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We devise second-order accurate, unconditionally uniquely solvable and unconditionally 
energy stable schemes for the nonlocal Cahn–Hilliard (nCH) and nonlocal Allen–Cahn (nAC) 
equations for a large class of interaction kernels. We present numerical evidence that both 
schemes are convergent. We solve the nonlinear equations resulting from discretization 
using an efficient nonlinear multigrid method and demonstrate the performance of our 
algorithms by simulating nucleation and crystal growth for several different choices of 
interaction kernels.
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1. Introduction

In this paper our primary goal is to develop second order accurate schemes for a family of integro-partial-differential 
equations:

∂tφ = ∇ · (M(φ)∇w
)

in (0, T ] × Ω, (1)

and
∂tφ = −M(φ)w in (0, T ] × Ω, (2)

with the initial condition
φ(0, x) = φ0(x) in Ω, (3)

where Ω is a rectangular domain in Rn , M(φ) > 0 is the mobility, w = δφ E is the chemical potential (δφ is the variational 
derivative) and E is a nonlocal interaction energy. While we take φ to be Ω-periodic in the sequel, the results regarding the 
non-local part of the system can be extended to homogeneous boundary conditions with minor modifications by calculating 
the convolution integrals below as proposed for example in [13]. The nonlocal energy E is assumed to have the form

E =
ˆ

Ω

(
F (φ) − 1

2

ˆ

Ω

J (x − y)φ(x)φ(y)dy
)

dx, (4)
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where the interaction kernel J :Rn →R is also Ω-periodic and satisfies J (−x) = J (x). F is the (local) homogeneous energy 
density and is typically nonlinear. Defining the circular, or periodic, convolution1 for smooth Ω-periodic function φ and J
as

( J ∗ φ)(x) :=
ˆ

Ω

J (y)φ(x − y)dy =
ˆ

Ω

J (x − y)φ(y)dy, (5)

the chemical potential w may be expressed as

w := δφ E = F ′(φ) − J ∗ φ. (6)

We refer to Eqs. (1) and (2) as nonlocal Cahn–Hilliard (nCH) and nonlocal Allen–Cahn (nAC) equations respectively. These are 
nonlocal versions of the classical Cahn–Hilliard (CH) and Allen–Cahn (AC) equations, the CH equation being the conserved 
gradient flow, and the AC being the non-conserved gradient flow of the (local) free energy [17,2,18]

Eloc(φ) =
ˆ

Ω

(
G(φ) + ε2

2
|∇φ|2

)
dx. (7)

A direct connection between the local and nonlocal energies can be seen as follows. Introducing the inner product notation 
on Ω , ( f , g)L2(Ω) := ´

Ω
f (x)g(x) dx, the energy in Eq. (4) can be written as

E(φ) = (
F (φ),1

)
L2(Ω)

− 1

2
(φ, J ∗ φ)L2(Ω). (8)

The energy Eloc(φ) is obtained by approximating the nonlocal convolution term in E [5,16,27,39,55]. Specifically, one takes 
the approximation J ∗ φ ≈ J0φ + 1

2 J2�φ where J0 := ´
Ω

J (x)dx and J2 := ´
Ω

J (x)|x|2 dx (the second moment of J ). Under 
the assumption of periodic boundary conditions,

1

2
(φ, J ∗ φ)L2(Ω) ≈ 1

2

(
φ, J0φ + 1

2
J2�φ

)
L2(Ω)

= J0

2
(φ,φ)L2(Ω) + J2

4
(∇φ,∇φ)L2(Ω). (9)

Thus we can obtain Eloc with G(φ) := F (φ) − J0
2 φ2 and ε2 = J2

2 . By taking w = δφ Eloc the corresponding classical CH and 
AC equations are

∂tφ = ∇ · (M(φ)∇(
G ′(φ) − ε2�φ

))
(10)

and

∂tφ = −M(φ)
(
G ′(φ) − ε2�φ

)
. (11)

In both the local and nonlocal models, energy is dissipated at the rates −‖√
M∇w‖2

L2(Ω)
(conserved dynamics) and 

−‖√M w‖2
L2(Ω)

(non conserved dynamics) with w being the variational derivative of the appropriate energy (local/non-

local).
Eqs. (1) and (2) have been widely used in many fields ranging from physics and materials science to biology, finance 

and image processing. In materials science, Eqs. (1), (2), (10), (11) and other closely related equations arise as mesoscopic 
models of interacting particle systems [5,39,22]. For example, in dynamic density functional theory (DDFT) [5,6], the inter-
action kernel J = c(2)(x, y|φref ) is the two-particle direct correlation function, φ represents the mesoscopic particle density 
and φref is some reference density. See [27,46,47,50,51,55,29] for further details. In biology, J has been used to model in-
teractions among cells and extracellular matrix [8,9,19,32]. In mathematical models of finance, J arises from an expectation 
taken with respect to a particular measure that is used in the model for option pricing [48]. In the case that Eq. (1) is used 
in the modeling for image segmentation, J is interpreted as the attracting force [30,31]. Theoretical studies of conservative, 
nonlocal equations Eq. (1) can be found in [12,14,15,20,31,33,34], while studies of non-conservative systems Eq. (2) can be 
found in [12,16,28].

A variety of methods have been developed to solve the equations like Eqs. (1) and (2). In general, spectral methods 
provide the most efficient algorithms to compute convolution-type nonlocal interactions via the fast Fourier transform (FFT), 
see for example [38,39]. Spectral methods have also been combined with the finite difference method (e.g. [3]). These 
approaches typically require periodic boundary conditions. Finite difference, finite volume and finite element methods offer 
more flexibility in terms of boundary conditions (e.g., see [13,23,24]), but these methods are not as efficient as spectral 
methods. Rational function approximations have also been used in the numerical simulation of convolution-type nonlocal 
interactions [49].

Regarding time discretization, most of schemes referenced above have used either explicit time stepping such as explicit 
Euler’s method, the Adams–Bashforth method or semi-implicit algorithms such as the Crank–Nicolson method. While there 

1 The connection between the circular convolution and the classical whole-space convolution is briefly recounted in Appendix A.
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has been some analysis of implicit methods (e.g. [1,52]), we are not aware of any results on uniquely solvable, uncondition-
ally stable second order time discretizations.

In this paper we propose semi- and fully-discrete second order in time unconditionally energy stable schemes for the 
nCH and nAC equations under the assumption that Ω ⊂ R

2 is a rectangular domain and φ is periodic on Ω . Compared 
with previous results, our contribution focuses on efficient and robust high order time integration algorithms. We extend 
the second order time integration algorithm for the PFC presented in [41] to the nCH and nAC equations. Other high order 
convex splitting methods, such as the one described in [57], can also be extended to the nCH and nAC equations using a 
similar approach for the nonlocal terms as developed here. We demonstrate that our scheme is unconditionally energy stable 
and uniquely solvable, which is an extension of our previous results on the first order time integration algorithms [37]. Our 
approach provides a framework that can be combined with most existing spatial discretization methods, thus it has a wide 
range of applicability. The results in this paper can be extended straightforwardly to three dimensions.

This paper is organized in the following way. In Section 2 we present and analyze the semi-discrete schemes. In Section 3
the fully discrete schemes are proposed and their properties are discussed. In Section 4 we present numerical experiments 
which verify our theoretical results and demonstrate the capability of our schemes. Conclusions and future works are dis-
cussed in Section 5. Technical details are given in the appendices.

2. The semi-discrete second order schemes

Assume Ω is a rectangular domain in R2. Suppose that the interaction kernel J satisfies

(J1) J = J c − Je , where J c, Je are non-negative, Ω-periodic, and smooth functions.
(J2) J c(−x) = J c(x) and Je(−x) = Je(x).
(J3)

´
Ω

J (x)dx > 0.

The nonlocal part of energy (4) can be rewritten as

−1

2

ˆ

Ω

ˆ

Ω

J (x − y)φ(x)φ(y)dydx = 1

4

ˆ

Ω

ˆ

Ω

J (x − y)
(
φ(x) − φ(y)

)2
dydx − 1

2

ˆ

Ω

φ2(y)

( ˆ

Ω

J (x)dx
)

dy.

The convexity of the resulting functional depends on the sign of J . Condition (J1) will therefore be important for the 
development of our convex splitting schemes. Many interaction kernels admit such a splitting. The reader is referred to 
Eq. (65) in Section 4 for practical examples.

For the rest of the paper we assume that the local energy density F (φ) satisfies the following inequality:

F (φ) ≤ aφq + b, (12)

where a, b are positive real constants and q ≥ 2 is a positive integer, and

F (φ) = Fc(φ) − Fe(φ), (13)

where Fc(φ) and Fe(φ) are convex functions with respect to φ. An important example of a local energy density F that 
satisfies Eq. (12) and Eq. (13) is

F (φ) = 1

4
φ4 + γc − γe

φ

2
, (14)

where γc, γe ≥ 0 are constants [26,35]. Here Fc = 1
4 φ4 + γc

2 φ2 and Fe = γe
2 φ2. Another important example is the regular 

solution model free energy [11,45]:

F (φ) := θ
[
φ log(φ) + (1 − φ) log(1 − φ)

] − 2θcφ(1 − φ), (15)

where θ and θc represent the absolute and critical temperatures, respectively. Due to the properties of the logarithm func-
tion, Eq. (15) needs to be regularized in order to fit in the framework of this paper, and the reader is referred to Appendix B
for more details. An alternative, regularized form of logarithmic free energy can be found in [10].

Observe that the nCH equation (1) can be rewritten as

∂tφ = ∇ · (a(φ)∇φ
) − ∇ · (M(φ)∇( J ∗ φ)

)
, (16)

where

a(φ) = M(φ)F ′′(φ). (17)

We refer to a(φ) as the diffusive mobility, or just the diffusivity. To make Eq. (1) positive diffusive (and non-degenerate), 
therefore, we require that

M(φ)F ′′(φ) > 0, (18)
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in which case a(φ) > 0. Following [14,15] we will assume that Eq. (18) holds in the rest of the paper to make the problem 
well-posed.

To motivate the fully discrete scheme that will be presented later, we first provide semi-discrete versions of the scheme 
and briefly describe their properties. From Eq. (8), we have the following properties of the energy, which we state without 
proof:

Lemma 2.1. If F (φ) satisfies Eqs. (12) and (13), the energy (8) can be written as the difference of convex functionals, i.e., E = Ec − Ee, 
where

Ec(φ) = (
Fc(φ),1

)
L2(Ω)

+ ( Jc ∗ 1)‖φ‖2
L2(Ω)

, (19)

Ee(φ) = (
Fe(φ),1

)
L2(Ω)

+ ( Jc ∗ 1)‖φ‖2
L2(Ω)

+ 1

2
(φ, J ∗ φ)L2(Ω). (20)

The decomposition above is not unique but is the most useful for our purpose. We will use the following function in the 
rest of the paper:

χ(φ,ψ) :=
{

Fc(φ)−Fc(ψ)
φ−ψ

, φ �= ψ,

F ′
c(φ), φ = ψ,

(21)

which we borrowed and modified from [45]. For Eq. (21) we have the following result:

Theorem 2.1. Suppose Fc(φ) is convex, and define Γ (φ, ψ) as

∂φΓ (φ,ψ) = χ(φ,ψ). (22)

Thus Γ (φ, ψ) is twice differentiable with respect to φ and Γ (φ, ψ) is convex with respect to φ for any fixed ψ .

The proof of this theorem is omitted for the sake of brevity.
A second-order (in time) convex splitting scheme for the nCH equation defined as Eq. (1) can be constructed as follows: 

given two Ω-periodic smooth functions φk−1, φk , find Ω-periodic smooth functions φk+1, wk+ 1
2 such that

φk+1 − φk = s∇ · (M
(
φ̂k+ 1

2
)∇wk+ 1

2
)
, (23)

wk+ 1
2 = χ

(
φk, φk+1) + 2( Jc ∗ 1)φk+ 1

2 − 2( Jc ∗ 1)φ̂k+ 1
2 − 3

2
F ′

e

(
φk) + 1

2
F ′

e

(
φk−1) − J ∗ φ̂k+ 1

2 , (24)

where s > 0 is the time step and

φk+ 1
2 := 1

2

(
φk+1 + φk), φ̂k+ 1

2 := 1

2

(
3φk − φk−1) (25)

with φ−1 ≡ φ0.
A second-order convex splitting scheme for the nAC equation defined as Eq. (2) can be constructed similarly. Given 

Ω-periodic smooth functions φk−1, φk , find Ω-periodic smooth functions φk+1, wk+ 1
2 such that

φk+1 − φk = −sM
(
φ̂k+ 1

2
)

wk+ 1
2 , (26)

wk+ 1
2 = χ

(
φk, φk+1) + 2( Jc ∗ 1)φk+ 1

2 − 2( Jc ∗ 1)φ̂k+ 1
2 − 3

2
F ′

e

(
φk) + 1

2
F ′

e

(
φk−1) − J ∗ φ̂k+ 1

2 , (27)

where φ−1 ≡ φ0.
Notice that these two schemes respect the convex splitting of the energy E following Lemma 2.1 and that the full con-

volution is treated explicitly. The contribution to the chemical potential corresponding to the convex energy Ec is treated 
implicitly, using a secant approximation. The part corresponding to the concave part Ee is treated explicitly, via extrapola-
tion. Under the assumption Fe = γ

2 φ2, where γ is a nonnegative constant, we next define the pseudo energy:

E
(
φk, φk+1) := E

(
φk+1) + 2( Jc ∗ 1) + γ

4

∥∥φk+1 − φk
∥∥2

L2(Ω)
+ 1

4

(
J ∗ (

φk+1 − φk), φk+1 − φk)
L2(Ω)

, (28)

where E(φ) is as defined in Eq. (8).

Remark 2.1. The forms of the second order schemes (23)–(24) and (26)–(27) will not guarantee the dissipation of the 
“physical” energy E(φk). To remedy this, we introduce the pseudo energy above, as in our previous works, e.g., [41]. Clearly, 
E(φ) = E(φ, φ); in fact the pseudo energy is a consistent, second-order in time approximation of the physical energy. 
The precise form of the pseudo energy is motivated by an analysis of the discrete versions of the schemes (33)–(34) and 
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(35)–(36) in Section 3.3, and we have further assumed that Fe = γ
2 φ2. More importantly, Theorem 2.2 below – whose proof 

is similar to the fully discrete analogue in Section 3.3 and is omitted for brevity – will show that our schemes do satisfy 
pseudo-energy stability, E(φk, φk+1) ≤ E(φk−1, φk).

Remark 2.2. In the sequel we discuss properties of the energy stability under the assumption Fe = γ
2 φ2, where γ is a 

nonnegative constant. However, numerical evidence indicates that (23)–(24), (26)–(27) and their fully discrete versions are 
unconditionally energy stable provided that Fe is a general convex function.

We can prove the following:

Theorem 2.2. Assume φk+1, wk+ 1
2 are Ω-periodic smooth solutions to the nCH scheme (23)–(24) and Fe = γ

2 φ2 where γ is a 
nonnegative constant. Thus for any k ≥ 1 and s > 0,ˆ

Ω

φk dx =
ˆ

Ω

φ0 dx, (29)

and

E
(
φk, φk+1) + s

∥∥∇wk+ 1
2
∥∥2

L2(Ω)
≤ E

(
φk−1, φk). (30)

In particular, the pseudo energy (28) is non-increasing, i.e., E(φk, φk+1) ≤ E(φk−1, φk), and we say that the scheme is unconditionally 
pseudo energy stable.

Similarly, assume φk+1, wk+ 1
2 are Ω-periodic smooth solutions to the nAC scheme (26)–(27). Fe = γ

2 φ2 where γ is a nonnegative 
constant. For any k ≥ 1 and s > 0,

E
(
φk, φk+1) + s

∥∥wk+ 1
2
∥∥2

L2(Ω)
≤ E

(
φk−1, φk), (31)

and we say that the scheme is unconditionally pseudo energy stable.

Since the proofs of Theorem 2.2 and its discrete analogue in Section 3.3 are essentially the same, we skip the proof of 
the former for the sake of brevity.

Remark 2.3. Under the assumption that F (φ) = φ4

4 + γ φ2

2 where γ is a real constant, the convergence of fully discrete 2nd 
order scheme for nAC equation is proved in Section 5.6 of [36].

3. The second-order schemes and their properties

3.1. The fully discrete schemes

We now present the fully discrete second order energy stable schemes for nCH and nAC equations. We make extensive 
use of the spatially discrete operators, norms, function spaces, and summation-by-parts formulas described in Appendix C. 
The reader is directed there for full details. We begin by defining a fully discrete energy that is consistent with the contin-
uous space energy (8). In particular, define the discrete energy E := Cm×n → R (Cm×n denotes cell-centered functions, see 
Appendix C) to be

E(φ) := h2(F (φ)
∥∥1

) − h2

2

(
φ
∥∥[ J 
 φ]), (32)

where a cell-centered inner product (·‖·) is defined in Eq. (84) and [ J 
 φ] is the discrete convolution defined in Eq. (99). 
Here 1 is a vector with all entries equal to 1.

A fully discrete second-order convex splitting scheme for the nCH equation can be constructed as follows: given φk ∈
Cm×n and periodic (defined in Eq. (92) in Appendix C), find φk+1, wk+ 1

2 ∈ Cm×n periodic such that

φk+1 − φk = sdx

(
M

(
3

2
Axφ

k − 1

2
Axφ

k−1
)

Dx wk+ 1
2

)
+ sdy

(
M

(
3

2
A yφ

k − 1

2
A yφ

k−1
)

D y wk+ 1
2

)
, (33)

wk+ 1
2 = χ

(
φk, φk+1) + 2[ Jc 
 1]φk+ 1

2 − (
2[ Jc 
 1])φ̂k+ 1

2 − 3

2
F ′

e

(
φk) + 1

2
F ′

e

(
φk−1) − [

J 
 φ̂k+ 1
2
]
, (34)

where φ−1 ≡ φ0, and Dx , D y , dx , dy denote discrete finite difference operators and Ax , A y denote local averaging operators 
in the x- and y-direction. See Appendix C.

A fully second-order convex splitting scheme for the nAC equation can be constructed analogously: given φk ∈ Cm×n

periodic, find φk+1, wk+ 1
2 ∈ Cm×n periodic such that
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φk+1 − φk = −sM
(
φ̂k+ 1

2
)

wk+ 1
2 , (35)

wk+ 1
2 = χ

(
φk, φk+1) + 2[ Jc 
 1]φk+ 1

2 − (
2[ Jc 
 1])φ̂k+ 1

2 − 3

2
F ′

e

(
φk) + 1

2
F ′

e

(
φk−1) − [

J 
 φ̂k+ 1
2
]
, (36)

where φ−1 ≡ φ0.

3.2. Unconditional unique solvability

Next we prove the unconditional unique solvability of these schemes using the methodology developed in [41].

Theorem 3.1. The second order scheme (33)–(34) for the nCH equation is discretely mass conservative. Moreover, this scheme is 
uniquely solvable for any time step size s > 0. Similarly, the second order scheme (35)–(36) for the nAC equation is uniquely solvable 
for any time step size s > 0.

Proof. Suppose that {φk+1, wk+ 1
2 } ∈ [Cm×n]2 is a periodic solution pair to Eqs. (33) and (34). Then using the summation by 

parts formula and the periodic boundary conditions for wk+ 1
2 gives(

φk+1 − φk
∥∥1

) = s
(
dx

(
M


ew Dx wk+ 1
2
) + dy

(
M


ns D y wk+ 1
2
)∥∥1

)
= −s

[
M


ew Dx wk+ 1
2
∥∥Dx1

]
ew − s

[
M


ew D y wk+ 1
2
∥∥D y1

]
ns = 0, (37)

where M

ew and M


ns are the appropriate variables from scheme (33)–(34) defined as:

M

ew := M

(
3

2
Axφ

k − 1

2
Axφ

k−1
)

(38)

and

M

ns := M

(
3

2
A yφ

k − 1

2
A yφ

k−1
)

. (39)

Here [·‖·]ew and [·‖·]ew denote edge centered inner products defined in Eqs (85) and (86). Hence h2(φk+1‖1) = h2(φk‖1). 
Introducing space H defined as

H = {
φ ∈ Cm×n

∣∣ (φ
∥∥1) = 0 and φ is periodic

}
,

and the reader is referred to Appendix C for details. Without loss of generality, we may suppose that the solution the 
periodic solution φk of scheme (33)–(34) is in H . Now, consider the following functional on H :

G1(φ) := h2

2s

(
φ − φk

∥∥φ − φk)
H + Q (φ) + R(φ), (40)

where (·‖·)H denotes the mobility-weighted discrete bilinear form given by Eq. (104) in Appendix C,

Q (φ) := h2(Γ (φ,ψ)
∥∥1

) + [ Jc 
 1]‖φ‖2
2 (41)

and

R(φ) := −h2
(

φ

∥∥∥∥(
2[ Jc 
 1])φ̂k+ 1

2 + 3

2
F ′

e

(
φk) − 1

2
F ′

e

(
φk−1) + [

J 
 φ̂k+ 1
2
]) + h2(φ∥∥[ Jc 
 1]φk). (42)

Define

W
(
φ,φk, φk−1) = δφ

[
Q (φ) + R(φ)

]
. (43)

By Theorem 2.1 the functional Q is strictly convex. This, together with the properties of the weighted bilinear form given 
in Appendix C, implies that G1(φ) is strictly convex and coercive over H and its unique minimizer φ∗ ∈ H satisfies

φ∗ − φk = sdx

(
M

(
3

2
Axφ

k − 1

2
Axφ

k−1
)

DxW
(
φ∗, φk, φk−1))

+ sdy

(
M

(
3

2
A yφ

k − 1

2
A yφ

k−1
)

D y W
(
φ∗, φk, φk−1)), (44)

which is exactly Eq. (33) by identifying φk+1 = φ∗ and wk+ 1
2 = W (φk+1, φk, φk−1). Thus minimizing the strictly convex 

functional G1(φ) over the affine space H , is the same as solving the second-order convex splitting scheme (33)–(34). This 
completes the proof for the nCH scheme.



54 Z. Guan et al. / Journal of Computational Physics 277 (2014) 48–71
Regarding the solvability of (35)–(36), consider the functional

G2(φ) := 1

2sM(φ̂k+ 1
2 )

∥∥φ − φk
∥∥2

2 + Q (φ) + R(φ). (45)

Then it can be shown that G2(φ) is strictly convex and coercive over the set of admissible functions

A = {φ ∈ Cm×n | φ is periodic}, (46)

and its unique minimizer φ∗ ∈A satisfies the discrete Euler–Lagrange equation

δφG2
(
φ∗) = φ∗ − φk

sM(φ̂k+ 1
2 )

+ wk+ 1
2 = 0, (47)

which is equivalent to Eq. (35) by taking φk+1 = φ∗ . Thus minimizing the strictly convex functional G2(φ) over the set of 
admissible functions A is the same as solving the second-order convex splitting scheme (35)–(36). This completes the proof 
for the nAC scheme. �
3.3. Unconditional energy stability

We now prove results concerning the unconditional energy stability of the schemes. As in the semi-discrete case, under 
the assumption Fe = γ

2 φ2 where γ is a nonnegative constant, we define the discrete pseudo energy as

F
(
φk, φk+1) := E

(
φk+1) + 2[ Jc 
 1] + γ

4

∥∥φk+1 − φk
∥∥2

2 + h2

4

([
J 


(
φk+1 − φk)]∥∥φk+1 − φk), (48)

where E(φ) is as defined in Eq. (32).

Lemma 3.1. For any periodic functions φ, ψ ∈ Cm×n

E(φ) ≤ F(ψ,φ). (49)

Proof. By Proposition C.5 in Appendix C and the properties of J , we can show that

2[ Jc 
 1] + γ

4

∥∥φk+1 − φk
∥∥2

2 + h2

4

([
J 


(
φk+1 − φk)]∥∥φk+1 − φk) ≥ 0, (50)

which proves the claim. �
Theorem 3.2. Set Fe = γ

2 φ2 where γ is a nonnegative constant. Suppose that {φk+1, wk+ 1
2 } ∈ [Cm×n]2 is a periodic solution pair to 

(33)–(34). Then we have

F
(
φk, φk+1) + s

∥∥∇h wk+ 1
2
∥∥2

M +R
(
φk−1, φk, φk+1) = F

(
φk−1, φk), (51)

for any s > 0, where

R
(
φk−1, φk, φk+1) = 2[ Jc 
 1] + γ

4

∥∥φk+1 − 2φk + φk−1
∥∥2

2

+ h2

4

([
J 


(
φk+1 − 2φk + φk−1)]∥∥φk+1 − 2φk + φk−1) (52)

and ∥∥∇h wk+ 1
2
∥∥2

M := h2
[(

M

(
3

2
Axφ

k − 1

2
Axφ

k−1
)

Dx wk+ 1
2

∥∥∥∥Dx wk+ 1
2

)]
ew

+ h2
[(

M

(
3

2
A yφ

k − 1

2
A yφ

k−1
)

D y wk+ 1
2

∥∥∥∥D y wk+ 1
2

)]
ns

. (53)

Similarly, if {φk+1, wk+ 1
2 } ∈ [Cm×n]2 is a periodic solution pair to the scheme (35)–(36), we have

F
(
φk, φk+1) + s

(
M

(
φ̂k+ 1

2
)

wk+ 1
2
∥∥wk+ 1

2
) +R

(
φk−1, φk, φk+1) = F

(
φk−1, φk), (54)

for any s > 0. The remainder term, R(φk−1, φk, φk+1), is non-negative. This implies that the pseudo energy is non-increasing, i.e., 
F(φk, φk+1) ≤F(φk−1, φk), for both (33)–(34) and (35)–(36).
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Proof. We first note that the following identities hold:

h2(χ(
φk, φk+1)∥∥φk+1 − φk) = h2(Fc

(
φk+1)∥∥1

) − h2(Fc
(
φk)∥∥1

)
, (55)

h2(φk+ 1
2
∥∥φk+1 − φk) = 1

2

∥∥φk+1
∥∥2

2 − 1

2

∥∥φk
∥∥2

2, (56)

and

−h2(φ̂k+ 1
2
∥∥φk+1 − φk) = −1

2

∥∥φk+1
∥∥2

2 + 1

4

∥∥φk+1 − φk
∥∥2

2 + 1

2

∥∥φk
∥∥2

2 − 1

4

∥∥φk − φk−1
∥∥2

2

+ 1

4

∥∥φk+1 − 2φk + φk−1
∥∥2

2, (57)

and

−([
J 
 φ̂k+ 1

2
]∥∥φk+1 − φk) = −1

2

([
J 
 φk+1]∥∥φk+1) + 1

4

([
J 


(
φk+1 − φk)]∥∥φk+1 − φk)

+ 1

2

([
J 
 φk]∥∥φk) − 1

4

([
J 


(
φk − φk−1)]∥∥φk − φk−1)

+ 1

4

([
J 


(
φk+1 − 2φk + φk−1)]∥∥φk+1 − 2φk + φk−1). (58)

Now, multiplying Eq. (33) by wk+ 1
2 and using summation-by-parts formulas (see Appendix C), we obtain

h2(φk+1 − φk
∥∥wk+ 1

2
) = −s

∥∥∇h wk+ 1
2
∥∥2

M . (59)

Considering (34), we also have

h2(φk+1 − φk
∥∥wk+ 1

2
) = h2(χ(

φk, φk+1)∥∥φk+1 − φk) + 2[ Jc 
 1]h2(φk+ 1
2
∥∥φk+1 − φk)

− (
2[ Jc 
 1] + γ

)
h2(φ̂k+ 1

2
∥∥φk+1 − φk) − h2([ J 
 φ̂k+ 1

2
]∥∥φk+1 − φk). (60)

Using identities (55)–(58) in the last equation, we get

h2(φk+1 − φk
∥∥wk+1) = h2(Fc

(
φk+1)∥∥1

) − h2(Fc
(
φk)∥∥1

) + [ Jc 
 1]∥∥φk+1
∥∥2

2 − [ Jc 
 1]∥∥φk
∥∥2

2

− 2[ Jc 
 1] + γ

2

∥∥φk+1
∥∥2

2 + 2[ Jc 
 1] + γ

4

∥∥φk+1 − φk
∥∥2

2 + 2[ Jc 
 1] + γ

2

∥∥φk
∥∥2

2

− 2[ Jc 
 1] + γ

4

∥∥φk − φk−1
∥∥2

2 + 2[ Jc 
 1] + γ

4

∥∥φk+1 − 2φk + φk−1
∥∥2

2

− h2

2

([
J 
 φk+1]∥∥φk+1) + h2

4

([
J 


(
φk+1 − φk)]∥∥φk+1 − φk)

+ h2

2

([
J 
 φk]∥∥φk) − h2

4

([
J 


(
φk − φk−1)]∥∥φk − φk−1)

+ h2

4

([
J 


(
φk+1 − 2φk + φk−1)]∥∥φk+1 − 2φk + φk−1)

= F
(
φk, φk+1) −F

(
φk−1, φk) +R

(
φk−1, φk, φk+1). (61)

It only remains to show that R(φk−1, φk, φk+1) ≥ 0. On the other hand, by Proposition C.5 and the definition of 
R(φk−1, φk, φk+1), this fact is straightforward. This proves the result for the nCH scheme. The proof for the nAC scheme is 
similar and is omitted for the sake of brevity. �
Corollary 3.1. Suppose that {φk+1, μk+ 1

2 }�k=1 ∈ [Cm×n]2 are a sequence of periodic solutions pairs of the conservative scheme 
(33)–(34) or the non-conservative scheme (35)–(36) with the starting values φ0 and φ−1 , where φ−1 ≡ φ0 . Set Fe = γ

2 φ2 where 
γ is a nonnegative constant. Then we have

E
(
φk) ≤ E

(
φ0), ∀1 ≤ k ≤ �. (62)

Proof. By virtue of the last theorem, and since φ−1 ≡ φ0, we have the chain of inequalities

E
(
φk) ≤ F

(
φk) ≤ F

(
φk−1) ≤ · · · ≤ F

(
φ0) = E

(
φ0). � (63)

Thus, the discrete version of the original energy is bounded from above by the energy of the initial condition.
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Table 1
The difference between coarse and fine grid solutions (nCH equation).

Coarse h Fine h ‖e A‖2 Rate

1/64 1/128 0.023594977666378 –
1/128 1/256 0.003642747274851 2.695380992993224
1/256 1/512 8.669302357639438e−04 2.071039102165462
1/512 1/1024 2.162606042972027e−04 2.003145023762793
1/1024 1/2048 5.411334233516024e−05 1.998714618858811

Table 2
The difference between coarse and fine grid solutions (nAC equation).

Coarse h Fine h ‖e A‖2 Rate

1/64 1/128 1.510704455248701e−04 –
1/128 1/256 3.777326690535997e−05 1.999783979301426
1/256 1/512 9.443660642523572e−06 1.999947459441191
1/512 1/1024 2.360936173440859e−06 1.999987159664891
1/1024 1/2048 5.902355596047761e−07 1.999996293884224

Fig. 1a. Evolution from a random initial condition with s = 0.01 (nCH equation).

Fig. 1b. Evolution from a random initial condition with s = 0.01 (nAC equation).

4. Numerical results

The numerical solution of schemes (33)–(34) and (35)–(36) requires the solution of nonlinear equations at the implicit 
time level. To solve these nonlinear equations, we use the multigrid solver introduced in [41,54] with small modifications. 
The reader is also referred to Section 6.2 in [36] for the detailed description of the multigrid method for the first order 
scheme for the nCH equation which has the similar structure.

4.1. Convergence and stability of second order schemes

In this section we present the results of three numerical experiments verifying the convergence and stability of the 
proposed schemes. The first experiment verifies the convergence rate in the following setting: 1) the computation domain 
is Ω = (−0.5, 0.5)2; 2) the initial condition is φ(x, 0) = 0.5 sin(2πx1) sin(2πx2); 3) the interaction kernel J is given by a 
positive Gaussian function defined as
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Fig. 2a. Energy of the nCH evolution in Fig. 1a.

Fig. 2b. Energy of the nAC evolution in Fig. 1b.

J = α exp

(
− x2

1 + x2
2

σ 2
1

)
, (64)

where σ1 = 0.05 and α = 1
σ 2

1
; 4) γe = 1, γc = 0; 5) the time step s and the grid size h satisfy the relation s = 0.1h; 6) in all 

cases, the ending time is 0.015625. Since there is no exact solution to compare with, we use the difference between results 
on coarse and finer grids to assess accuracy and convergence. Denoting the difference between the results on successively 
refined grids be e A , where the fine grid results are averaged to yield values on the coarse grid, the discrete ‖ · ‖2 norm 
is used to quantify the difference in results [41]. The results are given in Tables 1 and 2 for the nCH (conserved) and 
nAC (nonconserved) dynamics respectively, and confirm that the schemes are indeed second order accurate. The second 
experiment is a simulation of spinodal decomposition using the nCH and nAC equations. The setting of the experiment is 
the following: 1) Ω = (−0.5, 0.5)2; 2) the initial condition is a random perturbation from the initial average φave = 0; 3) J
is defined as Eq. (64) with σ1 = 0.1 and α = 1

σ 2
1

; 4) γe = 1, γc = 0. Figs. 1a and 1b show the evolving patterns and Figs. 2a

and 2b verify the corresponding energy evolution. The third experiment verifies the energy evolution with different sizes 
of s. Here we use the same setting of the second experiment with the following changes: 1) the initial condition is φt=20
obtained in the second experiment and 2) sizes of s are varied. Figs. 3a and 3b show the evolving patterns with different 
s. Figs. 4a and 4b show the corresponding energy evolution. Observe that in all cases, their energy decreases with different 
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Fig. 3a. Evolving patterns with different s as labeled (nCH equation).

choices of s, and when s = 0.01 and s = 0.1 the corresponding evolving patterns are very similar. Although when s = 1 is 
used in both nCH and nAC equation, the evolution is less accurate, particularly so for the nCH equation.

4.2. Nucleation and growth

In this section we present two experiments of nucleation and growth described by the nCH equation, where Ω =
(−10, 10)2, s = 0.01, the number of nodes on the grid is 5122, and the total number of time iterations is 104. The ker-
nel J is defined as the difference between two Gaussians:

J = α exp

(
− x2

1 + x2
2

σ 2
1

)
− β exp

(
− x2

1 + x2
2

σ 2
2

)
, (65)

where σ1 = 0.08, σ2 = 0.2, α = 0.1
σ 2

1
and β = 0.09

σ 2
2

; 4) γe = 0, γc = 0.01. The contours of J are shown in Fig. 5. In this 

case J c = α exp(− x2
1+x2

2
σ 2

1
) and Je = β exp(− x2

1+x2
2

σ 2
2

). The initial condition of the simulation, which is shown in Fig. 6, is a 
random perturbation of the constant state φave = 0.2. Over a short time (0 ≤ t ≤ 10), the dynamics result in the nucleation 
of particles (spots) at a fine scale. The corresponding decay of the energy is shown in Fig. 7. In Fig. 8 a second simulation 
is presented where an initial perturbation of the same state as in Fig. 6 is localized in a small region at the center of the 
domain. In this case, the nucleation of fine-scale particles starts at the center and radiates outward, while leaving behind 
defects in the lattice structure. Note that at the outer boundary, curved stripes appear (see t = 2 and t = 4) that then break 
up into spots. The reader is referred to [7] for more details concerning the mechanisms underlying the generation of defects 
in the system.
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Fig. 3b. Evolving patterns with different s as labeled (nAC equation).

4.3. Efficiency of multigrid solver

To assess the efficiency of the multigrid solver we present the residuals evaluated in the discrete ‖ · ‖2 norm, for each 
iteration of the V-cycle with h = 20/2048, 20/1024, 20/512 and 20/256. We record the residuals at time t = 0.01, with 
s = 0.01 for all cases. The initial data is φ0(x, y) = 0.2 +0.005 sin(200πx)sin(200π y). The kernel J and the other parameters 
are as in Section 4.2. The results are given in Fig. 9, which compares the convergence under these settings. We observe that 
the residual decreases roughly by a constant factor with each V-cycle iteration, independent of the grid size.

4.4. Phase diagram for the nCH equation

In this section we discuss factors that influence nucleation and growth for the nCH equation. In many previous studies 
it is shown that the average of φ is crucial (e.g. [25,35]). It is also clear that the size of the coefficient γc − γe is another 
influential factor. The experiment shown in Fig. 10 is a phase diagram that shows how the equilibrium structures depend 
on these parameters using the nCH equation. All parameters is the same as Section 4.2 except the following modifications:
1) the value of parameters for J are σ1 = 0.08, σ2 = 0.2, α = 0.1

σ 2
1

and β = 0.05
σ 2

2
; 2) the averages of φ and the parameters 

γc − γe are varied. The initial condition in all cases is a random perturbation of the constant state φave (which is varied 
from case to case). The time step s is 0.01 and the total number of time iterations is 5000 for all cases. From Fig. 10 we can 
see that by increasing the average of φ, the pattern changes from labyrinth stripes to dots and eventually to nearly uniform 
constant. Also we can see from the same figure that when γc − γe is increased, the nCH equation is dominated by diffusion 
and the development of patterns is inhibited.
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Fig. 4a. Energy of the nCH evolution in Fig. 3a. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

Fig. 4b. Energy of the nAC evolution in Fig. 3b. (For interpretation of the references to color in this figure, the reader is referred to the web version of this 
article.)

4.5. Nucleation and growth with anisotropic interaction kernels

In this section we discuss the influence of the structure of J on nucleation and growth in the nCH equation. We consider 
four interaction kernels J1, J2, J3 and J4, which are defined as:

J1 = α exp

(
− x2

1 + x2
2

σ 2
1

)
− β exp

(
− x2

1 + x2
2

σ 2
2

)
, (66)

J2 = 0.5α

[
exp

(
− x2

1

(0.5σ1)2
− x2

2

σ 2
1

)
+ exp

(
− x2

1

σ 2
1

− x2
2

(0.5σ1)2

)]

− 0.5β

[
exp

(
− x2

1

(0.5σ2)2
− x2

2

σ 2
2

)
+ exp

(
− x2

1

σ 2
2

− x2
2

(0.5σ2)2

)]
, (67)

J3 = 0.5α

[
exp

(
−0.5(x1 − x2)

2

(0.5σ1)2
− 0.5(x1 + x2)

2

σ 2
1

)
+ exp

(
−0.5(x1 − x2)

2

σ 2
1

− 0.5(x1 + x2)
2

(0.5σ1)2

)]

− 0.5β

[
exp

(
−0.5(x1 − x2)

2

(0.5σ )2
− 0.5(x1 + x2)

2

σ 2

)
+ exp

(
−0.5(x1 − x2)

2

σ 2
− 0.5(x1 + x2)

2

(0.5σ )2

)]
, (68)
2 2 2 2
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Fig. 5. The interaction kernel J given in Eq. (65) and used in the simulation shown in Fig. 6. The left figure shows the contour. The right figure is a cut 
view at y = 0. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. Dynamics for the nCH equation with a random initial condition and interaction kernel J shown in Fig. 5.

J4 = α

3
exp
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− x2

1

σ 2
1

− x2
2
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)
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3
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3
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3
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3
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3
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3
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2
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2
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3
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3
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2
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3
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3
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(
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√

3
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− (
√

3
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2

(0.5σ2)2

)
, (69)

where σ1 = 0.16, σ2 = 0.4, α = 0.1
σ 2

1
and β = 0.08

σ 2
2

. Figs. 11a, 11b, 11c and 11d show the contours of the J s. In Fig. 12 the 
evolution of φ from a randomly perturbed average φave = 0.19, which is localized to a small region in the center of the 
domain, are shown for different kernels. The computational domain is Ω = (−10, 10)2 and the value of γc −γe is 0. As seen 
in the figure the microstructure of growth very clearly depends on J .

Remark 4.1. The interaction kernel J4 has six-fold anisotropic shape, and the nucleation and growth simulation in this 
setting is very similar to the simulation of the anisotropic PFC equation presented in [21].

In Figs. 13a and 13b, we close with a simulation that resembles microphase separation [4,42–44,53]. In Fig. 13a the 
interaction kernel J = J1, as in the previous section, with σ1 = 0.08, σ2 = 0.2, α = 0.5

σ 2
1

and β = 0.25
σ 2

2
; γe = 0, γc = 0. 

The computational domain is Ω = (−20, 20)2 and the initial condition is a random perturbation of the constant state 
φ = φave = 0.3 localized in a small region of the center of the domain. Observe that blocks of patterned structures emerge 



62 Z. Guan et al. / Journal of Computational Physics 277 (2014) 48–71
Fig. 7. The corresponding energy for the simulation shown in Fig. 6.

Fig. 8. Nucleation and growth from a random initial perturbation in a small region at the center of the domain. The interaction kernel J is that shown in 
Fig. 5.

Fig. 9. Logarithm of residual against number of V-cycle in multigrid solver. (For interpretation of the references to color in this figure, the reader is referred 
to the web version of this article.)
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Fig. 10. The phase diagram for the nCH equation with different φave and γc − γe . The simulations are shown at the same time t = 50.

distributed radically from the center of the domain. Over time, some of these structures merge to form patterned rings 
of stripes. Such structures have been observedexperimentally [53]. In Fig. 13b analogous simulations are performed using 
the interaction kernel J = J4. In this case σ1 = 0.15, σ2 = 0.375, α = 0.5

σ 2
1

and β = 0.25
σ 2

2
; γe = 0, γc = 0. The computational 

domain is Ω = (−40, 40)2 and the initial condition is a random perturbation of the constant state φ = φave = 0.288 localized 
in a small region of the center of the domain. The corresponding evolution is qualitatively similar to that observed in 
Fig. 13a, although the details of the pattern (spots) and the stripes (which have not fully formed) are different and influenced 
by the interaction kernel.
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Fig. 11a. The isotropic interaction kernel J1. The left figure shows the contours. The right figure is a cut view at y = 0. (For interpretation of the colors in 
this figure, the reader is referred to the web version of this article.)

Fig. 11b. The anisotropic interaction kernel J2. The left figure shows the contours. The right figure is a cut view at y = 0. (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

Fig. 11c. The anisotropic interaction kernel J3. The left figure shows the contours. The right figure is a cut view at y = 0. (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)
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Fig. 11d. The anisotropic interaction kernel J4. The left figure shows the contours. The right figure is a cut view at y = 0. (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

5. Conclusion and future work

In this paper we have presented second-order accurate unconditionally energy stable finite difference schemes for 
integro-partial–differential nonlocal Cahn–Hilliard and Allen–Cahn equations. Although the equations at the implicit time 
level are nonlinear, our schemes are uniquely solvable for any time step using a finite difference/volume discretization in 
space. The excellent performance of our schemes is demonstrated by simulating a variety of different configurations.

Our immediate plan is to apply this scheme to equations that arise in dynamic density functional theory to achieve more 
efficient simulation algorithms than currently exist. Another plan is to develop an adaptive time-stepping scheme where the 
value of s is adjusted at each time iteration to take the advantage of unconditional energy stability, like scheme described 
in [58]. In addition we also plan to develop a parallel version of this solver. In practice the size of the problem is much 
larger than the test cases we presented here, and large scale 3D simulations are beyond the capability of a single computer. 
Finally, we also plan to adapt the ideas presented here to finite element schemes.
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Appendix A. Relationship between the circular and classical convolutions

The classical convolution operation is widely used in many applications, including DDFT. In practice this convolution is 
often approximated by the circular convolution in a bounded, rectangular domain. Here, we very briefly discuss the rela-
tionship between the classical and circular convolutions in one space dimension. This can be extended naturally to higher 
dimensions. Here we give only a formal description, but a more rigorous approach can be found in [40] and elsewhere.

Suppose that φ : R → R is a sufficiently regular L-periodic function, L > 0, and J : R → R is a sufficiently regular, even 
convolution kernel, J (−x) = J (x) with sufficiently rapid decay at infinity. Note that J is not assumed to be periodic. The 
convolution on R is

( J ∗ φ)(x) =
ˆ

R

J (x − y)φ(y)dy =
ˆ

R

J (y)φ(x − y)dy. (70)

Now, using the periodicity of φ,

( J ∗ φ)(x) =
∞∑

k=−∞

(k+1)Lˆ

kL

J (x − y)φ(y)dy =
∞∑

k=−∞

Lˆ

0

J (x − y − kL)φ(y)dy

=
Lˆ

0

∞∑
k=−∞

J (x − y − kL)φ(y)dy. (71)

We define the periodic sum of J as
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Fig. 12. Nucleation and growth resulting from a small random perturbation at the center of the domain using different interaction kernels as labeled.

J p(x) :=
∞∑

k=−∞
J (x − kL). (72)

Observe that, J p is L-periodic and even. Moreover if the original convolution kernel J has compact support in (−L/2, L/2), 
then J p is merely the periodic extension of J from [−L/2, L/2] to the whole real line. With our definition, we have

( J ∗ φ)(x) =
Lˆ

J p(x − y)φ(y)dy =
Lˆ

J p(y)φ(x − y)dy. (73)
0 0
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Fig. 13a. Microphase separation using the isotropic interaction kernel J1.

Fig. 13b. Microphase separation using the six-fold interaction kernel J4.

In materials science applications, it is usually a quite reasonable assumption to model J as having compact support and φ
as being periodic, especially when dealing with “bulk” material properties, such as bulk phase transition. However, when 
boundary effects become important, one should switch to a more realistic model that avoids the periodicity assumption, 
such as those considered by Bates et al. [12–16]. For the computations herein, for simplicity, we usually take J to be a 
Gaussian, which can be a good approximation of a compactly supported kernel when the peak is sufficiently narrow. See, 
for example, Figs. 11a–11d.

Appendix B. Regularization of regular solution model free energy

The ideal part of regular solution model free energy is defined as Eq. (15), thus φ needs to satisfies 0 < φ < 1 for both the 
well posedness of the problem and the convexity of the energy. However, the second order scheme (33)–(34) for the nCH 
equation and the second order scheme (35)–(36) for the nAC equation do not necessarily preserve positivity. Our primary 
goal here is to present an approximation for Eq. (15) that fits the framework of this paper.

We consider the following approximation of Eq. (15):

Fν(φ) := θ
[√

φ2 + ν2 log
(√

φ2 + ν2
) +

√
(1 − φ)2 + ν2 log

(√
(1 − φ)2 + ν2

)] − 2θcφ(1 − φ), (74)

where ν is a scalar, we set

Fν = Fc − Fe (75)

where

Fc = Fν + Υ (ν)φ2 (76)

and

Fe = Υ (ν)φ2, (77)

provided θ and θc are positive. Υ (ν) is a positive constant that is inversely proportional to ν .
It can be proved that for 0 < φ < 1,

lim Fν(φ) = θ
[
φ log(φ) + (1 − φ) log(1 − φ)

] − 2θcφ(1 − φ) (78)

ν→0
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point-wise. It can also be proved that Fν + Υ (ν)φ2 and Υ (ν)φ2 are convex. Therefore Eq. (74) can be used as an ap-
proximation of Eq. (15) while satisfying Eq. (13) for any φ. Thus corresponding unconditionally energy stable schemes can 
be derived. However, it needs to be pointed out that in the application of schemes (23)–(24) and (26)–(27), Fν(φ) will 
introduce extra numerical error in the term

Υ (ν)φn+ 1
2 − Υ (ν)φ̂n+ 1

2 (79)

since Fc(φ) is treated implicitly and Fe(φ) is treated explicitly. The size of the error is proportional to the size of Υ (ν). 
Thus if we decrease the size of ν to achieve a better approximation of Eq. (15), the error in the numerical simulations may 
increase.

Appendix C. Discretization of two-dimensional space

Our primary goal in this appendix is to define some finite-difference operators and provide some summation-by-parts 
formulas in two-dimension that are used to derive and analyze the numerical schemes. The theory and algorithms extend 
straightforwardly to three-dimension.

For simplicity, let us assume that Ω = (0, L1) × (0, L2). Here we use the notation and results for cell-centered func-
tions from [56,54]. The reader is directed to those references for more complete details. We begin with definitions of grid 
functions and difference operators needed for our discretization of two-dimensional space. Let Ω = (0, L1) × (0, L2), with 
L1 = m ·h and L2 = n ·h, where m and n are positive integers and h > 0 is the spatial step size. Define xi := (i − 1

2 ) ·h, where 
i takes on integer and half-integer values. For any positive integer �, define E� = {xi | i = 1

2 , . . . , � + 1
2 }, C� = {xi | i = 1, . . . , �}, 

C� = {xi | i = 0, . . . , � + 1}. The positions y j can be defined in the same fashion. Define the function spaces

Cm×n = {φ : Cm × Cn →R}, Cm×n = {φ : Cm × Cn →R}, (80)

Eew
m×n = {u : Em × Cn →R}, Ens

m×n = {v : Cm × En →R}, (81)

Eew
m×n = {u : Em × Cn →R}, Ens

m×n = {v : Cm × En →R}, (82)

Vm×n = { f : Em × En →R}. (83)

We use the notation φi, j := φ(xi, y j) for cell-centered functions (those in the spaces Cm×n or Cm×n). In component form 
east–west edge-centered functions, those in the spaces Eew

m×n or Eew
m×n , are identified via ui+ 1

2 , j := u(xi+ 1
2
, y j). In compo-

nent form north–south edge-centered functions, those in the spaces Ens
m×n , or Ens

m×n , are identified via ui+ 1
2 , j := u(xi+ 1

2
, y j). 

The functions of Vm×n are called vertex-centered functions. In component form vertex-centered functions are identified via 
f i+ 1

2 , j+ 1
2

:= f (xi+ 1
2
, y j+ 1

2
).

We will need the weighted 2D discrete inner-products ( · ‖ · ), [ ·‖ · ]ew , [ · ‖ · ]ns that are defined in [56,54]:

(φ‖ψ) =
m∑

i=1

n∑
j=1

φi, jψi, j, φ,ψ ∈ Cm×n ∪ Cm×n, (84)

[ f ‖g]ew = 1

2

m∑
i=1

n∑
j=1

( f i+ 1
2 , j gi+ 1

2 , j + f i− 1
2 , j gi− 1

2 , j), f , g ∈ Eew
m×n, (85)

[ f ‖g]ns = 1

2

m∑
i=1

n∑
j=1

( f i, j+ 1
2

gi, j+ 1
2

+ f i, j− 1
2

gi, j− 1
2
), f , g ∈ Ens

m×n. (86)

In addition to these, we will use the 2D discrete inner product

〈 f ‖g〉 = 1

4

m∑
i=1

n∑
j=1

( f i+ 1
2 , j+ 1

2
gi+ 1

2 , j+ 1
2

+ f i+ 1
2 , j− 1

2
gi+ 1

2 , j− 1
2

+ f i− 1
2 , j+ 1

2
gi− 1

2 , j+ 1
2

+ f i− 1
2 , j− 1

2
gi− 1

2 , j− 1
2
), f , g ∈ Vns

m×n. (87)

Following [56,54], the edge-to-center differences, dx : Eew
m×n → Cm×n and dy : Ens

m×n → Cm×n; the center-to-edge averages 
and differences, Ax, Dx : Cm×n → Eew

m×n and A y, D y : Cm×n → Eew
m×n; and the 2D discrete Laplacian, �h : Cm×n → Cm×n are 

defined component-wise via

dx fi, j = 1

h
( f i+ 1

2 , j − f i− 1
2 , j), dy fi, j = 1

h
( f i, j+ 1

2
− f i, j− 1

2
),

i=1,...,m
j=1,...,n , (88)

Axφi+ 1 , j = 1
(φi, j + φi+1, j), Dxφi+ 1 , j = 1

(φi+1, j − φi, j),
i=0,...,m
j=1,...,n , (89)
2 2 2 h
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A yφi, j+ 1
2

= 1

2
(φi, j + φi, j+1), D yφi, j+ 1

2
= 1

h
(φi, j+1 − φi, j),

i=1,...,m
j=0,...,n , (90)

�hψi, j = dx(Dxψ)i, j + dy(D yψ)i, j,
i=1,...,m
j=1,...,n . (91)

We shall say the cell-centered function φ ∈ Cm×n is periodic if and only if, for all p, q ∈ Z,

φi+p·m, j+q·n = φi, j, i = 1, . . . ,m, j = 1, . . . ,n. (92)

Here we have abused notation a bit, since φ is not explicitly defined on an infinite grid. Of course, φ can be extended 
as a periodic function in a natural way, which is the context in which we view the last definition. Similar definitions are 
available for periodic edge and vertex centered grid functions.

We will use the grid function norms defined in [56,54]. The reader is referred to those references for the precise defini-
tions of ‖ · ‖2, ‖ · ‖∞ , ‖ · ‖p (1 ≤ p < ∞), ‖ · ‖0,2, ‖ · ‖1,2, and ‖φ‖2,2.

Using the definitions given in this appendix and in [56,54], we obtain the following summation-by-parts formulas whose 
proofs are simple:

Proposition C.1 (Summation-by-parts). If φ ∈ Cm×n is periodic and f ∈ Eew
m×n is periodic then

h2 [Dxφ‖ f ]ew = −h2 (φ‖dx f ), (93)

and if φ ∈ Cm×n is periodic and f ∈ Ens
m×n is periodic then

h2 [D yφ‖ f ]ns = −h2 (φ‖dy f ). (94)

If f ∈ Vm×n is periodic and g ∈ Ens
m×n is periodic then

h2 · [dx f ‖g]ns = −h2 · 〈 f ‖Dx g〉, (95)

and if f ∈ Vm×n is periodic and g ∈ Eew
m×n is periodic then

h2 · [dy f ‖g]ew = −h2 · 〈 f ‖D y g〉. (96)

Proposition C.2 (Discrete Green’s first identity). Let φ, ψ ∈ Cm×n be periodic grid functions. Then

h2 [Dxφ‖Dxψ]ew + h2 [D yφ‖D yψ]ns = −h2 (φ‖�hψ). (97)

Proposition C.3 (Discrete Green’s second identity). Let φ, ψ ∈ Cm×n be periodic grid functions. Then

h2 (φ‖�hψ) = h2 (�hφ‖ψ). (98)

We need to define a discrete periodic convolution operator. Suppose φ ∈ Cm×n is periodic and ϕ ∈ Vm×n is periodic. Then 
the discrete convolution operator [ϕ 
 φ] : Vm×n × Cm×n → Cm×n is defined component-wise as

[ϕ 
 φ]i, j = h2
m∑

k=1

n∑
l=1

ϕk+ 1
2 ,l+ 1

2
φi−k, j−l. (99)

Notice very carefully that order is important in the definition of the discrete convolution [ · 
 · ]

Proposition C.4. If φ ∈ Cm×n is periodic and ϕ ∈ Vm×n is periodic, then

[ϕ 
 φ]i, j = h2
m∑

k=1

n∑
l=1

ϕi−k+ 1
2 , j−l+ 1

2
φk,l. (100)

Proposition C.5. If φ, ψ ∈ Cm×n are periodic and ϕ ∈ Vm×n is even, non-negative, and periodic, then, for any α > 0,

∣∣(φ∥∥[ϕ 
 ψ])∣∣ ≤ α

2
[ϕ 
 1](φ‖φ) + 1

2α
[ϕ 
 1](ψ‖ψ), (101)

where 1 ∈ Cm×n, 1i, j = 1, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Proposition C.6. If φ, ψ ∈ Cm×n are periodic and ϕ ∈ Vm×n is even and periodic, then(
φ
∥∥[ϕ 
 ψ]) = (

ψ
∥∥[ϕ 
 φ]). (102)
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The proofs of Propositions C.4, C.5, and C.6 can be found in [37]. We remark that these definitions and formulas have 
straightforward extensions to three dimensions.

Under the assumption that M( 3
2 Axφ

k − 1
2 Axφ

k−1) and M( 3
2 A yφ

k − 1
2 A yφ

k−1) are positive, we consider the space

H := {
φ ∈ Cm×n

∣∣ (φ‖1) = 0
}
, (103)

and equip this space with the bilinear form

(φ1‖φ2)H :=
[

M

(
3

2
Axφ

k − 1

2
Axφ

k−1
)

Dxψ1

∥∥∥∥Dxψ2

]
ew

+
[

M

(
3

2
A yφ

k − 1

2
A yφ

k−1
)

D yψ1

∥∥∥∥D yψ2

]
ns

(104)

for any φ1, φ2 ∈ H , where ψi ∈ Cm×n is the unique solution to

L(ψi) = dx

(
M

(
3

2
Axφ

k − 1

2
Axφ

k−1
)

Dxψi

)
+ dy

(
M

(
3

2
A yφ

k − 1

2
A yφ

k−1
)

D yψi

)
= φi, (105)

where ψi is periodic and (ψi‖1) = 0. The proof of the following proposition can be found in [56].

Proposition C.7. (φ1‖φ2)H is an inner product on the space H. Moreover,

(φ1‖φ2)H = (
φ1

∥∥L−1(φ2)
) = (

L−1(φ1)
∥∥φ2

)
. (106)
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