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IMEX-RK METHODS FOR LANDAU-LIFSHITZ EQUATION WITH
ARBITRARY DAMPING∗

YAN GUI† , CHENG WANG‡ , AND JINGRUN CHEN§

Abstract. Magnetization dynamics in ferromagnetic materials is modeled by the Landau-Lifshitz
(LL) equation, a nonlinear system of partial differential equations. Among the numerical approaches,
semi-implicit schemes are widely used in the micromagnetics simulation, due to a nice compromise
between accuracy and efficiency. At each time step, only a linear system needs to be solved and a
projection is then applied to preserve the length of magnetization. However, this linear system contains
variable coefficients and a non-symmetric structure, and thus an efficient linear solver is highly desired.
If the damping parameter becomes large, it has been realized that efficient solvers are only available to
a linear system with constant, symmetric, and positive definite (SPD) structure. In this work, based on
the implicit-explicit Runge-Kutta (IMEX-RK) time discretization, we introduce an artificial damping
term, which is treated implicitly. The remaining terms are treated explicitly. This strategy leads to a
semi-implicit scheme with the following properties: (1) only a few linear systems with constant and SPD
structure needs to be solved at each time step; (2) it works for the LL equation with arbitrary damping
parameter; (3) high-order accuracy can be obtained with high-order IMEX-RK time discretization.
Numerically, second-order and third-order IMEX-RK methods are designed in both the 1-D and 3-D
domains. A comparison with the backward differentiation formula scheme is undertaken, in terms of
accuracy and efficiency. The robustness of both numerical methods is tested on the first benchmark
problem from National Institute of Standards and Technology. The linearized stability estimate and
optimal rate convergence analysis are provided for an alternate IMEX-RK2 numerical scheme as well.

Keywords. Micromagnetics simulation; Landau-Lifshitz equation; Implicit-explicitly Runge-
Kutta scheme; Second-order accuracy; Third-order accuracy; Hysteresis loop.

AMS subject classifications. 35K61; 65N06; 65N12.

1. Introduction
Ferromagnetic materials have the intrinsic magnetic order (magnetization), whose

dynamics is modeled by the Landau-Lifshitz (LL) equation [1, 2]. The equation stands
for a non-local nonlinear problem with non-convex constraint and possible degeneracy.
The past few decades have witnessed the progress of numerical methods for the LL
equation; see [4,44–46] for reviews and references therein. There are explicit algorithms
(e.g. [6, 35]), fully implicit ones (e.g. [5, 16]), and semi-implicit schemes (e.g. [3, 15,
26, 37–39, 43]). An explicit method updates the magnetization without any need to
solver linear or nonlinear system of equations, while it suffers from the severe stability
constraint on the temporal step-size. Implicit schemes are unconditionally stable and
preserve the physical properties of the LL equation, such as energy dissipation and
length conservation, while a nonlinear system of equation needs to be solved at each
time step. Semi-implicit schemes only solve a linear system of equations at each time
step and are unconditionally stable in micromagnetics simulations. Therefore, a semi-
implicit method provides a nice balance between accuracy and efficiency.

One typical semi-implicit method is the Gauss-Seidel projection method (GSPM)
[15, 26, 36, 47]. Using the vectorial structure of LL equation, GSPM achieves uncondi-
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tional stability in micromagnetics simulations; and only a few linear systems need to be
solved, with constant, symmetric, and positive definite coefficients. However, the tem-
poral accuracy of GSPM is limited to the first-order. Another semi-implicit approach
is based on the backward differentiation formula (BDF) for temporal derivative and
the one-sided extrapolation for nonlinear terms [27,40,48]. High-order accuracy can be
obtained in time using the BDF approach. However, only first-order and second-order
BDFs are unconditionally stable. Meanwhile, the linear system of equations has variable
coefficients and non-symmetric structure, thus no fast solver is available. Meanwhile,
for time-dependent nonlinear partial differential equations in general, implicit-explicit
(IMEX) schemes have been extensively applied [39]. The basic idea is to treat dom-
inant linear term implicitly and the remaining nonlinear terms explicitly. For the LL
equation, the second-order IMEX has been studied in [27]. Two linear systems, with
variable coefficients and non-symmetric structure, need to be solved. Thus IMEX2 can
hardly compete with BDF2 in terms of accuracy and efficiency.

In this work, we propose an implicit-explicit Runge-Kutta (IMEX-RK) scheme for
solving the LL equation, based on the recent development of IMEX-RK method for
the nonlinear diffusion equation [30]. The basic idea is to introduce an artificial linear
diffusion term and treat it implicitly. All the remaining terms are treated explicitly.
RK methods are employed for the time discretization. Only a few linear systems, with
constant coefficients and SPD structure, need to be solved. In the existing literature,
such linear numerical schemes have only been reported for the large damping parameter
[41]. Instead, the IMEX-RK method works for the LL equation with general damping
parameters, which is very important since the damping parameter may be small in most
magnetic materials [49]. Moreover, higher-order numerical schemes could be constructed
using RK approaches. Numerical results have demonstrated an advantage of IMEX-RK
schemes over the BDF2 approach in terms of accuracy and efficiency. The performance
of IMEX-RK schemes has also been verified over a large range of artificial damping
parameters and the first benchmark problem for a ferromagnetic thin film material
from National Institute of Standards and Technology (NIST).

Because of the robust numerical results, a theoretical analysis of the proposed
IMEX-RK numerical schemes is highly desired. However, such an analysis turns out to
be very challenging, due to the multi-stage nature, as well as the highly complicated
nonlinear terms in the vector form. Some convergence analysis works have been reported
for the IMEX-RK numerical methods for various nonlinear PDEs in the existing litera-
ture, such as the convection-diffusion equation [29], the porous media equation [28,31],
etc. Meanwhile, the degree of nonlinearity of the LL equation is even higher than these
reported PDE models, and the associated theoretical analysis is expected to be more
challenging. In this article, we choose an alternate IMEX-RK2 numerical algorithm, in
which the explicit part satisfies the strong stability-preserving (SSP) property [11, 17]
(denoted as the SSP-IMEX-RK2 scheme), and provide a linearized stability estimate
and convergence analysis for the SSP-IMEX-RK2 method for a simplified version of the
LL equation. Many state-of-the-art techniques, such as a rough error estimate to con-
trol the discrete ℓ∞ and W 1,8

h norms of the numerical solution, combined with a refined
error estimate, have to be applied to obtain an optimal rate convergence analysis for
the SSP-IMEX-RK2 scheme to the nonlinear LL equation.

The rest of paper is organized as follows. In Section 2, we introduce the LL model
and then propose the IMEX-RK schemes, including the SSP-IMEX-RK2 algorithm.
For the convenience of comparison, we also briefly review the BDF2 method. Accuracy
and efficiency tests of the IMEX-RK schemes are provided in Section 3 with a detailed
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check for the dependence on the artificial damping parameter. Section 4 is devoted to the
micromagnetics simulations of the IMEX-RK methods, including equilibrium structures
and the first benchmark problem from NIST. The linearized stability estimate and the
convergence analysis for the SSP-IMEX-RK2 scheme to a simplified version of nonlinear
LL equation are provided in Section 5. Finally, some concluding remarks are made in
Section 6.

2. The model and the proposed methods

2.1. Landau-Lifshitz equation. The LL equation is a phenomenological model
for magnetization dynamics in a ferromagnetic material, which takes the following form

mt=−m×heff −αm×(m×heff) , (2.1)

with the homogeneous Neumann boundary condition

∂m

∂ν

∣∣∣∣
∂Ω

=0. (2.2)

Here Ω is a bounded domain occupied by the ferromagnetic material, and the magneti-
zation m :Ω⊂Rd→S2,d=1,2,3 is a 3-D vector field with the length constraint |m|=1,
and ν is the unit outward normal vector along ∂Ω. The first term of the right-hand side
in (2.1) is the gyromagnetic term, while the second term represents the damping term
with a dimensionless parameter α>0.

For a uniaxial material, the free energy is given by

F [m]=
µ0M

2
s

2

∫
Ω

(
ϵ|∇m|2+Q

(
m2

2+m2
3

)
−hs ·m−2he ·m

)
dx,

in which the listed terms correspond to the exchange energy, the anisotropy energy, the
magnetostatic energy, and the Zeeman energy, respectively. The effective field heff can
be obtained by taking the variation of F [m] with respect to m, and consists of the
exchange field, the anisotropy field, the stray field hs, and the external field he of the
following form

heff= ϵ∆m−Q(m2e2+m3e3)+hs+he.

Physical Parameters for Permalloy
Ku 1.0×102 J/m3

Cex 1.3×10−11 J/m
Ms 8×105A/m
µ0 4π×10−7N/A2

α 0.01

Table 2.1. Typical values of the physical parameters for Permalloy, which is an alloy of Nickel
(80%) and Iron (20%) frequently used in magnetic storage devices.

In the above representation, Q=Ku/(µ0M
2
s ) and ϵ=Cex/(µ0M

2
sL

2) are the dimen-
sionless parameters with Cex the exchange constant, Ku the anisotropy constant, L the
diameter of ferromagnetic body, µ0 the permeability of vacuum, and Ms the saturation
magnetization, respectively. Typical values of the physical parameters for Permalloy
are included as shown in Table 2.1.
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Two unit vectors are denoted as e2=(0,1,0)
T
, e3=(0,0,1)

T
, and ∆ stands for the

standard Laplacian operator. The stray field hs takes the form

hs=−∇
∫
Ω

∇N(x−y) ·m(y)dy,

where N(x)=− 1
4π|x| is the Newtonian potential.

For simplicity, we denote

f=−Q(m2e2+m3e3)+hs+he. (2.3)

Accordingly, the LL equation can be rewritten as

mt=−m×(ϵ∆m+ f)−αm×m×(ϵ∆m+ f). (2.4)

Thanks to the constraint |m|=1, we obtain an equivalent form

mt=α(ϵ∆m+f)+α
(
ϵ|∇m|2−m ·f

)
m−m×(ϵ∆m+f). (2.5)

Some notations are introduced for discretization and numerical approximation. The
1-D domain is set as Ω=(0,1), and the 3-D version becomes Ω=(0,1)3, and the final
time is denoted as T . In the 1-D domain, we divide Ω into N equal parts with h=1/N .
Figure 2.1 displays a schematic picture of 1-D spatial grids, with xi− 1

2
=(i− 1

2 )h,i=
1,2, ·· · ,N . The 3-D grid points can be similarly constructed. For convenience, we set

Fig. 2.1. Spatial grids in 1D where x− 1
2

and xN+ 1
2

are two ghost points.

hx=hy =hz =h, and mi,j,k=m((i− 1
2 )h,(j−

1
2 )h,(k−

1
2 )h),0≤ i,j,k≤N+1.

The second-order centered difference for ∆m in the 3-D domain is formulated as

∆hmi,j,k=
mi+1,j,k−2mi,j,k+mi−1,j,k

h2

+
mi,j+1,k−2mi,j,k+mi,j−1,k

h2
+

mi,j,k+1−2mi,j,k+mi,j,k−1

h2
.

The second-order approximation of Neumann boundary condition in (2.2) gives

m0,j,k=m1,j,k, mN,j,k=mN+1,j,k, j,k=1, ·· · ,N,

mi,0,k=mi,1,k, mi,N,k=mi,N+1,k, i,k=1, ·· · ,N,

mi,j,0=mi,j,1, mi,j,N =mi,j,N+1, i,j=1, ·· · ,N.

(2.6)

The discrete gradient operator ∇hm with m=(u,v,w)T becomes

∇hmi,j,k=

 ui+1,j,k−ui−1,j,k

2h
vi+1,j,k−vi−1,j,k

2h
wi+1,j,k−wi−1,j,k

2h
ui,j+1,k−ui,j−1,k

2h
vi,j+1,k−vi,j−1,k

2h
wi,j+1,k−wi,j−1,k

2h
ui,j,k+1−ui,j,k−1

2h
vi,j,k+1−vi,j,k−1

2h
wi,j,k+1−wi,j,k−1

2h

.
For temporal discretization, we set tn=nk with k the step-size and n≤

[
T
k

]
.
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2.2. Second-order backward differentiation formula method. The BDF
numerical method [27,40] is based on the BDF temporal discretization and the one-sided
extrapolation. For comparison, we recall the BDF2 algorithm as

3
2m̃

n+2
h −2mn+1

h + 1
2m

n
h

k
=−m̂n+2

h ×
(
ϵ∆hm̃

n+2
h + f̂

n+2

h

)
−αm̂n+2

h ×
(
m̂n+2

h ×
(
ϵ∆hm̃

n+2
h + f̂

n+2

h

))
mn+2

h =
m̃n+2

h

|m̃n+2
h | ,

(2.7)

where m̃n+2
h is an intermediate magnetization, and m̂n+2

h ,f̂
n+2

h are given by the fol-
lowing extrapolation formula:

m̂n+2
h =2mn+1

h −mn
h, f̂

n+2

h =2fn+1
h −fn

h,

with fn
h =−Q(mn

2e2+mn
3e3)+hn

s +hn
e , corresponding to (2.3). The presence of cross

product in (2.7) yields a linear system of equations with variable coefficients and non-
symmetric structure. Often, GMRES is employed as the numerical solver. The BDF2
algorithm (2.7) treats both the gyromagentic and damping terms semi-implicitly, i.e.,
∆m is treated implicitly while the prefactors are treated explicitly.

Since |m|=1, the strength of gyromagnetic term is controlled by ϵ∆m+f . Mean-
while, the strength of damping term is controlled by α(ϵ∆m+f). Since α<1 for many
magnetic materials, it is reasonable to treat both the gyromagentic and damping terms
semi-implicitly. However, for large α, it is possible to treat αϵ∆m part in the damp-
ing term implicitly, and the gyromagnetic term and all remaining terms explicitly, as
demonstrated in [41]. The stability and convergence of the scheme is proved under the
condition α>3 [50]. Starting with (2.5), the BDF2 algorithm in [41] becomes

3
2m̃

n+2
h −2mn+1

h + 1
2m

n
h

k
=−m̂n+2

h ×
(
ϵ∆hm̂

n+2
h + f̂

n+2

h

)
+α
(
ϵ∆hm̃

n+2
h + f̂

n+2

h

)
+α

(
ϵ
∣∣∇hm̂

n+2
h

∣∣2−m̂n+2
h · f̂

n+2

h

)
m̂n+2

h

mn+2
h =

m̃n+2
h

|m̃n+2
h |

(2.8)

where

m̂n+2
h =2mn+1

h −mn
h, f̂

n+2

h =2fn+1
h −fn

h.

At each time step, only one linear system with constant coefficients and SPD structure
needs to be solved with fast solvers, such as fast Fourier transform (FFT).

2.3. Implicit-explicit Runge-Kutta methods. For a given time-dependent
nonlinear problem, the basic idea of implicit-explicit methods is to treat a dominant
linear term implicitly and the remaining terms explicitly. The success of IMEX methods
relies on the dominance of linear term that is implicitly treated [32]. While it is not the
case for all problems, the introduction of an artificial term may help, such as the linear
diffusion term introduced for the nonlinear diffusion equation [30]. For the LL equation,
the linear diffusion term does not dominate the magnetization dynamics, and thus a
direct application of IMEX method does not work. Motivated by this observation and
the work in [30], we propose to introduce an artificial diffusion term in the LL equation
which will be implicitly treated while all other terms are explicitly treated. RK methods
are employed for the time discretization.
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For ease of description, we first list the Butcher tableau for second-order and third-
order RK methods in (2.9) and (2.10).

0 0 0 0 0 0 0
1/2 0 1/2 0 1/2 0 0
1 1/2 0 1/2 0 1 0

1/2 0 1/2 0 1 0

(2.9)

0 0 0 0 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 1/2 0 0 0 0
2/3 0 1/6 1/2 0 0 11/18 1/18 0 0 0
1/2 0 −1/2 1/2 1/2 0 5/6 −5/6 1/2 0 0
1 0 3/2 −3/2 1/2 1/2 1/4 7/4 3/4 −7/4 0

0 3/2 −3/2 1/2 1/2 1/4 7/4 3/4 −7/4 0

(2.10)

We add an artificial damping term β∆m into (2.4) and rewrite the LL equation as

mt=−m×(ϵ∆m+ f)−αm×m×(ϵ∆m+ f)−β∆m︸ ︷︷ ︸
N(t,m)

+β∆m︸ ︷︷ ︸
L(t,m)

, (2.11)

where the artificial term is denoted as L(t,m), and all the remaining terms are included
in N(t,m).

Therefore, at time step tn, the corresponding marching algorithms in IMEX-RK2
and IMEX-RK3 methods are

m̃1=mn

m̃2=m̃1+
k
2

(
L(tn+ 1

2
,m̃2)+N (tn,m̃1)

)
m̃3=m̃1+

k
2

(
L(tn,m̃1)+L(tn+1,m̃3)+2N(tn+ 1

2
,m̃2)

)
mn+1=m̃1+

k
2

(
L(tn,m̃1)+L(tn+1,m̃3)+2N(tn+ 1

2
,m̃2)

) , (2.12)

and

m̃1=mn

m̃2=m̃1+
k
2

(
L(tn+ 1

2
,m̃2)+N (tn,m̃1)

)
m̃3=m̃1+

k
6L(tn+ 1

2
,m̃2)+

k
2L(tn+ 2

3
,m̃3)+

11k
18 N(tn,m̃1)+

k
18N(tn+ 1

2
,m̃2)

m̃4=m̃1− k
2L(tn+ 1

2
,m̃2)+

k
2L(tn+ 2

3
,m̃3)+

k
2L(tn+ 1

2
,m̃4)

+ 5k
6 N(tn,m̃1)− 5k

6 N(tn+ 1
2
,m̃2)+

k
2N(tn+ 2

3
,m̃3)

m̃5=m̃1+
3k
2 L(tn+ 1

2
,m̃2)− 3k

2 L(tn+ 2
3
,m̃3)+

k
2L(tn+ 1

2
,m̃4)+

k
2L(tn+1,m̃5)

+k
4N(tn,m̃1)+

7k
4 N(tn+ 1

2
,m̃2)+

3k
4 N(tn+ 2

3
,m̃3)− 7k

4 N(tn+ 1
2
,m̃4)

mn+1=m̃1+
3k
2 L(tn+ 1

2
,m̃2)− 3k

2 L(tn+ 2
3
,m̃3)+

k
2L(tn+ 1

2
,m̃4)+

k
2L(tn+1,m̃5)

+k
4N(tn,m̃1)+

7k
4 N(tn+ 1

2
,m̃2)+

3k
4 N(tn+ 2

3
,m̃3)− 7k

4 N(tn+ 1
2
,m̃4).

(2.13)
In addition, if f is time-independent, so that the rewritten LL Equation (2.11) is

autonomous, an alternate IMEX-RK2 numerical algorithm could be chosen:
m̃1=mn

m̃2=m̃1+
k
4L(m̃2)

m̃3=m̃1+
k
2N(m̃2)+

k
4L(m̃3)

m̃4=m̃1+
k
2 (N(m̃2)+N(m̃3))+

k
3 (L(m̃2)+L(m̃3)+L(m̃4))

mn+1=m̃1+
k
3 (N(m̃2)+N(m̃3)+N(m̃4))+

k
3 (L(m̃2)+L(m̃3)+L(m̃4)).

(2.14)



YAN GUI, CHENG WANG, AND JINGRUN CHEN 1403

This IMEX-RK2 algorithm contains four stages, with three intermediate numerical so-
lutions at each time step. On the other hand, the explicit part satisfies the strong
stability-preserving property [11, 17]; as a result, we denote it as the SSP-IMEX-RK2
scheme. In addition, this numerical method contains stronger diffusion coefficients, in
comparison with the standard IMEX-RK2 algorithm (2.12), and this feature will greatly
facilitate a theoretical justification of numerical stability and convergence analysis, as
will be presented in Section 5.

Remark 2.1. In the current work, the finite difference method is employed for the
spatial discretization. It is worth mentioning that other spatial discretizations, such as
finite element method and discontinuous Galerkin method, can also be employed.

Remark 2.2. Two linear systems with constant coefficients and SPD structure are
solved in IMEX-RK2 (2.12). Although only one linear system solver is needed, with
constant coefficients and SPD structure, the method in [41] only works in the large
damping parameter case. Similarly, three linear system solvers are needed in the SSP-
IMEX-RK2 method (2.14), and four linear system solvers are needed in the IMEX-RK3
method (2.13), with constant coefficients and SPD structure. It will be verified in
Section 3 that IMEX-RK methods work for any damping parameter.

3. Numerical results
In this section, we provide a series of numerical experiments for IMEX-RK methods,

including accuracy check, efficiency comparison, and stability test in terms of different
β values. Denote me the exact solution and mh the numerical solution. To measure
the error, we introduce the following notations in the discrete case.

Definition 3.1 (ℓ2 inner product, ∥·∥2 norm). For grid functions fh and gh that take
values on a uniform numerical grid, we define

⟨fh,gh⟩=hd
∑
I∈Λd

fI ·gI ,

where Λd is the set of grid points, and I is an index.

In turn, the ∥·∥2 norm is defined as

∥fh∥2=(⟨fh,fh⟩)
1/2

.

In addition, the discrete H1 norm is defined as

∥fh∥
2
H1 :=∥fh∥

2
2+∥∇hfh∥

2
2 .

Definition 3.2 (∥·∥∞ and ∥·∥p norms in the discrete sense). For grid functions fh

that take values on a uniform numerical grid, we define

∥fh∥∞=max
I∈Λd

∥fI∥∞ , ∥fh∥p=

(
hd
∑
I∈Λd

|fI |
p

) 1
p

,1≤p<+∞.

Lemma 3.1 (Summation by parts). For any grid functions fh and gh, with fh

satisfying the discrete boundary condition (2.6), the following identity is valid:

⟨−∆hfh,gh⟩= ⟨∇hfh,∇hgh⟩ . (3.1)
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The proof of the standard inverse inequality can be obtained in existing textbooks
and references; we just cite the results here. In the sequel, for simplicity of notation,
we will use the uniform constant C to denote all the controllable constants.

Lemma 3.2 (Inverse inequality). [7,8,10] For each vector-valued grid function fh∈X,
we have

∥fh∥∞≤γh−1/2(∥fh∥2+∥∇hfh∥2), (3.2)

∥fh∥q ≤γh−( 3
2−

3
q )∥fh∥2, ∀2<q≤+∞, (3.3)

in which constant γ depends on Ω, as well as the form of the discrete ∥·∥2 norm.

The following discrete Sobolev inequality has been derived in the existing works [19,
20], for the discrete grid function with periodic boundary condition; an extension to the
discrete homogeneous Neumann boundary condition can be made in a similar fashion.

Lemma 3.3 (Discrete Sobolev inequality). [19, 20] For a grid function fh∈X, we
have the following discrete Sobolev inequality:

∥fh∥4≤C∥fh∥
1
4
2 ·∥fh∥

3
4

H1
h
≤C(∥fh∥2+∥fh∥

1
4
2 ·∥∇hfh∥

3
4
2 ), (3.4)

in which the positive constant C only depends on the domain Ω.

In the numerical simulation, we set ϵ=1 and f =0 in (2.5) for convenience. The
1-D exact solution is chosen to be

me=(cos(X)sint,sin(X)sint,cost)T ,

and the 3-D exact solution is set as

me=(cos(XY Z)sint,sin(XY Z)sint,cost)T ,

where X=x2(1−x)2,Y =y2(1−y)2,Z=z2(1−z)2. It is easy to check that the ho-
mogeneous Neumann boundary condition (2.2) is satisfied. A forcing term fe=

∂tme−α∆me−α |∇me|2+me× ∆me is included into the nonlinear part N(t,m).

3.1. Accuracy and efficiency test of IMEX-RK2. In the 1-D computation,
we fix h=1/5000 and record the error in terms of k in Table 3.1, and fix k=1e−3/10000
and record the error in terms of h in Table 3.2. The second-order accuracy of IMEX-
RK2 is observed in both space and time. In the 3-D computation, we fix h=1/16 and
record the error in terms of k in Table 3.3, and fix k=1/10000 and record the error in
terms of h in Table 3.4. Again, the second-order accuracy of IMEX-RK2 is observed in
both space and time.

In terms of the efficiency comparison, we plot the CPU time (in seconds) vs. the
error ∥mh−me∥∞. Results of BDF2 and IMEX-RK2 are visualized in Figure 3.1a and
Figure 3.1b for the 1-D case, and in Figure 3.1c and Figure 3.1d for the 3-D case. By
Figure 3.1, IMEX-RK2 is superior to BDF2 in both the 1-D and 3-D computations.

3.2. Accuracy and efficiency test of IMEX-RK3. Using the same spatial
resolution, we only test the temporal accuracy of IMEX-RK3 here. In the 1-D compu-
tation, we fix k=0.01×h

2
3 and record the error in terms of k in Table 3.5. In the 3-D

computation, we fix k=0.001×h
2
3 and record the error in terms of k in Table 3.6. The

third-order temporal accuracy is observed for IMEX-RK3 in time, in both the 1-D and
3-D compuations.
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k ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

τ/5 1.7011e−10 2.7861e−11 1.7582e−09
τ/10 4.4130e−11 8.1126e−12 6.3812e−10
τ/15 2.1077e−11 3.8709e−12 3.3541e−10
τ/20 1.2028e−11 2.2727e−12 2.1471e−10
τ/25 8.1095e−12 1.4985e−12 1.6165e−10
order 1.8930 1.8152 1.5001

Table 3.1. Temporal accuracy of IMEX-RK2 in the 1-D computation (τ =1e−4,h=1/5000,α=
0.01, and β=5).

h ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

1/50 2.7361e−09 8.3040e−10 4.5150e−07
1/100 7.3177e−10 2.1625e−10 1.1307e−07
1/150 3.2921e−10 9.6819e−11 5.0272e−08
1/200 1.8597e−10 5.4601e−11 2.8281e−08
1/250 1.1926e−10 3.4986e−11 1.8101e−08
order 1.9472 1.9681 1.9986

Table 3.2. Spatial accuracy of IMEX-RK2 in the 1-D computation (k=1e−7,α=0.01, and β=5).

k ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

1/4 0.0022 0.0025 0.0025
1/6 0.0010 0.0011 0.0011
1/8 5.5504e−04 6.3857e−04 6.6930e−04
1/10 3.6163e−04 4.1354e−04 4.6041e−04
order 1.9773 1.9600 1.8594

Table 3.3. Temporal accuracy of IMEX-RK2 in the 3-D computation (h=1/16,α=0.01, and
β=5).

h ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

1/3 1.4756e−04 1.7447e−04 2.5609e−04
1/5 5.2131e−05 6.1669e−05 9.3673e−05
1/7 2.6372e−05 3.1402e−05 4.7958e−05
1/9 1.5935e−05 1.8985e−05 2.9167e−05
1/11 1.0670e−05 1.2707e−05 1.9579e−05
order 2.0223 2.0155 1.9794

Table 3.4. Spatial accuracy of IMEX-RK2 in the 3-D computation (k=1/10000,α=0.01, and
β=5).

Since IMEX-RK2 and IMEX-RK3 only differ in the temporal discretization, we
further plot the CPU time (in seconds) of IMEX-RK2 and IMEX-RK3 in terms of the
temporal error in the 1-D and 3-D cases; see Figure 3.2. These results indicate that
IMEX-RK3 is more efficient than IMEX-RK2, and thus is more efficient than BDF2.
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Fig. 3.1. IMEX-RK2 vs. BDF2: CPU time (in seconds) as a function of error by varying k and
h, respectively. Top row: 1-D; Bottom row: 3-D.

k ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

1/208 0.0435 0.0508 0.0921
1/252 0.0244 0.0287 0.0527
1/292 0.0155 0.0184 0.0341
1/330 0.0109 0.0128 0.0236
order 3.0235 2.9930 2.8900

Table 3.5. Temporal accuracy of IMEX-RK3 in the 1-D computation (k=0.01×h
2
3 , α=0.01,

and β=5).

k ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

1/2080 1.4755e−04 1.7446e−04 2.5608e−04
1/2520 8.1182e−05 9.6730e−05 1.4581e−04
1/2924 5.2128e−05 6.1666e−05 9.3671e−05
1/3302 3.6028e−05 4.2767e−05 6.5140e−05
order 3.0460 3.0422 2.9621

Table 3.6. Temporal accuracy of IMEX-RK3 in the 3-D compuation (k=0.001×h
2
3 ,α=0.01,

and β=5).
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Fig. 3.2. IMEX-RK2 vs. IMEX-RK3: CPU time (in seconds) as a function of temporal error
by varying k.

k ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

τ/3 5.4161e−05 1.1077e−05 0.0019
τ/4 3.1570e−05 5.9625e−06 0.0012
τ/5 2.0783e−05 3.6472e−06 7.7420e−04
τ/6 1.4901e−05 2.4208e−06 5.4551e−04
order 1.8640 2.1927 1.8076

Table 3.7. Temporal accuracy of SSP-IMEX-RK2 in the 1-D computation (τ =2e−2,α=0.01,
and β=5).

k ∥mh−me∥∞ ∥mh−me∥2 ∥mh−me∥H1

τ/8 1.7697e−10 6.6171e−11 4.5228e−08
τ/10 1.1599e−10 4.5129e−11 2.9500e−08
τ/12 8.1594e−11 3.3029e−11 2.0741e−08
τ/14 6.0414e−11 2.5397e−11 1.5370e−08
order 1.9203 1.7115 1.9284

Table 3.8. Temporal accuracy of SSP-IMEX-RK2 in the 3-D computation (τ =1e−3,α=0.01,
and β=5).
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Fig. 3.3. Temporal accuracy in the 1-D and 3-D computations of the SSP-IMEX-RK2 scheme.
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β k
α=0.001 α=0.01

L∞ L2 H1 L∞ L2 H1

1/1000 3.59e−04 4.26e−04 5.44e−04 3.59e−04 4.26e−04 5.44e−04

1 1/2000 8.13e−05 9.67e−05 1.46e−04 8.12e−05 9.67e−05 1.46e−04

1/4000 2.02e−05 2.40e−05 3.68e−05 2.02e−05 2.40e−05 3.68e−05

order 2.0758 2.0749 1.9429 2.0758 2.0749 1.9429

1/1000 3.59e−04 4.26e−04 5.44e−04 3.59e−04 4.26e−04 5.44e−04

3 1/2000 8.13e−05 9.67e−05 1.46e−04 8.12e−05 9.67e−05 1.46e−04

1/4000 2.02e−05 2.40e−05 3.68e−05 2.02e−05 2.40e−05 3.68e−05

order 2.0758 2.0749 1.9429 2.0758 2.0749 1.9429

1/1000 3.59e−04 4.26e−04 5.44e−04 3.59e−04 4.26e−04 5.44e−04

4 1/2000 8.13e−05 9.67e−05 1.46e−04 8.12e−05 9.67e−05 1.46e−04

1/4000 2.03e−05 2.40e−05 3.68e−05 2.02e−05 2.40e−05 3.68e−05

order 2.0722 2.0749 1.9429 2.0758 2.0749 1.9429

Table 3.9. 3-D errors of IMEX-RK2, with h=500k.

β k
α=0.001 α=0.01

L∞ L2 H1 L∞ L2 H1

1/2080 1.48e−04 1.74e−04 2.56e−04 1.48e−04 1.74e−04 2.56e−04

1 1/2520 8.12e−05 9.67e−05 1.46e−04 8.12e−05 9.67e−05 1.46e−04

1/3302 3.61e−05 4.28e−05 6.51e−05 3.60e−05 4.28e−05 6.51e−05

order 3.0494 3.0335 2.9644 3.0557 3.0335 2.9644

1/2080 1.48e−04 1.74e−04 2.56e−04 1.48e−04 1.74e−04 2.56e−04

3 1/2520 8.12e−05 9.67e−05 1.46e−04 8.12e−05 9.67e−05 1.46e−04

1/3302 3.61e−05 4.28e−05 6.51e−05 3.60e−05 4.28e−05 6.51e−05

order 3.0494 3.0335 2.9644 3.0557 3.0335 2.9644

1/2080 1.48e−04 1.74e−04 2.56e−04 1.48e−04 1.74e−04 2.56e−04

4 1/2520 8.12e−05 9.67e−05 1.46e−04 8.12e−05 9.67e−05 1.46e−04

1/3302 3.61e−05 4.28e−05 6.51e−05 3.60e−05 4.28e−05 6.51e−05

order 3.0494 3.0335 2.9644 3.0557 3.0335 2.9644

Table 3.10. 3-D error of IMEX-RK3, with k=0.001×h
2
3 .

3.3. Accuracy test of SSP-IMEX-RK2. In the 1-D test, we keep h=5×101k
and record the error in terms of k in Table 3.7. In the 3-D computation, we fix
h=1×103k and record the error in terms of k in Table 3.8. Second-order accuracy of
SSP-IMEX-RK2 has been observed in both the 1-D and 3-D cases. The accuracy curves
are displayed in Figure 3.3.

3.4. Dependence on the damping parameter. There are a few numerical
methods wherein only several linear systems with constant coefficients and SPD struc-
ture need to be solved at each time step, including the first-order-in-time GSPM [26,47],
the second-order-in-time method [41], and the current method. Numerically, the method
in [41] only works when α>1, most magnetic materials correspond to α≪1. If α>1,
we can set β=α and then apply the idea of IMEX-RK. Therefore, the current method
works for a general damping parameter.
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Next, we examine the performance of IMEX-RK on the choice of artificial damping
parameter β. The 3-D results are recorded in Table 3.9 and Table 3.10. On the basis
of these results, it is clear that IMEX-RK methods work for general artificial damping
parameters. The 1-D results are similar and are not listed here. Therefore, we can set
β>1 if α≪1 and β=α if α≥1 numerically.

Remark 3.1. We have demonstrated the high-order-in-time accuracy of IMEX-RK,
including second-order and third-order ones. It is worth noting that even higher-order-
in-time IMEX-RK methods for the LL equation can be designed; see the s-level method
in [51] for a general purpose. This method does not necessarily have the s-order accuracy
when s>4 in [51]. For instance, the s-level method has at most (s−1)-order accuracy
when s=5,6,7.

4. Micromagnetics simulations

In this section, we apply IMEX-RK2 and IMEX-RK3 to conduct micromagnetics
simulations, including different equilibrium structures and a benchmark problem from
NIST [42] to examine the performance of our proposed methods in the real-world ap-
plications.

Fig. 4.1. Equilibrium states simulated by IMEX-RK methods. Top: Initial states; Middle: Equi-
librium states by IMEX-RK2; Bottom: Equilibrium states by IMEX-RK3. Left: Landau state; Middle:
C-state; Right: S-state.
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(a) H0//y-axis, mo96a (b) H0//x-axis, mo96a

(c) H0//y-axis, IMEX-RK2 (d) H0//x-axis, IMEX-RK2

(e) H0//y-axis, IMEX-RK3 (f) H0//x-axis, IMEX-RK3

Fig. 4.2. Hysteresis loops with α=0.1,β=3, and the mesh size 20×20×20 nm3. The applied
field is approximately parallel (canting angle +1

◦
) to the y-axis (left column) and the x-axis (right

column). Top: mo96a; Middle: IMEX-RK2; Bottom: IMEX-RK3.

4.1. Equilibrium states. We use a spatial resolution 64×128×1 on a 1×2×
0.02 µm3 thin-film element with α=0.1, a temporal step size k=1 picosecond (ps), and
set β=3 in IMEX-RK methods. In the absence of an external field, multiple metastable
states are often observed in ferromagnets, both experimentally and numerically [33,34].

Starting with three different initial magnetization distributions, we obtain three
equilibrium states in Figure 4.1, including Landau state, C-state, and S-state. The arrow
denotes the first two components of the magnetization vector and the color denotes the
angle between them. It is clear that IMEX-RK2,3 produce consistent results.

4.2. Benchmark problem from NIST. To investigate the dynamical per-
formance of IMEX-RK methods, we simulate a benchmark problem proposed by the
Micromagnetic Modeling Activity Group (muMag) from NIST. A positive external field
of strength H0=µ0He in the unit of mT is applied. The magnetization is able to reach a
steady state. Once this state is reached, the applied external field is reduced by a certain
amount and the material sample is allowed to reach another steady state again. Re-
peat the process until the hysteresis system attains a negative external field of strength
H0. This process is then implemented in reverse, increasing the field in small steps
until the initial applied external field is reached. Afterward, we can plot the average
magnetization at steady states as a function of the external field strength during the
hysteresis loop. The stopping criterion for a steady state is that the relative change of
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the total energy is less than 10−9. For comparison with the available code mo96a of the
first standard problem from NIST, we set 100×50×1 spatial resolution with mesh size
20×20×20 nm3 and the canting angle +1

◦
of applied field from the nominal axis. The

initial state is uniform and [−50mT,+50mT] is split into 200 steps for both x-loop and
y-loop.

Hysteresis loops generated by mo96a are displayed in Figure 4.2a and Figure 4.2b
when the applied field is approximately parallel to the y-(long) axis and the x-
(short) axis. The average remanent magnetization in reduced units is given by
(−1.5120×10−1,8.6964×10−1,0) for the y-loop and (1.5257×10−1,8.6870×10−1,0) for
the x-loop. The coercive fields are 4.8871 mT in Figure 4.2a and 2.5253 mT in Fig-
ure 4.2b, respectively. Hysteresis loops generated by IMEX-RK2 method are presented
in Figure 4.2c and Figure 4.2d when the applied field is approximately parallel to
the long axis and the short axis, respectively. The average remanent magnetization
in reduced units is (−1.6099×10−1,8.6096×10−1,4.2423×10−7) for the y-loop and
(−1.4274×10−1,8.6656×10−1,1.5753×10−7) for the x-loop. The coercive fields are
5.4688 (±0.7) mT in Figure 4.2c and 2.7188 (±0.2) mT in Figure 4.2d. Similarly, the
IMEX-RK3 results are presented in the bottom row of Figure 4.2. The average remanent
magnetization in reduced units is (−1.6107×10−1,8.6102×10−1,9.5492×10−8) for the
y-loop and (−1.4292×10−1,8.6659×10−1,4.5836×10−9) for the x-loop. The coercive
fields are 5.4688 (±0.7) mT in Figure 4.2e and 2.7188 (±0.2) mT in Figure 4.2f. Based
on these results, we conclude that IMEX-RK methods work well for the benchmark
problems from NIST, both qualitatively and quantitatively.

5. Numerical stability and convergence analysis for the proposed SSP-
IMEX-RK2 scheme

A theoretical analysis for the proposed IMEX-RK numerical schemes turns out to
be highly challenging, due to the multi-stage nature, as well as the highly complicated
nonlinear terms in the vector form. For simplicity, we focus on the SSP-IMEX-RK2
numerical algorithm (2.14). In the first step, a numerical stability is established for
the linear part, i.e., in the simple case with only linear diffusion part (the term β∆m)
taken into consideration. Afterward, we provide a convergence analysis of the SSP-
IMEX-RK2 scheme (2.14) for a simplified nonlinear model of LL equation, in which
only the damping term is considered, while the gyromagnetic term is skipped.

5.1. Linear stability estimate for the SSP-IMEX-RK2 scheme (2.14). In
the simple case with only linear diffusion term considered, we denote Lh=β∆h. The
SSP-IMEX-RK2 scheme (2.14) is simplified as

m̃1=mn

m̃2=m̃1+
k
4Lh(m̃2)

m̃3=m̃1+
k
4Lh(m̃3)

m̃4=m̃1+
k
3 (Lh(m̃2)+Lh(m̃3)+Lh(m̃4))

mn+1=m̃1+
k
3 (Lh(m̃2)+Lh(m̃3)+Lh(m̃4))

. (5.1)

For the convenience of the stability analysis, numerical system could be rewritten as

m̃2−mn

k
=

β

4
∆hm̃2, (5.2)

m̃3−mn

k
=

β

4
∆hm̃3, (5.3)

m̃4−mn

k
=

β

3
∆h(m̃2+m̃3+m̃4), (5.4)
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mn+1=m̃4. (5.5)

Moreover, to reveal the numerical stability of this Runge-Kutta style algorithm, we sub-
tract (5.2) from (5.3), (5.3) from (5.4), and arrive at the following equivalent numerical
system:

m̃2−mn

k
=

β

4
∆hm̃2, (5.6)

m̃3−m̃2

k
=

β

4
∆h(m̃3−m̃2), (5.7)

m̃4−m̃3

k
=β∆h(

1

3
m̃2+

1

12
m̃3+

1

3
m̃4), (5.8)

mn+1=m̃4. (5.9)

Taking a discrete inner product with (5.6) by 2m̃2 gives

∥m̃2∥22−∥mn∥22+∥m̃2−mn∥22+
β

2
k∥∇hm̃2∥22=0, (5.10)

in which the summation-by-parts formula (3.1) has been applied. Similarly, taking a
discrete inner product with (5.7) by 2m̃3, with (5.8) by 2m̃4, leads to

∥m̃3∥22−∥m̃2∥22+∥m̃3−m̃2∥22+
β

2
k∥∇hm̃3∥22=

β

2
k⟨∇hm̃2,∇hm̃3⟩, (5.11)

∥m̃4∥22−∥m̃3∥22+∥m̃4−m̃3∥22+
2β

3
k∥∇hm̃4∥22

=− 2β

3
k⟨∇hm̃2,∇hm̃4⟩−

β

6
k⟨∇hm̃3,∇hm̃4⟩. (5.12)

In turn, a combination of (5.10) and (5.12) indicates that

∥m̃4∥22−∥mn∥22+∥m̃2−mn∥22+∥m̃3−m̃2∥22+∥m̃4−m̃3∥22

+
β

2
k∥∇hm̃2∥22+

β

2
k∥∇hm̃3∥22+

2β

3
k∥∇hm̃4∥22

=
β

2
k⟨∇hm̃2,∇hm̃3⟩−

2β

3
k⟨∇hm̃2,∇hm̃4⟩−

β

6
k⟨∇hm̃3,∇hm̃4⟩. (5.13)

Meanwhile, a careful application of Cauchy inequality implies that

1

2
⟨∇hm̃2,∇hm̃3⟩≤

1

4
(∥∇hm̃2∥22+∥∇hm̃3∥22), (5.14)

− 2

3
⟨∇hm̃2,∇hm̃4⟩≤

2

9
∥∇hm̃2∥22+

1

2
∥∇hm̃4∥22, (5.15)

− 1

6
⟨∇hm̃3,∇hm̃4⟩≤

1

12
∥∇hm̃3∥22+

1

12
∥∇hm̃4∥22. (5.16)

Therefore, a substitution of these estimates into (5.13) yields

∥m̃4∥22−∥mn∥22+∥m̃2−mn∥22+∥m̃3−m̃2∥22+∥m̃4−m̃3∥22

+
β

36
k∥∇hm̃2∥22+

β

6
k∥∇hm̃3∥22+

β

12
k∥∇hm̃4∥22≤0. (5.17)
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By the fact that mn+1=m̃4, we obtain the linear stability estimate for the SSP-IMEX-
RK2 scheme:

∥mn+1∥22−∥mn∥22+∥m̃2−mn∥22+∥m̃3−m̃2∥22+∥mn+1−m̃3∥22

+
β

36
k∥∇hm̃2∥22+

β

6
k∥∇hm̃3∥22+

β

12
k∥∇hmn+1∥22≤0,

(5.18)

which in turn gives the ℓ∞(0,T : ℓ2)∩ℓ2(0,T ;H1
h) bound of the numerical solution, if

only the linear diffusion part is considered:

∥mn+1∥2+
( β

12
k

n+1∑
j=1

∥∇hmj∥22
) 1

2 ≤∥m0∥2. (5.19)

Remark 5.1. In comparison with the standard three-stage IMEX-RK2 method (2.12),
the SSP-IMEX-RK2 algorithm (2.14) contains four stages, with three intermediate nu-
merical solutions, so that more computations are needed at each time step. Meanwhile,
the stability analysis in this section reveals that, this numerical algorithm contains
stronger diffusion coefficients than the standard IMEX-RK2 algorithm. In more details,
the diffusion part in the standard IMEX-RK2 method (2.12) essentially corresponds
to the Crank-Nicolson approximation, which may face a serious theoretical difficulty
in the nonlinear analysis, while additional diffusion terms appear in the stability es-
timate (5.17) for the SSP-IMEX-RK2 algorithm (2.14). This subtle fact will greatly
facilitate the convergence analysis in the next subsection.

5.2. Convergence analysis of the SSP-IMEX-RK2 scheme (2.14) for a
simplified nonlinear LL equation. We consider a simplified nonlinear LL Equa-
tion (2.4) in this subsection, in which only the damping term is included, while the
gyromagnetic term is skipped for simplicity:

mt=−αm×(m×(ϵ∆m+ f)). (5.20)

For a vector function m with |m|≡1, the following identity is recalled

−m×(m×∆m)=∆m+ |∇m|2m. (5.21)

In turn, by taking β=αϵ, the nonlinear term N(m) could be rewritten as

N(m)=−αm×(m×(ϵ∆m+f))−β∆m

=β(∆m+ |∇m|2m)−αm×(m×f)−β∆m

=β|∇m|2m−αm×(m×f). (5.22)

Subsequently, the discrete form of the nonlinear term becomes

Nh(m)=β|Ah∇hm|2m−αm×(m×f), (5.23)

in which Ah∇h (second approximation to the gradient operator) is an average gradient
operator defined for the gird function m=(uh,vh,wh)

T ∈X as Ah∇hmh=∇hAhmh

and Ahm=(Axuh,Ayvh,Azwh):

Axui,j,ℓ=
ui,j,ℓ+ui−1,j,ℓ

2
,Ayvi,j,ℓ=

vi,j,ℓ+vi,j−1,ℓ

2
,Azwi,j,ℓ=

wi,j,ℓ+wi,j,ℓ−1

2
.
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As a result, the SSP-IMEX-RK2 numerical algorithm is formulated as

m̃1=mn,

m̃2=m̃1+
k

4
Lh(m̃2),

m̃3=m̃1+
k

2
Nh(m̃2)+

k

4
Lh(m̃3),

m̃4=m̃1+
k

2
(Nh(m̃2)+Nh(m̃3))+

k

3
(Lh(m̃2)+Lh(m̃3)+Lh(m̃4)),

mn+1=m̃1+
k

3
(Nh(m̃2)+Nh(m̃3)+Nh(m̃4))

+
k

3
(Lh(m̃2)+Lh(m̃3)+Lh(m̃4)).

(5.24)

For the convenience of the Runge-Kutta analysis, this numerical system could be equiv-
alently rewritten as

m̃2−mn

k
=

β

4
∆hm̃2, (5.25)

m̃3−m̃2

k
=

1

2
Nh(m̃2)+

β

4
∆h(m̃3−m̃2), (5.26)

m̃4−m̃3

k
=

1

2
Nh(m̃3)+β∆h(

1

3
m̃2+

1

12
m̃3+

1

3
m̃4), (5.27)

mn+1−m̃4

k
=−1

6
(Nh(m̃2)+Nh(m̃3))+

1

3
Nh(m̃4). (5.28)

Denote Φ as the exact solution to the LL Equation (5.20), with the regularity

Φ∈R=C3([0,T ];[C0(Ω̄)]3)∩C2([0,T ];[C2(Ω̄)]3)∩L∞([0,T ];[C4(Ω̄)]3). (5.29)

The main theoretical result is stated in the following theorem.

Theorem 5.1. Assume that the exact solution Φ of (5.20) has the regularity R. De-
note mn (n≥0) as the numerical solution obtained from (5.24), or equivalently (5.25)-
(5.28), with the initial error satisfying ∥PhΦ(·,t0)−m0∥2+∥∇h(PhΦ(·,t0)−m0)∥2=
O(h2). In addition, a linear refinement assumption is made for the time step size:
C1h≤k≤C2h. Then the following convergence result holds for 1≤n≤

⌊
T
k

⌋
as k,h→0+:

∥Φ(·,tn)−mn∥2≤C(k2+h2), (5.30)

in which the constant C>0 is independent of k and h.

Proof. Around the boundary section z=0, we set ẑ0=− 1
2h, ẑ1=

1
2h, and we can

extend the profile Φ to the numerical “ghost” points, according to the extrapolation
formula (2.6):

Φi,j,0=Φi,j,1, Φi,j,N+1=Φi,j,N , (5.31)

and the extrapolation for other boundaries can be formulated in the same manner. The
proof of such an extrapolation yields a higher order O(h5) approximation, instead of
the standard O(h3) accuracy. See the related derivation in [50], as well as the related
consistency analysis works [23–25,40].
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Given the exact solution Φ, we denote Φn=Φ(·,tn). To facilitate the Runge-Kutta
analysis, three more intermediate approximate solutions are constructed at each time
step, following the same algorithm as in (5.24):

Φ̃n,(2)=Φn+
βk

4
∆hΦ̃

n,(2), (5.32)

Φ̃n,(3)=Φ̃n+
k

2
Nh(Φ̃

n,(2))+
βk

4
∆hΦ̃

n,(3), (5.33)

Φ̃n,(4)=Φ̃n+
k

2
(Nh(Φ̃

n,(2))+Nh(Φ̃
n,(3)))+

βk

3
∆h(Φ̃

n,(2)+Φ̃n,(3)+Φ̃n,(4)), (5.34)

in which the homogeneous discrete Neumann boundary condition (similar to (2.6),
(5.31)) is imposed for Φ̃n,(j), j=2,3,4. Subsequently, a careful Taylor expansion (asso-
ciated with the SSP-IMEX-RK schemes) reveals the following consistency estimate, for
the exact solution at the next time step:

Φn+1=Φ̃n+
k

3
(Nh(Φ̃

n,(2))+Nh(Φ̃
n,(3))+Nh(Φ̃

n,(4)))

+
βk

3
∆h(Φ̃

n,(2)+Φ̃n,(3)+Φ̃n,(4))+kτn0 , ∥τn0 ∥2≤C(k2+h2). (5.35)

Of course, with a similar transformation as in (5.25)-(5.28), the exact solution Φn, Φn+1

and the constructed profiles Φ̃n,(j) (j=2,3,4) satisfy the following numerical system:

Φ̃n,(2)−Φn

k
=

β

4
∆hΦ̃

n,(2), (5.36)

Φ̃n,(3)− Φ̃n,(2)

k
=

1

2
Nh(Φ̃

n,(2))+
β

4
∆h(Φ̃

n,(3)− Φ̃n,(2)), (5.37)

Φ̃n,(4)− Φ̃n,(3)

k
=

1

2
Nh(Φ̃

n,(3))+β∆h(
1

3
Φ̃n,(2)+

1

12
Φ̃n,(3)+

1

3
Φ̃n,(4)), (5.38)

Φn+1− Φ̃n,(4)

k
=−1

6
(Nh(Φ̃

n,(2))+Nh(Φ̃
n,(3)))+

1

3
Nh(Φ̃

n,(4))+τn0 . (5.39)

It is clear that the constructed profiles Φ̃n,(j) (j=2,3,4) only depend on the exact
solution Φn, and the consistency estimate indicates that

∥Φ̃n,(j)∥∞≤ 9

8
, ∥∇hΦ̃

n,(j)∥∞≤C∗, j=2,3,4. (5.40)

The following numerical error functions are defined:

ek=Φk−mk, k=n,n+1,

ẽn,(j)=Φ̃n,(j)−m̃j , j=2,3,4,
(5.41)

at a point-wise level. In addition, the following nonlinear error terms are introduced:

NLEn,(j)=Nh(Φ̃
n,(j))−Nh(m̃j), j=2,3,4. (5.42)

Therefore, subtracting the numerical scheme (5.25)-(5.28) from the consistency esti-
mate (5.36)-(5.39) yields

ẽn,(2)−en

k
=

β

4
∆hẽ

n,(2), (5.43)
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ẽn,(3)− ẽn,(2)

k
=

1

2
NLEn,(2)+

β

4
∆h(ẽ

n,(3)− ẽn,(2)), (5.44)

ẽn,(4)− ẽn,(3)

k
=

1

2
NLEn,(3)+β∆h(

1

3
ẽn,(2)+

1

12
ẽn,(3)+

1

3
ẽn,(4)), (5.45)

en+1− ẽn,(4)

k
=−1

6
(NLEn,(2)+NLEn,(3))+

1

3
NLEn,(4)+τn0 . (5.46)

In addition, the discrete homogeneous Neumann boundary condition (2.6) is satisfied

for both en+1, en, as well as the intermediate error functions ẽn,(j), j=2,3,4.
To facilitate the convergence proof, the following functional bound of the nonlinear

error terms is needed.

Lemma 5.1. Under the regularity estimate (5.40) for the constructed profiles, and the
following bound for the numerical solution in the IMEX-RK stages

∥m̃j∥∞≤ 5

4
, ∥∇hm̃j∥8≤C̃ :=C∗+1, j=2,3,4. (5.47)

we have an ∥·∥ 8
5
estimate for the nonlinear error terms:

∥NLEn,(j)∥ 8
5
≤M̃(∥ẽn,(j)∥2+∥∇hẽ

n,(j)∥2), j=2,3,4, (5.48)

in which M̃ only depends on α, β, C∗, C̃, and the external force term f .

Proof. A careful expansion of the nonlinear terms Nh(Φ̃
n,(j)) and Nh(mj) gives

NLEn,(j)=Nh(Φ̃
n,(j))−Nh(m̃j)

=β|Ah∇hΦ̃
n,(j)|2ẽn,(j)+β

(
Ah∇h(Φ̃

n,(j)+m̃j) ·Ah∇hẽ
n,(j)

)
m̃j

−αm̃j×(ẽn,(j)×f)−αẽn,(j)×(Φ̃n,(j)×f). (5.49)

In turn, an application of discrete Hölder inequality leads to∥∥∥β|Ah∇hΦ̃
n,(j)|2ẽn,(j)

∥∥∥
8
5

≤β∥∇hΦ̃
n,(j)∥2∞ ·∥ẽn,(j)∥ 8

5

≤β(C∗)2∥ẽn,(j)∥ 8
5
≤Cβ(C∗)2∥ẽn,(j)∥2, (5.50)∥∥∥β(Ah∇h(Φ̃

n,(j)+m̃j) ·Ah∇hẽ
n,(j)

)
m̃j

∥∥∥
8
5

≤β(∥∇hΦ̃
n,(j)∥8+∥∇hm̃j∥8) ·∥∇hẽ

n,(j)∥2 ·∥m̃j∥∞
≤Cβ(C∗+ C̃)∥∇hẽ

n,(j)∥2, (5.51)∥∥∥αm̃j×(ẽn,(j)×f)
∥∥∥

8
5

≤α∥m̃j∥∞ ·∥f∥∞ ·∥ẽn,(j)∥ 8
5

≤5α

4
C0∥ẽn,(j)∥ 8

5
≤CαC0∥ẽn,(j)∥2, (5.52)∥∥∥αẽn,(j)×(Φ̃n,(j)×f)

∥∥∥
8
5

≤α∥Φ̃n,(j)∥∞ ·∥f∥∞ ·∥ẽn,(j)∥ 8
5

≤9α

8
C0∥ẽn,(j)∥ 8

5
≤CαC0∥ẽn,(j)∥2, (5.53)
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in which the regularity estimate (5.40) and the functional bound (5.47) have been re-
peatedly applied, along with the fact that ∥g∥8≤C∥g∥∞, ∥g∥ 8

5
≤C∥g∥2 (for any grid

function g). Also notice an ∥·∥∞ bound for the external force term: ∥f∥∞≤C0. As a re-
sult, a substitution of (5.50)-(5.53) into (5.49) yields the nonlinear error estimate (5.48),
by taking M̃ =C(β((C∗)2+C∗+ C̃)+αC0). This completes the proof of Lemma 5.1.

Before proceeding into the formal error estimate, we make the following a-priori
assumption for the numerical error function at the previous time step:

∥en∥2≤k
15
8 +h

15
8 . (5.54)

Such an assumption will be recovered by the convergence analysis at the next time step
tn+1.

Error estimate at Stage 1. Taking a discrete inner product with (5.43) by 2ẽn,(2)

gives

∥ẽn,(2)∥22−∥en∥22+∥ẽn,(2)−en∥22+
β

2
k∥∇hẽ

n,(2)∥22=0, (5.55)

with an application of the summation-by-parts formula (3.1), due to the discrete homo-

geneous Neumann boundary condition for ẽn,(2). As a result, the following estimates
are available:

∥ẽn,(2)∥2≤∥en∥2≤k
15
8 +h

15
8 ,

∥∇hẽ
n,(2)∥2≤

√
2β− 1

2 k−
1
2 ∥en∥2≤

√
2β− 1

2

(
k

11
8 +

h
15
8

k
1
2

)
≤C(k

11
8 +h

11
8 )≤k

5
4 +h

5
4 ,

(5.56)

in which the linear refinement requirement, C1h≤k≤C2h, has been applied. Subse-
quently, the ∥·∥∞ and ∥·∥W 1,8

h
bounds for the numerical error function ẽn,(2) could be

derived, with the help of inverse inequalities (3.2), (3.3) (by taking q=8) in Lemma 3.2:

∥ẽn,(2)∥∞≤γh−1/2(∥ẽn,(2)∥2+∥∇hẽ
n,(2)∥2)≤γ

(k 5
4

h
1
2

+h
3
4

)
≤ 1

8
, (5.57)

∥∇hẽ
n,(2)∥8≤γh− 9

8 ∥∇hẽ
n,(2)∥2≤γ

(k 5
4

h
9
8

+h
1
8

)
≤1, (5.58)

provided that k and h are sufficiently small, the linear refinement requirement, C1h≤
k≤C2h. In turn, we obtain the following functional bound for the numerical solution
m̃2 at the first Runge-Kutta stage, which will be useful in the later analysis:

∥m̃2∥∞≤∥Φ̃n,(2)∥∞+∥ẽn,(2)∥∞≤ 9

8
+

1

8
=

5

4
, (5.59)

∥∇hm̃2∥8≤∥∇hΦ̃
n,(2)∥8+∥∇hẽ

n,(2)∥8≤C∗+1= C̃, (5.60)

with an application of triangular inequality, along with the regularity estimate (5.40).

Error estimate at Stage 2. Taking a discrete inner product with (5.44) by 2ẽn,(3)

gives

∥ẽn,(3)∥22−∥ẽn,(2)∥22+∥ẽn,(3)− ẽn,(2)∥22+
β

2
k∥∇hẽ

n,(3)∥22

=
β

2
k⟨∇hẽ

n,(2),∇hẽ
n,(3)⟩+k⟨NLEn,(2), ẽn,(3)⟩,

(5.61)
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with an application of the summation-by-parts formula (3.1). The first term on the
right-hand side could be controlled by the Cauchy inequality:

⟨∇hẽ
n,(2),∇hẽ

n,(3)⟩≤ 1

2
(∥∇hẽ

n,(2)∥22+∥∇hẽ
n,(3)∥22). (5.62)

Regarding the inner product term associated with the nonlinear error, we observe that
an application of Lemma 5.1 implies the following estimates:

∥NLEn,(2)∥ 8
5
≤M̃(∥ẽn,(2)∥2+∥∇hẽ

n,(2)∥2), so that

⟨NLEn,(2), ẽn,(3)⟩≤∥NLEn,(2)∥ 8
5
·∥ẽn,(3)∥ 8

3

≤M̃(∥ẽn,(2)∥2+∥∇hẽ
n,(2)∥2) ·∥ẽn,(3)∥ 8

3

≤M̃

2
∥ẽn,(2)∥22+

β

144
∥∇hẽ

n,(2)∥22+(
M̃

2
+

36M̃2

β
)∥ẽn,(3)∥28

3
,

(5.63)

based on the regularity estimate (5.40) and the functional bound (5.59)-(5.60). More-
over, an application of the discrete Sobolev inequality (3.4) (in Lemma 3.3) indicates
that

∥ẽn,(3)∥ 8
3
≤C∥ẽn,(3)∥4≤C(∥ẽn,(3)∥2+∥ẽn,(3)∥

1
4
2 ·∥∇hẽ

n,(3)∥
3
4
2 ), so that

(
M̃

2
+

36M̃2

β
)∥ẽn,(3)∥28

3
≤C(∥ẽn,(3)∥22+∥ẽn,(3)∥

1
2
2 ·∥∇hẽ

n,(3)∥
3
2
2 )

≤C∥ẽn,(3)∥22+
β

24
∥∇hẽ

n,(3)∥22, (5.64)

in which Young’s inequality has been applied in the last step. Therefore, a substitution
of (5.62)-(5.64) into (5.61) yields

∥ẽn,(3)∥22−∥ẽn,(2)∥22+∥ẽn,(3)− ẽn,(2)∥22+
5β

24
k∥∇hẽ

n,(3)∥22−
37β

144
k∥∇hẽ

n,(2)∥22

≤M̃k

2
∥ẽn,(2)∥22+Ck∥ẽn,(3)∥22. (5.65)

Furthermore, its combination with (5.55) gives

∥ẽn,(3)∥22−∥en∥22+∥ẽn,(2)−en∥22+∥ẽn,(3)− ẽn,(2)∥22

+
35β

144
k∥∇hẽ

n,(2)∥22+
5β

24
k∥∇hẽ

n,(3)∥22≤
M̃k

2
∥ẽn,(2)∥22+Ck∥ẽn,(3)∥22. (5.66)

Consequently, with an application of the a-priori estimate (5.56), we obtain

∥ẽn,(3)∥2≤
(1+ M̃k

2

1−Ck

) 1
2 ∥en∥2≤2(k

15
8 +h

15
8 ),

∥∇hẽ
n,(3)∥2≤

√
4.8β− 1

2 k−
1
2 (1+

M̃k

2
)

1
2 ∥en∥2≤

√
5β− 1

2

(
k

11
8 +

h
15
8

k
1
2

)
≤C(k

11
8 +h

11
8 )≤k

5
4 +h

5
4 ,

(5.67)

under the linear refinement requirement, C1h≤k≤C2h. Similarly, ∥·∥∞ and ∥·∥W 1,8
h

bounds for both the numerical error function ẽn,(3) and the numerical solution m̃3 could
be derived as follows

∥ẽn,(3)∥∞≤γh−1/2(∥ẽn,(3)∥2+∥∇hẽ
n,(3)∥2)≤γ

(k 5
4

h
1
2

+h
3
4

)
≤ 1

8
, (5.68)
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∥∇hẽ
n,(3)∥8≤γh− 9

8 ∥∇hẽ
n,(3)∥2≤γ

(k 5
4

h
9
8

+h
1
8

)
≤1, (5.69)

∥m̃3∥∞≤∥Φ̃n,(3)∥∞+∥ẽn,(3)∥∞≤ 9

8
+

1

8
=

5

4
, (5.70)

∥∇hm̃3∥8≤∥∇hΦ̃
n,(3)∥8+∥∇hẽ

n,(3)∥8≤C∗+1= C̃. (5.71)

Error estimate at Stage 3. Taking a discrete inner product with (5.45) by 2ẽn,(4)

gives

∥ẽn,(4)∥22−∥ẽn,(3)∥22+∥ẽn,(4)− ẽn,(3)∥22+
2β

3
k∥∇hẽ

n,(4)∥22

=− 2β

3
k⟨∇hẽ

n,(2),∇hẽ
n,(4)⟩− β

6
k⟨∇hẽ

n,(3),∇hẽ
n,(4)⟩+k⟨NLEn,(3), ẽn,(4)⟩, (5.72)

with an application of the summation-by-parts formula (3.1). The first two terms on
the right-hand side could be analyzed in the same way as in (5.15)-(5.16)

− 2

3
⟨∇hẽ

n,(2),∇hẽ
n,(4)⟩≤ 2

9
∥∇hẽ

n,(2)∥22+
1

2
∥∇hẽ

n,(4)∥22, (5.73)

− 1

6
⟨∇hẽ

n,(3),∇hẽ
n,(4)⟩≤ 1

12
∥∇hẽ

n,(3)∥22+
1

12
∥∇hẽ

n,(4)∥22. (5.74)

Again, the nonlinear error term, as well as the corresponding inner product, could be
analyzed in a similar fashion:

∥NLEn,(3)∥ 8
5
≤M̃(∥ẽn,(3)∥2+∥∇hẽ

n,(3)∥2),

⟨NLEn,(3), ẽn,(4)⟩≤∥NLEn,(3)∥ 8
5
·∥ẽn,(4)∥ 8

3

≤M̃(∥ẽn,(3)∥2+∥∇hẽ
n,(3)∥2) ·∥ẽn,(4)∥ 8

3

≤M̃

2
∥ẽn,(3)∥22+

β

24
∥∇hẽ

n,(3)∥22+(
M̃

2
+

6M̃2

β
)∥ẽn,(4)∥28

3
,

∥ẽn,(4)∥ 8
3
≤C∥ẽn,(4)∥4≤C(∥ẽn,(4)∥2+∥ẽn,(4)∥

1
4
2 ·∥∇hẽ

n,(4)∥
3
4
2 ),

(
M̃

2
+

6M̃2

β
)∥ẽn,(4)∥28

3
≤C(∥ẽn,(4)∥22+∥ẽn,(4)∥

1
2
2 ·∥∇hẽ

n,(4)∥
3
2
2 )

≤C∥ẽn,(4)∥22+
β

48
∥∇hẽ

n,(4)∥22,

(5.75)

based on the a-priori bound estimate (5.70)-(5.71) in the second RK stage and the
regularity estimate (5.40). Subsequently, a substitution of (5.73)-(5.75) into (5.72)
gives

∥ẽn,(4)∥22−∥ẽn,(3)∥22+∥ẽn,(4)− ẽn,(3)∥22+
β

16
k∥∇hẽ

n,(4)∥22

− 2β

9
k∥∇hẽ

n,(2)∥22−
β

8
k∥∇hẽ

n,(3)∥22≤
M̃k

2
∥ẽn,(3)∥22+Ck∥ẽn,(3)∥22,

(5.76)

and its combination with (5.66) yields

∥ẽn,(4)∥22−∥en∥22+∥ẽn,(2)−en∥22+∥ẽn,(3)− ẽn,(2)∥22+∥ẽn,(4)− ẽn,(3)∥22
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+
β

48
k∥∇hẽ

n,(2)∥22+
β

12
k∥∇hẽ

n,(3)∥22+
β

16
k∥∇hẽ

n,(4)∥22

≤M̃k

2
(∥ẽn,(2)∥22+∥ẽn,(3)∥22)+Ck(∥ẽn,(3)∥22+∥ẽn,(4)∥22). (5.77)

Similarly, with the help of the a-priori estimates (5.56), (5.67), in the first and second
RK stages, respectively, the following rough error estimates could be derived:

∥ẽn,(4)∥2≤
(1+Ck
1−Ck

) 1
2 ∥en∥2≤2(k

15
8 +h

15
8 ),

∥∇hẽ
n,(4)∥2≤4β− 1

2 k−
1
2 (1+Ck) 1

2 ∥en∥2≤5β− 1
2

(
k

11
8 +

h
15
8

k
1
2

)
≤C(k

11
8 +h

11
8 )≤k

5
4 +h

5
4 ,

(5.78)

and the ∥·∥∞ and ∥·∥W 1,8
h

bounds for both the numerical error function ẽn,(4) and the

numerical solution m̃4 also become available:

∥ẽn,(4)∥∞≤γh−1/2(∥ẽn,(4)∥2+∥∇hẽ
n,(4)∥2)≤γ

(k 5
4

h
1
2

+h
3
4

)
≤ 1

8
, (5.79)

∥∇hẽ
n,(4)∥8≤γh− 9

8 ∥∇hẽ
n,(4)∥2≤γ

(k 5
4

h
9
8

+h
1
8

)
≤1, (5.80)

∥m̃4∥∞≤∥Φ̃n,(4)∥∞+∥ẽn,(4)∥∞≤ 9

8
+

1

8
=

5

4
, (5.81)

∥∇hm̃4∥8≤∥∇hΦ̃
n,(4)∥8+∥∇hẽ

n,(4)∥8≤C∗+1= C̃. (5.82)

Error estimate at Stage 4. Taking a discrete inner product with (5.46) by 2
en+1 gives

∥en+1∥22−∥ẽn,(4)∥22+∥en+1− ẽn,(4)∥22−k⟨τn0 ,en+1⟩

=− 1

3
k⟨NLEn,(2),en+1⟩− 1

3
k⟨NLEn,(3),en+1⟩+ 2

3
k⟨NLEn,(4),en+1⟩. (5.83)

The local truncation error inner product term could be controlled in a straightforward
way:

⟨τn0 ,en+1⟩≤ 1

2
(∥τn0 ∥22+∥en+1∥22). (5.84)

The nonlinear error terms could be analyzed in a similar manner:

∥NLEn,(4)∥ 8
5
≤M̃(∥ẽn,(4)∥2+∥∇hẽ

n,(4)∥2),

− 1

3
⟨NLEn,(2),en+1⟩≤ 1

3
∥NLEn,(2)∥ 8

5
·∥en+1∥ 8

3

≤1

3
M̃(∥ẽn,(2)∥2+∥∇hẽ

n,(2)∥2) ·∥en+1∥ 8
3

≤M̃

6
∥ẽn,(2)∥22+

β

144
∥∇hẽ

n,(2)∥22+(
M̃

6
+

4M̃2

β
)∥en+1∥28

3
,

− 1

3
⟨NLEn,(3),en+1⟩≤ 1

3
∥NLEn,(3)∥ 8

5
·∥en+1∥ 8

3
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≤1

3
M̃(∥ẽn,(3)∥2+∥∇hẽ

n,(3)∥2) ·∥en+1∥ 8
3

≤M̃

6
∥ẽn,(3)∥22+

β

36
∥∇hẽ

n,(3)∥22+(
M̃

6
+

M̃2

β
)∥en+1∥28

3
,

2

3
⟨NLEn,(4),en+1⟩≤ 2

3
∥NLEn,(4)∥ 8

5
·∥en+1∥ 8

3

≤2

3
M̃(∥ẽn,(4)∥2+∥∇hẽ

n,(4)∥2) ·∥en+1∥ 8
3

≤M̃

3
∥ẽn,(4)∥22+

β

48
∥∇hẽ

n,(4)∥22+(
M̃

3
+

16M̃2

3β
)∥en+1∥28

3
. (5.85)

In turn, a substitution of (5.84), (5.85) into (5.83) leads to

∥en+1∥22−∥ẽn,(4)∥22+∥en+1− ẽn,(4)∥22−
β

48
k∥∇hẽ

n,(4)∥22

− β

144
k∥∇hẽ

n,(2)∥22−
β

36
k∥∇hẽ

n,(3)∥22−
1

2
k(∥τn0 ∥22+∥en+1∥22)

≤M̃k

6
(∥ẽn,(2)∥22+∥ẽn,(3)∥22+2∥ẽn,(4)∥22)+(

˜2M

3
+

31M̃2

3β
)∥en+1∥28

3
, (5.86)

and its combination with (5.77) yields

∥en+1∥22−∥en∥22+∥ẽn,(2)−en∥22+∥ẽn,(3)− ẽn,(2)∥22+∥ẽn,(4)− ẽn,(3)∥22

+∥en+1− ẽn,(4)∥22+
β

72
k∥∇hẽ

n,(2)∥22+
β

18
k∥∇hẽ

n,(3)∥22+
β

24
k∥∇hẽ

n,(4)∥22

≤Ck(∥ẽn,(2)∥22+∥ẽn,(3)∥22+∥ẽn,(4)∥22)+M̂k∥en+1∥28
3
+

1

2
k(∥τn0 ∥22+∥en+1∥22), (5.87)

with M̂ =
˜2M
3 + 31M̃2

3β . To control the terms M̂k∥en+1∥28
3

, we see that an application of

triangle inequality implies that

∥en+1∥ 8
3
≤∥ẽn,(4)∥ 8

3
+∥en+1− ẽn,(4)∥ 8

3
, so that

M̂∥en+1∥28
3
≤2M̂(∥ẽn,(4)∥28

3
+∥en+1− ẽn,(4)∥28

3
).

(5.88)

Meanwhile, an application of inverse inequality (3.3) (by taking q= 8
3 , in Lemma 3.2)

results in

∥en+1− ẽn,(4)∥ 8
3
≤γh− 3

8 ∥en+1− ẽn,(4)∥2, so that

2M̂k∥en+1− ẽn,(4)∥28
3
≤2M̂γ2kh− 3

4 ∥en+1− ẽn,(4)∥22≤
1

2
∥en+1− ẽn,(4)∥22,

(5.89)

provided that 2M̂γ2kh− 3
4 ≤ 1

2 , which is always valid under the linear refinement re-
quirement, C1h≤k≤C2h, and the assumption that k and h are sufficiently small. In
addition, we recall the preliminary estimate (5.75) for ∥ẽn,(4)∥ 8

3
:

∥ẽn,(4)∥ 8
3
≤C∥ẽn,(4)∥4≤C(∥ẽn,(4)∥2+∥ẽn,(4)∥

1
4
2 ·∥∇hẽ

n,(4)∥
3
4
2 ), so that

2M̂∥ẽn,(4)∥28
3
≤C(∥ẽn,(4)∥22+∥ẽn,(4)∥

1
2
2 ·∥∇hẽ

n,(4)∥
3
2
2 )≤C∥ẽn,(4)∥22+

β

48
∥∇hẽ

n,(4)∥22.
(5.90)



1422 IMEX-RK METHODS FOR LL EQUATION WITH ARBITRARY DAMPING

Therefore, a substitution of (5.88)-(5.90) into (5.87) gives

∥en+1∥22−∥en∥22+∥ẽn,(2)−en∥22+∥ẽn,(3)− ẽn,(2)∥22+∥ẽn,(4)− ẽn,(3)∥22

+
1

2
∥en+1− ẽn,(4)∥22+

β

72
k∥∇hẽ

n,(2)∥22+
β

18
k∥∇hẽ

n,(3)∥22+
β

48
k∥∇hẽ

n,(4)∥22

≤Ck(∥ẽn,(2)∥22+∥ẽn,(3)∥22+∥ẽn,(4)∥22)+
1

2
k(∥τn0 ∥22+∥en+1∥22). (5.91)

Moreover, by making use of the triangle inequalities

∥ẽn,(2)∥2≤∥en∥2+∥ẽn,(2)−en∥2,

∥ẽn,(3)∥2≤∥en∥2+∥ẽn,(2)−en∥2+∥ẽn,(3)− ẽn,(2)∥2,

∥ẽn,(4)∥2≤∥en∥2+∥ẽn,(2)−en∥2+∥ẽn,(3)− ẽn,(2)∥2+∥ẽn,(4)− ẽn,(3)∥2,

(5.92)

we arrive at

∥en+1∥22−∥en∥22+
β

72
k∥∇hẽ

n,(2)∥22+
β

18
k∥∇hẽ

n,(3)∥22+
β

48
k∥∇hẽ

n,(4)∥22

≤Ck∥en∥22+
1

2
k(∥τn0 ∥22+∥en+1∥22), (5.93)

provided that k is sufficiently small. In turn, an application of discrete Gronwall in-
equality [52] yields the desired convergence estimate at the next time step

∥en+1∥2≤C(k2+h2), (5.94)

based on the fact that ∥τn0 ∥2≤C(k2+h2). As a result, we see that the a-priori assump-
tion (5.54) has also been validated at the next time step tn+2, provided that k and h are
sufficiently small. By mathematical induction, this completes the proof of Theorem 5.1.

Remark 5.2. For the multi-step IMEX numerical schemes for various nonlinear PDEs,
there have been some existing works of convergence analysis [9,18], etc. Meanwhile, for
the IMEX-RK numerical schemes, the theoretical works have been very limited, due
to the theoretical challenges associated with the multi-stage nature, lack of sufficient
numerical diffusion, etc. A linearized stability analysis is provided for the IMEX-RK1
and IMEX-RK2 schemes for the diffusion problem [30], as well as the error estimate
for the constant-coefficient diffusion equation. The convergence analysis has been re-
ported for the IMEX-RK numerical methods for various nonlinear PDEs, such as the
convection-diffusion equation [29], the porous media equation [28,31], etc. On the other
hand, the degree of nonlinearity of the LL equation (even the simplified version (5.20),
with only the damping term) is higher than these reported models. As a result, the
associated theoretical analysis presented in this article contains more techniques than
the existing works.

Remark 5.3. At the intermediate Runge-Kutta stages, the ℓ2 error bound esti-
mate (5.56), (5.67), (5.78), the associated ℓ∞ and W 1,8

h error bounds (5.57)-(5.58),
(5.68)-(5.69), (5.79)-(5.80), stand for a rough error estimate. These error bound esti-
mates do not preserve a full accuracy order; instead, the motivation of these analyses is
to obtain a rough bound of the numerical error function, so that a preliminary bound
becomes available for the numerical solution at the associated Runge-Kutta stages, as
derived in (5.59)-(5.60), (5.70)-(5.71), (5.81)-(5.82). As a result of these preliminary
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bounds, the nonlinear error terms could be analyzed with the help of Lemma 5.1, so
that the nonlinear analysis would go through.

In comparison, with these nonlinear analyses established, the numerical error in-
equalities (5.55), (5.66), (5.77) stand for a refined error estimate. Finally, the derived
estimate (5.93) becomes an inequality in which we are able to derive the desired accuracy
order for the numerical error.

A combination of rough error estimate and refined error estimate has been reported
for various nonlinear PDEs, such as ternary Flory-Huggins-Cahn-Hilliard system [12],
Poisson-Nernst-Planck system [22], the porous medium equation by an energetic vari-
ational approach [13, 14], the reaction-diffusion system with detailed balance [21], etc.
This article reports the application of such a technique to the LL equation for the first
time.

Remark 5.4. For simplicity, we only consider the damping term in the convergence
analysis, as the PDE system formulated as (5.20). For the full LL Equation (2.4),
the convergence estimate may still go through, under a large damping parameter as-
sumption, combined with a technical requirement of k=O(h2); the details are left to
interested readers, for the sake of brevity. Of course, such a requirement only stands
for a theoretical difficulty, and this restrictive time step constraint is not needed in the
practical computation, as demonstrated in extensive numerical experiments.

Remark 5.5. A theoretical analysis of the IMEX-RK3 numerical algorithm, including
the linearized stability estimate and optimal rate convergence analysis, is expected to
be even more challenging, due to the complicated diffusion coefficient stencil in the RK
stages. This theoretical work will be studied in a forthcoming paper.

6. Conclusions

In this paper, we propose implicit-explicit Runge-Kutta numerical methods for solv-
ing the Landau-Lifshitz equation. By introducing an artificial damping term, IMEX-
RK methods only solve a few linear systems with constant coefficients and SPD struc-
tures, regardless of the damping parameter in a magnetic material. Accuracy, efficiency,
and the insensitive dependence on the artificial damping parameter of IMEX-RK2 and
IMEX-RK3 have been verified in both the 1-D and 3-D computations. Micromagnetics
simulations using the full Landau-Lifshitz equation are conducted, including three stable
structures and the first benchmark problem from NIST. Reasonable results are generated
by the IMEX-RK methods, in qualitative and quantitative agreements with available
results. In addition, the linearized stability estimate and optimal rate convergence anal-
ysis are presented for an alternate IMEX-RK2 numerical scheme, the SSP-IMEX-RK2
algorithm. This analysis has provided a theoretical evidence of the robust performance
of the IMEX-RK schemes.
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