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Abstract
The Landau–Lifshitz–Gilbert (LLG) equation is widely used to model the fast magnetiza-
tion dynamics of ferromagnets. Recent experimental observations have revealed ultra-fast
dynamics at the sub-picosecond timescale, and the inertial LLG equation is proposed to
capture the ultra-fast behaviour of magnetization, in which a second temporal derivative of
magnetization (inertial term) is introduced. The inertial LLG equation is therefore a mixed
hyperbolic-parabolic type equation with degeneracy, which produces extra difficulties in
numerical analysis. In this paper, we propose an implicit finite difference scheme based on
the central difference in both time and space, and a fixed point iteration method to solve
the nonlinear system. By a constructed solution with second order accuracy, we get a lin-
ear system and provide an unconditional convergence analysis in �∞([0, T ]; H1

h (Ω)).. We
demonstrate that the proposed method is second order accurate in both time and space, a
natural preservation of the magnetization length and the energy decaying. In the hyperbolic
regime, significant nutation of magnetization at a shorter timescale are simulated by numer-
ical simulations.
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1 Introduction

The Landau–Lifshitz–Gilbert (LLG) equation [17, 22] describes the dissipative magnetiza-
tion dynamics in ferromagnetic materials. It is widely used to interpret the experimental
observations and study the magnetization dynamics. However, recent experiments [6, 18,
19] confirm that its validity is limited to timescales from picosecond to larger timescales for
which the angular momentum reaches equilibrium in a force field. At shorter timescales, e.g.
∼ 100 fs, the ultra-fast magnetization dynamicswould exhibit [19], which can bemodeled by
the inertial Landau–Lifshitz–Gilbert (iLLG) equation [7, 13, 15]. When the inertial effect is
activated by a non-equilibrium initialization or an external magnetic field, the magnetization
converges to its equilibrium along a locus with a damping nutation [24].

For a ferromagnet over Ω ⊂ Rd , d = 1, 2, 3, the observable states are depicted by the
distribution of the magnetization in Ω , in which the magnetization denoted by m(x, t) is a
vector field taking values on the unit sphere S2. From a given initialization of magnetization
configuration, the system reaches one of local minimal of the corresponding magnetic free
energy functional under the guidance of theLLGequationwith an effectivefield. The dynamic
evolution of the system, also referred as the stabilization and transition of these magnetic
states, is crucial to the applications of ferromagnetic materials. To understand and exploit the
complex mechanism, micromagnetics simulations have become increasingly important over
the past several decades, in addition to experiment observations and theoretical predications.

One of the core problems in micromagnetics simulations is to find the numerical solution
of the LLG equation. In the past decades, various numerical approaches have been proposed;
see [12, 21] for reviews and references therein. In terms of the time marching approach, the
simplest explicit algorithms, such as the forward Euler method and Runge-Kutta methods,
were favored in the early days, while small time step size must be adopted due to the sta-
bility restriction [25]. Implicit methods can avoid the stability constraint,while a step-size
condition k = O(h2) is usually required in both the theoretical analysis and numerical simu-
lations [2, 3]. Implicit methods also suffer from the low efficiency since iteration methods are
commonly necessary. To obtain the numerical solution with high-efficiency, various of semi-
implicit methods have been proposed in recent years, such as the Gauss-Seidel projection
methods [14, 23, 29], the linearized backward Euler scheme [11, 16], the Crank-Nicolson
projection scheme [4], and the second order semi-implicit backward differentiation formula
projection scheme [8–10, 30]. In practice, all these semi-implicit methods inherit the uncon-
ditional stability of implicit schemes, and achieve a considerable improvement in efficiency.
Furthermore, an alternative class of time integration methods has been proposed within the
finite element framework [1], such as the first-order tangent plane scheme (TPS) and the
second-order angular momentum method (AMM) [20]. By defining an intermediate vari-
able v = ∂tm, this class of numerical method solves v in the tangent space of m, followed
by a projection step to obtain the numerical solution. An unconditional stable TPS solves
a linear equation with variable coefficients at each time step, while a nonlinear equation
must be solved in the AMM approach. Henceforth, the efficiency of the TPS and AMM are
proportional with the semi-implicit methods.

TheLLGequation is a nonlinear parabolic systemwhich consists of the gyromagnetic term
and the damping term. It is a classical kinetic equation that solely incorporates velocity, with
no consideration given to acceleration. When relaxing the system from a non-equilibrium
state or applying a perturbation, it is reasonable to expect the presence of an acceleration
term. Consequently, this leads to an inertial termwithin the iLLG equation.More specifically,
the time evolution of m(x, t) is described by ∂tm, and an inertial term m × ∂t tm is added to
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the term m× ∂tm. Therefore, the iLLG equation is a nonlinear system of mixed hyperbolic-
parabolic type with degeneracy. The TPS and AMM are firstly proposed to study the nutation
of iLLG equation, and these two methods aim to find a weak solution. Meanwhile, based on
the finite difference spatial approximation, a second-order accurate semi-implicit method is
presented in [24], and ∂t tm and ∂tm are approximated by the central difference discretization.

In this work, we provide the convergence analysis of the implicit mid-point scheme on
three time layers for the iLLG equation. The unique solvability is subjected to the condition
k ≤ Ch2. Nevertheless, by an introduced approximation solution, we construct a linear
problem for the error estimate, and thus we can obtain its unconditional convergence in
H1(ΩT ). Owing to the application of the mid-point scheme, the proposed method naturally
preserves the magnetization length. Moreover, we propose a fixed-point iteration method
to solve the nonlinear scheme, which converges to a unique solution under the condition
of k ≤ Ch2. Numerical simulations are reported to confirm the theoretic analysis, and the
inertial dynamics at shorter timescales is studied.

The rest of this paper is organized as follows. The iLLG equation and the numerical
method are introduced in Sect. 2. The detailed convergence analysis is provided in Sect. 3. In
addition, a fixed-point iteration method for solving the implicit scheme is proposed in Sect. 4,
and the convergence is established upon the condition k ≤ Ch2. Numerical tests, including
the accuracy test and observation of the inertial effect, are presented in Sect. 5. Concluding
remarks are made in Sect. 6.

2 The Physical Model and the Numerical Method

The intrinsic magnetization of a ferromagnet m = m(x, t) : ΩT := Ω × (0, T ) → S2 is
modeled by the conventional LLG equation:

∂tm = −m × Δm + αm × ∂tm, (x, t) ∈ ΩT , (2.1a)

m(x, 0) = m(0), x ∈ Ω, (2.1b)

∂νm(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ], (2.1c)

where ν represents the unit outward normal vector on ∂Ω , and α � 1 is the damping
parameter.When the relaxation starts fromanon-equilibriumstate or a perturbation is applied,
the acceleration would be present in the kinetic equation, which is the inertial effect observed
in various experiments at the sub-picosecond timescale. In turn, its dynamics is described by
the iLLG equation

∂tm = −m × (Δm + He) + αm × (∂tm + τ∂t tm) , (x, t) ∈ ΩT , (2.2a)

m(x, 0) = m(0), x ∈ Ω, (2.2b)

∂tm(x, 0) = 0, x ∈ Ω, (2.2c)

∂νm(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ], (2.2d)

where τ is the phenomenological inertia parameter, and He is a perturbation of the external
magnetic field. To ease the discussion, the external field is neglected in the subsequent analysis
and only considered in micromagnetics simulations. Here the additional initial condition
∂tm(x, 0) = 0 is added, which implies that the velocity is 0 at t = 0 and it is a necessary
condition for the well-posedness. Then the magnetic energy functional is

E[m] = 1

2

∫
Ω

(|∇m|2 − 2m · He + ατ |∂tm|2) dx. (2.3)
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For constant external magnetic fields, it satisfies the energy dissipation law

d

dt
E[m] = −α

∫
Ω

|∂tm|2dx ≤ 0. (2.4)

Therefore, under the condition of (2.2c), for almost all T ′ ∈ [0, T ], we have
1

2

∫
Ω

(
|∇m(x, T ′)|2 + ατ

∣∣∂tm(x, T ′)
∣∣2) dx ≤ 1

2

∫
Ω

(|∇m(x, 0)|2) dx. (2.5)

Before the formal algorithm is presented, here the spatial differencemesh and the temporal
discretization is stated. We consider the uniform mesh for Ω with mesh-size h and a time
step-size k > 0. Let L be the set of nodes {xl = (xi , y j , zk)} in 3-D space with the indices
i = 0, 1, · · · , nx, nx + 1, j = 0, 1, · · · , ny, ny + 1 and k = 0, 1, · · · , nz, nz + 1, in
which ghost points on the boundary ∂Ω are denoted by i = 0, nx + 1, j = 0, ny + 1 and
k = 0, nz + 1. We use the half grid points with mi, j,k = m((i − 1

2 )h, ( j − 1
2 )h, (k − 1

2 )h).
Due to the homogeneous Neumann boundary condition (2.2d), the following extrapolation
formula is derived:

mix+1, j,k = mix , j,k,mi, jy+1,k = mi, jy ,k,mi, j,kz+1 = mi, j,kz (2.6)

for all 1 ≤ i ≤ nx, 1 ≤ j ≤ ny, 1 ≤ k ≤ nz, where ix = 0, nx , jy = 0, ny and kz = 0, nz.
Meanwhile, for the time stepping, we define the difference formulates as follows.

Definition 1 For φn+1 = φ(x, tn+1) and ψn+1 = ψ(tn+1), define

d+
t φn = φn+1 − φn

k
, d−

t φn = φn − φn−1

k
,

and

D+
t ψn = ψn+1 − ψn

k
, D−

t ψn = ψn − ψn−1

k
.

Consequently, we denote

dtφ
n+1 = 1

2
(d+

t φn + d−
t φn), Dtψ

n+1 = 1

2
(D+

t ψn + D−
t ψn).

In particular, the second time derivative is approximated by the central difference form

dttφ = φn+1 − 2φn + φn−1

k2
. (2.7)

Then for the initial condition (2.2c), there holds

m(xl , 0) = m(xl , k), ∀l ∈ L, (2.8)

on the mesh grid. Given grid functions f h, gh ∈ �2(Ωh,R
3), we list definitions of the

discrete inner product and norms used in this paper.

Definition 2 The discrete inner product 〈·, ·〉 in �2(Ωh,R
3) is defined by

〈 f h, gh〉 = hd
∑
l∈L

f h(xl) · gh(xl). (2.9)

The discrete �2 norm and H1
h norm of mh are

‖ f h‖22 = hd
∑
l∈L

f h(xl) · f h(xl), (2.10)
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and
‖ f h‖2H1

h
= ‖ f h‖22 + ‖∇h f h‖22 (2.11)

with ∇h representing the central difference stencil of the gradient operator.

Besides, the norm ‖ · ‖∞ in �∞(Ωh,R
3) is defined by

‖ f h‖∞ = max
l∈L ‖ f h(xl)‖∞. (2.12)

Denote mn
h(n ≥ 0) as the numerical solution, and the approximation scheme of the iLLG

equation is presented below.

Algorithm 1 Given m0
h,m

1
h ∈ W 1,2(Ωh,S

2). Let mn−1
h ,mn

h ∈ W 1,2(Ωh,S
2), we compute

mn+1
h by

dtm
n+1
h − αm̄n

h ×
(
dtm

n+1
h + τdttmn

h

)
= −m̄n

h × Δh m̄n
h, (2.13)

where m̄n
h = 1

2 (m
n+1
h + mn−1

h ), and Δh represents the standard seven-point stencil of the
Laplacian operator.

The corresponding fully discrete version of the above (2.13) reads as

mn+1
h − mn−1

h

2k
− α

mn+1
h + mn−1

h

2
×

(
mn+1

h − mn−1
h

2k
+ τ

mn+1
h − 2mn

h + mn−1
h

k2

)

= −mn+1
h + mn−1

h

2
× Δh

(
mn+1

h + mn−1
h

2

)
. (2.14)

The second-order spatial and temporal approximation can be directly obtained by the Taylor
expansion:

m(xl , tn+1) − 2m(xl , tn) + m(xl , tn−1)

k2

= ∂t tm(xl , tn) + k2

12
∂

(4)
t m(xl , tn) + · · · ,

(2.15)

and

Δh

(
m(xl , tn+1) + m(xl , tn−1)

2

)
= Δhm(xl , tn) + k2

2
Δh∂t tm(xl , tn) + · · ·

= Δm(xl , tn) + h2

12
Δ2m(xl , tn) + k2

2
Δ∂t tm(xl , tn) + · · · .

(2.16)

The two expansions indicate a regularity requirement for the classical solutionm, in the space
C4([0, T ]; [C0(Ω̄)]3) ∩ C2([0, T ]; [C2(Ω̄)]3) ∩ L∞([0, T ]; [C4(Ω̄)]3).

Due to the mid-point approximation feature, this implicit scheme is excellent in maintain-
ing certain properties of the original system.

Lemma 1 Given
∣∣m0

h(xl)
∣∣ = 1, then the sequence {mn

h(xl)}n≥0 produced by (2.13) satisfies

(i)
∣∣mn

h(xl)
∣∣ = 1,∀l ∈ L;

(ii) 1
2Dt‖∇hm

n+1
h ‖22 + α‖dtmn+1

h ‖22 + 1
2ατD−

t ‖d+
t mn

h‖22 = 0.

123



48 Page 6 of 24 Journal of Scientific Computing (2024) 101 :48

Proof Employing the (2.2c) firstly yields m0(xl) = m1(xl) for all l ∈ L . Take the vector
inner product with (2.13) by (mn+1

h (xl) + mn−1
h (xl)), and we get

|mn+1
h | = |mn

h | = · · · = |m1
h | = |m0

h | = 1,

in the point-wise sense. This confirms (i). In order to verify (ii), we take inner product with
(2.13) by −Δh m̄n

h and get

1

2
Dt‖∇hm

n+1
h ‖22 − α〈m̄n

h × dtm
n+1
h ,−Δh m̄n

h〉 − ατ 〈mn
h × dttmn

h,−Δh m̄n
h〉 = 0.

Subsequently, taking inner products with dtm
n+1
h and dttm

n+1
h separately leads to the fol-

lowing equalities:

‖dtmn+1
h ‖22 − ατ 〈mn

h × dttmn
h, dtm

n+1
h 〉 = −〈m̄n

h × dtm
n+1
h ,−Δh m̄n

h〉,
and

1

2
D−
t ‖d+

t mn
h‖22 + α〈mn

h × dttmn
h, dtm

n+1
h 〉 = −〈mn

h × dttmn
h,−Δh m̄n

h〉.
A combination of the above three identities yields (ii).

In Lemma 1, taking k → 0 gives

d

dt

(
1

2
‖∇hm

n+1
h ‖22 + ατ

2
‖∂tmn

h‖22
)

= −α‖∂tmn+1
h ‖22, (2.17)

which is consistent with the continuous energy law (2.4). Accordingly, in the absence of the
external magnetic field, the discretized version energy dissipation law is maintained with a
modification

E(mn+1
h ,mn

h) = ατ

2

∥∥∥m
n+1
h − mn

h

k

∥∥∥2
2
+ 1

4
(‖∇hm

n+1
h ‖22 + ‖∇hmn

h‖22). (2.18)

Theorem 1 Given mn−1
h ,mn

h,m
n+1
h ∈ W 1,2(Ωh,S

2), we have a discrete energy dissipation
law, for the modified energy (2.18):

E(mn+1
h ,mn

h) ≤ E(mn
h,m

n−1
h ). (2.19)

Proof Denote a discrete function

μn := α
(mn+1

h − mn−1
h

2k
+ τ

mn+1
h − 2mn

h + mn−1
h

k2

)
− 1

2
Δh(m

n+1
h + mn−1

h ).

Taking a discrete inner product with (2.13) by μn gives

α

4k2
〈mn+1

h − mn−1
h ,mn+1

h − mn−1
h 〉 + ατ

2k3
〈mn+1

h − mn−1
h ,mn+1

h − 2mn
h + mn−1

h 〉
+ α

4k

〈
mn+1

h − mn−1
h ,−Δh(m

n+1
h + mn−1

h )
〉

=
〈
− mn+1

h + mn−1
h

2
× μn, μn

〉
= 0. (2.20)

Meanwhile, the following estimates are available:

〈mn+1
h − mn−1

h ,mn+1
h − mn−1

h 〉 = ‖mn+1
h − mn−1

h ‖22 ≥ 0,

〈mn+1
h − mn−1

h ,mn+1
h − 2mn

h + mn−1
h 〉
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=
〈
(mn+1

h − mn
h) + (mn

h − mn−1
h ), (mn+1

h − mn
h) − (mn

h − mn−1
h )

〉
, (2.21)

= ‖mn+1
h − mn

h‖22 − ‖mn
h − mn−1

h ‖22,〈
mn+1

h − mn−1
h ,−Δh(m

n+1
h + mn−1

h )
〉

=
〈
∇h(m

n+1
h − mn−1

h ),∇h(m
n+1
h + mn−1

h )
〉
= ‖∇hm

n+1
h ‖22 − ‖∇hm

n−1
h ‖22 (2.22)

= (‖∇hm
n+1
h ‖22 + ‖∇hmn

h‖22) − (‖∇hmn
h‖22 + ‖∇hm

n−1
h ‖22). (2.23)

Going back to (2.20), we arrive at

ατ

2k

(∥∥∥m
n+1
h − mn

h

k

∥∥∥2
2
−

∥∥∥m
n
h − mn−1

h

k

∥∥∥2
2

)

+ 1

4k

(
(‖∇hm

n+1
h ‖22 + ‖∇hmn

h‖22) − (‖∇hmn
h‖22 + ‖∇hm

n−1
h ‖22)

)

= −α

∥∥∥m
n+1
h − mn−1

h

2k

∥∥∥2
2

≤ 0, (2.24)

which is exactly the energy dissipation estimate (2.19). This finishes the proof of Theorem 1.
��

On the other hand, due to its nonlinearity, the unique solvability is ensured by a constraint
k ≤ Ch2, with C being a constant independent of k and h.

Lemma 2 Supposemn−1
h andmn

h satisfies |mn−1
l | = |mn−1

l | = 1 for all l ∈ L in the equation
(2.14). It has a unique solution if k

h2
satisfies

k

h2
≤ 2−d−1. (2.25)

Proof Suppose V 1 and V 2 are the solution of (2.14), i.e.,

V i
l − mn−1

l
2k

− α
V i
l + mn−1

l
2

×
(
V i
l − mn−1

l
2k

+ 2τ

k2
mn
l

)
= − 1

h2
V i
l + mn−1

l
2

×
⎛
⎜⎝ ∑

|l−l̂|=1

V i
l−l̂

+ mn−1
l−l̂

2

⎞
⎟⎠ (2.26)

for i = 1, 2. Since |V i
l | = 1 for all l ∈ L , we get the estimate

‖V
k + mh

2
‖∞ ≤ 1.

By (2.26), we have

V 1
l − V 2

l

2k
= − α

4k
(V 1

l − V 2
l ) × mn−1

l + ατ

k2
(V 1

l − V 2
l ) × mn

l − 1

h2
V 1
l − V 2

l

2

×
⎛
⎝ ∑

|l−l̂|=1

V 1
l−l̂

+ mn−1
l−l̂

2

⎞
⎠ − 1

h2
V 2
l + mn−1

l

2
×

⎛
⎝ ∑

|l−l̂|=1

V 1
l−l̂

− V 2
l−l̂

2

⎞
⎠ .

The error ‖V 1 − V 2‖2 satisfies

‖V 1 − V 2‖2 ≤ 2d+1k

h2
‖V 1 − V 2‖2.
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Hence, ‖V 1 − V 2‖2 = 0 if and only if

k

h2
< 2−d−1.

This completes the proof.

Remark 1 In the above Lemma, we give a unique solvability in the �2(Ωh)-norm sense.
However, if we consider the norm ‖V 1 − V 2‖∞, we will see that

‖V 1 − V 2‖∞ ≤
(

α

2
+ 2ατ

k
+ 2d+1k

h2

)
‖V 1 − V 2‖∞. (2.27)

This implies that the unique solvability of the scheme (2.14), in the �∞(Ωh) sense, is con-
strained by k ≤ C1h2 and τ ≤ C2k, where C1 and C2 are constants independent of h and
k.

Meanwhile, it is noticed that, given the initial profile of m at t = 0, namely m0, an
accurate approximation to m1 and m2 has to be made. In more details, an O(k2 + h2)

accurate approximation of both m1, m2 and m1−m0

k , m2−m1

k is needed in the convergence
analysis.

The initial profile m0 could be taken as m0 = m(·, 0). This in turn gives a trivial zero
initial error for m0. For m1 and m2, a careful Taylor expansion reveals that

m1 =m0 + k∂tm0 + k2

2
∂t tm0 + O(k3)

=m0 + k2

2
∂t tm0 + O(k3), (2.28)

m2 =m0 + 2k∂tm0 + 2k2∂t tm0 + O(k3)

=m0 + 2k2∂t tm0 + O(k3), (2.29)

in which the initial data (2.2c), ∂tm(·, 0) ≡ 0, has been applied in the derivation. Therefore,
an accurate approximation to m1 and m2 relies on a precise value of ∂t tm at t = 0. An
evaluation of the original PDE (2.2a) implies that

m0 × (∂t tm0) = 1

ατ
m0 × (Δm0 + H0

e), (2.30)

in which the trivial initial data (2.2c) has been applied again. Meanwhile, motivated by the
point-wise temporal differentiation identity

m · ∂t tm = −(∂tm)2 + 1

2
∂t t (|m|2) = −(∂tm)2, (2.31)

and the fact that |m| ≡ 1, we see that its evaluation at t = 0 yields

m0 · ∂t tm0 = −(∂tm0)2 = 0. (2.32)

Subsequently, a combination of (2.31) and (2.32) uniquely determines ∂t tm0:

∂t tm0 = − 1

ατ
m0 × (m0 × (Δm0 + H0

e)), (2.33)

and a substitution of this value into (2.28), (2.29) leads to an O(k3) approximation tom1 and
m2.

Moreover, with spatial approximation introduced, an O(k2 +h2) accuracy is obtained for

both m1, m2 and m1−m0

k , m2−m1

k . This finishes the initialization process.
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3 Unconditional Convergence Analysis

The theoretical result concerning the convergence analysis is stated below.

Theorem 2 Assume that the exact solution of (2.2) has the regularity me ∈ C4([0, T ];
[C0(Ω̄)]3) ∩ C2([0, T ]; [C2(Ω̄)]3) ∩ L∞([0, T ]; [C4(Ω̄)]3). Denote a nodal interpolation
operator Ph such that Phmh ∈ C1(Ω), and the numerical solution mn

h (n ≥ 0) obtained
from (2.13) with the initial error satisfying ‖eph ‖2 + ‖∇he

p
h ‖2 = O(k2 + h2), where eph =

Phme(·, tp)−mp
h , p = 0, 1, 2, and ‖ eq+1

h −eqh
k ‖2 = O(k2 + h2), q = 0, 1. Then the following

convergence result holds for 2 ≤ n ≤ ⌊ T
k

⌋
as h, k → 0+:

‖Phme(·, tn) − mn
h‖2 + ‖∇h(Phme(·, tn) − mn

h)‖2 ≤ C(k2 + h2), (3.1)

in which the constant C > 0 is independent of k and h.

Before the rigorous proof is given, the following estimates are declared, which will be
utilized in the convergence analysis. In the sequel, for simplicity of notation, we will use a
uniform constant C to denote all the controllable constants throughout this part.

Lemma 3 (Discrete gradient acting on cross product) [10] For grid functions f h and gh over
the uniform numerical grid, we have

‖∇h( f h × gh)‖2 ≤ C
(
‖ f h‖2 · ‖∇h gh‖∞ + ‖gh‖∞ · ‖∇h f h‖2

)
. (3.2)

Lemma 4 (Point-wise product involved with second order temporal stencil) For grid func-
tions f h and gh over the time domain, we have

f n+1
h − 2 f nh + f n−1

h

k2
· gnh = − f nh − f n−1

h

k
· gnh − gn−1

h

k

+1

k

( f n+1
h − f nh

k
· gnh − f nh − f n−1

h

k
· gn−1

h

)
. (3.3)

Now we proceed into the convergence estimate. First, we construct an approximate solu-
tion m:

m = me + h2m(1), (3.4)

in which m(1) is an auxiliary field. To maintain the model consistency, we also need Δm =
Δme + h2Δm(1) with Δm(1) being bounded uniformly. Hence, the auxiliary field m(1) is set
to satisfy the following Poisson equation

Δm(1) = Ĉ with Ĉ = 1

|Ω|
∫

∂Ω

∂3νme ds,

∂zm(1) |z=0= − 1

24
∂3z me |z=0, ∂zm(1) |z=1= 1

24
∂3z me |z=1, (3.5)

with boundary conditions along x and y directions defined in a similar way. The scalar
function Ĉ = Ĉ(t) is chosen as

∫
Ω
Ĉdx = ∫

∂Ω
∂νm(1)dν for maintaining the consistency

with the Neumann boundary condition. This class of construction can be found in the related
works [26–28]; the purpose of such a construction will be more clearly observed in the later
derivation.
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Then we extend the approximate profile m to the numerical “ghost" points. Applying the
extrapolation formula:

mi, j,0 = mi, j,1, mi, j,nz+1 = mi, j,nz, (3.6)

and the extrapolation for other boundaries can be formulated in the samemanner. We will see
that such an extrapolation yields a higher orderO(h5) approximation, instead of the standard
O(h3) accuracy.

Performing a careful Taylor expansion for the exact solution around the boundary section
z = 0, combined with the mesh point values: z0 = − 1

2h, z1 = 1
2h, we get

me(xi , y j , z0) = me(xi , y j , z1) − h∂zme(xi , y j , 0) − h3

24
∂3z me(xi , y j , 0) + O(h5)

= me(xi , y j , z1) − h3

24
∂3z me(xi , y j , 0) + O(h5), (3.7)

in which the homogenous boundary condition has been applied in the second step. A similar
Taylor expansion for the constructed profile m(1) reveals that

m(1)(xi , y j , z0) = m(1)(xi , y j , z1) − h∂zm(1)(xi , y j , 0) + O(h3)

= m(1)(xi , y j , z1) + h

24
∂3z me(xi , y j , 0) + O(h3). (3.8)

with the boundary condition in (3.5) applied. In turn, a substitution of (3.7)-(3.8) into (3.4)
indicates that

m(xi , y j , z0) = me(xi , y j , z0) + h2m(1)(xi , y j , z0)

= me(xi , y j , z1) + h2m(1)(xi , y j , z1) + O(h5),

i.e.,
m(xi , y j , z0) = m(xi , y j , z1) + O(h5). (3.9)

In other words, the extrapolation formula (3.6) is indeed O(h5) accurate.
As a result of the boundary extrapolation estimate (3.9), we see that the discrete Laplacian

of m yields the second-order accuracy at all the mesh points (including boundary points):

Δhmi, j,k = Δme(xi , y j , zk) + O(h2), (3.10)

for any 0 ≤ i ≤ nx+1, 0 ≤ j ≤ ny+1, 0 ≤ k ≤ nz+1. In otherwords, the construction (3.5)
ensures an O(h5) boundary extrapolation accuracy, as given by (3.9). This in turn leads to
a second order spatial accuracy for the discrete Laplacian operator, at both the interior and
boundary points.

Moreover, a detailed calculation of Taylor expansion, in both time and space, leads to the
following truncation error estimate:

mn+1
h − mn−1

h

2k
= mn+1

h + mn−1
h

2
×

(
α
mn+1

h − mn−1
h

2k
+

ατ
mn+1

h − 2mn
h + mn−1

h

k2
− Δh

(mn+1
h + mn−1

h

2

))
+ τ n, (3.11)

where ‖τ n‖2 ≤ C(k2 + h2). In addition, a higher order Taylor expansion in space and time
reveals the following estimate for the discrete gradient of the truncation error, in both time
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and space:

‖∇hτ
n‖2, ‖τ n − τ n−1

k
‖2 ≤ C(k2 + h2). (3.12)

In fact, such a discrete ‖ · ‖H1
h

bound for the truncation comes from the regularity

assumption for the exact solution, me ∈ C4([0, T ]; [C0(Ω̄)]3) ∩ C2([0, T ]; [C2(Ω̄)]3) ∩
L∞([0, T ]; [C4(Ω̄)]3), as stated in (2.15) and (2.16), as well as the fact that m(1) ∈
C1([0, T ]; [C1(Ω̄)]3) ∩ L∞([0, T ]; [C2(Ω̄)]3), as indicated by the Poisson equation (3.5).
Therefore, the regularity ofm is sameas the regularity ofm(1), i.e.,m ∈ C1([0, T ]; [C1(Ω̄)]3)
∩ L∞([0, T ]; [C2(Ω̄)]3).

We introduce the numerical error function enh = mn
h − mn

h , instead of a direct compari-
son between the numerical solution and the exact solution. The error function between the
numerical solution and the constructed solution mh will be analyzed, due to its higher order
consistency estimate (3.9) around the boundary. Therefore, a subtraction of (2.14) from the
consistency estimate (3.11) leads to the error function evolution system:

en+1
h − en−1

h

2k
= mn+1

h + mn−1
h

2
× µ̃n

h + en+1
h + en−1

h

2
× µn

h
+ τ n, (3.13)

µn
h

:= α
(mn+1

h − mn−1
h

2k
+ τ

mn+1
h − 2mn

h + mn−1
h

k2

)
− Δh

(mn+1
h + mn−1

h

2

)
, (3.14)

µ̃n
h := α

( en+1
h − en−1

h

2k
+ τ

en+1
h − 2enh + en−1

h

k2

)
− Δh

( en+1
h + en−1

h

2

)
, (3.15)

where τ n is the truncated error at tn .
Before proceeding into the formal estimate, we establish a W∞

h bound for µn
h
, which is

based on the constructed approximate solution m (by (3.14)). Since m(x, t) = me(x, t) +
h2m(1)(x, t) ∈ C1([0, T ]; [C1(Ω̄)]3) ∩ L∞([0, T ]; [C2(Ω̄)]3), we see that the bound
‖µn

h
‖∞ becomes directly available. Then, there exist constants C1 and C2 such that

‖∇hµ
n−1
h

‖∞, ‖∇hµ
n
h
‖∞ ≤ C1, ‖µ

n
h

− µn−1
h

k
‖∞ ≤ C2,

where C1 and C2 depend on h and k, respectively. For simplicity, we denote

‖µ�

h
‖∞, ‖∇hµ

�

h
‖∞, ‖µ

n
h

− µn−1
h

k
‖∞ ≤ C, � = n, n − 1. (3.16)

In addition, the following preliminary estimate will be useful in the convergence analysis.

Lemma 5 (A preliminary error estimate) We have

‖e�
h‖22 ≤ 2‖e0h‖22 + 2T k

�−1∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2
, ∀� · k ≤ T . (3.17)

Proof We begin with the expansion:

e�
h = e0h + k

�−1∑
j=0

e j+1
h − e jh

k
, ∀� · k ≤ T . (3.18)

In turn, a careful application of the Cauchy inequality reveals that

‖e�
h‖22 ≤ 2

(
‖e0h‖22 + k2

∥∥∥
�−1∑
j=0

e j+1
h − e jh

k

∥∥∥2
2

)
, (3.19)
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k2
∥∥∥

�−1∑
j=0

e j+1
h − e jh

k

∥∥∥2
2

≤ k2 · � ·
�−1∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2

≤ T k
�−1∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2
, (3.20)

in which the fact that � · k ≤ T has been applied. Therefore, a combination of (3.19) and
(3.20) yields the desired estimate (3.17). This completes the proof of Lemma 5. ��

Taking a discrete inner product with the numerical error equation (3.13) by µ̃n
h gives

1

2k
〈en+1

h − en−1
h , µ̃n

h〉 =〈m
n+1
h + mn−1

h

2
× µ̃n

h, µ̃
n
h〉

+ 〈 e
n+1
h + en−1

h

2
× µn

h
, µ̃n

h〉 + 〈τ n, µ̃n
h〉. (3.21)

The analysis on the left hand side of (3.21) is similar to the ones in (2.21)-(2.23):

1

2k
〈en+1

h − en−1
h , µ̃n

h〉 = ατ

2k3
〈en+1

h − en−1
h , en+1

h − 2enh + en−1
h 〉

+ α

4k2
〈en+1

h − en−1
h , en+1

h − en−1
h 〉

+ 1

4k

〈
∇h(e

n+1
h − en−1

h ),∇h(e
n+1
h + en−1

h )
〉
, (3.22)

〈en+1
h − en−1

h , en+1
h − en−1

h 〉 = ‖en+1 − en−1
h ‖22 ≥ 0, (3.23)

〈en+1
h − en−1

h , en+1
h − 2enh + en−1

h 〉
= ‖en+1

h − enh‖22 − ‖enh − en−1
h ‖22, (3.24)〈

en+1
h − en−1

h ,−Δh(e
n+1
h + en−1

h )
〉

=
〈
∇h(e

n+1
h − en−1

h ),∇h(e
n+1
h + en−1

h )
〉
= ‖∇he

n+1
h ‖22 − ‖∇he

n−1
h ‖22

= (‖∇he
n+1
h ‖22 + ‖∇henh‖22) − (‖∇henh‖22 + ‖∇he

n−1
h ‖22). (3.25)

This in turn leads to the following identity:

1

2k
〈en+1

h − en−1
h , µ̃n

h〉 = 1

k
(En+1

e,h − En
e,h) + α

4k2
‖en+1

h − en−1
h ‖22, (3.26)

En+1
e,h = ατ

2

∥∥∥ e
n+1
h − enh

k

∥∥∥2
2
+ 1

4

(
‖∇he

n+1
h ‖22 + ‖∇henh‖22

)
. (3.27)

The first term on the right hand side of (3.21) vanishes, due to the fact that
mn+1

h +mn−1
h

2 × µ̃n
h

is orthogonal to µ̃n
h , at a point-wise level:

〈m
n+1
h + mn−1

h

2
× µ̃n

h, µ̃
n
h〉 = 0. (3.28)

The second term on the right hand side of (3.21) contains three parts:

〈 e
n+1
h + en−1

h

2
× µn

h
, µ̃n

h〉 = I1 + I2 + I3, (3.29)

I1 = α〈 e
n+1
h + en−1

h

2
× µn

h
,
en+1
h − en−1

h

2k
〉, (3.30)

I2 = ατ 〈 e
n+1
h + en−1

h

2
× µn

h
,
en+1
h − 2enh + en−1

h

k2
〉, (3.31)
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I3 = 〈 e
n+1
h + en−1

h

2
× µn

h
,−Δh

( en+1
h + en−1

h

2

)
〉. (3.32)

The first inner product, I1, could be bounded in a straightforward way, with the help of
discrete Hölder inequality:

I1 =α〈 e
n+1
h + en−1

h

2
× µn

h
,
en+1
h − en−1

h

2k
〉

≤α

4
‖en+1

h + en−1
h ‖2 · ‖µn

h
‖∞ ·

∥∥∥ e
n+1
h − en−1

h

k

∥∥∥
2

≤C‖en+1
h + en−1

h ‖2 ·
∥∥∥ e

n+1
h − en−1

h

k

∥∥∥
2

≤C
(

‖en+1
h ‖22 + ‖en−1

h ‖22 +
∥∥∥ e

n+1
h − en−1

h

k

∥∥∥2
2

)
. (3.33)

For the second inner product, I2, we denote gnh := en+1
h +en−1

h
2 ×µn

h
. An application of point-

wise identity (3.3) (in Lemma 4) reveals that

I2 =ατ 〈gnh,
en+1
h − 2enh + en−1

h

k2
〉

= − ατ 〈 e
n
h − en−1

h

k
,
gnh − gn−1

h

k
〉

+ ατ

k

(
〈 e

n+1
h − enh

k
, gnh〉 − 〈 e

n
h − en−1

h

k
, gn−1

h 〉
)
. (3.34)

Meanwhile, the following expansion is observed:

gnh − gn−1
h

k
=1

4
(
en+1
h − enh

k
+ en−1

h − en−2
h

k
) × (µn

h
+ µn−1

h
)

+ en+1
h + enh + en−1

h + en−2
h

4
× µn

h
− µn−1

h

k
. (3.35)

This in turn indicates the associated estimate:

∥∥∥ gnh − gn−1
h

k

∥∥∥
2

≤1

4
(

∥∥∥ e
n+1
h − enh

k
‖2 +

∥∥∥ e
n−1
h − en−2

h

k

∥∥∥
2
) · (‖µn

h
‖∞ + ‖µn−1

h
‖∞)

+ ‖en+1
h ‖2 + ‖enh‖2 + ‖en−1

h ‖2 + ‖en−2
h ‖2

4
·
∥∥∥µ

n
h

− µn−1
h

k

∥∥∥∞

≤C
(∥∥∥ e

n+1
h − enh

k

∥∥∥
2
+

∥∥∥ e
n−1
h − en−2

h

k

∥∥∥
2

+ ‖en+1
h ‖2 + ‖enh‖2 + ‖en−1

h ‖2 + ‖en−2
h ‖2

)
, (3.36)

in which the bound (3.16) has been applied. Going back to (3.34), we see that

−ατ 〈 e
n
h − en−1

h

k
,
gnh − gn−1

h

k
〉 ≤ατ

∥∥∥ e
n
h − en−1

h

k

∥∥∥
2
·
∥∥∥ gnh − gn−1

h

k

∥∥∥
2

≤C
(∥∥∥ e

n+1
h − enh

k

∥∥∥
2
+

∥∥∥ e
n−1
h − en−2

h

k

∥∥∥
2
+ ‖en+1

h ‖2
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+ ‖enh‖2 + ‖en−1
h ‖2 + ‖en−2

h ‖2
)∥∥∥ e

n
h − en−1

h

k

∥∥∥
2

≤C
(∥∥∥ e

n+1
h − enh

k

∥∥∥2
2
+

∥∥∥ e
n−1
h − en−2

h

k

∥∥∥2
2
+ ‖en+1

h ‖22

+ ‖enh‖22 + ‖en−1
h ‖22 + ‖en−2

h ‖22 +
∥∥∥ e

n
h − en−1

h

k

∥∥∥2
2

)
,

(3.37)

Hence, we get the estimate

I2 ≤C
(∥∥∥ e

n+1
h − enh

k

∥∥∥2
2
+

∥∥∥ e
n−1
h − en−2

h

k

∥∥∥2
2
+ ‖en+1

h ‖22

+ ‖enh‖22 + ‖en−1
h ‖22 + ‖en−2

h ‖22 +
∥∥∥ e

n
h − en−1

h

k

∥∥∥2
2

)

+ ατ

k

(
〈 e

n+1
h − enh

k
, gnh〉 − 〈 e

n
h − en−1

h

k
, gn−1

h 〉
)
. (3.38)

For the third inner product part, I3, an application of summation by parts formula gives

I3 =〈 e
n+1
h + en−1

h

2
× µn

h
,−Δh

( en+1
h + en−1

h

2

)
〉

=〈∇h

( en+1
h + en−1

h

2
× µn

h

)
,∇h

( en+1
h + en−1

h

2

)
〉. (3.39)

Meanwhile, we make use of the preliminary inequality (3.2) (in Lemma 3) and get

∥∥∥∇h

( en+1
h + en−1

h

2
× µn

h

)∥∥∥
2

≤ C
(∥∥∥ e

n+1
h + en−1

h

2

∥∥∥
2
· ‖∇hµ

n
h
‖∞ + ‖µn

h
‖∞ ·

∥∥∥∇h

( en+1
h + en−1

h

2
)

∥∥∥
2

)

≤ C
(∥∥∥ e

n+1
h + en−1

h

2

∥∥∥
2
+

∥∥∥∇h

( en+1
h + en−1

h

2

)∥∥∥
2

)

≤ C
(
‖en+1

h ‖2 + ‖en−1
h ‖2 + ‖∇he

n+1
h ‖2 + ‖∇he

n−1
h ‖2

)
. (3.40)

Again, the bound (3.16) has been applied in the derivation. Therefore, the following estimate
is available for I3:

I3 ≤
∥∥∥∇h

( en+1
h + en−1

h

2
× µn

h

)∥∥∥
2
·
∥∥∥∇h

( en+1
h + en−1

h

2

)∥∥∥
2

≤C
(
‖en+1

h ‖2 + ‖en−1
h ‖2 + ‖∇he

n+1
h ‖2 + ‖∇he

n−1
h ‖2

)

·
(
‖∇he

n+1
h ‖2 + ‖∇he

n−1
h ‖2

)

≤C
(
‖en+1

h ‖22 + ‖en−1
h ‖22 + ‖∇he

n+1
h ‖22 + ‖∇he

n−1
h ‖22

)
. (3.41)

The estimate of I3 can also be obtained by a direct application of discrete Hölder inequality:

I3 =〈
( en+1

h + en−1
h

2
× ∇hµ

n
h

)
,∇h

( en+1
h + en−1

h

2

)
〉

≤1

4
‖en+1

h + en−1
h ‖2 · ‖∇hµ

n
h
‖∞ · ‖∇h(e

n+1
h + en−1

h )‖2
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≤C
(
‖en+1

h ‖22 + ‖en−1
h ‖22 + ‖∇he

n+1
h ‖22 + ‖∇he

n−1
h ‖22

)
. (3.42)

A substitution of (3.33), (3.38) and (3.42) into (3.29) yields the following bound:

〈 e
n+1
h + en−1

h

2
× µn

h
, µ̃n

h〉 = I1 + I2 + I3

≤ C
(∥∥∥ e

n+1
h − enh

k

∥∥∥2
2
+

∥∥∥ e
n
h − en−1

h

k

∥∥∥2
2
+

∥∥∥ e
n−1
h − en−2

h

k

∥∥∥2
2

+ ‖en+1
h ‖22 + ‖enh‖22 + ‖en−1

h ‖22 + ‖en−2
h ‖22 + ‖∇he

n+1
h ‖22 + ‖∇he

n−1
h ‖22

)

+ ατ

k

(
〈 e

n+1
h − enh

k
, gnh〉 − 〈 e

n
h − en−1

h

k
, gn−1

h 〉
)
. (3.43)

The third term on the right hand side of (3.21) could be analyzed in a similar fashion:

〈τ n, µ̃n
h〉 = I4 + I5 + I6, (3.44)

I4 = α〈τ n, e
n+1
h − en−1

h

2k
〉, I5 = ατ 〈τ n, e

n+1
h − 2enh + en−1

h

k2
〉, (3.45)

I6 = 〈τ n,−Δh

( en+1
h + en−1

h

2

)
〉. (3.46)

By the direct calculation, we have

I4 =α〈τ n, e
n+1
h − en−1

h

2k
〉 ≤ α

2
‖τ n‖2 ·

∥∥∥ e
n+1
h − en−1

h

k

∥∥∥
2

≤α

4

(
‖τ n‖22 +

∥∥∥ e
n+1
h − en−1

h

k

∥∥∥2
2

)
, (3.47)

and

I5 = −ατ 〈 e
n
h − en−1

h

k
,
τ n − τ n−1

k
〉 + ατ

k

(
〈 e

n+1
h − enh

k
, τ n〉 − 〈 e

n
h − en−1

h

k
, τ n−1〉

)
,

(3.48)

in which

− 〈 e
n
h − en−1

h

k
,
τ n − τ n−1

k
〉 ≤

∥∥∥ e
n
h − en−1

h

k

∥∥∥
2
·
∥∥∥τ n − τ n−1

k

∥∥∥
2

≤ C(k2 + h2)
∥∥∥ e

n
h − en−1

h

k

∥∥∥
2

≤ C(k4 + h4) + 1

2

∥∥∥ e
n
h − en−1

h

k

∥∥∥2
2
. (3.49)

We therefore get the bound for I5:

I5 ≤C(k4 + h4) + ατ

2

∥∥∥ e
n
h − en−1

h

k

∥∥∥2
2

+ ατ

k

(
〈 e

n+1
h − enh

k
, τ n〉 − 〈 e

n
h − en−1

h

k
, τ n−1〉

)
. (3.50)

Next, for I6 we have

I6 =〈τ n,−Δh

( en+1
h + en−1

h

2

)
〉 = 〈∇hτ

n,∇h

( en+1
h + en−1

h

2

)
〉
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≤‖∇hτ
n‖2 ·

∥∥∥∇h

( en+1
h + en−1

h

2

)∥∥∥
2

≤ C(k2 + h2)
∥∥∥∇h

( en+1
h + en−1

h

2

)∥∥∥
2

≤C(k4 + h4) + 1

2

(
‖∇he

n+1
h ‖22 + ‖∇he

n−1
h ‖22

)
. (3.51)

Notice that the truncation error estimate (3.12) has been repeatedly applied in the above
derivation. Going back to (3.44), we obtain

〈τ n, µ̃n
h〉 ≤C(k4 + h4) + α

2

∥∥∥ e
n+1
h − enh

k

∥∥∥2
2
+ α(τ + 1)

2

∥∥∥ e
n
h − en−1

h

k

∥∥∥2
2

+ 1

2

(
‖∇he

n+1
h ‖22 + ‖∇he

n−1
h ‖22

)

+ ατ

k

(
〈 e

n+1
h − enh

k
, τ n〉 − 〈 e

n
h − en−1

h

k
, τ n−1〉

)
. (3.52)

Finally, a substitution of (3.26), (3.27), (3.28), (3.43) and (3.52) into (3.21) leads to the
following inequality:

1

k
(En+1

e,h − En
e,h) + α

4k2
‖en+1

h − en−1
h ‖22

≤ C(k4 + h4) + C
(∥∥∥ e

n+1
h − enh

k

∥∥∥2
2
+

∥∥∥ e
n
h − en−1

h

k

∥∥∥2
2
+

∥∥∥ e
n−1
h − en−2

h

k

∥∥∥2
2

+ ‖en+1
h ‖22 + ‖enh‖22 + ‖en−1

h ‖22 + ‖en−2
h ‖22 + ‖∇he

n+1
h ‖22 + ‖∇he

n−1
h ‖22

)

+ ατ

k

(
〈 e

n+1
h − enh

k
, gnh + τ n〉 − 〈 e

n
h − en−1

h

k
, gn−1

h + τ n−1〉
)
. (3.53)

Subsequently, a summation in time yields

En+1
e,h ≤E2

e,h + CT (k4 + h4) + Ck
( n∑

j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2
+

n+1∑
j=0

(‖e jh‖22 + ‖∇he
j
h‖22)

)

+ ατ
(
〈 e

n+1
h − enh

k
, gnh + τ n〉 − 〈 e

2
h − e1h
k

, g1h + τ 1〉
)
. (3.54)

For the term ατ 〈 en+1
h −enh

k , gnh + τ n〉, the following estimate could be derived

ατ 〈 e
n+1
h − enh

k
, gnh + τ n〉 ≤ ατ

4

∥∥∥ e
n+1
h − enh

k

∥∥∥2
2
+ 2ατ(‖gnh‖22 + ‖τ n‖22), (3.55)

‖gnh‖2 =
∥∥∥ e

n+1
h + en−1

h

2
× µn

h

∥∥∥
2

≤
∥∥∥ e

n+1
h + en−1

h

2

∥∥∥
2
· ‖µn

h
‖∞

≤ C
∥∥∥ e

n+1
h + en−1

h

2

∥∥∥
2

≤ C(‖en+1
h ‖2 + ‖en−1

h ‖2), (3.56)

in which the bound (3.16) has been used again. Then we get

ατ 〈 e
n+1
h − enh

k
, gnh + τ n〉 ≤ατ

4

∥∥∥ e
n+1
h − enh

k

∥∥∥2
2
+ 2ατ‖τ n‖22

+ C(‖en+1
h ‖22 + ‖en−1

h ‖22)
≤1

2
En+1
e,h + 2ατ‖τ n‖22 + C(‖en+1

h ‖22 + ‖en−1
h ‖22), (3.57)
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in which the expansion identity, En+1
e,h = ατ

2 ‖ en+1
h −enh

k ‖22 + 1
4 (‖∇he

n+1
h ‖22 + ‖∇henh‖22) (given

by (3.27)), has been applied. Its substitution into (3.54) gives

En+1
e,h ≤2E2

e,h + CT (k4 + h4) + Ck
( n∑

j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2
+

n+1∑
j=0

(‖e jh‖22 + ‖∇he
j
h‖22)

)

+ C(‖en+1
h ‖22 + ‖en−1

h ‖22) + 4ατ‖τ n‖22 − 2ατ 〈 e
2
h − e1h
k

, g1h + τ 1〉. (3.58)

Moreover, an application of the preliminary error estimate (3.17) (in Lemma 5) leads to

En+1
e,h ≤2E2

e,h + CT (k4 + h4) + C(T 2 + 1)k
n∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2
+ CT ‖e0h‖22

+ Ck
n+1∑
j=0

‖∇he
j
h‖22 + 4ατ‖τ n‖22 − 2ατ 〈 e

2
h − e1h
k

, g1h + τ 1〉, (3.59)

in which we have made use of the following fact:

k
n+1∑
j=0

‖e jh‖22 ≤k · (n + 1)
(
2‖e0h‖22 + 2T k

n∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2

)

≤2T ‖e0h‖22 + 2T 2k
n∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2
. (3.60)

In addition, for the initial error quantities, the following estimates are available:

E2
e,h = ατ

2

∥∥∥ e
2
h − e1h
k

∥∥∥2
2
+ 1

4

(‖∇he2h‖22 + ‖∇he1h‖22
) ≤ C (

k4 + h4
)
, (3.61)

‖e0h‖22 ≤ C (
k4 + h4

)
, (3.62)

4ατ‖τ n‖22 ≤ C (
k4 + h4

)
, (3.63)

‖g1h‖2 =
∥∥∥ e

2
h + e0h
2

× µ1
h

∥∥∥
2

≤
∥∥∥ e

2
h + e0h
2

∥∥∥
2
· ‖µ1

h
‖∞ ≤ C (

k2 + h2
)
, (3.64)

− 2ατ 〈 e
2
h − e1h
k

, g1h + τ 1〉 ≤ 2ατ

∥∥∥ e
2
h − e1h
k

∥∥∥
2
· (‖g1h‖2 + ‖τ 1‖2

)

≤ C (
k4 + h4

)
, (3.65)

which comes from the assumption in Theorem 2. Then we arrive at

En+1
e,h ≤C (

T 2 + 1
)
k

n∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2
+ Ck

n+1∑
j=0

‖∇he
j
h‖22 + C(T + 1)

(
k4 + h4

)

≤C(T + 1)
(
k4 + h4

) + C (
T 2 + 1

)
k

n∑
j=0

E j+1
e,h , (3.66)

in which the fact that E j+1
e,h = ατ

2 ‖ e j+1
h −e jh

k ‖22 + 1
4 (‖∇he

j+1
h ‖22 + ‖∇he

j
h‖22), has been used.

In turn, an application of discrete Gronwall inequality results in the desired convergence
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estimate:

En+1
e,h ≤ CT eCT (

k4 + h4
)
, for all (n + 1) : n + 1 ≤

⌊
T

k

⌋
, (3.67)

∥∥∥ e
n+1
h − enh

k

∥∥∥
2
+ ‖∇he

n+1
h ‖2 ≤ C (

k2 + h2
)
. (3.68)

Again, an application of the preliminary error estimate (3.17) (in Lemma 5) implies that

‖en+1
h ‖22 ≤2‖e0h‖22 + 2T k

n∑
j=0

∥∥∥ e
j+1
h − e jh

k

∥∥∥2
2

≤ C (
k4 + h4

)
, (3.69)

A combination of (3.68) and (3.69) finishes the proof of Theorem 2.

4 A Numerical Solver for the Nonlinear System

It is clear that Algorithm 1 is a nonlinear scheme. The following fixed-point iteration is
employed to solve it.

Algorithm 2 Set mn+1,0
h = 2mn

h − mn−1
h and p = 0.

(i) Compute mn+1,p+1
h such that

mn+1,p+1
h − mn−1

h

2k
= −mn+1,p+1

h + mn−1
h

2
× Δh

(
mn+1,p

h + mn−1
h

2

)

+α
mn+1,p+1

h + mn−1
h

2
×

(
mn+1,p+1

h − mn−1
h

2k
+ τ

mn+1,p+1
h − 2mn

h + mn−1
h

k2

)
.

(4.1)

(ii) If ‖mn+1,p+1
h − mn+1,p

h ‖2 ≤ ε, then stop and set mn+1
h = mn+1,p+1

h .
(iii) Set p ← p + 1 and go to (i).

Denote the operator

Lp = I − αmn−1
h × −2ατ

k
mn

h × −k

2
Δh

(
mn+1,p

h + mn−1
h

)
×, (4.2)

and make the fixed-point iteration solve the following equation

Lpmn+1,p+1
h = mn−1

h + 2ατ

k
mn

h × mn−1
h − k

2
mn−1

h × Δh

(
mn+1,p

h + mn−1
h

)
, (4.3)

in its inner iteration. Under the condition k ≤ Ch2 with C a constant, the following lemma
confirms the convergence of Algorithm 2. For any l ∈ L and owing to the property of
|mh(xl)| = 1, it is clear that 0 < ‖mh‖∞ ≤ 1. For the discretized �2 norm of mh , we have

‖∇hmh‖2 ≤ 2h−1‖mh‖2. (4.4)

Then

‖Δhmh‖22 = −〈∇hmh,∇hΔhmh〉
≤ ‖∇hmh‖2‖∇hΔhmh‖2 ≤ 2h−1‖∇hmh‖2‖Δhmh‖2, (4.5)
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which in turn implies the following inverse inequality:

‖Δhmh‖2 ≤ 4h−2‖mh‖2. (4.6)

Lemma 6 Let |mn−1
h | = |mn

h | = 1, there exists a constant c0 such that ‖mn−1
h ‖∞, ‖mn

h‖∞ ≤
c0. The solution mn+1,p

h calculated by (4.1) satisfies |mn+1,p
h | = |mn−1

h | for p = 1, 2, · · · ,
which means that we can still find the constant c0 ≤ 1 satisfying ‖mn+1,p

h ‖∞ ≤ c0. Then,

for all p ≥ 1, there exists a unique solution mn+1,p
h of (4.1) and the following inequality is

valid:
‖mn+1,p+1

h − mn+1,p
h ‖2 ≤ 4c0kh

−2‖mn+1,p − mn+1,p−1‖2. (4.7)

Proof For any mh ∈ S2, the following identity is clear:

〈mh,Lpmh〉 = 1,

for all p ≥ 1. Thus the operator Lp is positive definite for all p ≥ 1, which provides the
unique solvability of (4.1).

Taking the discrete inner productwith (4.1) bymn+1,p+1
h +mn−1

h , we have |mn+1,p+1
h | = 1

in a point-wise sense, which means that the length of the magnetization is preserved at each
step in the inner iteration. Thus, we can find a constant c0 ≤ 1 to control the �∞ norm of
mn−1

h , mn
h and mn+1,p

h for p = 1, 2, · · · simultaneously.
Subtraction of two subsequent equations in the fixed-point iteration yields

1

2k

(
mn+1,p+1

h − mn+1,p
h

)
= −1

4

(
mn+1,p+1

h − mn+1,p
h

)
× Δhm

n+1,p
h

−1

4
mn+1,p

h × Δh

(
mn+1,p

h − mn+1,p−1
h

)

−1

4
mn

h × Δh
(
mn+1,p − mn+1,p−1)

−1

4

(
mn+1,p+1

h − mn+1,p
)

× Δhm
n−1
h

+ α

2k
mn−1

h ×
(
mn+1,p+1

h − mn+1,p
h

)

+ ατ

2k2
mn

h ×
(
mn+1,p+1

h − mn+1,p
h

)
.

Taking the inner product with (mn+1,p+1
h − mn+1,p

h ) by the above equation produces

‖mn+1,p+1
h − mn+1,p

h ‖2 ≤k

2
‖mn+1,p

h ‖∞‖Δh

(
mn+1,p

h − mn+1,p−1
h

)
‖2

+ k

2
‖mn

h‖∞‖Δh

(
mn+1,p

h − mn+1,p−1
h

)
‖2

≤c0k‖Δh
(
mn+1,p − mn+1,p−1) ‖2.

In turn, the convergence result becomes

‖mn+1,p+1
h − mn+1,p

h ‖2 ≤ 4c0kh
−2‖mn+1,p

h − mn+1,p−1
h ‖2, (4.8)

which completes the proof of Lemma 6.
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Table 1 The discrete �2 and �∞
errors in terms of the temporal
step-size. The spatial mesh-size is
fixed as h = 0.001 over
Ω = (0, 1) and the final time is
T = 0.01

k ‖mh − me‖2 ‖mh − me‖∞

T/40 1.2500e−11 1.2584e−11

T/60 5.6887e−12 5.6024e−12

T/80 3.2008e−12 3.1525e−12

T/100 2.0487e−12 2.0174e−12

order 1.97 2.00

Table 2 The discrete �2 and �∞
error in terms of the spatial
mesh-size. The parameters are set
as: the temporal step-size
k = 2.0e−06, Ω = (0, 1) and the
final time T = 0.5

h ‖mh − me‖2 ‖mh − me‖∞

1/20 1.9742e−05 2.5320e−05

1/40 4.9846e−06 6.3459e−06

1/60 2.2340e−06 2.8201e−06

1/80 1.2720e−06 1.5853e−06

order 1.98 2.00

5 Numerical Experiments

5.1 Accuracy Tests

Consider the 1-D iLLG equation with a force term f ,

∂tm = −m × ∂xxm + αm × (∂tm + τ∂t tm) + f .

The exact solution is chosen to be me = (cos(x̄) sin(t2), sin(x̄) sin(t2), cos(t2))T with x̄ =
x2(1−x)2, and the forcing term is given by f = ∂tme+me×∂xxme−αme×(∂tme+τ∂t tme).
Fixing the tolerance ε = 1.0e−07 for the fixed-point iteration, we record the discrete �2 and
�∞ errors between the exact solution and numerical solution with a sequence of temporal
step-size and spatial mesh-size. The parameters in the above 1-D equation are set as: α = 0.1,
τ = 10.0, and the final time T = 0.01. The temporal step-sizes and spatial mesh-sizes are
listed in the Tables 1 and 2.

In addition, the 3-D iLLG equation is also considered,

∂tm = −m × Δm + αm × (∂tm + τ∂t tm) + f .

The exact solution is chosen to beme = (cos(x̄ ȳ z̄) sin(t2), sin(x̄ ȳ z̄) sin(t2)), cos(t2))T with
ȳ = y2(1− y)2 and z̄ = z2(1− z)2, and the forcing term f = ∂tme + me × Δme − αme ×
(∂tme + τ∂t tme). Similarly, we record the discrete �2 and �∞ errors between exact and
numerical solutions as temporal step-size and spatial mesh-size varies. The corresponding
parameters are set as: α = 0.01 and τ = 1000.0. Besides, the final time of this simulation is
T = 0.01, with the temporal step-size and spatial mesh-size listed in Tables 3 and 4.

5.2 Micromagnetics Tests

The inertial effect can be observed during the relaxation of a system with a non-equilibrium
initialization. To visualize this, we conduct micromagnetics simulations for both the LLG
equation and the iLLG equation.
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Table 3 The discrete �2 and �∞
errors in terms of the temporal
step-size. The spatial mesh-size is
fixed as h = 0.001 and final time
is T = 0.01

k ‖mh − me‖2 ‖mh − me‖∞

T/100 1.2678e−05 1.2765e−05

T/120 8.8067e−06 8.8830e−06

T/140 6.4725e−06 6.5419e−06

T/160 4.9576e−06 5.0224e−06

order 2.00 1.98

Table 4 The discrete �2 and �∞
errors in terms of spatial
mesh-size. The temporal
step-size is fixed as k = 2.0e−06

h ‖mh − me‖2 ‖mh − me‖∞

1/8 1.4392e−07 3.4940e−07

1/10 9.6832e−08 2.2864e−07

1/12 6.9825e−08 1.6079e−07

1/14 5.2828e−08 1.1895e−07

order 1.79 1.92

Fig. 1 The relaxation of the spatially averaged magnetization controlled by the LLG equation. The final time
is T = 5.0 with k = 0.001, and the damping parameter is α = 0.5

In the following simulations, a 3-D domain Ω = [0, 1] × [0, 1] × [0, 0.4] is uniformly
discretized into 10× 10× 4 cells, with uniform initialization m0 = (

√
2/2,

√
2/2, 0)T . For

comparison, the LLG equation is discretized by the mid-point scheme proposed in [5] with
the fixed-point iteration solver proposed in this work. The damping parameter is α = 0.5
and the field is fixed as He = (10, 0, 0)T , which indicates that the system shall converge to
m = (1, 0, 0)T . Here the relaxation of the magnetization behavior controlled by the LLG
equation is visualized in Fig. 1.

As for the counterpart of the LLG equation, wtih a given reference field He, the discrete
energy of the iLLG equation becomes
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Fig. 2 The spatially averaged magnetization evolution a and the energy evolution b controlled by the iLLG
equation. Parameters settings: T = 20, k = 0.02, τ = 1.0 and α = 0.5

E[mn+1,mn] = 1

4

(
‖∇hm

n+1
h ‖22 + ‖∇hmn

h‖22
)

+ατ

2

∥∥∥m
n+1
h − mn

h

k

∥∥∥2
2
− 1

2
〈mn+1

h + mn
h,He〉. (5.1)

Setting the inertial parameter τ = 1.0, the spatially averaged magnetization is recorded to
depict the inertial effect in Fig. 2a. Meanwhile, the energy decay is also verified as in Fig. 2b.
The inertial effect is observed at shorter timescales for magnetization dynamics during the
relaxation of the system with a non-equilibrium initialization.

Furthermore, the inertial effect also can be activated by an external perturbation applied to
an equilibrium state. Here we set the damping parameter α = 0.02 and τ = 0.5, then the time
step-size must be reduced to 0.001 with T = 3.0. For the equilibrium state m0 = (1, 0, 0)T ,
the perturbation 4.0× sin(2π f t) is applied along y direction over the time interval [0, 0.05],
with f = 20. The relaxation of the iLLG equation, revealed by the evolution of the spatially
averaged magnetization, is visualized in Fig. 3.

6 Conclusion

In this work, we have proposed an implicit mid-point scheme with three time steps to solve
the inertial Landau–Lifshitz–Gilbert equation. The energy decay of the system and con-
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Fig. 3 The response of the spatially averaged magnetization for the magnetic perturbation in the presence of
the inertial effect. For the equilibrium initializationm0 = (1, 0, 0)T , a perturbation 4.0×sin(2π f t) is applied
along y direction during time interval [0, 0.05] with f = 20. The basic simulation parameters are: α = 0.02,
τ = 0.5, T = 3.0 and k = 0.001

stant length of magnetization in a point wise sense are preserved by the proposed method.
By introducing a constructed solution m with second order accuracy, we have proved the
unconditional convergence in H1(ΩT )-norm sense.Due to the inherit nonlinearity, a fix-point
iteration solver is required to the numerical scheme. For the theoretical analysis, although the
convergence analysis is unconditional, a constraint k ≤ Ch2 is required for unique solvability
and the fix-point iteration solver. In addition, we provide a series of numerical experiments to
confirm the theoretical analysis, as well as to observe the nutation of magnetization induced
by the inertial effect in micromagnetics simulations.
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