-posedness in 𝐻1(Ω) ×𝐻1(Ω); more technical details could be seen in [79]. Since 𝑿ℎ ×𝑀ℎ satisfies the LBB condition, by 
Babuška-Brezzi theorem [26], we get the unique solvability of (33)-(35) in Step 2.

With regard to the linear system (36) in Step 3, we now prove that 𝐴2𝐵1 ≠ 𝐴1𝐵2. Taking (𝜓ℎ, 𝜔ℎ) = (𝛾0𝜙𝑛+11 , 𝜇𝑛+11 ) in (32), the 
following equalities become available:

𝛾0(𝜙𝑛+11 , 𝜇𝑛+11 ) + 𝜏

Pe
‖∇𝜇𝑛+11 ‖2 = 𝜏(𝜙𝑛+1

ℎ
�̃�
𝑛+1
ℎ ,∇𝜇𝑛+11 ),

𝛾0(𝜇𝑛+11 , 𝜙𝑛+11 ) − 𝛾0Cn2‖∇𝜙𝑛+11 ‖2 − 𝛾0𝑠‖𝜙𝑛+11 ‖2 = (𝐺′(𝜙𝑛+1
ℎ

), 𝛾0𝜙𝑛+11 ).
(39)

Taking (𝒗ℎ, 𝑞ℎ) = (𝒖𝑛+11 , 𝑃 𝑛+11 ), (𝒖𝑛+12 , 0) and (𝟎, 𝑃 𝑛+12 ) in (34), respectively, we see that

𝛾0‖(𝜎ℎ𝒖1)𝑛+1‖2 + 2𝜏
Re

‖(𝜂𝑛+1
ℎ

)
1
2𝔻(𝒖𝑛+11 )‖2 = − 𝜏

WeCn
(𝜙𝑛+1
ℎ

∇𝜇𝑛+1
ℎ
,𝒖𝑛+11 ),

𝛾0((𝜎ℎ𝒖1)𝑛+1, (𝜎ℎ𝒖2)𝑛+1) +
2𝜏
Re

(
𝜂𝑛+1𝔻(𝒖𝑛+11 ),𝔻(𝒖𝑛+12 )

)
−𝜏(𝑃 𝑛+11 ,∇ ⋅ 𝒖𝑛+12 )

= − 𝜏

WeCn
(𝜙𝑛+1
ℎ

∇𝜇𝑛+1
ℎ
,𝒖𝑛+12 ),

𝜏(∇ ⋅ 𝒖𝑛+11 , 𝑃 𝑛+12 ) = 0.

(40)

Taking (𝒗ℎ, 𝑞ℎ) = (𝒖𝑛+11 , 0), (𝟎, 𝑃 𝑛+11 ) and (𝒖𝑛+12 , 𝑃 𝑛+12 ) in (35), respectively, we obtain

𝛾0((𝜎ℎ𝒖2)𝑛+1, (𝜎ℎ𝒖1)𝑛+1) +
2𝜏
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+12 ),𝔻(𝒖𝑛+11 )
)
− 𝜏(𝑃 𝑛+12 ,∇ ⋅ 𝒖𝑛+11 ) = − 𝜏

2

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒖𝑛+11

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+11 , �̃�𝑛+1ℎ

)]
,

𝜏(∇ ⋅ 𝒖𝑛+12 , 𝑃 𝑛+11 ) = 0,

𝛾0‖(𝜎ℎ𝒖2)𝑛+1‖2 + 2𝜏
Re

‖(𝜂𝑛+1
ℎ

)
1
2𝔻(𝒖𝑛+12 )‖2 = − 𝜏

2

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒖𝑛+12

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+12 , �̃�𝑛+1ℎ

)]
.

(41)

As a result, 𝐴1, 𝐴2, 𝐵1, 𝐵2 could be reformulated as

𝐴1 = 𝛾0𝑈𝑛+1 +
1

2𝑈𝑛+1

(
𝛾0Cn2‖∇𝜙𝑛+11 ‖2 + 𝛾0𝑠‖𝜙𝑛+11 ‖2 + 𝜏

Pe
‖∇𝜇𝑛+11 ‖2

+𝛾0WeCn‖(𝜎ℎ𝒖1)𝑛+1‖2 + 2𝜏WeCn
Re

‖(𝜂𝑛+1
ℎ

)
1
2𝔻(𝒖𝑛+11 )‖2) ,

𝐴2 =
WeCn
2𝑈𝑛+1

[
𝛾0((𝜎ℎ𝒖1)𝑛+1, (𝜎ℎ𝒖2)𝑛+1) +

2𝜏
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+11 ),𝔻(𝒖𝑛+12 )
)]
,

𝐵1 = 𝑒𝑡
𝑛+1∕𝑇

[
𝛾0((𝜎ℎ𝒖2)𝑛+1, (𝜎ℎ𝒖1)𝑛+1) +

2𝜏
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+12 ),𝔻(𝒖𝑛+11 )
)]
,

𝐵2 = 𝑒−𝑡
𝑛+1∕𝑇

(
𝛾0 +

𝜏

𝑇

)
+ 𝑒𝑡𝑛+1∕𝑇

(
𝛾0‖(𝜎ℎ𝒖2)𝑛+1‖2 + 2𝜏

Re
‖(𝜂𝑛+1

ℎ
)
1
2𝔻(𝒖𝑛+12 )‖2) .

(42)
8

Since 𝑈𝑛+1 > 0, an application of Cauchy inequality gives
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𝐴2𝐵1 =
WeCn 𝑒𝑡𝑛+1∕𝑇

2𝑈𝑛+1

(
𝛾0((𝜎ℎ𝒖1)𝑛+1, (𝜎ℎ𝒖2)𝑛+1) +

2𝜏
Re

(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+11 ),𝔻(𝒖𝑛+12 )
))2

≤ WeCn 𝑒𝑡𝑛+1∕𝑇

2𝑈𝑛+1

(
𝛾0‖(𝜎ℎ𝒖1)𝑛+1‖2 + 2𝜏

Re
‖(𝜂𝑛+1

ℎ
)
1
2𝔻(𝒖𝑛+11 )‖2)

×
(
𝛾0‖(𝜎𝒖2)𝑛+1‖2 + 2𝜏

Re
‖(𝜂𝑛+1

ℎ
)
1
2𝔻(𝒖𝑛+12 )‖2)

<𝐴1𝐵2,

(43)

which implies the desired result. □

Remark 5. In the case of a degenerate mobility, such as 𝑚 =
(
𝜙2 − 1

)2
, the uniqueness of (𝜙ℎ, 𝜇ℎ) for (31)-(32) (in Step 1) turns out 

to be a direct consequence of the discrete energy law. Subsequently, by employing the Fredholm alternative, we obtain the unique 
solvability of the discrete system in Step 1.

Theorem 3. In the absence of 𝑓𝑛+1
ℎ

, the scheme (27) satisfies the following modified discrete energy law:

ℰ𝑛+1 −ℰ𝑛 = −𝒬𝑛+1 − 4𝜏
Re

‖(𝜂𝑛+1
ℎ

)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 − 2𝜏

𝑇
|𝑄𝑛+1|2 − 2𝜏

PeWeCn
‖∇𝜇𝑛+1

ℎ
‖2, (44)

where

ℰ𝑛 =
⎧⎪⎨⎪⎩
‖(𝜎𝒖)𝑛

ℎ
‖2 + Cn

We‖∇𝜙𝑛ℎ‖2 + 𝑠

WeCn‖𝜙𝑛ℎ‖2 + 2
WeCn |𝑅𝑛|2 + |𝑄𝑛|2, 𝐽 = 1,

1
2‖(𝜎𝒖)𝑛ℎ‖2 + 1

2‖(̃𝜎𝒖)𝑛+1ℎ ‖2 + Cn
2We‖∇𝜙𝑛ℎ‖2 + Cn

2We‖∇𝜙𝑛+1ℎ ‖2 + 𝑠

2WeCn‖𝜙𝑛ℎ‖2
+ 𝑠

2WeCn‖𝜙𝑛+1ℎ ‖2 + 1
WeCn |𝑅𝑛|2 + 1

WeCn |𝑅𝑛+1|2 + 1
2 |𝑄𝑛|2 + 1

2 |�̃�𝑛+1|2, 𝐽 = 2,

(45)

and

𝒬𝑛 =

{‖𝒟(𝜎𝒖)𝑛
ℎ
‖2 + 𝑠

WeCn‖𝒟𝜙𝑛ℎ‖2 + Cn
We‖∇𝒟𝜙𝑛ℎ‖2 + 2

WeCn |𝒟𝑅𝑛|2 + |𝒟𝑄𝑛|2, 𝐽 = 1,
1
2‖𝒟2(𝜎𝒖)𝑛

ℎ
‖2 + Cn

2We‖∇𝒟2𝜙𝑛
ℎ
‖2 + 𝑠

2WeCn‖𝒟2𝜙𝑛
ℎ
‖2 + 1

WeCn |𝒟2𝑅𝑛|2 + 1
2 |𝒟2𝑄𝑛|2, 𝐽 = 2.

(46)

Proof. Taking (𝜓ℎ, 𝜔ℎ) = (2𝜏𝛿𝜏𝜙𝑛+1ℎ , 2𝜏𝜇𝑛+1
ℎ

) in (27a)-(27b) and multiplying (27c) by 4𝜏𝑅𝑛+1, we get

(𝛿𝜏𝜙𝑛+1ℎ ,2𝜏𝜇𝑛+1
ℎ

) = 𝜉𝑛+11 (𝜙𝑛+1
ℎ

�̃�
𝑛+1
ℎ ,2𝜏∇𝜇𝑛+1

ℎ
) − 2𝜏

Pe
‖∇𝜇𝑛+1

ℎ
‖2,

(𝜇𝑛+1
ℎ
,2𝜏𝛿𝜏𝜙𝑛+1ℎ ) = Cn2(∇𝜙𝑛+1

ℎ
,2𝜏𝛿𝜏∇𝜙𝑛+1ℎ ) + 𝑠(𝜙𝑛+1

ℎ
,2𝜏𝛿𝜏𝜙𝑛+1ℎ ) + 𝜉𝑛+11 (𝐺′(𝜙𝑛+1

ℎ
),2𝜏𝛿𝜏𝜙𝑛+1ℎ ),

𝛿𝜏𝑅
𝑛+14𝜏𝑅𝑛+1 = 𝜉𝑛+11

(
(𝐺′(𝜙𝑛+1

ℎ
),2𝜏𝛿𝜏𝜙𝑛+1ℎ ) − (𝜙𝑛+1

ℎ
�̃�
𝑛+1
ℎ ,2𝜏∇𝜇𝑛+1

ℎ
) + (𝜙𝑛+1

ℎ
∇𝜇𝑛+1

ℎ
,2𝜏𝒖𝑛+1

ℎ
)
)
.

(47)

Taking (𝒗ℎ, 𝑞ℎ) = (2𝜏𝒖𝑛+1
ℎ
, 2𝜏𝑃 𝑛+1

ℎ
) in (27d) and multiplying (27e) by 2𝜏𝑄𝑛+1, we see that

(
𝛿𝜏 (𝜎𝒖)𝑛+1ℎ ,2𝜏(𝜎𝒖)𝑛+1

ℎ

)
+ 4𝜏

Re
‖(𝜂𝑛+1

ℎ
)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 = −

𝜉𝑛+12
2

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,2𝜏𝒖𝑛+1

ℎ

)
−
(
2𝜏(𝜌𝑛+1

ℎ
�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+1

ℎ
, �̃�𝑛+1ℎ

)]
−
𝜉𝑛+11
WeCn

(𝜙𝑛+1
ℎ

∇𝜇𝑛+1
ℎ
,2𝜏𝒖𝑛+1

ℎ
),

𝛿𝜏𝑄
𝑛+12𝜏𝑄𝑛+1 + 2𝜏

𝑇
|𝑄𝑛+1|2 = 𝜉𝑛+12

2

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,2𝜏𝒖𝑛+1

ℎ

)
−
(
2𝜏(𝜌𝑛+1

ℎ
�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+1

ℎ
, �̃�𝑛+1ℎ

)]
.

(48)

A summation of (47) and (48) gives

𝑠

WeCn
(𝜙𝑛+1
ℎ
,2𝜏𝛿𝜏𝜙𝑛+1ℎ ) + Cn

We
(∇𝜙𝑛+1

ℎ
,2𝜏𝛿𝜏∇𝜙𝑛+1ℎ ) + 1

WeCn
𝛿𝜏𝑅

𝑛+14𝜏𝑅𝑛+1 +
(
𝛿𝜏 (𝜎𝒖)𝑛+1ℎ ,2𝜏(𝜎𝒖)𝑛+1

ℎ

)
+ 𝛿𝜏𝑄𝑛+12𝜏𝑄𝑛+1 +

4𝜏
Re

‖(𝜂𝑛+1
ℎ

)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 + 2𝜏

𝑇
|𝑄𝑛+1|2 + 2𝜏

PeWeCn
‖∇𝜇𝑛+1

ℎ
‖2

= 0.

(49)

In turn, the desired result is obtained by applying the following identity for a generic variable 𝜒 :

𝑛+1 𝑛+1

{|𝜒𝑛+1|2 − |𝜒𝑛|2 + |𝒟𝜒𝑛+1|2, 𝐽 = 1,
9

(𝛿𝜏𝜒 )2𝜏𝜒 = 1
2

(|𝜒𝑛+1|2 − |𝜒𝑛|2 + |𝜒𝑛+2|2 − |𝜒𝑛+1|2 + |𝒟2𝜒𝑛+1|2) , 𝐽 = 2. □
(50)
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3.2. The artificial compressibility scheme

In the algorithm (27), the Navier-Stokes equations are solved by a saddle point approach, which turns out to be computationally 
expensive. A decoupled structure is much more desired than a saddle point system in the large-scale simulations. Among the available 
approaches for incompressible flows with variable density (projection method [39], gauge Uzawa method [65,76], pressure stabi-

lization method [40,41]), the energy stability analysis of second-order in time scheme is only available for the pressure stabilization 
method, and only a suboptimal estimate was derived in [41]. However, the pressure stabilization method is not applicable to decouple 
the Stokes solver that appears in (27) (see Remark 6 below). Apart from the above-mentioned efforts, which have been extended to 
incompressible flows with variable density, the less investigated artificial compressibility method might be a substitute choice. The 
following perturbation of the Navier-Stokes equations is considered in this method:

𝜌
(
𝒖𝑡 + 𝒖 ⋅∇𝒖

)
−∇ ⋅ (2𝜂𝔻(𝒖)) + ∇𝑝 = 𝒇 ,

−∇ ⋅ 𝒖− 𝜀
𝜌
𝑃𝑡 = 0,

(51)

where 𝜀 is a very small and positive perturbation parameter (in a scale of (𝜏2) [20]). In fact, it is not a new idea, and this method 
has been employed in [32] (by Gao et al.) to develop a fully decoupled, first-order in time finite element scheme for the Cahn-Hillard-

Navier-Stokes-Darcy system with different densities. To obtain the second-order accuracy in time, we follow the ideas of [32,40] and 
propose the following fully discrete finite element scheme: find (𝜙𝑛+1

ℎ
, 𝜇𝑛+1
ℎ

) ∈ 𝑉ℎ × 𝑉ℎ, 𝒖𝑛+1ℎ ∈𝑿ℎ, 𝑃 𝑛+1ℎ
∈ ×𝑁ℎ, 𝑅𝑛+1 ∈ ℝ+, 𝑄𝑛+1 ∈

ℝ+, such that for all (𝜓ℎ, 𝜔ℎ) ∈ 𝑉ℎ × 𝑉ℎ, 𝒗ℎ ∈𝑿ℎ, 𝑞ℎ ∈𝑁ℎ,

(𝛿𝜏𝜙𝑛+1ℎ ,𝜔ℎ) = 𝜉𝑛+11 (𝜙𝑛+1
ℎ

�̃�
𝑛+1
ℎ ,∇𝜔ℎ) −

1
Pe

(∇𝜇𝑛+1
ℎ
,∇𝜔ℎ), (52a)

(𝜇𝑛+1
ℎ
,𝜓ℎ) = Cn2(∇𝜙𝑛+1

ℎ
,∇𝜓ℎ) + 𝑠(𝜙𝑛+1ℎ ,𝜓ℎ) + 𝜉𝑛+11 (𝐺′(𝜙𝑛+1

ℎ
), 𝜓ℎ), (52b)

𝛿𝜏𝑅
𝑛+1 = 1

2𝑈𝑛+1
(
(𝐺′(𝜙𝑛+1

ℎ
), 𝛿𝜏𝜙𝑛+1ℎ ) − (𝜙𝑛+1

ℎ
�̃�
𝑛+1
ℎ ,∇𝜇𝑛+1

ℎ
) + (𝜙𝑛+1

ℎ
∇𝜇𝑛+1

ℎ
,𝒖𝑛+1
ℎ

)
)
, (52c)(

𝜎𝑛+1
ℎ
𝛿𝜏 (𝜎𝒖)𝑛+1ℎ ,𝒗ℎ

)
+ 𝜁

(
∇ ⋅ 𝛿𝜏𝒖

𝑛+1
ℎ
,∇ ⋅ 𝒗ℎ

)
+ 2

Re
(
𝜂𝑛+1
ℎ

𝔻(𝒖𝑛+1
ℎ

),𝔻(𝒗ℎ)
)

= −
𝜉𝑛+12
2

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒗ℎ

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒗, �̃�𝑛+1ℎ

)]
+ (𝑃 ♯

ℎ
,∇ ⋅ 𝒗ℎ) −

𝜉𝑛+11
WeCn

(𝜙𝑛+1
ℎ

∇𝜇𝑛+1
ℎ
,𝒗ℎ) +

1
Fr

(𝒇
𝑛+1
ℎ ,𝒗ℎ), (52d)

(𝒟𝑃 𝑛+1
ℎ
, 𝑞ℎ) = −

𝛾0𝜚

𝜏
(∇ ⋅ 𝒖𝑛+1

ℎ
, 𝑞ℎ), (52e)

𝛿𝜏𝑄
𝑛+1 = − 𝑄

𝑛+1

𝑇
+ 1

2
𝑒𝑡
𝑛+1∕𝑇

[(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇�̃�𝑛+1ℎ ,𝒖𝑛+1

ℎ

)
−
(
(𝜌𝑛+1
ℎ

�̃�
𝑛+1
ℎ + 𝑱

𝑛+1
ℎ ) ⋅∇𝒖𝑛+1

ℎ
, �̃�𝑛+1ℎ

)]
, (52f)

where 𝜚 = min(𝜌1 ,𝜌2)
𝜌𝑟

, 𝜁 ≥ 3𝜚 and

𝑃
♯
ℎ
=

{
2𝑃 𝑛
ℎ
− 𝑃 𝑛−1

ℎ
, 𝐽 = 1,

1
3 (7𝑃

𝑛
ℎ
− 5𝑃 𝑛−1

ℎ
+ 𝑃 𝑛−2

ℎ
), 𝐽 = 2.

(53)

Remark 6. The key ingredient for achieving energy stability in a fully decoupled scheme lies in the ability of discrete momentum 
terms to absorb additional terms generated by the pressure update equation. If the pressure stabilization method is employed to 
decouple the Navier-Stokes equations, however, it is discovered that, if a direct BDF-type discretization is applied to the term 𝜎(𝜎𝒖)𝑡, 
a theoretical justification of the energy stability analysis is not available any more. Hence, we utilize the artificial compressibility 
method instead, which also leads to a time-independent pressure update equation. Although the pressure stabilization method has 
been widely used to develop fully decoupled schemes in the existing literature, all of them are only first-order accurate in time 
[8,9,16,69]. We believe that, with the same discretization for the term 𝜎(𝜎𝒖)𝑡 in [41], a second-order in time scheme can also be 
constructed with provable suboptimal energy stability.

Remark 7. A direct discretization for the pressure update equation would be

(𝛿𝜏𝑃 𝑛+1ℎ
, 𝑞ℎ) = −

𝛾0𝜚

𝜏2
(∇ ⋅ 𝒖𝑛+1

ℎ
, 𝑞ℎ), (54)

where 𝜀 = 𝜏2

𝛾0
is set, and a penalty formulation is adopted for 𝜌 as in [40]. However, this formulation will make the energy stability 

analysis much more complicated if 𝐽 = 2. Hence, we still use the first order BDF to discretize it while 𝛾0 remains the same, and 
10

introduce the term 𝜁∇∇ ⋅ 𝒖𝑡 to ensure an energy stability. In turn, this approach gives
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1
𝜏
(𝑃 𝑛+1
ℎ

− 𝑃 𝑛
ℎ
, 𝑞ℎ) = −

𝛾0𝜚

𝜏2
(∇ ⋅ 𝒖𝑛+1

ℎ
, 𝑞ℎ), (55)

which is equivalent to (52e).

In comparison with many other decoupling methods that involve a pressure Poisson equation, the proposed scheme (52) is com-

putationally far less expensive, since only a straightforward step of time marching is required to update the pressure. In addition, this 
approach eliminates the necessity of an artificial Neumann boundary condition, thereby avoiding the numerical boundary layer and 
non-physical numerical oscillation near the boundary [38]. On the other hand, the artificial compression method has the drawback 
of introducing non-physical acoustic waves, which will be discussed in section 4.4.3. The proposed scheme (52) is also globally mass 
conservative and well-posed, and its numerical implementation process is similar to that of (27). Henceforth, we only provide its 
energy stability proof, for the sake of brevity.

Theorem 4. In the absence of 𝑓𝑛+1
ℎ

, for 𝐽 = 1, the scheme (52) satisfies the following modified discrete energy law:

ℰ𝑁 + 𝜏
𝑁∑
𝑘=1

𝒫𝑘 ≤ 𝐶, 𝑁 ≥ 1, (56)

where 𝐶 is a generic constant dependent on the initial data and dimensionless numbers, and

ℰ𝑛 = ‖(𝜎𝒖)𝑛
ℎ
‖2 + Cn

We
‖∇𝜙𝑛

ℎ
‖2 + 𝑠

WeCn
‖𝜙𝑛
ℎ
‖2 + 2

WeCn
|𝑅𝑛|2 + |𝑄𝑛|2 + 𝜁‖∇ ⋅ 𝒖𝑛

ℎ
‖2 + 𝜏2

𝜚
‖𝑃 𝑛
ℎ
‖2,

𝒫𝑛 = 4
Re

‖(𝜂𝑛−1
ℎ

)
1
2𝔻(𝒖𝑛

ℎ
)‖2 + 2

𝑇
|𝑄𝑛|2 + 2

PeWeCn
‖∇𝜇𝑛

ℎ
‖2. (57)

Proof. At any time step, taking (𝜓ℎ, 𝜔ℎ) = (2𝜏𝛿𝜏𝜙𝑛+1ℎ , 2𝜏𝜇𝑛+1
ℎ

) in (52a)-(52b) and multiplying (52c) by 4𝜏𝑅𝑛+1 leads to

(𝛿𝜏𝜙𝑛+1ℎ ,2𝜏𝜇𝑛+1
ℎ

) = 𝜉𝑛+11 (𝜙𝑛
ℎ
𝒖𝑛
ℎ
,2𝜏∇𝜇𝑛+1

ℎ
) − 2𝜏

Pe
‖∇𝜇𝑛+1

ℎ
‖2,

(𝜇𝑛+1
ℎ
,2𝜏𝛿𝜏𝜙𝑛+1ℎ ) = Cn2(∇𝜙𝑛+1

ℎ
,2𝜏𝛿𝜏∇𝜙𝑛+1ℎ ) + 𝑠(𝜙𝑛+1

ℎ
,2𝜏𝛿𝜏𝜙𝑛+1ℎ ) + 𝜉𝑛+11 (𝐺′(𝜙𝑛

ℎ
),2𝜏𝛿𝜏𝜙𝑛+1ℎ ),

𝛿𝜏𝑅
𝑛+14𝜏𝑅𝑛+1 = 𝜉𝑛+11

(
(𝐺′(𝜙𝑛

ℎ
),2𝜏𝛿𝜏𝜙𝑛+1ℎ ) − (𝜙𝑛

ℎ
𝒖𝑛
ℎ
,2𝜏∇𝜇𝑛+1

ℎ
) + (𝜙𝑛

ℎ
∇𝜇𝑛

ℎ
,2𝜏𝒖𝑛+1

ℎ
)
)
.

(58)

Taking 𝒗ℎ = 2𝜏𝒖𝑛+1
ℎ

in (52d) and multiplying (52f) by 2𝜏𝑄𝑛+1, we get(
𝛿𝜏 (𝜎𝒖)𝑛+1ℎ ,2𝜏(𝜎𝒖)𝑛+1

ℎ

)
+ 𝜁

(
∇ ⋅ 𝛿𝜏𝒖

𝑛+1
ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ

)
+ 4𝜏

Re
‖(𝜂𝑛

ℎ
)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2

= −
𝜉𝑛+12
2

[(
(𝜌𝑛
ℎ
𝒖𝑛
ℎ
+ 𝑱 𝑛

ℎ
) ⋅∇𝒖𝑛

ℎ
,2𝜏𝒖𝑛+1

ℎ

)
−
(
2𝜏(𝜌𝑛

ℎ
𝒖𝑛
ℎ
+ 𝑱 𝑛

ℎ
) ⋅∇𝒖𝑛+1

ℎ
,𝒖𝑛
ℎ

)]
+ (𝑃 ♯

ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ
) −

𝜉𝑛+11
WeCn

(𝜙𝑛
ℎ
∇𝜇𝑛

ℎ
,2𝜏𝒖𝑛+1

ℎ
),

𝛿𝜏𝑄
𝑛+12𝜏𝑄𝑛+1 + 2𝜏

𝑇
|𝑄𝑛+1|2 = 𝜉𝑛+12

2
[(
(𝜌𝑛
ℎ
𝒖𝑛
ℎ
+ 𝑱 𝑛

ℎ
) ⋅∇𝒖𝑛

ℎ
,2𝜏𝒖𝑛+1

ℎ

)
−
(
2𝜏(𝜌𝑛

ℎ
𝒖𝑛
ℎ
+ 𝑱 𝑛

ℎ
) ⋅∇𝒖𝑛+1

ℎ
,𝒖𝑛
ℎ

)]
.

(59)

A summation of equations (58) and (59) yields

𝑠

WeCn
(𝜙𝑛+1
ℎ
,2𝜏𝛿𝜏𝜙𝑛+1ℎ ) + Cn

We
(∇𝜙𝑛+1

ℎ
,2𝜏𝛿𝜏∇𝜙𝑛+1ℎ ) + 1

WeCn
𝛿𝜏𝑅

𝑛+14𝜏𝑅𝑛+1 +
(
𝛿𝜏 (𝜎𝒖)𝑛+1ℎ ,2𝜏(𝜎𝒖)𝑛+1

ℎ

)
+ 𝜁

(
∇ ⋅ 𝛿𝜏𝒖

𝑛+1
ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ

)
+ 𝛿𝜏𝑄𝑛+12𝜏𝑄𝑛+1 − (𝑃 ♯

ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ
)

= − 4𝜏
Re

‖(𝜂𝑛
ℎ
)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 − 2𝜏

𝑇
|𝑄𝑛+1|2 − 2𝜏

PeWeCn
‖∇𝜇𝑛+1

ℎ
‖2.

(60)

Notice that 𝑃 ♯
ℎ
= 2𝑃 𝑛

ℎ
− 𝑃 𝑛−1

ℎ
= 𝑃 𝑛+1

ℎ
−𝒟2𝑃 𝑛+1

ℎ
. By (52e), we see that

−(𝑃 ♯
ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ
) = 2𝜏2

𝜚
(𝒟𝑃 𝑛+1

ℎ
,𝑃 𝑛+1
ℎ

−𝒟2𝑃 𝑛+1
ℎ

). (61)

Meanwhile, the following identity is a direct consequence of (52e):

(𝒟2𝑃 𝑛+1
ℎ
, 𝑞ℎ) = −𝜚

𝜏
(∇ ⋅ 𝒟𝒖𝑛+1

ℎ
, 𝑞ℎ), ∀𝑞ℎ ∈𝑁ℎ, (62)

which in turn implies that

𝜏2
11

𝜚
‖𝒟2𝑃 𝑛+1

ℎ
‖2 ≤ 𝜁‖∇ ⋅ 𝒟𝒖𝑛+1

ℎ
‖2. (63)
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We recall the following identity

(𝛿𝜏𝜒𝑛+1)2𝜏𝜒𝑛+1 = |𝜒𝑛+1|2 − |𝜒𝑛|2 + |𝒟𝜒𝑛+1|2. (64)

Its substitution into (60) gives (for simplicity we drop some unnecessary |𝒟𝜒𝑛+1|2 terms on the left-hand side)

‖(𝜎𝒖)𝑛+1
ℎ

‖2 − ‖(𝜎𝒖)𝑛
ℎ
‖2 + Cn

We
(‖∇𝜙𝑛+1

ℎ
‖2 − ‖∇𝜙𝑛

ℎ
‖2)+ 𝑠

WeCn
(‖𝜙𝑛+1

ℎ
‖2 − ‖𝜙𝑛

ℎ
‖2)

+ 2
WeCn

(|𝑅𝑛+1|2 − |𝑅𝑛|2)+ |𝑄𝑛+1|2 − |𝑄𝑛|2 + 𝜁 (‖∇ ⋅ 𝒖𝑛+1
ℎ

‖2 − ‖∇ ⋅ 𝒖𝑛
ℎ
‖2 + ‖∇ ⋅ 𝒟𝒖𝑛+1

ℎ
‖2)

+ 𝜏
2

𝜚

(‖𝑃 𝑛+1
ℎ

‖2 − ‖𝑃 𝑛
ℎ
‖2 + ‖𝒟𝑃 𝑛+1

ℎ
‖2 − ‖𝒟𝑃 𝑛+1

ℎ
‖2 + ‖𝒟𝑃 𝑛

ℎ
‖2 − ‖𝒟2𝑃 𝑛+1

ℎ
‖2)

≤− 4𝜏
Re

‖(𝜂𝑛
ℎ
)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 − 2𝜏

𝑇
|𝑄𝑛+1|2 − 2𝜏

PeWeCn
‖∇𝜇𝑛+1

ℎ
‖2.

(65)

Subsequently, its combination with (63) results in

‖(𝜎𝒖)𝑛+1
ℎ

‖2 − ‖(𝜎𝒖)𝑛
ℎ
‖2 + Cn

We
(‖∇𝜙𝑛+1

ℎ
‖2 − ‖∇𝜙𝑛

ℎ
‖2)+ 𝑠

WeCn
(‖𝜙𝑛+1

ℎ
‖2 − ‖𝜙𝑛

ℎ
‖2)+ |𝑄𝑛+1|2 − |𝑄𝑛|2

+ 2
WeCn

(|𝑅𝑛+1|2 − |𝑅𝑛|2)+ 𝜁 (‖∇ ⋅ 𝒖𝑛+1
ℎ

‖2 − ‖∇ ⋅ 𝒖𝑛
ℎ
‖2)+ 𝜏2

𝜚

(‖𝑃 𝑛+1
ℎ

‖2 − ‖𝑃 𝑛
ℎ
‖2)

≤− 4𝜏
Re

‖(𝜂𝑛
ℎ
)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 − 2𝜏

𝑇
|𝑄𝑛+1|2 − 2𝜏

PeWeCn
‖∇𝜇𝑛+1

ℎ
‖2.

(66)

At the initial time step, we see that 𝑃 ♯
ℎ
= 𝑃 0

ℎ
= 𝑃 1

ℎ
−𝒟𝑃 1

ℎ
, so that (60) becomes

‖(𝜎𝒖)1ℎ‖2 + Cn
We

‖∇𝜙1ℎ‖2 + 𝑠

WeCn
‖𝜙1ℎ‖2 + 2

WeCn
|𝑅1|2 + |𝑄1|2 + 2𝜁‖∇ ⋅ 𝒖1ℎ‖2

+ 4𝜏
Re

‖(𝜂0
ℎ
)
1
2𝔻(𝒖1ℎ)‖2 + 2𝜏

𝑇
|𝑄1|2 + 2𝜏

PeWeCn
‖∇𝜇1ℎ‖2 + 𝜏2𝜚 (‖𝑃 1

ℎ‖2 − ‖𝒟𝑃 1
ℎ‖2)

≤‖(𝜎𝒖)0
ℎ
‖2 + Cn

We
‖∇𝜙0

ℎ
‖2 + 𝑠

WeCn
‖𝜙0
ℎ
‖2 + 2

WeCn
|𝑅0|2 + |𝑄0|2 + 𝜏2

𝜚
‖𝑃 0
ℎ
‖2.

(67)

Meanwhile, the following inequality comes from (52e):

𝜏2

𝜚
‖𝒟𝑃 1

ℎ‖2 ≤ 𝜁‖∇ ⋅ 𝒖1ℎ‖2. (68)

Consequently, the desired result could be obtained by a summation from 𝑛 = 0, 1, ⋯ , 𝑁 − 1. □

Lemma 1 (Three term recursion inequality [41]). Let {𝑥𝑛}𝑛≥0 satisfy the three term recursion inequality

3𝑥𝑛+1 − 4𝑥𝑛 + 𝑥𝑛−1 ≤ 𝑔𝑛+1, 𝑛 ≥ 1, (69)

with initial data 𝑥0 and 𝑥1. Then there are constants 𝑐0 and 𝑐1 that depend only on 𝑥0 and 𝑥1 such that for any 𝑁 ≥ 2,

𝑥𝑁 ≤ 𝑐0 + 𝑐1
3𝑁

+
𝑁∑
𝑗=2

1
3𝑁+1−𝑗

𝑗∑
𝑘=2
𝑔𝑘. (70)

Theorem 5. In the absence of 𝑓𝑛+1
ℎ

, for 𝐽 = 2, the numerical scheme (52) satisfies the following modified discrete energy law:

ℰ𝑁 + 𝜏
𝑁∑
𝑘=2

𝒫𝑘 ≤ 𝐶, 𝑁 ≥ 2, (71)

where 𝐶 is a generic constant dependent on the initial data and dimensionless numbers, and

ℰ𝑛 = 1
2
‖(𝜎𝒖)𝑛

ℎ
‖2 + Cn

2We
‖∇𝜙𝑛

ℎ
‖2 + 𝑠

2WeCn
‖𝜙𝑛
ℎ
‖2 + 1

WeCn
|𝑅𝑛|2 + 1

2
|𝑄𝑛|2 + 𝜁

2
‖∇ ⋅ 𝒖𝑛

ℎ
‖2 + 2𝜏2

9𝜚
‖𝑃 𝑛
ℎ
‖2,

4 1 2 2 2𝜏
(72)
12

𝒫𝑛 =
3Re

‖(𝜂𝑛
ℎ
) 2𝔻(𝒖𝑛

ℎ
)‖2 +

3𝑇
|𝑄𝑛|2 +

3PeWeCn
‖∇𝜇𝑛

ℎ
‖2 +

9𝜚
‖𝒟𝑃 𝑛−1

ℎ
‖2.
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Proof. At each time step, with the same treatment as in Theorem 4, we obtain

𝑠

WeCn
(𝜙𝑛+1
ℎ
,2𝜏𝛿𝜏𝜙𝑛+1ℎ ) + Cn

We
(∇𝜙𝑛+1

ℎ
,2𝜏𝛿𝜏∇𝜙𝑛+1ℎ ) + 1

WeCn
𝛿𝜏𝑅

𝑛+14𝜏𝑅𝑛+1 +
(
𝛿𝜏 (𝜎𝒖)𝑛+1ℎ ,2𝜏(𝜎𝒖)𝑛+1

ℎ

)
+ 𝜁

(
∇ ⋅ 𝛿𝜏𝒖

𝑛+1
ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ

)
+ 𝛿𝜏𝑄𝑛+12𝜏𝑄𝑛+1 − (𝑃 ♯

ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ
)

= − 4𝜏
Re

‖(𝜂𝑛+1
ℎ

)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 − 2𝜏

𝑇
|𝑄𝑛+1|2 − 2𝜏

PeWeCn
‖∇𝜇𝑛+1

ℎ
‖2.

(73)

Notice that 𝑃 ♯
ℎ
= 1

3 (7𝑃
𝑛
ℎ
− 5𝑃 𝑛−1

ℎ
+ 𝑃 𝑛−2

ℎ
) = 𝑃 𝑛+1

ℎ
−𝒟2𝑃 𝑛+1

ℎ
+ 1

3𝒟
2𝑃 𝑛
ℎ

. By (52e), we see that

−(𝑃 ♯
ℎ
,2𝜏∇ ⋅ 𝒖𝑛+1

ℎ
) = 4𝜏2

3𝜚
(𝒟𝑃 𝑛+1

ℎ
,𝑃 𝑛+1
ℎ

−𝒟2𝑃 𝑛+1
ℎ

) + 4𝜏2
9𝜚

(𝒟𝑃 𝑛+1
ℎ
,𝒟2𝑃 𝑛

ℎ
). (74)

Meanwhile, the following inequality could be derived in a similar manner as in (63):

4𝜏2
9𝜚

‖𝒟3𝑃 𝑛+1
ℎ

‖2 ≤ 𝜁‖∇ ⋅ 𝒟2𝒖𝑛+1
ℎ

‖2. (75)

Because of the following identities

(𝛿𝑡𝜒𝑛+1)2𝜏𝜒𝑛+1 =
1
2

(
3|𝜒𝑛+1|2 − 4|𝜒𝑛|2 + |𝜒𝑛−1|2 + 2|𝒟𝜒𝑛+1|2 − 2|𝒟𝜒𝑛|2 + |𝒟2𝜒𝑛+1|2), (76)

𝜚‖∇ ⋅ 𝒟𝒖𝑛+1
ℎ

‖2 = ‖𝜚 1
2 ∇ ⋅ 𝒟𝒖𝑛+1

ℎ
+ 2𝜏

3𝜚
1
2

𝒟2𝑃 𝑛+1
ℎ

‖2 + 4𝜏2
9𝜚

‖𝒟2𝑃 𝑛+1
ℎ

‖2, (77)

it is clear that their substitution into (73) leads to

1
2
(
3‖(𝜎𝒖)𝑛+1

ℎ
‖2 − 4‖(𝜎𝒖)𝑛

ℎ
‖2 + ‖(𝜎𝒖)𝑛−1

ℎ
‖2 + 2‖𝒟(𝜎𝒖)𝑛+1

ℎ
‖2 − 2‖𝒟(𝜎𝒖)𝑛

ℎ
‖2)

+ Cn
2We

(
3‖∇𝜙𝑛+1

ℎ
‖2 − 4‖∇𝜙𝑛

ℎ
‖2 + ‖∇𝜙𝑛−1

ℎ
‖2 + 2‖∇𝒟𝜙𝑛+1

ℎ
‖2 − 2‖∇𝒟𝜙𝑛

ℎ
‖2)

+ 𝑠

2WeCn

(
3‖𝜙𝑛+1

ℎ
‖2 − 4‖𝜙𝑛

ℎ
‖2 + ‖𝜙𝑛−1

ℎ
‖2 + 2‖𝒟𝜙𝑛+1

ℎ
‖2 − 2‖𝒟𝜙𝑛

ℎ
‖2)

+ 1
WeCn

(
3|𝑅𝑛+1|2 − 4|𝑅𝑛|2 + |𝑅𝑛−1|2 + 2|𝒟𝑅𝑛+1|2 − 2|𝒟𝑅𝑛|2)

+ 1
2
(
3|𝑄𝑛+1|2 − 4|𝑄𝑛|2 + |𝑄𝑛−1|2 + 2|𝒟𝑄𝑛+1|2 − 2|𝒟𝑄𝑛|2)

+ 𝜁
2
(
3‖∇ ⋅ 𝒖𝑛+1

ℎ
‖2 − 4‖∇ ⋅ 𝒖𝑛

ℎ
‖2 + ‖∇ ⋅ 𝒖𝑛−1

ℎ
‖2 + ‖∇ ⋅ 𝒟2𝒖𝑛+1

ℎ
‖2)

+ ‖(𝜁 − 𝜚) 12 ∇ ⋅ 𝒟𝒖𝑛+1
ℎ

‖2 − ‖(𝜁 − 𝜚) 12 ∇ ⋅ 𝒟𝒖𝑛
ℎ
‖2

+ ‖𝜚 1
2 ∇ ⋅ 𝒟𝒖𝑛+1

ℎ
+ 2𝜏

3𝜚
1
2

𝒟2𝑃 𝑛+1
ℎ

‖2 − ‖𝜚 1
2 ∇ ⋅ 𝒟𝒖𝑛

ℎ
+ 2𝜏

3𝜚
1
2

𝒟2𝑃 𝑛
ℎ
‖2

+ 2𝜏2
3𝜚

(‖𝑃 𝑛+1
ℎ

‖2 − ‖𝑃 𝑛
ℎ
‖2 + ‖𝒟𝑃 𝑛

ℎ
‖2)

− 2𝜏2
9𝜚

‖𝒟2𝑃 𝑛+1
ℎ

‖2 − 4𝜏2
9𝜚

‖𝒟2𝑃 𝑛
ℎ
‖2 + 4𝜏2

9𝜚
(𝒟𝑃 𝑛+1

ℎ
,𝒟2𝑃 𝑛

ℎ
)

≤− 4𝜏
Re

‖(𝜂𝑛+1
ℎ

)
1
2𝔻(𝒖𝑛+1

ℎ
)‖2 − 2𝜏

𝑇
|𝑄𝑛+1|2 − 2𝜏

PeWeCn
‖∇𝜇𝑛+1

ℎ
‖2.

(78)

Again, we have dropped some unnecessary |𝒟2𝜒𝑛+1|2 terms on the left-hand side, for simplicity of presentation. Moreover, based on 
the following equalities

‖𝒟3𝑃 𝑛+1
ℎ

‖2 = ‖𝒟2𝑃 𝑛+1
ℎ

‖2 − 2(𝒟2𝑃 𝑛+1
ℎ
,𝒟2𝑃 𝑛

ℎ
) + ‖𝒟2𝑃 𝑛

ℎ
‖2,

𝒟2𝑃 𝑛
ℎ
+ 2𝒟2𝑃 𝑛+1

ℎ
− 2𝒟𝑃 𝑛+1

ℎ
= −𝒟𝑃 𝑛

ℎ
−𝒟𝑃 𝑛−1

ℎ
,

(79)
13

the last three terms on the left-hand side of (78) become
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−2𝜏2
9𝜚

‖𝒟2𝑃 𝑛+1
ℎ

‖2 − 4𝜏2
9𝜚

‖𝒟2𝑃 𝑛
ℎ
‖2 + 4𝜏2

9𝜚
(𝒟𝑃 𝑛+1

ℎ
,𝒟2𝑃 𝑛

ℎ
)

= −2𝜏2
9𝜚

‖𝒟3𝑃 𝑛+1
ℎ

‖2 + 2𝜏2
9𝜚

(𝒟𝑃 𝑛
ℎ
+𝒟𝑃 𝑛−1

ℎ
,𝒟2𝑃 𝑛

ℎ
)

≥ − 𝜁
2
‖∇ ⋅ 𝒟2𝒖𝑛+1

ℎ
‖2 + 2𝜏2

9𝜚

(‖𝒟𝑃 𝑛
ℎ
‖2 − ‖𝒟𝑃 𝑛−1

ℎ
‖2).

(80)

The following quantities are introduced for the convenience of presentation:

𝑥𝑛 = 1
2
‖(𝜎𝒖)𝑛

ℎ
‖2 + Cn

2We
‖∇𝜙𝑛

ℎ
‖2 + 𝑠

2WeCn
‖𝜙𝑛
ℎ
‖2 + 1

WeCn
|𝑅𝑛|2 + 1

2
|𝑄𝑛|2 + 𝜁

2
‖∇ ⋅ 𝒖𝑛

ℎ
‖2,

𝑏𝑛 = 4𝜏
Re

‖(𝜂𝑛
ℎ
)
1
2𝔻(𝒖𝑛

ℎ
)‖2 + 2𝜏

𝑇
|𝑄𝑛|2 + 2𝜏

PeWeCn
‖∇𝜇𝑛

ℎ
‖2 + 2𝜏2

3𝜚
‖𝒟𝑃 𝑛−1

ℎ
‖2,

𝑑𝑛 = ‖𝒟(𝜎𝒖)𝑛
ℎ
‖2 + Cn

We
‖∇𝒟𝜙𝑛

ℎ
‖2 + 𝑠

WeCn
‖𝒟𝜙𝑛

ℎ
‖2 + 2

WeCn
|𝒟𝑅𝑛|2 + |𝒟𝑄𝑛|2

+ ‖(𝜁 − 𝜚) 12 ∇ ⋅ 𝒟𝒖𝑛
ℎ
‖2 + ‖𝜚 1

2 ∇ ⋅ 𝒟𝒖𝑛
ℎ
+ 2𝜏

3𝜚
1
2

𝒟2𝑃 𝑛
ℎ
‖2 + 2𝜏2

3𝜚
‖𝑃 𝑛
ℎ
‖2 + 2𝜏2

9𝜚
‖𝒟𝑃 𝑛−1

ℎ
‖2.

(81)

In turn, estimate (78) could be rewritten as

3𝑥𝑛+1 − 4𝑥𝑛 + 𝑥𝑛−1 ≤ 𝑔𝑛+1, 𝑛 ≥ 2, (82)

where 𝑔𝑛+1 = −(𝑏𝑛+1 + 𝑑𝑛+1 − 𝑑𝑛). By Lemma 1, it is clear that

𝑥𝑁 ≤ 𝑐 (1 + 1
3𝑁

)
(𝑥1 + 𝑥2) −

𝑁∑
𝑗=3

1
3𝑁+1−𝑗

𝑗∑
𝑘=3

(𝑏𝑘 + 𝑑𝑘 − 𝑑𝑘−1), ∀𝑁 ≥ 3, (83)

which leads to

𝑥𝑁 + 1
3

𝑁∑
𝑘=3
𝑏𝑘 + 1

3
𝑑𝑁 ≤ 𝑐(𝑥1 + 𝑥2 + 𝑑2), (84)

for some constants 𝑐. Therefore, the result is valid for 𝑁 ≥ 3, by dropping some positive terms on the left-hand side, provided that 
𝑥2, 𝑏2 and 𝑑2 are bounded by the initial data.

In terms of the initial time step, the identity 𝑃 ♯
ℎ
= 2𝑃 1

ℎ
− 𝑃 0

ℎ
= 𝑃 2

ℎ
−𝒟2𝑃 2

ℎ
indicates that

−(𝑃 ♯
ℎ
,2𝜏∇ ⋅ 𝒖2ℎ) =

4𝜏2
3𝜚

(𝒟𝑃 2
ℎ ,𝑃

2
ℎ −𝒟2𝑃 2

ℎ ) =
2𝜏2
3𝜚

(‖𝑃 2
ℎ‖2 − ‖𝑃 1

ℎ‖2 + ‖𝒟𝑃 1
ℎ‖2 − ‖𝒟2𝑃 2

ℎ‖2) . (85)

Consequently, estimate (73) could be rewritten as

1
2
(
3‖(𝜎𝒖)2ℎ‖2 + 2‖𝒟(𝜎𝒖)2ℎ‖2)+ Cn

2We
(
3‖∇𝜙2ℎ‖2 + 2‖∇𝒟𝜙2ℎ‖2)+ 𝑠

2WeCn
(
3‖𝜙2ℎ‖2 + 2‖𝒟𝜙2ℎ‖2)

+ 1
WeCn

(
3|𝑅2|2 + 2|𝒟𝑅2|2)+ 1

2
(
3|𝑄2|2 + 2|𝒟𝑄2|2)+ 𝜁

2
(
3‖∇ ⋅ 𝒖2ℎ‖2 + 2‖∇ ⋅ 𝒟𝒖2ℎ‖2)

+ 2𝜏2
3𝜚

(‖𝑃 2
ℎ‖2 − ‖𝒟2𝑃 2

ℎ‖2)+ 4𝜏
Re

‖(𝜂2ℎ) 12𝔻(𝒖2ℎ)‖2 + 2𝜏
𝑇

|𝑄2|2 + 2𝜏
PeWeCn

‖∇𝜇2ℎ‖2 + 2𝜏2
3𝜚

‖𝒟𝑃 1
ℎ‖2

≤2‖(𝜎𝒖)1ℎ‖2 + ‖𝒟(𝜎𝒖)1ℎ‖2 + 2Cn
We

‖∇𝜙1ℎ‖2 + Cn
We

‖𝒟𝜙1ℎ‖2 + 2𝑠
WeCn

‖𝜙1ℎ‖2 + 𝑠

WeCn
‖𝒟𝜙1ℎ‖2

+ 4
WeCn

|𝑅1|2 + 2
WeCn

|𝒟𝑅1|2 + 2|𝑄1|2 + |𝒟𝑄1|2 + 3𝜁‖∇ ⋅ 𝒖1ℎ‖2 + 2𝜏2
3𝜚

‖𝑃 1
ℎ‖2.

(86)

Meanwhile, because of the following inequality, which comes from (52e):

2𝜏2
3𝜚

‖𝒟2𝑃 2
ℎ‖2 ≤ 𝜁2 ‖∇ ⋅ 𝒟𝒖2ℎ‖2, (87)

we obtain bounds for 𝑥2, 𝑏2 and some terms in 𝑑2. Finally, with the help of the identity

‖(𝜁 − 𝜚) 12 ∇ ⋅ 𝒟𝒖2ℎ‖2 + ‖𝜚 1
2 ∇ ⋅ 𝒟𝒖2ℎ +

2𝜏

3𝜚
1
2

𝒟2𝑃 2
ℎ‖2 = 𝜁‖∇ ⋅ 𝒟𝒖2ℎ‖2 − 4𝜏2

9𝜚
‖𝒟2𝑃 2

ℎ‖2, (88)
14

the bound for the rest terms in 𝑑2 could be similarly derived. This completes the proof. □
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Remark 8. In practice, we use the formula (𝒟𝑃 1
ℎ
, 𝑞ℎ) = − 𝛾0𝜚

𝜏
(∇ ⋅ 𝒖1

ℎ
, 𝑞ℎ) to obtain 𝑃 1

ℎ
, which accounts for the validity of (75), (87)

to simplify the analysis. One can also use the first order BDF method (presented above) to get 𝑃 1
ℎ

, and the discrete energy law is still 
valid, with a minor modification in the theoretical proof; also see [41] for more details.

Remark 9. In our knowledge, the three term recursion inequality is the only technique to prove the energy stability of the BDF2 
scheme for incompressible flows with variable density. Of course, the theoretical result in Theorem 5 is still suboptimal, and more 
advanced techniques need to be developed to derive a more accurate estimate. Irrespective of the theoretical challenges for the BDF2 
scheme, the time filter technique [19,21], which has emerged as an efficient and easily implemented method in developing high order 
time-stepping schemes in CFD, might be applicable for developing second-order accurate schemes with provable energy stability. In 
fact, this technique has been successfully employed to incompressible flows with variable density [56]. Its implementation will be 
investigated in our future work.

Remark 10. In addition to the energy stability analysis, a theoretical justification of convergence analysis and error estimate is 
highly desirable for the AGG model. In fact, for various physical systems of a phase field model coupled with incompressible fluid 
motion, there have been some existing works of optimal rate error analysis in the case of a constant density, such as the Cahn-

Hilliard-Hele-Shaw [10,15,60], Cahn-Hilliard-Navier-Stokes [22], Cahn-Hilliard-Stokes-Darcy [11], etc. Meanwhile, the convergence 
estimates have also been reported for the SAV numerical schemes [18,74], if there is no fluid motion. Of course, an extension to the 
AGG model, in which the density variation has played an important role, would be highly challenging. The convergence property has 
been reported in [36], while a convergence rate analysis was not available. An optimal rate convergence analysis for the proposed 
numerical schemes, (27) and (52), will be considered in the future works.

4. Numerical results

In this section, several representative numerical tests are presented to investigate the validity of the proposed numerical schemes 
(27) and (52). If without any specific explanations, in all the simulations, we take 𝑠 = 2, 𝑆 = 10 in the SAV formulation (15a), 𝜁 = 3𝜚
in the scheme (52), and use the MINI ℙb

1 × ℙ1 element for (𝒖ℎ, 𝑃ℎ), and Lagrange ℙ1 element for 𝜙ℎ and 𝜇ℎ. For simplicity, we use 
PG (respective to AC) to denote the scheme (27) (respective to (52)), and use CM (respective to DM) to denote constant mobility 
(respective to degenerate mobility).

4.1. Accuracy test

First we use manufactured analytic solutions to assess the convergence orders of the proposed schemes. The computational domain 
is taken as Ω = (0, 1)2. With suitable extra source terms, the exact solutions are given by

𝜙 = 𝜇 = cos(𝜋𝑥) cos(𝜋𝑦) sin 𝑡,

𝒖 =
(
sin2(𝜋𝑥) sin(2𝜋𝑦),−sin(2𝜋𝑥) sin2(𝜋𝑦)

)𝑇 sin 𝑡,
𝑃 = cos(𝜋𝑥) sin(𝜋𝑦) cos 𝑡.

(89)

The model parameters are set as: Cn = 1, Pe = 2𝜋2, Re = 2𝜋2, We = 1, Fr = 1, and 𝜌1∕𝜌2 = 50, 𝜂1∕𝜂2 = 50, 𝜌𝑟 = 𝜌1, 𝜂𝑟 = 𝜂1. To observe 
the convergence orders, we set time step size 𝜏 = ℎ, and refine the spatial mesh size as ℎ = 2−𝑖, 𝑖 = 3, 4, 5, 6, 7. For simplicity, we only 
consider the 𝐿2 error for 𝜙, 𝜇, 𝒖, 𝑃 and absolute error for 𝜉1, 𝜉2 at 𝑇 = 0.5.

The results of the numerical errors for both schemes are displayed in Fig. 1. The expected second-order convergence has been 
observed for 𝜙, 𝜇, 𝒖, 𝜉1 and 𝜉2 in both schemes, while a loss of accuracy for 𝑃 is also presented. Actually, the convergence order of 𝑃 is 
approximately (ℎ1.5) for PG+CM and (ℎ1.7) for AC+CM, in this test. The super-convergence of the MINI element has already been 
investigated in many existing works, so that the (ℎ1.5) super-convergence of pressure 𝑃 for PG+CM seems reasonable. However, 
the (ℎ1.7) super-convergence of pressure 𝑃 for AC+CM has been beyond our expectation (a linear convergence order is expected), 
and a good explanation has not been available. Meanwhile, for the phase-field-fluid model with a free-slip boundary condition for 
the velocity variable, a full (ℎ2) convergence analysis for the pressure variable has been reported in [12]. A theoretical analysis of 
the convergence rate for the proposed numerical scheme, in terms of the associated physical variables, will be explored in the future 
works.

4.2. Stability test

To verify the mass conservation and unconditional energy stability for the proposed schemes, we consider a benchmark problem 
of coarsening process for the Cahn-Hillard equation [79]. The computational domain is taken as Ω = (0, 1)2, and the spatial mesh size 
is chosen to be ℎ = 2−7. The initial data are set as

0

(√
(𝑥− 0.35)2 + (𝑦− 0.5)2 − 0.2

) (√
(𝑥− 0.8)2 + (𝑦− 0.5)2 − 0.1

)

15

𝜙 = −1 + tanh
Cn

+ tanh
Cn

, (90)
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Fig. 1. Numerical errors, with 𝜏 = ℎ, at 𝑇 = 0.5.

Fig. 2. The profiles of 𝜙 computed by the AC+CM scheme, at a sequence of time instants, 𝑡 = 0,0.4,0.5,0.6 and 1.

Table 1

Physical parameters and corresponding dimensionless numbers for 
the capillary wave benchmark problem.

𝜌1∕𝜌2 𝜈 𝜌1(𝜌𝑟) 𝜂1(𝜂𝑟) 𝑔 𝜆 Re We

10 0.01 10 0.1 1 1 100 20
√
2

3

100 0.01 100 1 1 1 100 200
√
2

3

1000 0.01 1000 10 1 1 100 2000
√
2

3

while the other physical variables are taken to zero at 𝑡 = 0. The model parameters are given by: Cn = 3 × 10−2, Re = 100, We = 50, 
and 𝜌1∕𝜌2 = 𝜂1∕𝜂2 = 50, 𝜌𝑟 = 𝜌1, 𝜂𝑟 = 𝜂1.

In Fig. 2, the evolution of the order parameter 𝜙ℎ at a sequence of time instants is displayed, and the coarsening effect could be 
clearly observed in the process that the smaller bubble is absorbed into the bigger one. As depicted in Figs. 3a and 3b, the discrete 
modified energy computed by both schemes decays monotonically for different time step sizes, and this fact has numerically verified 
an unconditional energy stability. Although the modified energy dissipation law (16) is equivalent to the original one (9), the modified 
discrete energy in (45) and (57) does not approximate the true energy in (14). If we want to compare them, the extra terms involving 
𝑄𝑛 must be removed, and the constant 𝑆 should be subtracted. Therefore, as depicted in Figs. 3c and 3d, it can be observed that the 
modified energy approaches the true energy (computed by 𝜏 = 1

80 ) as the time step size is refined.

Since the numerical schemes are based on the SAV reformulation, it is imperative to verify the numerical robustness by taking 
a look at 𝜉𝑛1 and 𝜉𝑛2 , and see whether they remain sufficiently close to 1. In [80], where the only existing work of fully decoupled, 
second-order in time scheme was presented, the authors observed that the auxiliary variables would decrease sharply even with a 
small time step size in rising air bubble simulations. This fact implies that the simulation is no longer reliable. Meanwhile, a second-

order in time finite element scheme is studied in [31], while the authors failed to derive a decoupled structure by employing the ZEC 
feature as the associated auxiliary variables will quickly diminish to a value close to zero in numerical simulations, no matter how 
small the time step size is chosen.

In fact, the proposed schemes in this article could circumvent these subtle drawbacks. The time evolution of 𝜉1 and 𝜉2 is displayed 
in Fig. 4; it is clearly observed that both 𝜉1 and 𝜉2 are sufficiently close to 1 even with a large time step size. This numerical result 
demonstrates the effectiveness of the proposed schemes. In addition, the robustness of 𝜉1 seems to surpass that of 𝜉2, possibly due to 
its physical relevance. Furthermore, the plot of the mass drift, i.e., ∫Ω 𝜙𝑛ℎd𝒙− ∫Ω 𝜙0ℎd𝒙, is presented in Fig. 4, and an excellent mass 
16

conservation could be observed.
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Fig. 3. Time evolution of discrete energy.

Fig. 4. Time evolution of the auxiliary variables and mass drift computed by AC+CM.

4.3. Capillary wave

The capillary wave problem [64], for which an analytic solution is available, is investigated in this subsection. In this benchmark 
problem, the lighter fluid is placed on top of the heavier one, and the interface, initially perturbed by a sinusoidal function with a 
small amplitude 𝐻0, wave number 𝑘 and zero initial velocity, will begin oscillating under the influence of gravity and surface tension. 
The analytic solution is derived in [64] for two fluids having the same kinematic viscosity 𝜈 = 𝜂1

𝜌1
= 𝜂2
𝜌2

in an infinite domain. In turn, 
17

the evolution of the capillary wave amplitude 𝐻(𝑡) has the following form
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Fig. 5. Comparison of capillary wave amplitude versus time.

Table 2

Physical parameters and corresponding dimensionless numbers for the single rising bubble 
benchmark problem.

Test case 𝜌1∕𝜌2 𝜌1(𝜌𝑟) 𝜂1∕𝜂2 𝜂1(𝜂𝑟) 𝑔 𝜆 Re We

1 10 1000 10 10 0.98 24.5 70
√
2 80

√
2

3

2 1000 1000 100 10 0.98 1.96 70
√
2 1000

√
2

3

𝐻(𝑡)
𝐻0

= 4(1 − 4𝛽)𝜈2𝑘4

8(1 − 4𝛽)𝜈2𝑘4 +𝜔20
erfc

(√
𝜈𝑘2𝑡

)
+

4∑
𝑖=1

𝑧𝑖
𝑍𝑖

𝜔20

𝑧2𝑖 − 𝜈𝑘2
𝑒

(
𝑧2
𝑖
−𝜈𝑘2

)
𝑡erfc

(
𝑧𝑖
√
𝑡
)
, (91)

where 𝜔20 =
(𝜌1−𝜌2)𝑔𝑘+𝜆𝑘3

𝜌1+𝜌2
, 𝛽 = 𝜌1𝜌2

(𝜌1+𝜌2)2
, and erfc(⋅) is the complementary error function. The variables 𝑧𝑖, 𝑖 = 1, ⋯ , 4, are the four roots 

of the algebraic equation

𝑧4 − 4𝛽
√
𝜈𝑘2𝑧3 + 2(1 − 6𝛽)𝜈𝑘2𝑧2 + 4(1 − 3𝛽)(𝜈𝑘2)

3
2 𝑧+ (1 − 4𝛽)𝜈2𝑘4 +𝜔20 = 0, (92)

and 𝑍𝑖 =
∏

1≤𝑗≤4,𝑗≠𝑖(𝑧𝑗 − 𝑧𝑖), 𝑖 = 1, ⋯ , 4. The motion of the interface is simulated in a rectangular domain Ω = (0, 1) × (−1, 1), with 
no-slip boundaries on the horizontal walls and periodic boundaries on the vertical walls. The initial perturbed interface is described 
by (𝐻0 = 0.01, 𝑘 = 2𝜋):

𝜙0(𝑥, 𝑦) = − tanh
(
𝑦+ 0.01cos2𝜋𝑥

Cn

)
. (93)

The other physical variables are set to be zero at the initial time step. The relevant physical parameters and corresponding dimension-

less numbers are listed in Table 1. Since the interface dynamics is only concentrated in a narrow region, we consider a mesh that is 
locally refined on Ω1 = (0, 1) × (−0.05, 0.05), where ℎ = 2−8 on Ω1 and ℎ = 2−4 on Ω∖Ω1. Meanwhile, Cn = 1 ×10−2 with 𝜏 = 5 ×10−4
is taken in all cases.

Fig. 5 displays time evolutions of capillary wave amplitude of different density ratios, in comparison with the analytic solution 
(91) and numerical results from [80] (the only fully decoupled scheme for the AGG model, and the results were obtained by high order 
spectral elements and very small time steps). Both schemes exhibit the same amplitude histories and agree well with the reference 
data.

4.4. Single rising bubble

In this subsection, we consider the benchmark problem of a single rising bubble in a liquid column proposed in [51], an interplay 
between surface tension and buoyancy. The domain is (0, 1) × (0, 2), and a circular bubble is centered at (0.5, 0.5) with a radius of 
0.25, which corresponds to the following initial data for 𝜙:

𝜙0 = tanh
(√(𝑥− 0.5)2 + (𝑦− 0.5)2 − 0.25

Cn

)
. (94)

The other physical variables are set to zero at the initial time step. Following the original set-up for Navier-Stokes equations, we 
choose no-slip boundaries on the horizontal walls, and free-slip boundaries on the vertical walls. The relevant physical parameters 
used in [51] and corresponding dimensionless numbers are listed in Table 2. And to have a comprehensive understanding of bubble 
18

dynamics, the following benchmark quantities proposed in [51] are considered:
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Fig. 6. Comparison of the bubble shapes, computed by ℎ = 2−7 , for test case 1 at dimensional time 𝑡∗ = 3.

Fig. 7. Time evolution of benchmark quantities for test case 1.

• Centroid 𝑦𝑐 =
∫𝜙<0 𝑦d𝒙
∫𝜙<0 d𝒙

• Circularity /𝑐 =
2
√∫𝜙<0 𝜋d𝒙
∫𝜙=0 d𝑠

• Rise velocity 𝑉𝑐 =
∫𝜙<0 𝑢2d𝒙
∫𝜙<0 d𝒙

In both cases, we take ℎ = 2−6, 𝜏 = 2 × 10−3 with Cn = 1 × 10−2, or ℎ = 2−7, 𝜏 = 1 × 10−3 with Cn = 5 × 10−3. To investigate the 
impact of mobility function on interface dynamics, we choose 1∕Pe = 0.1 for 𝑚 = (𝜙2 − 1)2. In addition, the data provided by group 3 
in [51], which solves the sharp interface model using an arbitrary Lagrangian–Eulerian finite element method, is taken as reference.

4.4.1. Test case 1
This test considers a low We number, which corresponds to a high surface tension and less deformation of the bubble shape. This 

shape at dimensional time 𝑡∗ = 3, the contour line of 𝜙ℎ = 0, is depicted in Fig. 6, in comparison with the reference data. All the 
numerical schemes create a highly similar ellipsoidal bubble shape, and have an excellent agreement with the reference data. To 
further confirm the numerical accuracy, we also present the time evolution plot (with respect to dimensional time) of benchmark 
quantities in Fig. 7. Quantitative comparison with the benchmark values is displayed in Table 3. The centroid and rise velocity exhibit 
an excellent agreement with the reference data, while only a minor deviation is observed in terms of the circularity. Based on this 
numerical investigation, it can be concluded that, the form of mobility has a negligible impact on these benchmark quantities with 
low We numbers (high surface tensions). Therefore, a constant mobility is significantly more efficient than a degenerate one in such 
a low We number region.

4.4.2. Test case 2
A low surface tension is considered in this test, resulting in high deformation of bubble shape. This shape at dimensional time 𝑡∗ = 3

is depicted in Fig. 8, in comparison with the reference data. All schemes exhibit a similar skirted bubble shape, and the phenomenon 
of break off is absent. Also, the tails of our bubbles are thicker than the reference one. In addition, Fig. 9 displays the time evolution 
(with respect to dimensional time) of benchmark quantities, and Table 4 provides a quantitative comparison with the benchmark 
19

values. Again, the centroid exhibits a nice agreement with the reference data for all schemes. As the mesh size is further refined, the 



Journal of Computational Physics 518 (2024) 113331J. Wang, M. Li and C. Wang

Table 3

Minimum circularity and maximum rise velocity, with corresponding incidence 
time instants and final position of the centroid for test case 1.

type ℎ /𝑐min 𝑡∗|/𝑐=/𝑐min
𝑉𝑐,max 𝑡∗|𝑉𝑐=𝑉𝑐,max

𝑦𝑐 (𝑡∗ = 3)

PG+CM 2−6 0.9094 1.9415 0.2451 0.9576 1.0862

2−7 0.9041 1.9637 0.2455 0.9384 1.0841

AC+CM 2−6 0.9007 1.9254 0.2443 0.9534 1.0798

2−7 0.8985 1.9637 0.2453 0.9405 1.0808

AC+DM 2−6 0.8939 1.9557 0.2430 0.9455 1.0722

2−7 0.8964 1.9041 0.2446 0.9405 1.0773

ref ⟍ 0.9013 1.9000 0.2417 0.9239 1.0817

Fig. 8. Comparison of the bubble shapes, computed by ℎ = 2−7 , for test case 2 at dimensional time 𝑡∗ = 3.

Fig. 9. Time evolution of benchmark quantities for test case 2.

circularity and rise velocity of all schemes converge to the same solution, which is distinct from the reference one. It is also observed 
that, the rise velocity computed by AC exhibits an oscillating behavior. Although the differences in bubble shape and benchmark 
quantities computed by ℎ = 2−7 with different types of mobility are negligible, degenerate mobility exhibits superior performance in 
interface dynamics, with a coarser mesh. Therefore, in the case of high interface deformation, it is advisable to employ degenerate 
mobility to more accurately capture the large deformation, especially with a low spatial resolution.

4.4.3. Non-physical acoustic waves

Instead of the numerical boundary layer introduced by pressure projection method, the artificial compressibility approach may 
introduce non-physical acoustic waves, with wave speed 𝑐 ≃

√
𝛾0𝜚

𝜏
, as observed in the time evolution of rise velocity in test case 2. 

The manifestation of this phenomenon is particularly conspicuous in the presence of a large density ratio; the velocity oscillation 
was not observed in test case 1. In fact, as mentioned in the work of DeCaria et al. [20], increasing 𝜁 could slow the nonphysical 
acoustic waves to the point that the CFL condition is satisfied. However, this treatment does not yield prominent improvement in the 
proposed schemes in this article, as demonstrated in Fig. 10. We will explore potential remedies for this issue in the AC formulation 
20

in the future work.
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Table 4

Minimum circularity and maximum rise velocity, with corresponding incidence 
time instants and final position of the centroid for test case 2.

type ℎ /𝑐min 𝑡∗|/𝑐=/𝑐min
𝑉𝑐,max 𝑡∗|𝑉𝑐=𝑉𝑐,max

𝑦𝑐 (𝑡∗ = 3)

PG+CM 2−6 0.7290 2.1395 0.2545 0.7354 1.1433

2−7 0.5474 3.0000 0.2533 0.7223 1.1294

AC+CM 2−6 0.7157 2.3072 0.2815 0.7214 1.1404

2−7 0.5455 3.0000 0.2623 0.7435 1.1280

AC+DM 2−6 0.6067 3.0000 0.2798 0.7213 1.1235

2−7 0.5332 3.0000 0.2617 0.7435 1.1222

ref ⟍ 0.5144 3.0000 0.2502 0.7317 1.1376

Fig. 10. Time evolution of rise velocity, computed by ℎ = 2−6 , with different 𝜁 for test case 2.

Now we summarize several approaches in the existing literature to overcome this formidable challenge. The time filter technique 
was advised in [20] to control non-physical acoustics. In the work of Sitompul and Aoki [71], the authors observed that the oscillation 
amplitude could be suppressed by reducing the Mach number, which corresponds to a decrease of time step size; this phenomenon has 
also been observed in our results. Furthermore, the curve exhibits a gradual smoothing trend over time, indicating the suppression of 
non-physical acoustic waves. In the subsequent works [63,77], the authors provided additional evidence that these oscillations arise 
from the initial pressure imbalance. They successfully eliminated these oscillations by employing the evolving pressure projection 
method [77], or solving the pressure Poisson equation in the first several steps [63] to balance the initial pressure with the gravity. 
Meanwhile, incorporating their approaches into the structure-preserving design of artificial compressibility scheme poses significant 
challenges.

4.5. Rayleigh-Taylor instability

In this subsection, we compute the benchmark problem of Rayleigh-Taylor instability [39], which is characterized by large inter-

face deformation and high Reynolds numbers. Assuming negligible viscosity and surface tension, buoyancy predominantly dominates 
its evolution. The Atwood number, defined as At = 𝜌1−𝜌2

𝜌1+𝜌2
, is commonly used in this benchmark problem to parametrize the depen-

dence on density ratio. We choose two density ratio (𝜌1∕𝜌2) values, 3 and 7, which correspond to At = 0.5 and 0.75, while the 
viscosity ratio is taken to be 1. The domain Ω is set as (−0.5, 0.5) × (−1.5, 1), and the initial interface is described by the following 
profile:

𝜙0(𝑥, 𝑦) = tanh
(
𝑦+ 0.1cos2𝜋𝑥

Cn

)
. (95)

The other physical variables are set to zero at the initial time step. The same boundary conditions and the mesh sizes, as in the single 
rising bubble problem, are used. The relevant physical parameters used in [39] (a very small surface tension is set in our simulations) 
and corresponding dimensionless numbers are listed in Table 5. In both cases, we take ℎ = 2−7, 𝜏 = 1 × 10−3 with Cn = 5 × 10−3. To 
capture the vortex shape, a high spatial resolution is needed, so the Taylor-Hood ℙ2 ×ℙ1 element is used for (𝒖ℎ, 𝑃ℎ). In addition, we 
choose 1∕Pe = 0.01 for 𝑚 = (𝜙2 −1)2. Moreover, it is worth noting that the vortex dynamics are captured in a degenerate mobility with 
very small surface tension 𝜆 ((10−4)) and reference mobility 𝑀 ((10−3)), in many literature [30,31]. Such a parameter requires a 
very high resolution, both in space and time, to get a satisfied result. Hence, moderate 𝜆 and 𝑀 ((10−2)) are chosen in our numerical 
21

implementation.
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Table 5

Physical parameters and corresponding dimensionless num-

bers for the Rayleigh-Taylor instability benchmark problem.

At 𝜌1(𝜌𝑟) 𝜂1(𝜂𝑟) 𝑔 𝜆 Re We

3 3

√
2

1000
2 0.01 3000 400

√
2

7 7

√
2

1000
2 0.01 7000 2800

√
2

3

Fig. 11. Contour plot of the Rayleigh-Taylor instability problem with At = 0.5, at a sequence of dimensional time instants, 𝑡∗ = 1, 1.5, 1.75, 2, 2.25, 2.5 (from left to 
right).

4.5.1. A low At number case

The contour plots of 𝜙ℎ at different dimensional time instants are depicted in Fig. 11. It is observed that the solutions computed 
by different schemes exhibit similar structure, and the result computed with a degenerate mobility provides more details than the 
one computed with a constant mobility. A comparison of positions of rising and falling bubbles against reference data, taken from Fu 
[30] (another phase-field model) and a previous work [55] (variable density incompressible flows), is depicted in Fig. 12. We observe 
that the results obtained from current work match the reference data very well.

4.5.2. A high At number case

The contour plots of 𝜙ℎ at different dimensional time instants are depicted in Fig. 13. Similarly, it can be observed that the 
solutions computed by different schemes indicate similar structures, while the result computed with a degenerate mobility exhibits 
more details than the one computed with a constant mobility. A comparison in terms of rising and falling bubble positions is depicted 
in Fig. 14, in which the reference data are taken from a previous work [55]. Again, the results obtained from the current work match 
22

the reference data very well.
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Fig. 12. Comparison of rising and falling bubble positions versus dimensional time with At = 0.5.

Fig. 13. Contour plot of the Rayleigh-Taylor instability problem with At = 0.75, at a sequence of dimensional time instants, 𝑡∗ = 1, 1.2, 1.4, 1.6, 1.8, 2 (from left to right).

4.6. Single rising bubble in three dimensions

In this subsection, we consider a natural 3-D analogue of the single rising bubble problem, as presented in section 4.4. The domain 
is set as Ω = (0, 1)2 × (0, 2), with no-slip horizontal walls and free-slip vertical walls. The corresponding dimensionless numbers are 
23

the same as in section 4.4 (see Table 2), and the initial interface is described by the 3-D profile
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Fig. 14. Comparison of rising and falling bubble positions versus dimensional time with At = 0.75.

Fig. 15. Views of the bubble shape for the 3D single rising bubble problem from the front.

𝜙0(𝑥, 𝑦, 𝑧) = tanh
(√(𝑥− 0.5)2 + (𝑦− 0.5)2 + (𝑧− 0.5)2 − 0.3

Cn

)
. (96)

To compare with the results presented in [5], which solves the sharp interface model in the Barrett-Garcke-Nürnberg formulation 
using unfitted finite element approximations, the bubble radius is set to 0.3 but not 0.25. Again, the other physical variables are set to 
zero at the initial time step. We preform the numerical simulation on a very coarse mesh: ℎ = 2−5 with 𝜏 = 4 ×10−3 and Cn = 2 ×10−2.

The contour plots of 𝜙ℎ at different time instants are presented in Fig. 15. It is observed that the passage of time leads to the 
development of bubbles into ellipsoidal and skirted shapes, respectively. Moreover, the accuracy of the presented simulations is 
demonstrated by a comparison with the results in [5], in terms of bubble shape and position, as displayed in Figs. 16 and 17. It can 
24

be observed that our simulation results are similar to the reference data, in spite of a very coarse mesh. Meanwhile, since computing 
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Fig. 16. Views of bubble shape from the front at dimensional time 𝑡∗ = 3.

Fig. 17. Views of bubble shape from the front at dimensional time 𝑡∗ = 1.5.

Fig. 18. Time evolution of the auxiliary variables.

the benchmark quantities presented in section 4.4 on reconstructed interface are very complicated in three dimensions, they are not 
presented in this section. Instead, the evolution (with respect to dimensional time) of 𝜉1 and 𝜉2 are depicted in Fig. 18, and we can 
observe that they both remain close to 1 in both cases.

5. Concluding remarks

In this work, we have developed two efficient second-order BDF-type, finite element numerical schemes for the Abels-Garcke-Grün 
(AGG) model based on the MSAV approach. Both schemes are proved to be uniquely solvable and unconditionally energy stable. The 
accuracy and robustness of the proposed schemes are confirmed by several representative numerical simulation results.

Irrespective of the exhibited advantages of the proposed schemes, there are still several issues that require further explorations. 
(i) The cut-off approach is still utilized to preserve the bound of 𝜙𝑛

ℎ
when evaluating 𝜌𝑛

ℎ
and 𝜂𝑛

ℎ
. Meanwhile, a rigorous justification of 

the maximum bound principle is not available for the Cahn-Hilliard equation, in contrast to that of the Allen-Cahn equation. In turn, 
we firmly believe that a theoretical analysis of the maximum norm of the numerical solution becomes a very important issue [50], 
25

especially for two-phase incompressible flows with different densities. In particular, it is anticipated that the method proposed in 
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[48] may successfully accomplish this objective in the future research. (ii) The decoupled structure attributed to the SAV approach 
raises the computational cost for extra load vectors and linear systems. Although substantial improvements have been achieved [49], 
the associated implementation of this complicated system necessitates a further study. (iii) A thorough investigation is required to 
address the challenge of eliminating non-physical acoustic waves when implementing the scheme (52) in the presence of a large 
density ratio.

Finally, several future research objectives are presented: (i) a theoretical justification of convergence and error analysis for the 
proposed schemes, and (ii) exploration of efficient and structure-preserving schemes for more complex two-phase incompressible 
flows with different densities, such as magnetohydrodynamic and ferrohydrodynamic systems.
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