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AN H2 CONVERGENCE OF A SECOND-ORDER
CONVEX-SPLITTING, FINITE DIFFERENCE SCHEME FOR THE

THREE-DIMENSIONAL CAHN–HILLIARD EQUATION∗

JING GUO† , CHENG WANG‡ , STEVEN M. WISE§ , AND XINGYE YUE¶

Abstract. In this paper we present an unconditionally solvable and energy stable second order
numerical scheme for the three-dimensional (3D) Cahn–Hilliard (CH) equation. The scheme is a two-
step method based on a second order convex splitting of the physical energy, combined with a centered
difference in space. The equation at the implicit time level is nonlinear but represents the gradients
of a strictly convex function and is thus uniquely solvable, regardless of time step-size. The nonlinear
equation is solved using an efficient nonlinear multigrid method. In addition, a global in time H2

h
bound for the numerical solution is derived at the discrete level, and this bound is independent on the
final time. As a consequence, an unconditional convergence (for the time step s in terms of the spatial
grid size h) is established, in a discrete L∞s (0,T ;H2

h) norm, for the proposed second order scheme. The
results of numerical experiments are presented and confirm the efficiency and accuracy of the scheme.

Key words. Cahn–Hilliard equation, finite difference, second-order, energy stability, multigrid,
global-in-time H2 stability, L∞s (0,T ;H2) convergence analysis.
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1. Introduction
Suppose that Ω = (0,Lx)×(0,Ly)×(0,Lz). For any φ∈H1

per(Ω), we define an energy
of the form

E(φ) =

∫
Ω

{
1

4
φ4− 1

2
φ2 +

ε2

2
|∇φ|2

}
dx, (1.1)

where ε is a positive constant. See [10] for a detailed derivation of E. The conserved
gradient dynamics on Ω is given by

∂tφ=∇·(M(φ)∇µ), (1.2)

where M(φ)>0 is a mobility, and we take M(φ)≡1 for simplicity. The chemical
potential, µ, is defined as

µ := δφE=φ3−φ−ε2∆φ, (1.3)

and δφE denotes the variational derivative with respect to φ. Both the phase field φ
and the chemical potential, µ, are assumed to be Ω-periodic. Because the dynamical
equations are of gradient type, it is easy to see that the energy (1.1) is non-increasing
in time along the solution trajectories of (1.2). Equation (1.2) is a mass conservative
equation where the flux is proportional to the gradient of the chemical potential. This,
along with the periodic boundary conditions, ensures that

∫
Ω
∂tφ dx= 0.
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490 SECOND ORDER SCHEME FOR THE CAHN–HILLIARD EQUATION

The convex-splitting scheme, which was originated by Eyre’s pioneering work [26],
treats the convex terms of µ implicitly and the concave terms explicitly, resulting in

φm+1−φm=s∆µm+1, µm+1 :=
(
φm+1

)3−φm−ε2∆φm+1, (1.4)

where s>0 is the time step-size. See the related works for the phase field crystal
(PFC) equation [35, 48], the modified phase field crystal (MPFC) equation [6, 7, 44,
45], epitaxial thin film growth models [12, 14, 41, 43], the Cahn–Hilliard–Hele–Shaw
(CHHS) and related models [13, 18, 19, 30, 46]. All these convex splitting schemes have
two important properties: unconditional energy stability and unconditionally unique
solvability. These references describe both first and second order temporal splittings,
the latter being an important extension of Eyre’s general first-order framework. In
particular, numerical experiments [6, 7, 12, 14, 33, 35, 41] have shown a great advantage
of the second order splitting over the standard first order one in terms of numerical
efficiency and accuracy.

In addition to the first order accurate (in time) schemes for the Cahn–Hilliard
equation [3,5,21,23–25,27,29,31,32,34,37–40,47], there have also been extensive research
works deriving and analyzing second order (in time) schemes [4, 20, 22, 31, 42]. Among
the existing works, the secant-type algorithm [20,31] is worthy of a detailed discussion.
With the notation Ψ(φ) := 1

4φ
4− 1

2φ
2, the scheme may be formulated as

φm+1−φm=s∆µm+1/2 , µm+1/2 :=
Ψ(φm+1)−Ψ(φm)

φm+1−φm
− ε

2

2

(
∆φm+1 +∆φm

)
, (1.5)

where again we have taken M≡1 for simplicity. A straightforward calculation shows
that this one-step scheme is unconditionally energy stable. In particular, E(φm+1)+

s
∥∥∇µm+1/2

∥∥2

L2 =E(φm). However, this scheme is not expected to be unconditionally
uniquely solvable with respect to the size of s (see [20, 22, 31] for the details.) Lack
of solvability may be problematic, since coarsening studies using the CH equation may
involve very large time scales, requiring potentially very large time steps for efficiency.
Moreover, the scheme does not result as the gradient of a strictly convex function –
in contrast to the first-order convex splitting scheme popularized by Eyre (1.4) and
the second-order convex splitting schemes in [7, 35, 41]. This point can have significant
implications for solver efficiency.

In this paper, we propose and analyze a new second order convex splitting scheme
for the CH equation (1.2). We will show that our scheme is uniquely solvable, resulting
as the gradient of strictly convex functional, and unconditionally energy stable. We
additionally demonstrate a discrete version of an L∞(0,T ;H2) bound of the numerical
solution. (For the discrete norms we use notation of the form L∞s (0,T ;H2

h), where s
and h are the time and space step-sizes.) We show that this bound can be obtained
independent of the final time T , remarkably, but dependent polynomially on ε−1. With
the help of this global in time L∞s (0,T ;H2

h) bound, we also obtain a bound of the
numerical solution in the discrete L2

s(0,T ;H4
h), the latter of which does depend upon the

final time, T . We conclude the theoretical analyses, with an L∞s (0,T ;H2
h)∩L2

s(0,T ;H4
h)

convergence of the numerical solution, which, to our knowledge, is the first such result of
its kind in this area. It is observed that such a convergence is unconditional (for the time
step s in terms of the spatial grid size h); the nonlinear error estimate is feasible because
of the global in time H2

h bound for the numerical solution. A cut-off approach for the
numerical solution is not needed in this paper, compared to a few existing works [42].

In Section 2 we define the scheme and present the unique solvability and discrete-
energy stability analyses of the proposed numerical scheme. Leveraging the energy
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stabilities, refined L∞s
(
0,T ;H2

h

)
and L∞s (0,T ;L∞h ) stabilities of the scheme are proven

in Section 3. In Section 4 we present the primary results of the paper, namely, an
L∞s (0,T ;H2

h)∩L2
s(0,T ;H4

h) convergence analysis for the scheme. Some 3D numerical
results are presented in Section 5. In the appendices we prove discrete versions of some
standard Sobolev embedding and elliptic regularity results for periodic grid functions.

2. The numerical scheme and its unique solvability and energy stability
First, we introduce the finite difference spatial discretization.

2.1. Discretization of space. Here we use the notation and results for some
discrete functions and operators from [46, 48]. We begin with the definitions of grid
functions and difference operators needed for our discretization of three-dimensional
space. We consider the domain Ω = (0,Lx)×(0,Ly)×(0,Lz) and assume that Nx, Ny
and Nz are positive integers such that h=Lx/Nx=Ly/Ny =Lz/Nz, for some h>0,
which we refer to as the spatial step-size. For any positive integer N , consider the
following sets

EN :={i·h
∣∣ i= 0,. ..,N}, CN :={(i−1/2)·h

∣∣ i= 1,. ..,N)}, (2.1)

CN :={(i−1/2)·h
∣∣ i= 0,. ..,N+1)}. (2.2)

The two points belonging to CN \CN are the so-called ghost points. Define the function
spaces

CΩ:={φ:CNx
×CNy

×CNz
→R}, ExΩ:={φ:ENx

×CNy
×CNz

→R}, (2.3)

EyΩ:={φ:ENx×ENy×CNz→R}, EzΩ:={φ:ENx×CNy×ENz→R}, (2.4)

~EΩ :=ExΩ×E
y
Ω×E

z
Ω. (2.5)

The functions of CΩ are called cell centered functions. In component form, cell-centered
functions are identified via φi,j,k :=φ(ξi,ξj ,ξk), where ξi := (i−1/2)·h. The functions of
ExΩ, et cetera, are called edge-centered functions. In component form, edge-centered
functions are identified via fi+ 1

2 ,j,k
:=f(ξi+1/2,ξj ,ξk), et cetera.

A discrete function φ∈CΩ is said to satisfy periodic boundary conditions if and only
if at the ghost points φ satisfies

φNx,j,k =φ0,j,k, φNx+1,j,k=φ1,j,k, (2.6)

φi,Ny,k =φi,0,k, φi,Ny+1,k=φi,1,k, (2.7)

φi,j,Nz
=φi,j,0, φi,j,Nz+1 =φi,j,1. (2.8)

Subsequently, the discrete operators, inner products and norms could be defined in
an appropriate way. We introduce the edge-to-center difference operator dx :ExΩ→CΩ,
defined component-wise via

dxfi,j,k :=
1

h
(fi+ 1

2 ,j,k
−fi− 1

2 ,j,k
), (2.9)

with dy :EyΩ→CΩ and dz :EzΩ→CΩ formulated analogously. Define ∇h· : ~EΩ→CΩ via

∇h ·f :=dxf
x+dyf

y+dzf
z, (2.10)

where f = (fx,fy,fz)T . Define Ax :CΩ→ExΩ component-wise via

Axφi+ 1
2 ,j,k

:=
1

2
(φi,j,k+φi+1,j,k), (2.11)
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with Ay :CΩ→EyΩ and Az :CΩ→EzΩ formulated analogously. Define Ah :CΩ→ ~EΩ via

Ahφ := (Axφ,Ayφ,Azφ)
T
. (2.12)

Define Dx :CΩ→ExΩ component-wise via

Dxφi+ 1
2 ,j,k

:=
1

h
(φi+1,j,k−φi,j,k). (2.13)

Dy :CΩ→EyΩ and Dz :CΩ→EzΩ are similarly evaluated. Define ∇h :CΩ→ ~EΩ via

∇hφ := (Dxφ,Dyφ,Dzφ)
T
. (2.14)

The standard discrete Laplace operator ∆h :CΩ→CΩ is just

∆hφ :=∇h ·∇hφ. (2.15)

We define the following inner products:

(φ,ψ) :=h3
L∑
i=1

M∑
j=1

m∑
k=1

φi,j,kψi,j,k, ∀ φ,ψ∈CΩ, (2.16)

[f,g]x :=
1

2
h3

L∑
i=1

M∑
j=1

m∑
k=1

(fi+ 1
2 ,j,k

gi+ 1
2 ,j,k

+fi− 1
2 ,j,k

gi− 1
2 ,j,k

), ∀ f,g∈ExΩ. (2.17)

[·,·]y and [·,·]z can be formulated analogously. For φ,ψ∈CΩ, a natural discrete inner
product of their gradients is given by

(∇hφ,∇hψ) := [Dxφ,Dxψ]x+[Dyφ,Dyψ]y+[Dzφ,Dzψ]z . (2.18)

We also introduce the following norms for cell-centered functions φ∈CΩ:

‖φ‖∞ := max
i,j,k
|φi,j,k|, (2.19)

‖φ‖p := (|φ|p,1)
1
p , 1≤p<∞. (2.20)

In addition, we define

‖∇hφ‖p :=
(

[|Dxφ|p ,1]x+[|Dyφ|p ,1]y+[|Dzφ|p ,1]z

) 1
p

. (2.21)

In the case of p= 2, it is clear that (∇hφ,∇hφ) =‖∇hφ‖22. In addition, the discrete
‖·‖H1

h
, ‖·‖H2

h
and ‖·‖H4

h
norms are defined as

‖f‖2H1
h

:=‖f‖22 +‖∇hφ‖22 , (2.22)

‖f‖2H2
h

:=‖f‖2H1
h

+‖∆x
hφ‖

2
2 +‖∆y

hφ‖
2

2
+‖∆z

hφ‖
2
2 +‖∆hφ‖22 , (2.23)

‖f‖2H4
h

:=‖f‖2H2
h

+‖∇h∆hφ‖22 +
∥∥∆2

hφ
∥∥2

2
. (2.24)

It is observed that, for φ,ψ∈CΩ satisfying the periodic boundary conditions, the
following summation by parts formulas can be derived:

(φ,∆hψ) =−(∇hφ,∇hψ) ,
(
φ,∆2

hψ
)

= (∆hφ,∆hψ) . (2.25)



J. GUO, C. WANG, S.M. WISE, AND X. YUE 493

2.2. The fully discrete numerical scheme. Let M ∈Z+, and set s :=T/M ,
where T is the final time. Our second order convex splitting scheme can be formulated
as follows: for 0≤m≤M−1, given φm,φm−1∈CΩ, find φm+1,µm+1/2∈CΩ periodic such
that

φm+1−φm=s∇h ·
(
M
(
Ahφ̃

m+1/2
)
∇hµm+1/2

)
, (2.26)

where

µm+1/2 :=χ
(
φm+1,φm

)
− φ̃m+1/2−ε2∆hφ̂

m+1/2, (2.27)

χ
(
φm+1,φm

)
:=

1

4

(
φm+1 +φm

)((
φm+1

)2
+(φm)

2
)
, (2.28)

φ̃m+1/2 :=
3

2
φm− 1

2
φm−1, (2.29)

φ̂m+1/2 :=
3

4
φm+1 +

1

4
φm−1. (2.30)

We define φ−1≡φ0. The local truncation error of this scheme is second-order with
respect to time, provided the time step-size s is invariant and m≥1. When m= 0, the
truncation error reduces to first-order, but this doesn’t spoil the overall second-order
accuracy of the scheme, as will be shown in later sections.

Remark 2.1. We could, alternatively, define a different scheme for the first step.
For example, the following has a second-order in time local truncation error and is also
unconditionally energy stable and unconditionally uniquely solvable (over the single
time step):

φ1−φ0 = s∇h ·
(
M
(
Ahφ̃

1/2
)
∇hµ

1/2
)
, (2.31)

µ
1/2 :=χ

(
φ1,φ0

)
− φ̃1/2−ε2∆hφ̂

1/2, (2.32)

χ
(
φ1,φ0

)
:=

1

4

(
φ1 +φ0

)((
φ1
)2

+
(
φ0
)2)

, (2.33)

φ̃
1/2 :=φ0 +

s

2
∇h ·

(
M
(
Ahφ

0
)
∇hµ0

)
, (2.34)

µ0 := (φ0)3−φ0−ε2∆hφ
0, φ̂

1/2 :=
1

2
φ1 +

1

2
φ0. (2.35)

Apart from its increased accuracy, this scheme has some other advantages over the
simpler choice above – i.e., the order reducing assignment φ−1≡φ0 – as we point out
later. However, the choice φ−1≡φ0 simplifies the stability analyses greatly.

Because we use a convex splitting approach, it is easy to prove that the scheme is
uniquely solvable for any time step.

Theorem 2.2. The second-order scheme (2.26) is uniquely solvable for any time
step-size s>0, and, in particular, the scheme results from the minimization of a strictly
convex functional. Moreover, it is discretely mass conserving, i.e.,

(
φm+1−φm,1

)
= 0,

for all 0≤m≤M−1.

We now define a fully discrete energy that is consistent with the continuous space
energy (1.1) as h→0. In particular, the discrete energy F :CΩ→R is

F (φ) :=
1

4
‖φ‖44−

1

2
‖φ‖22 +

ε2

2
‖∇hφ‖22 . (2.36)
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As in [46, 48], if φ∈CΩ is periodic, then the energies Fc(φ) = 1
4 ‖φ‖

4
4 + ε2

2 ‖∇hφ‖
2
2 and

Fe(φ) = 1
2 ‖φ‖

2
2 are convex. Hence F , as defined in (2.36), admits the convex splitting

F =Fc−Fe. We can not guarantee that the energy F is non-increasing in time, but, we
can guarantee the dissipation of another modified energy. To be precise, for all ψ,φ∈CΩ,
define an alternate numerical energy via

F̃ (φ,ψ) :=F (φ)+
1

4
‖φ−ψ‖22 +

ε2

8
‖∇h (φ−ψ)‖22 . (2.37)

Note that this energy is consistent with the continuous space energy (1.1). For example,
suppose that u : Ω× [0,T ]→R is a sufficiently regular, Ω-periodic function. Define –
for our present and future use – the canonical grid projection operator Ph :C0(Ω)→
CΩ via [Phv]i,j,k =v(ξi,ξj ,ξk). Set uh,s :=Phu(· ,t0 +s). Then, clearly, F̃ (uh,0,uh,s)→
E(u( ·,t0)), as s→0 and h→0.

Theorem 2.3. Suppose that φm+1, φm, φm−1∈CΩ are periodic solutions to (2.26).
The second-order scheme (2.26) is unconditionally energy stable with respect to (2.37),

meaning that for any time step-size s>0 and any 0≤m≤M−1, F̃ (φm+1,φm)≤
F̃ (φm,φm−1). More precisely,

F̃ (φm+1,φm)+s

∥∥∥∥∥
√
M
(
Ahφ̃m+1/2

)
∇hµm+1/2

∥∥∥∥∥
2

2

+R
(

∆̃sφ
m
)

= F̃ (φm,φm−1), (2.38)

where the non-negative remainder term is

R
(

∆̃sφ
m
)

:=
ε2

8

∥∥∥∇h(∆̃sφ
m
)∥∥∥2

2
+

1

4

∥∥∥∆̃sφ
m
∥∥∥2

2
, (2.39)

with ∆̃sφ
m :=φm+1−2φm+φm−1, and where∥∥∥∥∥

√
M
(
Ahφ̃m+1/2

)
∇hµm+1/2

∥∥∥∥∥
2

2

:=
[
Dxµ

m+1/2,M
(
Axφ̃

m+1/2
)
Dxµ

m+1/2
]
x

+
[
Dyµ

k+1/2,M
(
Ayφ̃

m+1/2
)
Dyµ

m+1/2
]
y

+
[
Dzµ

k+1/2,M
(
Azφ̃

m+1/2
)
Dzµ

m+1/2
]
z
. (2.40)

Proof. The result follows readily by (i) testing (2.26) by µm+1/2 and (2.27) by
φm+1−φm, (ii) summing over the three-dimensional grid, (iii) adding the respective
equations, and (iv) using the summation-by-parts formulas from Subsection 2.1 together
with the periodic boundary conditions. We omit the details for the sake of brevity.

From the energy stability – with respect to discrete energy (2.37) – we immediately
obtain the following norm stabilities.

Corollary 2.4. Suppose that ψ∈C4
per(Ω), and φ0 :=Phψ∈CΩ. Assume that there

is some M0>0 such that M(s)≥M0, for all s∈R. Then with the same hypotheses as
in the last theorem, we have the following stabilities

‖∇hφ‖2L∞
s (0,T ;L2

h) := max
0≤m≤M

‖∇hφm‖22≤C1, (2.41)
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‖φ‖2L∞
s (0,T ;L4

h) := max
0≤m≤M

‖φm‖24≤C2, (2.42)

‖φ‖2L∞
s (0,T ;H1

h) := max
0≤m≤M

‖φm‖2H1
h
≤C3, (2.43)

‖∇hµ‖2L2
s(0,T ;L2

h) :=s

M−1∑
m=0

∥∥∥∇hµm+1/2
∥∥∥2

2
≤C4, (2.44)

where C1,. ..,C4 are positive constants independent of h, s, and T .

Proof. By consistency,

F (φ0)≤E(ψ)+C=:C0, (2.45)

where C>0 is a constant that is independent of h. By the last theorem and the definition
of the numerical energy (2.37), for any 1≤m≤M , we have

F (φm)≤ F̃ (φm+1,φm)≤···≤ F̃ (φ0,φ−1) =F (φ0)≤C0, (2.46)

where we have used φ−1≡φ0. Now, we use the fact that, for any φ∈CΩ,

1

2
‖φ‖22 +

ε2

2
‖∇hφ‖22−|Ω|≤F (φ), (2.47)

to arrive at the norm stabilities (2.41)–(2.43). Summing (2.38) and using the positivity
of the mobility and the non-negativity of the remainder term, we have

F̃
(
φM ,φM−1

)
+sM0

M−1∑
m=0

∥∥∥∇hµm+1/2
∥∥∥2

2
≤ F̃

(
φ0,φ−1

)
≤C0, (2.48)

from which we obtain (2.44).

Remark 2.5. The mobility functionM( ·) may be truly degenerate in certain physical
models, i.e., M( ·)≥0 with M(φ) = 0 for certain values of φ. The uniform in time
L∞s (0,T ;H1

h) stability estimates (2.41), (2.43) and the L∞s (0,T ;L4
h) estimate (2.42) are

still valid in this case. On the other hand, it is observed that the L2
s(0,T ;L2

h) estimate
(2.44) for ∇hµ has to be derived under a non-degenerate condition for the mobility
function: M(φ)≥M0>0 at a point-wise level, for some positive number M0.

3. L∞s
(
0,T ;H2

h

)
and L∞s (0,T ;L∞h ) stabilities of the scheme

We note that the L∞s (0,T ;H1
h) stability of the scheme obtained in the last section is

not sufficient to recover an L∞s (0,T ;L∞h ) bound of the numerical solution. We need an
L∞s (0,T ;H2

h) bound to obtain point-wise control of the numerical approximation, and
this is the goal of the present section. The following estimates are crucial to deriving
the L∞s (0,T ;H2

h) stability and convergence analyses in this and later sections.
The proofs of the following estimates are contained in Section B.

Lemma 3.1. Suppose that φ∈CΩ. If φ and ∆hφ are periodic, as defined in (2.6)–(2.8),
then we have

‖φ‖H2
h
≤C5

(
‖φ‖

2
3

H1
h

∥∥∆2
hφ
∥∥ 1

3

2
+‖φ‖H1

h

)
, (3.1)

‖φ‖H2
h
≤C6 (‖φ‖2 +‖∆hφ‖2) , (3.2)

‖φ‖H4
h
≤C7

(
‖φ‖2 +

∥∥∆2
hφ
∥∥

2

)
, (3.3)
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H2

h

≤C8‖∆hφ‖2 , (3.4)

‖φ‖∞≤C9‖φ‖H2
h
, (3.5)

‖φ‖∞≤C10

(
‖φ‖

5
6

H1
h

∥∥∆2
hφ
∥∥ 1

6

2
+‖φ‖H1

h

)
, (3.6)

‖∇hφ‖∞≤C11‖φ‖
1
2

H1
h

∥∥∆2
hφ
∥∥ 1

2

2
, (3.7)

‖∇hφ‖4≤C12‖φ‖H2
h
, (3.8)

‖∆hφ‖2≤C13

∥∥∆2
hφ
∥∥

2
, (3.9)

where Ci>0, 5≤ i≤13, are constants independent of h, and φ̄ := 1
|Ω| (φ,1) is the discrete

average.

Theorem 3.2. For simplicity, suppose that M(s)≡1. Assume that the hypotheses of
Theorem 2.3 and Corollary 2.4 hold. Then, if s≤ 176C2

13/45ε2, we have

‖φ‖2L∞
s (0,T ;H2

h) := max
0≤m≤M

‖φm‖2H2
h
≤C14, (3.10)

‖φ‖2L2
s(0,T ;H4

h) :=s

M∑
m=1

‖φm‖2H4
h
≤C15(T +1), (3.11)

where C14,C15>0 are constants independent of h, s, and T .

Proof. Since M≡1, the scheme (2.26) may be written as

φm+1−φm=s∆h

(
χ(φm+1,φm)− φ̃m+1/2−ε2∆hφ̂

m+1/2
)
. (3.12)

Taking the discrete inner product with (3.12) by ∆2
hφ

m+1 gives(
φm+1−φm,∆2

hφ
m+1

)
+s
(

∆2
hφ

m+1,∆hφ̃
m+1/2

)
−s
(
∆2
hφ

m+1,∆hχ(φm+1,φm)
)

+ε2s
(

∆2
hφ

m+1,∆2
hφ̂

m+1/2
)

= 0. (3.13)

An application of summation-by-parts using periodic boundary conditions yields(
φm+1−φm,∆2

hφ
m+1

)
=
(
∆h(φm+1−φm),∆hφ

m+1
)

=
1

2

(∥∥∆hφ
m+1

∥∥2

2
−‖∆hφ

m‖22
)

+
1

2

∥∥∆h(φm+1−φm)
∥∥2

2
. (3.14)

For the concave diffusion term, we have

−
(

∆2
hφ

m+1,∆hφ̃
m+1/2

)
≤α

∥∥∆2
hφ

m+1
∥∥2

2
+

1

4α

∥∥∥∆hφ̃
m+1/2

∥∥∥2

2

≤α
∥∥∆2

hφ
m+1

∥∥2

2
+

9

8α
‖∆hφ

m‖22 +
1

8α

∥∥∆hφ
m−1

∥∥2

2
, (3.15)

for any α>0. Meanwhile, the quantities ‖∆hφ
m‖22,

∥∥∆hφ
m−1

∥∥2

2
can be controlled by

∥∥∆hφ
`
∥∥2

2
≤ 1

4α2

∥∥φ`∥∥2

2
+α2

∥∥∆2
hφ

`
∥∥2

2
≤ C3

4α2
+α2

∥∥∆2
hφ

`
∥∥2

2
, (3.16)

for any α>0, for `=m,m−1. A combination of (3.15) and (3.16) shows that
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−
(

∆2
hφ

m+1,∆hφ̃
m+1/2

)
≤α

∥∥∆2
hφ

m+1
∥∥2

2
+

9α

8

∥∥∆2
hφ

m
∥∥2

2
(3.17)

+
α

8

∥∥∆2
hφ

m−1
∥∥2

2
+

5C3

16α3
, (3.18)

which holds for any α>0.
The bi-harmonic diffusion term can be analyzed as follows:(

∆2
hφ

m+1,∆2
hφ̂

m+1/2
)

=
3

4

∥∥∆2
hφ

m+1
∥∥2

2
+

1

4

(
∆2
hφ

m+1,∆2
hφ

m−1
)

≥ 3

4

∥∥∆2
hφ

m+1
∥∥2

2
− 1

4

(1

2

∥∥∆2
hφ

m+1
∥∥2

2
+

1

2

∥∥∆2
hφ

m−1
∥∥2

2

)
≥ 5

8

∥∥∆2
hφ

m+1
∥∥2

2
− 1

8

∥∥∆2
hφ

m−1
∥∥2

2
. (3.19)

Regarding the nonlinear term, we begin with the following inequality:(
∆2
hφ

m+1,∆hχ(φm+1,φm)
)
≤
∥∥∆2

hφ
m+1

∥∥
2
·
∥∥∆hχ(φm+1,φm)

∥∥
2
. (3.20)

The rest work is focused on obtaining a useful estimate for
∥∥∆hχ(φm+1,φm)

∥∥
2
. Detailed

expansions and several applications of the discrete Hölder inequality yields

‖∆h(fgh)‖2≤C
(
‖f‖∞ ·‖g‖∞ ·‖h‖H2

h
+‖f‖∞ ·‖h‖∞ ·‖g‖H2

h

+‖g‖∞ ·‖h‖∞ ·‖f‖H2
h

+‖f‖∞ ·‖∇hg‖∞ ·‖∇hh‖2

+‖g‖∞ ·‖∇hf‖∞ ·‖∇hh‖2 +‖h‖∞ ·‖∇hf‖∞ ·‖∇hg‖2
)
. (3.21)

An expansion of χ(φm+1,φm), combined with the last inequality, results in∥∥∆hχ(φm+1,φm)
∥∥

2

≤C
(∥∥φm+1

∥∥
∞+‖φm‖∞

)
·
(∥∥∇hφm+1

∥∥
∞+‖∇hφm‖∞

)
·
(∥∥φm+1

∥∥
H1

h

+‖φm‖H1
h

)
+C

(∥∥φm+1
∥∥2

∞+‖φm‖2∞
)
·
(∥∥φm+1

∥∥
H2

h

+‖φm‖H2
h

)
≤C16

(∥∥φm+1
∥∥
∞+‖φm‖∞

)
·
(∥∥∇hφm+1

∥∥
∞+‖∇hφm‖∞

)
+C17

(∥∥φm+1
∥∥2

∞+‖φm‖2∞
)
·
(∥∥φm+1

∥∥
H2

h

+‖φm‖H2
h

)
, (3.22)

where C16,C17>0 are constants. The uniform in time H1
h estimate (2.43), combined

with the 3D discrete Sobolev inequality (3.1), and the discrete Gagliardo–Nirenberg
type inequalities (3.6) and (3.7), yields∥∥φ`∥∥

H2
h

≤C5

(∥∥φ`∥∥ 2
3

H1
h

∥∥∆2
hφ

`
∥∥ 1

3

2
+
∥∥φ`∥∥

H1
h

)
≤C5

(
C

1
3
3 ·
∥∥∆2

hφ
`
∥∥ 1

3

2
+C

1
2
3

)
, (3.23)∥∥φ`∥∥∞≤C10

(∥∥φ`∥∥ 5
6

H1
h

∥∥∆2
hφ

`
∥∥ 1

6

2
+
∥∥φ`∥∥

H1
h

)
≤C10

(
C

5
12
3 ·
∥∥∆2

hφ
`
∥∥ 1

6

2
+C

1
2
3

)
, (3.24)∥∥∇hφ`∥∥∞≤C11

∥∥φ`∥∥ 1
2

H1
h

∥∥∆2
hφ

`
∥∥ 1

2

2
≤C11C

1
4
3 ·
∥∥∆2

hφ
`
∥∥ 1

2

2
, (3.25)

for `=m,m+1. Going back to (3.22), we arrive at
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∥∥∆hχ(φm+1,φm)
∥∥

2

≤C18

(∥∥∆2
hφ

m+1
∥∥ 2

3

2
+
∥∥∆2

hφ
m
∥∥ 2

3

2

)
+C19

(∥∥∆2
hφ

m+1
∥∥ 1

3

2
+
∥∥∆2

hφ
m
∥∥ 1

3

2

)
C20

(∥∥∆2
hφ

m+1
∥∥ 1

2

2
+
∥∥∆2

hφ
m
∥∥ 1

2

2

)
+C21, (3.26)

where C18,. ..,C21>0 are constants that depend upon C3, C5, C10, C11, C16, and C17.
The combination of this last estimate with (3.20) leads to(

∆2
hφ

m+1,∆hχ(φm+1,φm)
)

≤C18

(∥∥∆2
hφ

m+1
∥∥ 5

3

2
+
∥∥∆2

hφ
m+1

∥∥
2
·
∥∥∆2

hφ
m
∥∥ 2

3

2

)
+C19

(∥∥∆2
hφ

m+1
∥∥ 4

3

2
+
∥∥∆2

hφ
m+1

∥∥
2
·
∥∥∆2

hφ
m
∥∥ 1

3

2

)
+C20 ·

(∥∥∆2
hφ

m+1
∥∥ 3

2

2
+
∥∥∆2

hφ
m+1

∥∥
2
·
∥∥∆2

hφ
m
∥∥ 1

2

2

)
+C21

∥∥∆2
hφ

m+1
∥∥

2

≤C22(α)+α
(∥∥∆2

hφ
m+1

∥∥2

2
+
∥∥∆2

hφ
m
∥∥2

2

)
, (3.27)

for all α>0, where C22>0 depends upon α and C18,. ..,C21.
A combination of (3.13), (3.14), (3.18), (3.19) and (3.27) results in

∥∥∆hφ
m+1

∥∥2

2
−‖∆hφ

m‖22 +
(5ε2

4
−4α

)
s
∥∥∆2

hφ
m+1

∥∥2

2

≤ 17α

4
s
∥∥∆2

hφ
m
∥∥2

2
+

(
ε2

4
+
α

4

)
s
∥∥∆2

hφ
m−1

∥∥2

2
+

(
2C22(α)+

5C3

8α3

)
s. (3.28)

Choosing α= 1
16ε

2 fixes C22 and yields

∥∥∆hφ
m+1

∥∥2

2
−‖∆hφ

m‖22 +ε2s
∥∥∆2

hφ
m+1

∥∥2

2
≤ 17ε2

64
s
(∥∥∆2

hφ
m
∥∥2

+
∥∥∆2

hφ
m−1

∥∥2

2

)
+C23s,

(3.29)

where C23>0 is a constant. Now, adding 7ε2

16

∥∥∆2
hφ

m
∥∥2

2
to both sides of the last inequal-

ity gives

∥∥∆hφ
m+1

∥∥2

2
+ε2s

∥∥∆2
hφ

m+1
∥∥2

2
+

7ε2s

16

∥∥∆2
hφ

m
∥∥2

2

≤‖∆hφ
m‖22 +

45ε2s

64

∥∥∆2
hφ

m
∥∥2

2
+

17ε2s

64

∥∥∆2
hφ

m−1
∥∥2

2
+C23s. (3.30)

We define the “energy”

Gm :=‖∆hφ
m‖22 +

45ε2s

64

∥∥∆2
hφ

m
∥∥2

2
+

17ε2s

64

∥∥∆2
hφ

m−1
∥∥2

2
. (3.31)

Then, it follows that

Gm+1 +
19ε2s

64

∥∥∆2
hφ

m+1
∥∥2

2
+

11ε2s

64

∥∥∆2
hφ

m
∥∥2

2
≤Gm+C23s. (3.32)
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Meanwhile, using estimate (3.9), we have

19ε2

64
s
∥∥∆2

hφ
m+1

∥∥2

2
+

11ε2s

64

∥∥∆2
hφ

m
∥∥2

2

=
ε2s

16

∥∥∆2
hφ

m+1
∥∥2

2
+
ε2s

16

∥∥∆2
hφ

m+1
∥∥2

2
+

11ε2s

64

∥∥∆2
hφ

m+1
∥∥2

2
+

11ε2s

64

∥∥∆2
hφ

m
∥∥2

2

≥ ε
2s

16

∥∥∆2
hφ

m+1
∥∥2

2
+

ε2s

16C2
13

∥∥∆hφ
m+1

∥∥2

2
+

11ε2s

64

∥∥∆2
hφ

m+1
∥∥2

2
+

11ε2s

64

∥∥∆2
hφ

m
∥∥2

2

=
ε2s

16

∥∥∆2
hφ

m+1
∥∥2

2
+

ε2s

16C2
13

{∥∥∆hφ
m+1

∥∥2

2
+

11C2
13

4

∥∥∆2
hφ

m+1
∥∥2

2
+

11C2
13

4

∥∥∆2
hφ

m
∥∥2

2

}
≥ ε

2s

16

∥∥∆2
hφ

m+1
∥∥2

2
+

ε2s

16C2
13

{∥∥∆hφ
m+1

∥∥2

2
+

45ε2s

64

∥∥∆2
hφ

m+1
∥∥2

2
+

17ε2s

64

∥∥∆2
hφ

m
∥∥2

2

}
=
ε2s

16

∥∥∆2
hφ

m+1
∥∥2

2
+

ε2s

16C2
13

Gm+1, (3.33)

provided that

s≤ 176C2
13

ε2
·min

( 1

45
,

1

17

)
=

176C2
13

45ε2
. (3.34)

Note that the condition in (3.34) is very easily satisfied, as the bound on the right-hand
side will typically be greater than 1. As a result, we arrive at(

1+
ε2s

16C2
13

)
Gm+1 +

ε2s

16

∥∥∆2
hφ

m+1
∥∥2

2
≤Gm+C23s. (3.35)

Applying an induction argument with the last estimate, we find(
1+

ε2s

16C2
13

)m+1

Gm+1 +
ε2s

16

m+1∑
j=1

∥∥∆2
hφ

j
∥∥2

2
≤G0 +C23s

m∑
j=0

(
1+

ε2s

16C2
13

)j
. (3.36)

Hence

Gm+1≤
(

1+
ε2s

16C2
13

)−(m+1)

G0 +C23

s
∑m
j=0

(
1+ ε2s

16C2
13

)j
(

1+ ε2s
16C2

13

)m+1

=

(
1+

ε2s

16C2
13

)−(m+1)

G0 +C23

(
1+ ε2s

16C2
13

)m+1

−1

ε2

16C2
13

(
1+ ε2s

16C2
13

)m+1

≤
(

1+
ε2s

16C2
13

)−(m+1)

G0 +
16C23C

2
13

ε2

≤G0 +
16C23C

2
13

ε2
. (3.37)

In particular, we have

∥∥φm+1
∥∥2

2
+
∥∥∆hφ

m+1
∥∥2

2
≤C3 +G0 +

16C23C
2
13

ε2
≤C24, (3.38)
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using φ−1≡φ0 and the fact that G0 is bounded independently of h by consistency.
Observe that C25 is independent of h and the final time T . An application of the
discrete elliptic regularity (3.2) leads to the following result:

‖φm‖2H2
h
≤C2

6 (‖φm‖2 +‖∆hφ
m‖2)

2
=: 2C2

6C24 =:C14, (3.39)

where C14 is independent of s, h, and T . To finish up, summing (3.29) from m= 0 to
m=M−1, we have

∥∥∆hφ
M
∥∥2

2
−
∥∥∆hφ

0
∥∥2

2
+ε2s

M∑
`=1

∥∥∆2
hφ

`
∥∥2

2
≤ 17ε2

64
s

M−1∑
`=0

∥∥∆2
hφ

`
∥∥2

+
17ε2

64
s

M−2∑
`=−1

∥∥∆2
hφ

`
∥∥2

2
+C23T. (3.40)

Hence,

∥∥∆hφ
M
∥∥2

2
+

15ε2

32
s

M∑
`=1

∥∥∆2
hφ

`
∥∥2≤C23T +

∥∥∆hφ
0
∥∥2

2
+

3 ·17ε2

64
s
∥∥∆2

hφ
0
∥∥2

2
. (3.41)

Estimate (3.11) now follows by consistency, the stability estimate (2.43), and the discrete
elliptic regularity result (3.3).

Remark 3.3. We observe that a global in time H2
h bound of the numerical approxi-

mation φ has been obtained. Indeed, a more detailed examination of (3.37) reveals an
asymptotic decay of the contribution coming from the term G0, which is essentially the
H2
h norm of the initial data φ0. In addition, the growth of the L2

s(0,T ;H4
h) norm of

the numerical solution is, at worst, linear in time; no exponential growth occurs. These
remarkable estimates will be important to the error analysis to follow.

Using our discrete Sobolev inequalities, we immediately get the following:

Corollary 3.4. With the same hypotheses as in the last theorem, we immediately
have

‖φm‖∞≤C9‖φm‖H2
h
≤C9

√
C14, ‖∇hφm‖4≤C12‖φm‖H2

h
≤C12

√
C14, (3.42)

for any 1≤m≤M . We also note that, the constants C9, C12, and C14 are independents
on h, s and the final time T . Regarding their dependence on ε, we observe that C9

and C12 are ε-independent, while C14 depends polynomially on ε−1. At worst, C14 =
O(ε−m0), where m0 = 26.

Remark 3.5. The reader will observe that the ‖·‖∞ bound for the numerical solution,
namely C9

√
C14 in (3.42), is final time independent. There have been limited theoretical

works to derive an L∞ bound of the numerical solution for the Cahn–Hilliard equation;
see [5] for the analysis of a first-order numerical scheme applied to the CH equation
with a logarithmic energy. On the other hand, for a second-order scheme for the CH
model with a nonlinear polynomial energy, our ‖·‖∞ estimate (3.42) is the first such
result, to the authors’ knowledge.

Remark 3.6. The global-in-time ‖·‖∞ bound, C9

√
C14 in (3.42), depends singularly

on ε, specifically, C9

√
C14 =O(ε−13). Meanwhile, a well-known theoretical analysis

presented by L. Caffareilli [9] gives an ε-independent L∞ bound for the CH equation,
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at the PDE level, provided that a cut-off is applied to the energy. For the standard CH
energy (1.1), in which the polynomial part is given by 1

4φ
4− 1

2φ
2 without a cut-off, the

availability of an ε-independent L∞ bound of the solution is still an open problem, at
both the PDE and numerical levels.

Remark 3.7. We note that, the second order (in time) numerical approximation
to the linear bi-harmonic term, namely, 3

4φ
m+1 + 1

4φ
m−1, is different from the standard

Crank–Nicholson time stepping. In fact, a detailed analysis shows that, with the Crank–
Nicholson temporal discretization applied to the linear bi-harmonic term, the unique
solvability and unconditional energy stability are still valid for the resulting numerical
scheme. However, an essential difficulty with Crank–Nicholson arises in the H2

h stability
estimate and the convergence analysis, due to the lack of diffusion power at time-step
tm+1.

This subtle fact could also be explained by a linear stability domain argument. The
temporal discretization applied to the linear bi-harmonic term, proposed in this paper,
corresponds a much larger stability domain than the standard Crank–Nicholson one.
In more detail, the stability domain for the Crank–Nicholson scheme is exactly the left
half complex plane: {z : Re(z)<0}, while that for the proposed time stepping (in this
paper) contains a large part on the right complex plane. In particular, if the nonlinear
terms are involved, we believe that the proposed time stepping would bring a great deal
of convenience in the stability and convergence analysis.

Remark 3.8. The inequalities in Lemma 3.1 provide the elliptic regularity and the
Sobolev embedding at the discrete level, which are required in the nonlinear analysis.
Since the finite difference scheme defines the numerical solution on the collocation grid
points, these inequalities can not be derived by a direct calculation. Instead, we have to
establish a functional equivalence between the discrete and continuous norms, and apply
the elliptic regularity and Sobolev embedding in the continuous functional space, so that
these discrete inequalities are valid; see the details in Section B. Some related discussions
could be found in the earlier works of mimetic difference methods (see [8, 11, 36], for
example).

Remark 3.9. Other than the standard second order centered difference approxima-
tion, other spatial discretizations with higher order accuracy could be applied to the
proposed second order convex splitting scheme, with the numerical stability and conver-
gence analysis expected to be available. For example, Fourier pseudo-spectral scheme
could greatly improve the spatial accuracy, and the discrete Sobolev inequalities could
be proven in a similar manner, so that a uniform in time H2 bound is valid for the
fully discrete numerical solution. As another example, the finite element approximation
(with different polynomial degree order) could be chosen as the spatial discretization,
and the discrete version of the Sobolev inequalities could be established in a modified
way. These higher order approaches will be considered in our future works.

4. L∞s
(
0,T ;H2

h

)
and L∞s (0,T ;L∞h ) convergence analysis of the scheme

For simplicity, we assume thatM(·)≡1. By φe we denote the exact solution to the
original Cahn–Hilliard equation (1.2) with the initial data φe( ·,t= 0) =ψ∈C4

per(Ω). We
assume that the exact solution has certain regularities. First we define the regularity
class

R1 :=H3(0,T ;C0
per(Ω))∩H2(0,T ;C4

per(Ω))

∩W 2,∞(0,T ;C2
per(Ω))∩L∞(0,T ;C6

per(Ω)). (4.1)
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For the error analysis over the first time-step, we will also need to assume additional
regularity for a short time. For some 0<T ∗≤T to be defined later, we define the
enhanced regularity class

R2 :=C3([0,T ∗];C2
per(Ω))∩C2([0,T ∗];C6

per(Ω))

∩C2([0,T ∗];C2
per(Ω))∩C0([0,T ∗];C8

per(Ω)). (4.2)

We assume that φe∈R :=R1∩R2.

Theorem 4.1. Given initial data ψ∈C4
per(Ω), suppose the unique solution φe(x,y,z,t)

for the Cahn–Hilliard equation (1.2), withM(φ)≡1, is of regularity class R. Set Φm :=

Phφe(· ,m ·s), for all 0≤m≤M , and Φ−1≡Φ0. Define the error grid function φ̆`i,j,k :=

Φ`i,j,k−φ`i,j,k, where φ`i,j,k ∈CΩ is the `th periodic solution of the second order scheme
(3.12). Then, provided s is sufficiently small, for all positive integers `, such that s ·`≤
T , we have

∥∥∥∆hφ̆
`
∥∥∥2

2
+ε2s

∑̀
m=1

∥∥∥∆2
hφ̆

m
∥∥∥2

2
≤C

(
s2 +h2

)2
, (4.3)

where C=C(ε,T )>0 is independent of s and h.

The convergence analysis is carried out in three steps. First, in Section 4.1, we
obtain an equation for the error function using a standard consistency analysis. In
Section 4.2 we provide an estimate for the nonlinear error term. Finally, the stability
and optimal rate error estimate is given by Section 4.3.

4.1. Consistency analysis and error equations. Detailed Taylor expansions
for the exact solution shows that the grid function Φ, which represents the exact solution,
satisfies the second order numerical scheme (3.12) with a truncation error: for 0≤m≤
M−1 we have

Φm+1−Φm

s
= ∆h

(
χ(Φm+1,Φm)−

(3

2
Φm− 1

2
Φm−1

)
−ε2∆h

(3

4
Φm+1 +

1

4
Φm−1

))
+τm+1/2, (4.4)

where τm+1/2∈CΩ is the local truncation error grid function. The truncation error
satisfies ∥∥∥τm+1/2

∥∥∥
2
≤ (s2 +h2)βm+1/2, s

M−1∑
`=1

β2
`+1/2≤C25, (4.5)

where s ·M =T , and C25 is independent of h and s. The details are suppressed for
brevity of presentation. The local truncation error is, however, only first-order accurate
at the first time step. Using the increased regularity in the short-time frame, Taylor
expansions reveal that ∥∥∥∆hτ

1/2
∥∥∥

2
≤ (s+h2)β1/2, (4.6)

where β1/2 is bounded uniformly as s→0.
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Subtracting (4.4) from the numerical scheme (3.12) yields

φ̆m+1− φ̆m

s
= ∆h

(
χ(Φm+1,Φm)−χ(φm+1,φm)−

(3

2
φ̆m− 1

2
φ̆m−1

)
−ε2∆h

(3

4
φ̆m+1 +

1

4
φ̆m−1

))
+τm+1/2, (4.7)

for all 0≤m≤M−1. Observe that φ̆0≡ φ̆−1≡0, based on our constructions.

Remark 4.2. The Taylor expansion based on the regularity assumption (4.1) is
straightforward. On the other hand, we remark that this assumption does not represent
the optimal regularity requirement for the exact solution. For example, a reduced
regularity assumption

φe∈H3(0,T ;C0
per(Ω))∩H2(0,T ;H4

per(Ω))

∩W 2,∞(0,T ;H2
per(Ω))∩L∞(0,T ;H6

per(Ω)), (4.8)

is sufficient for the L2
s(0,T ;L2

h) bound of the local truncation error τ in (4.5). In this
case, the consistency analysis would be similar to that described in [7, 45]. The details
are skipped in this paper for simplicity of presentation.

4.2. Preliminary estimates for the nonlinear error term. First, we prove
a stability estimate for the discrete H2

h norm of the error function.

Lemma 4.3. Given initial data ψ∈C4
per(Ω), suppose the unique exact solution φe for

the Cahn–Hilliard equation (1.2), with M(φ)≡1, is of regularity class R. Then, for
any 1≤m≤M , ∥∥∥φ̆m∥∥∥

H2
h

≤C26

(∥∥∥∆hφ̆
m
∥∥∥

2
+h2

)
. (4.9)

Proof. We observe the fact that∣∣∣φ̆m∣∣∣= ∣∣Φm−φm∣∣= ∣∣∣Φm−φ0
∣∣∣

=

∣∣∣∣Φm−|Ω|−1

∫
Ω

φe(x,tm)dx−
(
φ0−|Ω|−1

∫
Ω

φe(x,t0)dx

)∣∣∣∣
≤
∣∣∣∣Φm−|Ω|−1

∫
Ω

φe(x,tm)dx

∣∣∣∣+ ∣∣∣∣φ0−|Ω|−1

∫
Ω

φe(x,t0)dx

∣∣∣∣≤Ch2, (4.10)

owing to consistency. Here the overline refers only to the discrete average. As a result,
the estimate (4.9) follows from the discrete elliptic regularity (3.4).

In addition, a control of the error related to the nonlinear term in the second order
scheme is needed in the convergence analysis.

Lemma 4.4. Suppose Φm,Φm+1,φm,φm+1∈CΩ are periodic. Denote the differences
by φ̆` := Φ`−φ`, for `=m,m+1. Then we have∥∥∆h

(
χ
(
Φm+1,Φm

)
−χ

(
φm+1,φm

))∥∥
2

≤C26

{
K2

1 ·
(∥∥∥φ̆m+1

∥∥∥
H2

h

+
∥∥∥φ̆m∥∥∥

H2
h

)
+
(
K1K3 +K2

4

)
·
(∥∥∥φ̆m+1

∥∥∥
∞

+
∥∥∥φ̆m∥∥∥

∞

)
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+K1K4

(∥∥∥∇hφ̆m+1
∥∥∥

4
+
∥∥∥∇hφ̆m∥∥∥

4

)
+
(
K2

5 +K1K2

)
·
(∥∥∥φ̆m+1

∥∥∥
2

+
∥∥∥φ̆m∥∥∥

2

)}
, (4.11)

where C26 is a positive constant which is independent of h, and

K1 :=
∥∥Φm+1

∥∥
∞+‖Φm‖∞+

∥∥φm+1
∥∥
∞+‖φm‖∞ ,

K2 :=
∥∥∆x

hΦm+1
∥∥
∞+‖∆x

hΦm‖∞+
∥∥∆y

hΦm+1
∥∥
∞+‖∆y

hΦm‖∞
+
∥∥∆z

hΦm+1
∥∥
∞+‖∆z

hΦm‖∞ ,
K3 :=

∥∥φm+1
∥∥
H2

h

+‖φm‖H2
h
,

K4 :=
∥∥∇hΦm+1

∥∥
4

+‖∇hΦm‖4 +
∥∥∇hφm+1

∥∥
4

+‖∇hφm‖4 ,
K5 :=

∥∥∇hΦm+1
∥∥
∞+‖∇hΦm‖∞ . (4.12)

Remark 4.5. A similar nonlinear error estimate has been established in the recent
article [7], where an L∞s (0,T ;H3

h) convergence analysis for the second order numerical
scheme for the modified phase field crystal (MPFC) model is undertaken in 2D. The
present lemma represents an extension to the 3D case. Since the details are quite similar,
we have omitted the proof.

Lemma 4.6. Given sufficiently regular initial data ψ∈Hm
per(Ω), suppose the unique

solution φe(x,y,z,t) for the Cahn–Hilliard equation (1.2), withM(φ)≡1, is of regularity
class R. Then, for any 1≤m≤M ,

∥∥∆h

(
χ
(
Φm+1,Φm

)
−χ

(
φm+1,φm

))∥∥
2
≤C27

(∥∥∥φ̆k+1
∥∥∥
H2

h

+
∥∥∥φ̆k∥∥∥

H2
h

)
, (4.13)

where C27>0 is a constant that is independent of h and s.

Proof. The regularity assumptions for the exact solution (4.1) implies that, for
any 1≤m≤M ,

‖Φm‖W 2,∞
h
≤C28, (4.14)

where the norm above denotes a discrete W 2,∞ norm of Φm, i.e., the maximum norm
of Φm and all of its finite differences up to and including the second order ones. Con-
sequently,

K1,K4≤C(C28 +C9

√
C14 +C12

√
C14), K2,K5≤CC28, K3≤C

√
C14. (4.15)

Using these estimates, combined with (4.11) and the discrete Sobolev inequalities (3.6)
and (3.8), we get the result.

Corollary 4.7. Given initial data ψ∈C4
per(Ω), suppose the unique solution φe for

the Cahn–Hilliard equation (1.2), with M(φ)≡1, is of regularity class R. Then, for
any 1≤m≤M ,∥∥∆h

(
χ
(
Φm+1,Φm

)
−χ

(
φm+1,φm

))∥∥
2
≤C14C27

(∥∥∥∆hφ̆
m+1

∥∥∥
2

+
∥∥∥∆hφ̆

m
∥∥∥

2
+2h2

)
.

(4.16)
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4.3. Stability analysis for the error: proof of Theorem 4.1. In this
section we prove Theorem 4.1.

Proof. Taking the inner product with the error equation (4.4) by ∆2
hφ̆

m+1, and
using summation-by-parts, we have

1

2

(∥∥∥∆hφ̆
m+1

∥∥∥2

2
−
∥∥∥∆hφ̆

m
∥∥∥2

2

)
+

1

2

∥∥∥∆h(φ̆m+1− φ̆m)
∥∥∥2

2

=−s
(

∆2
hφ̆

m+1,∆h

(
3

2
φ̆m− 1

2
φ̆m−1

))
−ε2s

(
∆2
hφ̆

m+1,∆2
h

(
3

4
φ̆m+1 +

1

4
φ̆m−1

))
+s
(

∆2
hφ̆

m+1,∆h

(
χ
(
Φm+1,Φm

)
−χ

(
φm+1,φm

)))
+s
(

∆2
hφ̆

m+1,τm+1/2
)
. (4.17)

Notice that φ̆0≡ φ̆−1≡0. We need to analyze the error at the first time step separately,
since the local truncation error is only first-order in time. Setting m= 0 and using the
Cauchy-Schwartz and Young’s inequalities, we have∥∥∥∆hφ̆

1
∥∥∥2

2
+

3ε2

4
s
∥∥∥∆2

hφ̆
1
∥∥∥2

2

=s
(

∆2
hφ̆

1,∆h

(
χ
(
Φ1,Φ0

)
−χ

(
φ1,φ0

)))
+s
(

∆2
hφ̆

1,τ
1/2
)

≤s
∥∥∥∆2

hφ̆
1
∥∥∥

2

∥∥∆h

(
χ
(
Φ1,Φ0

)
−χ

(
φ1,φ0

))∥∥
2

+s
(

∆hφ̆
1,∆hτ

1/2
)

≤sC14C27

∥∥∥∆2
hφ̆

1
∥∥∥

2

(∥∥∥∆hφ̆
1
∥∥∥

2
+h2

)
+
∥∥∥∆hφ̆

1
∥∥∥

2
s
∥∥∥∆hτ

1/2
∥∥∥

2

≤ 2sh4C2
14C

2
27

3ε2
+

(
3ε2s

8
+s2C2

14C
2
27

)∥∥∥∆2
hφ̆

1
∥∥∥2

2
+

1

2

∥∥∥∆hφ̆
1
∥∥∥2

2
+s2

∥∥∥∆hτ
1/2
∥∥∥2

2
. (4.18)

Hence,

1

2

∥∥∥∆hφ̆
1
∥∥∥2

2
+

(
3ε2s

8
−s2C2

14C
2
27

)∥∥∥∆2
hφ̆

1
∥∥∥2

2
≤ 2sh4C2

14C
2
27

3ε2
+β1/2s

2
(
s2 +h4

)
, (4.19)

where, recall, 0≤β1/2 is bounded uniformly as s→0. Now, provided the time step-size
satisfies

s≤ ε2

4C2
14C

2
27

=:s∗1, (4.20)

then it follows that ∥∥∥∆hφ̆
1
∥∥∥2

2
+
ε2s

4

∥∥∥∆2
hφ̆

1
∥∥∥2

2
≤C29ε

−2
(
s2 +h2

)2
, (4.21)

where C29>0 is independent of s, h, ε, and T .
Now we go back to the typical case, where 1≤m≤M in (4.17). The term associated

with the local truncation error can be bounded in the standard way:(
τm+1/2,∆2

hφ̆
m+1

)
≤C(s2 +h2)βm+1/2 ·

∥∥∥∆2
hφ̆

m+1
∥∥∥

2

≤Cε−2(s2 +h2)2β2
m+1/2 +

ε2

8

∥∥∥∆2
hφ̆

m+1
∥∥∥2

2
. (4.22)

For the concave diffusion error term we have

−
(

∆2
hφ̆

k+1,∆h

(3

2
φ̆k− 1

2
φ̆k−1

))
≤ ε

2

8

∥∥∥∆2
hφ̆

k+1
∥∥∥2

+
1

ε2

(
9
∥∥∥∆hφ̆

k
∥∥∥2

2
+
∥∥∥∆hφ̆

k−1
∥∥∥2

2

)
.
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(4.23)

The analysis for the bi-harmonic diffusion error term follows that of (3.19):

5

8

∥∥∥∆2
hφ̆

m+1
∥∥∥2

2
− 1

8

∥∥∥∆2
hφ̆

m−1
∥∥∥2

2
≤
(

∆2
hφ̆

m+1,∆2
h

(3

4
φ̆m+1 +

1

4
φ̆m−1

))
. (4.24)

The term associated with the nonlinear error can be analyzed as follows: using
estimates (4.13), (4.9), for any 1≤m≤M ,(

∆2
hφ

m+1,∆h

(
χ
(
Φm+1,Φm

)
−χ

(
φm+1,φm

)))
≤
∥∥∆2

hφ
m+1

∥∥
2
·
∥∥∆h

(
χ
(
Φm+1,Φm

)
−χ

(
φm+1,φm

))∥∥
2

≤C14

∥∥∆2
hφ

m+1
∥∥

2

(∥∥∥φ̆m+1
∥∥∥
H2

h

+
∥∥∥φ̆m∥∥∥

H2
h

)
≤C14C27

∥∥∆2
hφ

m+1
∥∥

2

(∥∥∥∆hφ̆
m+1

∥∥∥
2

+
∥∥∥∆hφ̆

m
∥∥∥

2
+2h2

)
≤ ε

2

8

∥∥∆2
hφ

m+1
∥∥2

2
+C30ε

−2

(∥∥∥∆hφ̆
m+1

∥∥∥2

2
+
∥∥∥∆hφ̆

m
∥∥∥2

2
+h4

)
, (4.25)

where C30>0 is independent of s, h, and ε.
A combination of (4.17), (4.22), (4.23), (4.24) and (4.25) leads to∥∥∥∆hφ̆

m+1
∥∥∥2

2
−
∥∥∥∆hφ̆

m
∥∥∥2

2
+
ε2

2
s
∥∥∥∆2

hφ̆
m+1

∥∥∥2

2
− ε

2

4
s
∥∥∥∆2

hφ̆
m−1

∥∥∥2

2

≤C31ε
−2s

(∥∥∥∆hφ̆
m+1

∥∥∥2

2
+
∥∥∥∆hφ̆

m
∥∥∥2

2
+
∥∥∥∆hφ̆

m−1
∥∥∥2

2

)
+C32ε

−2s(s2 +h2)2(β2
m+1/2 +1).

(4.26)

for any 1≤m≤M−1, where C31,C32>0 are independent of s, h, and ε. Summing from
m= 1 to m= `−1, with 1≤ `≤M , and rearranging terms, we have

∥∥∥∆hφ̆
`
∥∥∥2

2
+
ε2

4
s
∑̀
m=1

∥∥∥∆2
hφ̆

m
∥∥∥2

2

≤3C31ε
−2s

∑̀
m=1

∥∥∥∆hφ̆
m
∥∥∥2

2
+C32ε

−2(s2 +h2)2 (C25 +T )+
∥∥∥∆hφ̆

1
∥∥∥2

2
+
ε2s

4

∥∥∥∆2
hφ̆

1
∥∥∥2

2

≤3C31ε
−2s

∑̀
m=1

∥∥∥∆hφ̆
m
∥∥∥2

2
+C33(T +1)ε−2(s2 +h2)2, (4.27)

where C33 := max(C32C25 +C29,C32). Note, we have used (4.21) in the last step, as-
suming s≤s∗1. If the step-size additionally satisfies

s≤ ε2

4C31
=:s∗2, (4.28)

then it follows that∥∥∥∆hφ̆
`
∥∥∥2

2
+ε2s

∑̀
m=1

∥∥∥∆2
hφ̆

m
∥∥∥2

2
≤12C31ε

−2s

`−1∑
m=1

∥∥∥∆hφ̆
m
∥∥∥2

2
+4C33ε

−2(s2 +h2)2. (4.29)
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Invoking the Discrete Gronwall Lemma A.1, we have

∥∥∥∆hφ̆
`
∥∥∥2

2
+ε2s

∑̀
n=1

∥∥∥∆2
hφ̆

m
∥∥∥2

2
≤4C33(T +1)ε−2 exp

(
12C31ε

−2T
)
(s2 +h2)2, (4.30)

provided that s≤min(s∗1,s
∗
2). The proof of Theorem 4.1 is complete.

Remark 4.8. The convergence constant appearing in (4.30) is independent of s and h.
Of course this constant does depend on the final time T and on the interface parameter
ε. Indeed, our detailed calculation reveals its dependence on exp

(
ε−2T

)
, which comes

from the application of discrete Gronwall inequality in the convergence analysis.
There have been some existing works on the improved convergence constant for

the CH equation (1.2). Specifically, Feng and Prohl [29] proved – for a first-order in
time, fully discrete finite element scheme – that the convergence constant is of order
O(eC0T ε−m0), for some positive integer m0 and a constant C0 independent on ε, in-
stead of the singularly ε-dependent exponential growth predicted here. Such an elegant
improvement was based on a subtle spectrum analysis for the linearized Cahn–Hilliard
operator (with certain given structure assumptions of the solution), provided in earlier
literatures [1, 2, 15–17].

These numerical analysis techniques have been recently applied to the convergence
of a first-order in time convex splitting scheme for the Allen–Cahn equation by Feng
and Li [28]. The authors used a discontinuous Galerkin discretization of space. These
techniques may also be applied to analyze our second order convex splitting scheme
(3.12). On the other hand, such an analysis is expected be highly non-trivial, due to
the complicated form of the nonlinear error terms. This issue will be explored in the
future work.

Remark 4.9. The unconditional convergence is proven in the sense that the constant
in (4.30) is independent on s and h. Meanwhile, there are two restriction conditions
for the time step, namely (4.20) and (4.28), for the estimates to hold. A more careful
analysis shows that, these two conditions correspond to a bound of s≤C∗ε−k0 , with k0

an integer and C∗ independent of the final time T and ε.
Our various numerical experiments indicates that, these restriction condition comes

from certain technical difficulties in the theoretical analysis, and this severe restriction
is not needed in the practical numerical simulation. A further theoretical improvement
of these two restriction conditions is possible, and it is left to interested readers.

In addition, we observe that another restriction condition, namely s≤ 176C2
13/45ε2,

is needed in the uniform in time H2
h stability estimate, established in Theorem 3.2.

However, we note that this condition is trivial for small ε, and it will not pose a numerical
challenge in the practical computations.

Remark 4.10. For the second order numerical scheme (2.26) combined with the
trivial initial extrapolation formula φ−1≡φ0, the first time step is first order accurate
while the rest time steps are of second order accuracy. This leads to an additional
time step restriction (4.20), which is needed to assure the second order convergence
at the first step. Meanwhile, an alternate initialization (2.31)–(2.35) was presented in
Remark 2.1, which turns out to be the second order accurate at the first time step.
As a result, for this alternate approach, we only need the second time step restriction
condition (4.28) to assure the convergence analysis, and the first restriction (4.20) could
be dropped, since the second order convergence at the first step could be derived by a
direct Taylor expansion.
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Similar to the last remark, the trivial time step condition, s≤ 176C2
13/45ε2, is also

needed in the uniform in time H2
h bound in Theorem 3.2, since the derivation of this

condition is independent on the initialization. Again, this condition is easily satisfied
for small ε, and it does not pose any practical challenge.

5. Numerical results

5.1. Numerical accuracy check. In this subsection we perform a numerical
accuracy check for the unconditionally energy stable, fully discrete, second order scheme
(3.12). The computational domain is set to be Ω = (0,L)3, with L= 3.2, and the exact
profile for the phase variable is set to be

φe(x,y,z,t) = cos(2πx/L)cos(2πy/L)cos(2πz/L)cos(t). (5.1)

To make φe satisfy the original PDE (1.2), we have to add an artificial, time-dependent
forcing term. The proposed second order scheme (3.12) (with centered difference ap-
proximation in space) is implemented via an efficient nonlinear multigrid solver. The
details of the nonlinear multigrid solver are similar to those of the solvers for the phase-
field crystal equation given in [6,35] and the CHHS equation [46]. We compute solutions
with grid sizes N = 16 to N = 96 in increments of 8, where N :=Nx=Ny =Nz – and we
solve up to the final time T = 1.0. The errors are reported at this final time only. The
interface parameter is given by ε= 0.5. The time step s is determined by the linear
refinement path s= 0.5h, where h is the spatial grid size. Figure 5.1 shows the discrete
L2
h and H2

h norms of the errors between the numerical and exact solutions. A clear
second order accuracy is observed.
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Fig. 5.1. Discrete L2
h and H2

h numerical errors for φ at T = 1.0, plotted versus N = 16 : 8 : 96, the
number of spatial grid point, for the fully discrete scheme (3.12). ε= 0.5. The time step-size is taken
as s= 1

2
h. The slope for the linear least squares fit for the L2

h errors is -2.00405, that for the H2
h

errors is -2.00474.

5.2. 3D spinodal decomposition and 3D multigrid solver efficiency. In
this subsection we present a numerical simulation with random initial data on a square
domain Ω =(0,L)3, with L= 3.2 and N :=Nx=Ny =Nz. In particular, we take φ0

i,j,k =
ηi,j,k, 1≤ i,j,k≤N , where ηi,j,k is a spatially random number uniformly distributed on
the interval −0.05≤ηi,j,k≤0.05. The interface parameter is set to be ε= 0.05. The
spatial resolution is given by h= 0.05 =L/64. In Figure 5.2 we present the isosurface
plots of φ= 0 at the intermediate time t= 20.0 and the final time t=T = 110. These
plots are based on the numerical simulation with the time step s= 0.001. The dynamics
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show a clear coarsening behavior, which is the hallmark of the late stages of spinodal
decomposition. As a side note, we typically observe that the energy (2.36) is decreasing
during the simulation, using three different time step-sizes: s= 0.01, s= 0.005, and
s= 0.001; see the energy plot (vs. time) in Figure 5.3. Keep in mind that only the
alternate numerical energy (2.37) is guaranteed to decrease at each time step.

Fig. 5.2. Isosurface plots of φ= 0 at the indicated times. These snapshots are from a simulation
of spinodal decomposition, where the initial state is a random perturbation of the state φ= 0. The
parameters for the simulation are as follows: L= 3.2; N = 64; ε= 0.05; h= 0.05 =3.2/64; s= 0.001.

0 20 40 60 80 100 120
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1
Numerical energy plot of time step:0.001,0.005,0.01

Time

N
um

er
ic

al
 e

ne
rg

y

 

 
s=1e−3
s=5e−3
s=1e−2

Fig. 5.3. Time history of the alternate energy (2.37) of the numerical simulation, using three
different time step-sizes: s= 0.01, s= 0.005 and s= 0.001.

We conclude the subsection with a test that demonstrates the efficiency of the
multigrid solver. The parameters for the test are similar to those for the spinodal
decomposition simulation above: L= 3.2; ε= 0.05; h= 3.2/N ; s= 0.001. We use random
initial data and vary the spatial resolution using the values N = 32,64,96,128. The
convergence rates of the solver are reported in Figure 5.4 after precisely 10 time steps,
or, in other words, at the time t= 10 ·s= 0.01. Using the smoothing parameter λ= 2,
we observe that the rate of decrease of the residual, and therefore the error as well, is
nearly constant, and nearly h independent. This implies that, essentially, the amount
of work required to yield a predefined error tolerance depends only on the number of
degrees of freedom. Roughly speaking, only 5 v-cycle iterations are required to yield an
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Fig. 5.4. Nonlinear multigrid v-cycle convergence rates. The stopping tolerance for the multigrid
solver in τ = 10−9. For λ= 2 pre- and post-smoothing steps we observe a nearly h-independent conver-
gence rate of the solver. The parameters for the simulation are as follows: L= 3.2; N = 32,64,96,128;
ε= 0.05; h= 3.2/N ; s= 0.001. The convergence rates are reported after precisely 10 time steps, or, in
other words, at the time t= 20 ·s= 0.01.

error tolerance of τ = 10−9.

Appendix A. Discrete Gronwall inequality. We use the following discrete
Gronwall inequality in the proof of Theorem 4.1:

Lemma A.1. Fix T >0, and suppose {am}Mm=1, {bm}Mm=1 and {cm}M−1
m=1 are non-

negative sequences such that τ
∑M−1
m=1 c

m≤C1, where C1 is independent of τ and M ,
with Mτ =T . Suppose that, for all τ >0,

aM +τ

M∑
m=1

bm≤C2 +τ

M−1∑
m=1

amcm, (A.1)

where C2>0 is a constant independent of τ and M . Then, for all τ >0,

aM +τ

M∑
m=1

bm≤C2 exp

(
τ

M−1∑
m=1

cm

)
≤C2 exp(C1). (A.2)

Note that the sum on the right-hand side of (A.1) must be explicit.

Appendix B. Proof of Lemma 3.1. For simplicity of presentation, we assume
Nx=Ny =Nz =:N is odd and Lx=Ly =Lz =:L. The general case can be analyzed in
a similar manner to what follows but with a few more technical details involved.

Proof. Denote N = 2K+1. Due to the periodic boundary conditions for φ and its
cell-centered representation, it has a corresponding discrete Fourier transformation:

φi,j,k =

K∑
`,m,n=−K

φ̂N`,m,ne2πi(`xi+myj+nzk)/L, (B.1)

where xi= (i− 1
2 )h, yj = (j− 1

2 )h, zk = (k− 1
2 )h, and φ̂N`,m,n are coefficients. Then we

make its extension to a continuous function:

φF(x,y,z) =

K∑
`,m,n=−K

φ̂N`,m,ne2πi(`x+my+nz)/L. (B.2)
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Parseval’s identity (at both the discrete and continuous levels) implies that

N∑
i,j,k=1

|φi,j,k|2 =N3
K∑

`,m,n=−K

|φ̂N`,m,n|2, (B.3)

‖φF‖2L2 =L3
K∑

`,m,n=−K

|φ̂N`,m,n|2. (B.4)

Based on the fact that hN =L, this in turn results in

‖φ‖22 =‖φF‖2L2 =L3
K∑

`,m,n=−K

|φ̂N`,m,n|2. (B.5)

For the comparison between the discrete and continuous gradient, we start with the
following Fourier expansions:

(Dxφ)i+1/2,j,k =
φi+1,j,k−φi,j,k

h

=

K∑
`,m,n=−K

µ`φ̂
N
`,m,ne2πi(`xi+1/2+myj+nzk)/L, (B.6)

∂xφF(x,y,z) =

K∑
`,m,n=−K

ν`φ̂
N
`,m,ne2πi(`x+my+nz)/L, (B.7)

with

µ`=−
2sin `πh

L

h
, ν`=−2`π

L
. (B.8)

In turn, an application of Parseval’s identity yields

‖Dxφ‖22 =
1

8
L3

K∑
`,m,n=−K

|µ`|2|φ̂N`,m,n|2, (B.9)

‖∂xφF‖2L2 =
1

8
L3

K∑
`,m,n=−K

|ν`|2|φ̂N`,m,n|2. (B.10)

The comparison of Fourier eigenvalues between |µ`| and |ν`| shows that

2

π
|ν`|≤ |µ`|≤ |ν`|, for −K≤ `≤K. (B.11)

This indicates that

2

π
‖∂xφF‖L2 ≤‖Dxφ‖2≤‖∂xφF‖L2 . (B.12)

Similar comparison estimates can be derived in the same manner to reveal that

2

π
‖∇φF‖L2 ≤‖∇hφ‖2≤‖∇φF‖L2 . (B.13)
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It can be proved analogously that

4

π2
‖∆φF‖L2 ≤‖∆hφ‖2≤‖∆φF‖L2 , (B.14)

8

π3
‖∇∆φF‖L2 ≤‖∇h∆hφ‖2≤‖∇∆φF‖L2 , (B.15)

16

π4
‖∆2φF‖L2 ≤‖∆2

hφ‖2≤‖∆2φF‖L2 . (B.16)

Subsequently, the following estimates are valid:

γ1‖φF‖H1 ≤‖φ‖H1
h
≤γ2‖φF‖H1 , γ1‖φF‖H2 ≤‖φ‖H2

h
≤γ2‖φF‖H2 , (B.17)

γ1‖φF‖H4 ≤‖φ‖H4
h
≤γ2‖φF‖H4 , (B.18)

in which the elliptic regularity for φF has been recalled in the derivation:

‖φF‖H2 ≤M1

(
‖φF‖L2 +

∥∥∆2φF
∥∥
L2

)
, ‖φF‖H4 ≤M2

(
‖φF‖L2 +

∥∥∆2φF
∥∥
L2

)
. (B.19)

The discrete Sobolev inequality (3.1) comes from the norm equivalence estimates
(B.14), (B.17), and the following inequalities in the continuous function space:

‖φF‖H2 ≤C ‖φF‖
2
3

H1 ·‖φF‖
1
3

H4 ≤C ‖φF‖
2
3

H1 ·
(
‖φF‖L2 +

∥∥∆2φF
∥∥
L2

) 1
3

≤C
(
‖φF‖

2
3

H1

∥∥∆2φF
∥∥ 1

3

L2 +‖φF‖H1

)
. (B.20)

Similarly, the discrete elliptic regularity (3.3) comes from a combination of (B.5),
(B.13)–(B.16), (B.17)–(B.18), and (B.19).

An alternate form of the discrete elliptic regularity (3.4) can be derived in the same
manner, with the estimate in the continuous function space recalled:

‖φF‖H2 ≤C
(
φF +

∥∥∆2φF
∥∥
L2

)
, with φF :=

1

|Ω|

∫
Ω

φF(x)dx; (B.21)

combined with a subtle fact that the discrete average of φ and the continuous average
of φF are identical:

φ̄ :=
h3

|Ω|

N∑
i,j,k=1

φi,j,k = φ̂N0,0,0 =
1

|Ω|

∫
Ω

φF(x)dx=φF. (B.22)

The discrete Sobolev embedding (3.5) from H2
h into `∞ can be derived as follows:

‖φ‖∞≤‖φF‖L∞ ≤C ‖φF‖H2 ≤C ‖φ‖H2
h
, (B.23)

in which the continuous embedding was applied in the second step, and the norm equiv-
alence estimate (B.17) was recalled at the last step.

For the discrete Gagliardo–Nirenberg type inequality (3.6), we have the following
observation:

‖φ‖∞≤‖φF‖L∞ ≤C
(
‖φF‖

5
6

H1

∥∥∆2φF
∥∥ 1

6

L2 +‖φF‖L6

)
≤C

(
‖φF‖

5
6

H1

∥∥∆2φF
∥∥ 1

6

L2 +‖φF‖H1

)
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≤C
(
‖φ‖

5
6

H1
h

∥∥∆2
hφ
∥∥ 1

6

2
+‖φ‖H1

h

)
, (B.24)

in which the 3D Gagliardo–Nirenberg inequality and Sobolev embedding were applied,
and the equivalence estimates (B.15), (B.17), and (B.18) were recalled in the derivation.

The second discrete Gagliardo–Nirenberg type inequality (3.7) can be derived in a
similar manner. The details are skipped for the sake of brevity.

Finally, the discrete Sobolev embedding (3.8) from H2
h into W 1,4 is based on the

following fact:

‖∇hφ‖4≤C ‖∇φF‖L4 ≤C ‖φF‖H2 ≤C ‖φ‖H2
h
, (B.25)

in which a detailed Fourier expansion was analyzed in the first step, the continuous
embedding was applied in the third step, and the norm equivalence estimate (B.17) was
recalled at the last step.

Completing the proof of Lemma 3.1.
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