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a b s t r a c t

In this paper we propose and analyze an energy stable numerical scheme for the Cahn–
Hilliard equation, with second order accuracy in time and the fourth order finite difference
approximation in space. In particular, the truncation error for the long stencil fourth
order finite difference approximation, over a uniform numerical grid with a periodic
boundary condition, is analyzed, via the help of discrete Fourier analysis instead of the
standard Taylor expansion. This in turn results in a reduced regularity requirement for
the test function. In the temporal approximation, we apply a second order BDF stencil,
combinedwith a second order extrapolation formula applied to the concave diffusion term,
as well as a second order artificial Douglas–Dupont regularization term, for the sake of
energy stability. As a result, the unique solvability, energy stability are established for
the proposed numerical scheme, and an optimal rate convergence analysis is derived in
the ℓ∞(0, T ; ℓ2) ∩ ℓ2(0, T ;H2

h ) norm. A few numerical experiments are presented, which
confirm the robustness and accuracy of the proposed scheme.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this article we consider an energy stable scheme for the Cahn–Hilliard equation, with second order temporal accuracy
and long stencil fourth order finite difference spatial approximation. For any φ ∈ H1(Ω), withΩ ⊂ Rd (d = 2 or d = 3), the
energy functional is given by (see [1] for a detailed derivation):

E(φ) =

∫
Ω

(
1
4
φ4

−
1
2
φ2

+
1
4

+
ε2

2
|∇φ|

2
)
dx, (1.1)

where the parameter ε controls the diffuse interface width. In turn, the Cahn–Hilliard equation is realized as the H−1

conserved gradient flow of the energy functional (1.1):

φt = ∆µ, µ := δφE = φ3
− φ − ε2∆φ, (1.2)
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where µ is the chemical potential and periodic boundary conditions are assumed. Subsequently, the energy dissipation law
follows from an inner product with (1.2) by µ: E ′(t) = −

∫
Ω

|∇µ|
2dx ≤ 0. Meanwhile, because it is constructed as an H−1

gradient flow, the equation is mass conservative:
∫
Ω
∂tφdx = 0.

The finite difference and finite element schemes to the CH equation have been extensively studied; see the related
Refs. [2–16], et cetera.Meanwhile, it is observed that,most finite differenceworks in the existing literature have been focused
on the standard second order centered difference approximation; among the finite element works, most computations
are based on either linear or quadratic polynomial elements. On the other hand, a fourth order and even more accurate
spatial discretization is highly desirable, for the sake of its ability to capture the more detailed structure with a reduced
computational cost. Of course, the spectral/pseudo-spectral approximation is one choice; see the related Refs. [17,18], etc.
However, the spectral/pseudo-spectral differentiation turns out to be a global operator in space, and this feature leads to
great challenges in the numerical implementations, especially in the case of an implicit treatment of nonlinear terms; and
also, spectral/pseudo-spectral differentiation itself is involved with O(Nd lnN) float point calculations, instead of O(Nd) scale
for the finite difference ones.

This article is concerned with fourth order finite difference numerical approximation to the Cahn–Hilliard equation,
with a theoretically justified energy stability and convergence. Among the existing fourth order finite difference works, it is
worthy ofmentioning [19], inwhich the authors considered a second order accurate in time, fourth order compact difference
scheme. The error estimate was derived, while the energy stability has not been theoretically proved. Similar works could
also be found in [20–22]. Meanwhile, we notice that, the compact difference approximation has always been involved with
an additional discrete Poisson-like operator, therefore one more Poisson solver has to be included in the computational
cost. Instead, if the long stencil fourth order finite difference is used in the numerical scheme, such an additional Poisson
solver could be saved. In addition, the truncation error for the fourth order finite difference approximation, over a uniform
numerical grid with a periodic boundary condition, is analyzed in this article. Instead of the classical maximum norm
estimate for the truncation error, based on the standard Taylor expansion for the test function, we provide a discrete ℓ2
estimate. As a result, the regularity requirement is reduced to an H6 bound for the test function, compared with the C6

bound in the classical approach. In the 1-D case, such an estimate could be derived with an application of Taylor expansion
in the integral form. In the 2-D and 3-D cases, the discrete and continuous Fourier expansions for the test function and its
higher order derivatives are applied to obtain the discrete ℓ2 estimate for the truncation error, in which both the eigenvalue
analysis and aliasing error control have to be considered.

In turn, we apply the long stencil fourth order difference discretization in space, combined with a second order
accurate, energy stable temporal algorithm. There have been extensive studies on the second order (in time) energy
stable numerical approach for the Cahn–Hilliard equation, based on the modified Crank–Nicolson version; see the related
Refs. [3,4,9,17,23,24]. As an alternate numerical approach with energy stability, a careful numerical experiment in a recent
finite element work [25] reveals that a modified backward differentiation formula (BDF) method could also preserve the
desired energy stability for the Cahn–Hilliard flow. Furthermore, since the nonlinear term in the BDF method has a stronger
convexity than the one in the Crank–Nicolson approach, a 20 to 25 percent improvement of the computational efficiency
is generally expected. In addition, due to the long stencil operators involved in the fourth order spatial discretization, such
an efficiency improvement is expected to be even more prominent. Consequently, we use the second order BDF concept to
derive second order temporal accuracy, but modified so that the concave diffusion term is treated explicitly. Such an explicit
treatment for the concave part of the chemical potential ensures the unique solvability of the scheme without sacrificing
energy stability. An additional term A∆t∆(φk+1

− φk) is added, which represents a second order Douglas–Dupont-type
regularization, and a careful calculation shows that energy stability is guaranteed, provided a mild condition A ≥

1
16 is

enforced. As a result of this energy stability, a uniform in time H1 bound for the numerical solution becomes available, with
the discrete H1 norm defined at an appropriate discrete level.

With such anH1
h bound at hand, we are able to derive a discrete ℓ6 bound for the numerical solution, uniform in time, with

the help of discrete Sobolev embedding. Such an embedding analysis could be derived from a straightforward calculation;
instead, a discrete Fourier analysis, combined with certain aliasing error estimate have to involved in the derivation. In turn,
such an ℓ6 estimate enables one to obtain an optimal rate (O(∆t2 + h4)) convergence analysis for the proposed numerical
scheme, in the ℓ∞(0, T ; ℓ2) ∩ ℓ2(0, T ;H2

h ) norm.
The outline of the paper is given as follows. In Section 2 we provide a discrete ℓ2 truncation error estimate for the long

stencil fourth order finite difference approximation over a uniform numerical grid. The fully discrete scheme is formulated
in Section 3, with the main theoretical results stated. The proof of these results is given by Section 4. The main numerical
results are presented in Section 5. Finally, some concluding remarks are made in Section 6.

2. The long stencil difference operator and the local truncation error estimate

The long stencil fourth order finite difference formula can be derived by the Taylor expansion for the test function. In
more detail, the fourth order approximations to the first and second order derivatives, over a uniform numerical grid, are
given by

D1
x,(4)fi = D̃x(1 −

h2

6
D2
x )fi =

fi−2 − 8fi−1 + 8fi+1 − fi+2

12h
= f ′(xi) + O(h4), (2.1)
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D2
x,(4)fi = D2

x (1 −
h2

12
D2
x )fi =

−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2

12h2

= f ′′(xi) + O(h4), (2.2)

where D̃x and D2
x are the standard centered difference approximation to the first and second order derivatives, respectively.

See the detailed derivations in the related Refs. [26–29], etc. These long stencil fourth order finite difference approximations
have been extensively applied to different types of partial differential equations (PDEs), such as incompressible Boussinesq
equation [30,31], three-dimensional geophysical fluid models [32,33], the Maxwell equation [34].

In the consistency analysis for these long stencil fourth order finite difference schemes, we denote a continuous function
f , with certain regularity assumption, to be the test function to demonstrate the accuracy order of the difference operators.
Note that the concept of such a test function is different from the corresponding notation in the finite element method. The
classical truncation error estimate implies that

∥τ1∥∞ ≤ Ch4
∥f ∥C5 , with (τ1)i = D1

x,(4)fi − f ′(xi), (2.3)

∥τ2∥∞ ≤ Ch4
∥f ∥C6 , with (τ2)i = D2

x,(4)fi − f ′′(xi), (2.4)

in which the Cm regularity of the test function is involved. Meanwhile, for most time-dependent PDEs, a max-norm bound
of the truncation error (in the ∥ · ∥∞ norm) is not necessary in the numerical analysis. Indeed, a discrete ℓ2 bound of the
truncation error is typically sufficient in the convergence analysis. Subsequently, a natural question arises: could a discrete
ℓ2 estimate be available for the truncation error associatedwith the fourth order finite difference approximation, which only
requires an Hm regularity for the test function?

This important issue is studied in this section. We begin with the analysis for the 1-D case.

2.1. A discrete ℓ2 truncation error estimate over a 1-D numerical grid

Consider a 1-D domainΩ = (0, L), a uniform grid xi = ih, with h = L/N∗, 0 ≤ i ≤ N∗
− 1. For any discrete grid function

g , which is evaluated at grid points xi, 0 ≤ i ≤ N∗
− 1, the discrete ℓ2 norm is introduced as

∥g∥
2
2 = h

N∗
−1∑

i=0

g2
i . (2.5)

Proposition 2.1. For f ∈ H6
per (Ω) :=

{
f ∈ H6(Ω) : f is periodic

}
, we have

∥τ∥2 ≤ Ch4
∥f ∥H6 , with τi = D2

x,(4)fi − f ′′(xi), (2.6)

in which the fourth order finite difference operator D2
x,(4) is given by (2.4).

Proof. An application of Taylor’s series in integral form shows that

fi+1 = fi + hf ′(xi) +
h2

2
f ′′(xi) +

h3

6
f ′′′(xi) +

h4

24
f (4)(xi) +

h5

120
f (5)(xi)

+

∫ xi+1

xi

f (6)(t)
120

(xi+1 − t)5dt, (2.7)

fi−1 = fi − hf ′(xi) +
h2

2
f ′′(xi) −

h3

6
f ′′′(xi) +

h4

24
f (4)(xi) −

h5

120
f (5)(xi)

+

∫ xi−1

xi

f (6)(t)
120

(xi−1 − t)5dt, (2.8)

fi+2 = fi + 2hf ′(xi) +
4h2

2
f ′′(xi) +

8h3

6
f ′′′(xi) +

16h4

24
f (4)(xi) +

32h5

120
f (5)(xi)

+

∫ xi+2

xi

f (6)(t)
120

(xi+2 − t)5dt, (2.9)

fi−2 = fi − 2hf ′(xi) +
4h2

2
f ′′(xi) −

8h3

6
f ′′′(xi) +

16h4

24
f (4)(xi) −

32h5

120
f (5)(xi)

+

∫ xi−2

xi

f (6)(t)
120

(xi−2 − t)5dt. (2.10)
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These expansions in turn yield that

τi = D2
x,(4)fi − f ′′(xi) =

−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2

12h2 − f ′′(xi)

=
1

1440h2

(
16
∫ xi+1

xi

f (6)(t)(xi+1 − t)5dt − 16
∫ xi

xi−1

f (6)(t)(xi−1 − t)5dt

−

∫ xi+2

xi

f (6)(t)(xi+2 − t)5dt +

∫ xi

xi−2

f (6)(t)(xi−2 − t)5dt
)
. (2.11)

Meanwhile, an application of Hölder’s inequality implies that⏐⏐⏐⏐∫ xi+1

xi

f (6)(t)(xi+1 − t)5dt
⏐⏐⏐⏐

≤
f (6)(t)

ℓ2(xi,xi+1)
·
(xi+1 − t)5


ℓ2(xi,xi+1)

=
1

√
11

h11/2
f (6)(t)

ℓ2(xi,xi+1)
, (2.12)⏐⏐⏐⏐⏐

∫ xi

xi−1

f (6)(t)(xi−1 − t)5dt

⏐⏐⏐⏐⏐ ≤
1

√
11

h11/2
f (6)(t)

ℓ2(xi−1,xi)
, (2.13)⏐⏐⏐⏐∫ xi+2

xi

f (6)(t)(xi+2 − t)5dt
⏐⏐⏐⏐ ≤

32
√
2

√
11

h11/2
f (6)(t)

ℓ2(xi,xi+2)
, (2.14)⏐⏐⏐⏐⏐

∫ xi

xi−2

f (6)(t)(xi−2 − t)5dt

⏐⏐⏐⏐⏐ ≤
32

√
2

√
11

h11/2
f (6)(t)

ℓ2(xi−2,xi)
. (2.15)

Its combination with (2.11) leads to

|τi| ≤
1 + 2

√
2

45
√
11

h7/2
f (6)(t)

ℓ2(xi−2,xi+2)
. (2.16)

In turn, a discrete ℓ2 estimate of the truncation error τ is obtained:

h
N∗

−1∑
i=0

|τi|
2

≤ Ch8
N∗

−1∑
i=0

f (6)(t)2
ℓ2(xi−2,xi+2)

≤ 4Ch8
f (6)(t)2

ℓ2(0,L) ,

i.e. ∥τ∥2 ≤ Ch4
∥f ∥H6(0,L) , (2.17)

in which the second step comes from the following obvious fact:
N∗

−1∑
i=0

f (6)(t)2
ℓ2(xi−2,xi+2)

≤ 4
f (6)(t)2

ℓ2(0,L) . (2.18)

Proposition 2.1 is proven. □

Remark 2.2. A detailed calculation reveals that the standard Taylor expansion results in the classical truncation error
estimate as (2.4), with a C6 regularity requirement for the test function; while the Taylor expansion in the integral form
gives an improved truncation error estimate (2.6), in which only an H6 regularity requirement is set for the test function.

Remark 2.3. For the long stencil fourth order finite difference approximation (2.1) to the first order derivative, the following
discrete ℓ2 truncation error estimate can be derived in a similar manner:

∥τ1∥2 ≤ Ch4
∥f ∥H5 , with (τ1)i = D1

x,(4)fi − f ′(xi). (2.19)

The details are skipped for brevity.

2.2. The 2-D and 3-D analyses

Consider a 2-D domainΩ = (0, L)2 with a uniform grid (xi, yj) = (ih, jh), h = L/N∗, 0 ≤ i, j ≤ 2N , and periodic boundary
conditions in both directions. For simplicity of presentation in the Fourier analysis, it is assumed that N∗

= 2N + 1. We also
make a 2-D extension of the fourth order long stencil finite difference operator as∆h,(4) = D2

x,(4) + D2
y,(4):

D2
x,(4)fi,j = D2

x (1 −
h2

12
D2
x )fi,j =

−fi−2,j + 16fi−1,j − 30fi,j + 16fi+1,j − fi+2,j

12h2 , (2.20)



578 K. Cheng, W. Feng, C. Wang et al. / Journal of Computational and Applied Mathematics 362 (2019) 574–595

D2
y,(4)fi,j = D2

y(1 −
h2

12
D2
y)fi,j =

−fi,j−2 + 16fi,j−1 − 30fi,j + 16fi,j+1 − fi,j+2

12h2 . (2.21)

In addition, for any discrete grid function g , which is evaluated at 2-D grid points (xi, yj), 0 ≤ i, j ≤ N∗
− 1, the discrete ℓ2

norm is defined as

∥g∥
2
2 = h2

N∗
−1∑

i,j=0

g2
i,j. (2.22)

Proposition 2.4. For f ∈ H6
per (Ω), we have

∥τ∥2 ≤ Ch4
∥f ∥H6 , with τi,j = ∆h,(4)fi,j − (∆f )(xi, yj), (2.23)

in which C only depends on L.

Remark 2.5. Other than the long stencil difference operator (2.2), the compact fourth order difference approximations have
also been widely studied in the existing literature [20–22]

∆ =
∆h +

h2
6 D2

xD
2
y

1 +
h2
12∆h

+ O(h4), (2.24)

which comes from a standard Taylor expansion:

(∆h +
h2

6
D2
xD

2
y)f = ∆f +

h2

12
∆2f + O(h4). (2.25)

On the other hand, whenever a time-dependent problem is considered, with ∆f = g , one has to denote an intermediate
variable g = (1+

h2
12∆h)g at the numerical grid. In turn, two Poisson-like equations have to be solved at the numerical level:

(∆h +
h2
6 D2

xD
2
y)f = g to obtain f , and (1 +

h2
12∆h)g = g to obtain g , since both f and g are usually involved in the original

PDE, in particular for the nonlinear problems. In contrast, for the long stencil difference operator (2.2), we only need to solve
one Poisson-like equation (D2

x,(4) +D2
y,(4))f = g . And also, this equation could be very efficiently solved via an FFT-based fact

algorithm, since the long-stencil difference operator shares exact the same eigenvectors as the standard Laplacian operator
∆h, with only a minor modification in the corresponding eigenvalues.

2.3. Review of Fourier series and interpolation

For f (x, y) ∈ L2(Ω),Ω = (0, L)2, with Fourier series

f (x, y) =

∞∑
k,l=−∞

f̂k,le2π i(kx+ly)/L, with f̂k,l =

∫
Ω

f (x, y)e−2π i(kx+ly)/Ldxdy, (2.26)

its truncated series is defined as the projection onto the space BN of trigonometric polynomials in x and y of degree up to N ,
given by

PN f (x, y) =

N∑
k,l=−N

f̂k,le2π i(kx+ly)/L. (2.27)

Meanwhile, an interpolation operator IN is introduced if one wants an approximation which matches the function at a
given set of points. Given a uniform numerical grid with (2N + 1) points in each dimension and a grid function f, where
fi,j = f (xi, yj), the Fourier interpolation of the function is defined by

IN f (x, y) =

N∑
k,l=−N

(f̂ Nc )k,le2π i(kx+ly)/L, (2.28)

where the (2N + 1)2 pseudospectral coefficients (f̂ Nc )k,l are be computed based on the interpolation requirement

f (xi, yj) = IN f (xi, yj)

at the (2N+1)2 equidistant points [35–37]. Note that these collocation coefficients can be efficiently computed using the fast
Fourier transform (FFT). Also, observe that these interpolation coefficients are not equal to the actual Fourier coefficients. The
difference between them is known as the aliasing error. In general, PN f (x, y) ̸= IN f (x, y), and even PN f (xi, yj) ̸= IN f (xi, yj),
except of course in the case that f ∈ BN .
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The consistency and accuracy of the Fourier projection and interpolation have been well established in the existing
literature. As long as f ∈ Hm

per (Ω), the convergence of the derivatives of the projection and interpolation is given by

∥∂α f − ∂αPN f ∥ ≤ C∥f (m)
∥hm−|α|, for 0 ≤ |α| ≤ m,

∥∂α f − ∂αIN f ∥ ≤ C∥f ∥Hmhm−|α|, for 0 ≤ |α| ≤ m, m >
d
2
, (2.29)

where ∥ · ∥ denotes the standard ℓ2 norm and d is the dimension. For more details, see the discussion of approximation
theory by Canuto and Quarteroni [38] .

2.4. Proof of Proposition 2.4

Assume that f ∈ H6
per has a Fourier expansion

f (x, y) =

∞∑
k,l=−∞

f̂k,l exp (2π i(kx + ly)/L) . (2.30)

The Parseval equality shows that

∥f ∥2
2 = L2

∞∑
k,l=−∞

⏐⏐⏐f̂k,l⏐⏐⏐2. (2.31)

Similarly, for the derivatives, we have

∆m0 f (x, y) =

∞∑
k,l=−∞

(
−(

2π
L

)2(k2 + l2)
)m0

f̂k,l exp (2π i(kx + ly)/L) , (2.32)

form0 ≥ 1, and the corresponding Parseval equality gives∆m0 f
2
2 = L2

∞∑
k,l=−∞

(
4π2

L2
(k2 + l2)

)2m0 ⏐⏐⏐f̂k,l⏐⏐⏐2. (2.33)

In particular, we see that

∥∆f ∥2
2 = L2

∞∑
k,l=−∞

(
4π2

L2
(k2 + l2)

)2⏐⏐⏐f̂k,l⏐⏐⏐2,
∆3f

2
2 = L2

∞∑
k,l=−∞

(
4π2

L2
(k2 + l2)

)6⏐⏐⏐f̂k,l⏐⏐⏐2. (2.34)

We also note that for any (periodic) discrete grid function over (xi, yj), 0 ≤ i, j ≤ 2N , with a discrete Fourier expansion

gi,j =

N∑
k,l=−N

ĝk,l exp
(
2π i(kxi + lyj)/L

)
, (2.35)

the corresponding discrete Parseval equality is valid:

h2
2N∑

i,j=0

|gi,j|2 = L2
N∑

k,l=−N

⏐⏐ĝk,l⏐⏐2. (2.36)

Meanwhile, we observe that the discrete Fourier expansion of f over the uniform grid (xi, yj), 0 ≤ i, j ≤ 2N , is not the
projection of (2.30), due to the appearance of aliasing errors. A more careful calculation reveals that

fi,j =

N∑
k,l=−N

˜̂f k,l exp
(
2π i(kxi + lyj)/L

)
, with ˜̂f k,l =

∞∑
k1,l1=−∞

f̂k+k1N∗,l+l1N∗ . (2.37)

(See the related derivations in [39].) In turn, taking the centered difference D2
x,(4), D

2
y,(4) on f and making use of the fact that

exp
(
2π i(kxi + lyj)/L

)
is also an eigenfunction of the discrete operator∆h,(4) lead to the following formulas:

∆h,(4)fi,j =

N∑
k,l=−N

(
λkx,(4) + λly,(4)

) ˜̂f k,l exp
(
2π i(kxi + lyj)/L

)
, (2.38)
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where

λkx,(4) = λk −
h2

12
λ2k, λly,(4) = λl −

h2

12
λ2l , λk =

−4sin2(kπh/L)
h2 , λl =

−4sin2(lπh/L)
h2 . (2.39)

Moreover, a differentiation of the Fourier expansion (2.30) leads to

∆f (x, y) =

∞∑
k,l=−∞

(
−4π2

L2
(k2 + l2)

)
f̂k,l exp (2π i(kx + ly)/L) , (2.40)

and its interpolation at (xi, yj) gives

(∆f )i,j =

N∑
k,l=−N

˜̂f
(2)

k,l exp
(
2π i(kxi + lyj)/L

)
, (2.41)

with

˜̂f
(2)

k,l =

∞∑
k1,l1=−∞

(
−4(k + k1N∗)2π2

− 4(l + l1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗ . (2.42)

Therefore, the difference between (2.38) and (2.42) gives

τi,j =

N∑
k=−N

((
λkx,(4) + λly,(4)

) ˜̂f k,l −
˜̂f
(2)

k,l

)
exp

(
2π i(kxi + lyj)/L

)
. (2.43)

As a result, an application of discrete Parseval equality yields

∥τ∥2
2 = L2

N∑
k,l=−N

⏐⏐⏐⏐(λkx,(4) + λly,(4)
) ˜̂f k,l −

˜̂f
(2)

k,l

⏐⏐⏐⏐2. (2.44)

Moreover, a detailed comparison between (2.37) and (2.42) results in(
λkx,(4) + λly,(4)

) ˜̂f k,l −
˜̂f
(2)

k,l =

((
λkx,(4) +

4k2π2

L2

)
+

(
λly,(4) +

4l2π2

L2

))
f̂k,l

+

∞∑
k1,l1=−∞

(k1,l1)̸=(0,0)

{(
λkx,(4) +

4(k + k1N∗)2π2

L2

)

+

(
λly,(4) +

4(l + l1N∗)2π2

L2

)}
f̂k+k1N∗,l+l1N∗ . (2.45)

The estimates of the above terms are given by the following lemmas. The proofs will be provided in the Appendix.

Lemma 2.6. We have, for some C1 > 0,⏐⏐⏐⏐λkx,(4) +
4k2π2

L2

⏐⏐⏐⏐ ≤ C1h4
(
2kπ
L

)6

,

⏐⏐⏐⏐λly,(4) +
4l2π2

L2

⏐⏐⏐⏐ ≤ C1h4
(
2lπ
L

)6

, ∀ 0 ≤ k, l ≤ N. (2.46)

Lemma 2.7. We have

N∑
k,l=−N

⏐⏐⏐⏐⏐⏐⏐⏐
∞∑

k1,l1=−∞

(k1,l1)̸=(0,0)

(
λkx,(4) +

4(k + k1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ C2h8
∥f ∥2

H6 ,

N∑
k,l=−N

⏐⏐⏐⏐⏐⏐⏐⏐
∞∑

k1,l1=−∞

(k1,l1)̸=(0,0)

(
λly,(4) +

4(l + l1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐⏐⏐⏐⏐
2

≤ C2h8
∥f ∥2

H6 , (2.47)

where C2 > 0 is a constant that only depends on L.

A direct consequence of Lemma 2.6 shows that
N∑

k,l=−N

(
λkx,(4) +

4k2π2

L2

)2⏐⏐⏐f̂k,l⏐⏐⏐2 ≤

N∑
k,l=−N

C2
1h

8
(
2kπ
L

)12⏐⏐⏐f̂k,l⏐⏐⏐2 ≤ C̃1h8
∥f ∥2

H6 ,
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N∑
k,l=−N

(
λly,(4) +

4l2π2

L2

)2⏐⏐⏐f̂k,l⏐⏐⏐2 ≤

N∑
k,l=−N

C2
1h

8
(
2lπ
L

)12⏐⏐⏐f̂k,l⏐⏐⏐2 ≤ C̃1h8
∥f ∥2

H6 , (2.48)

with C̃1 =
C2
1
L2
, in which we used the estimate (2.34)

N∑
k,l=−N

((
2kπ
L

)12

+

(
2lπ
L

)12
) ⏐⏐⏐f̂k,l⏐⏐⏐2 ≤

∞∑
k,l=−∞

((
2kπ
L

)12

+

(
2lπ
L

)12
) ⏐⏐⏐f̂k,l⏐⏐⏐2 ≤

1
L2
∆3f

2 . (2.49)

A combination of (2.45), (2.48) and Lemma 2.7 indicates that
N∑

k,l=−N

⏐⏐⏐⏐(λkx,(4) + λly,(4)
) ˜̂f k,l −

˜̂f
(2)

k,l

⏐⏐⏐⏐2

≤ 4
N∑

k,l=−N

{((
λkx,(4) +

4k2π2

L2

)2

+

(
λly,(4) +

4l2π2

L2

)2
) ⏐⏐⏐f̂k,l⏐⏐⏐2

+

⏐⏐⏐⏐⏐⏐⏐⏐
∞∑

k1,l1=−∞

(k1,l1)̸=(0,0)

(
λkx,(4) +

4(k + k1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐⏐⏐⏐⏐
2

+

⏐⏐⏐⏐⏐⏐⏐⏐
∞∑

k1,l1=−∞

(k1,l1)̸=(0,0)

(
λly,(4) +

4(l + l1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐⏐⏐⏐⏐
2}

≤ C̃2h8
∥f ∥2

H6 , (2.50)

where C̃2 = 8C̃1 + 8C2. Observe that the Cauchy inequality

|a1 + a2 + a3 + a4|2 ≤ 4(|a1|2 + |a2|2 + |a3|2 + |a4|2)

was applied in the first step.
Finally, a substitution of (2.50) into (2.44) results in (2.23), with the constant C given by

C =

√
C̃2L. (2.51)

This completes the proof of Proposition 2.4.

2.5. An extension to a 3-D domain

Similarly, consider a 3-D domain Ω = (0, L)3 with a uniform grid (xi, yj, zk) = (ih, jh, kh), h = L/N∗, (N∗
= 2N + 1),

0 ≤ i, j, k ≤ 2N , and periodic boundary conditions in both x, y and z directions. The 3-D extension of the fourth order long
stencil finite difference operator as∆h,(4) = D2

x,(4) + D2
y,(4) + D2

z,(4) can be defined in the same way as (2.20)–(2.21). For any
3-D discrete grid function g , at grid points (xi, yj, zk), 0 ≤ i, j, k ≤ N∗

− 1, the discrete ℓ2 norm is given by

∥g∥2 =

(
h3

N∗
−1∑

i,j,k=0

g2
i,j,k

) 1
2
. (2.52)

The discrete ℓ2 truncation error estimate can be performed in a similar fashion as in the 2-D case. Both the continuous
Fourier expansion for the test function and the discrete expansions of its higher order derivatives interpolated at the
numerical grid points have to be analyzed. Lemma 2.6 is still valid, which provides a detailed eigenvalue comparison and
analysis between∆h,(4) and∆. Furthermore, Lemma 2.7 can be established in a similar way, and the convergence property
of the following triple series plays a key role:

∞∑
k1,l1,m1=−∞

(k1,l1,m1)̸=(0,0,0)

1(
(|k1| −

1
2 )

2 + (|l1| −
1
2 )

2 + (|m1| −
1
2 )

2
)β0 , (2.53)

with β0 = 2 is convergent, where β0 =
K0
2 = 2, with the accuracy order K0 = 4.

As a result, the following theorem could be established. Its detailed proof is skipped for brevity.
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Proposition 2.8. For f ∈ H6
per (Ω), withΩ = (0, L)3, we have

∥τ∥2 ≤ Ch4
∥f ∥H6 , with τi,j,k = ∆h,(4)fi,j,k − (∆f )(xi, yj, zk), (2.54)

in which C only depends on L.

Remark 2.9. For simplicity of presentation, we use periodic boundary condition for the test function and its discrete version.
On the other hand, if other type physical boundary conditions, such as homogeneous Neumann boundary condition is
considered, the corresponding analysis for the long stencil difference approximation (2.1), (2.2), could be derived in the same
manner, under the assumption of the same Neumann boundary condition for its Laplacian operator. Such an assumption is
valid in many physically interesting phase field models, such as the Cahn–Hilliard equation in the next section. The details
of these estimates will be left in the future works.

3. The numerical scheme for the Cahn–Hilliard equation

For simplicity, we focus our attention on a 2-D domain. The extension to the 3-D case is expected to be straightforward.

3.1. The spatial discretization and the related notations

As defined in the previous section, it is assumed that Ω = (0, L)2. We write L = m · h, wherem is a positive integer. The
parameter h =

L
m is called the mesh or grid spacing. We define the following uniform, infinite grid with grid spacing h > 0:

E := {xi | i ∈ Z}, with xi := (i − 1
2 )h. Consider the following 2-D discrete periodic function spaces:

Vper := {ν : E × E → R | νi,j = νi+αm,j+βm, ∀ i, j, α, β ∈ Z}.

We also define the mean zero space

V̊per :=

⎧⎨⎩ν ∈ Vper

⏐⏐⏐⏐⏐ν :=
h2

|Ω|

m∑
i,j=1

νi,j = 0

⎫⎬⎭ .
The 4th order 2-D discrete Laplacian,∆h,(4) : Vper → Vper, is given by

∆h,(4) := D2
x,(4) + D2

y,(4).

Now we define the following discrete inner products:

(ν, ξ )2 := h2
m∑

i,j=1

νi,jψi,j, ν, ξ ∈ Vper.

Suppose that ζ ∈ V̊per, then there is a unique solution Th[ζ ] ∈ V̊per such that −∆h,(4)Th[ζ ] = ζ . We often write, in this case,
Th[ζ ] = −∆−1

h,(4)ζ . The discrete analog of the H̊−1
per inner product is defined as

(ζ , ξ )−1 := (ζ , Th[ξ ])2 = (Th[ζ ], ξ)2, ζ , ξ ∈ V̊per.

With the above machinery, if ν ∈ V̊per, then ∥ν∥2
−1,h = (ν, ν)−1. If ν ∈ Vper, then ∥ν∥2

2 := (ν, ν)2; ∥ν∥p
p := (|ν|p, 1)2

(1 ≤ p < ∞), and ∥ν∥∞ := max 1≤i≤m
1≤j≤n

⏐⏐νi,j⏐⏐.
For φ,ψ ∈ V̊per, the following summation by parts formulas are available:

−(φ,∆h,(4)ψ)2 = −(∆h,(4)φ,ψ)2 = (∇hφ,∇hψ)2 +
h2

12
(∆hφ,∆hψ)2, (3.1)

(Thφ, (−∆h,(4))ψ)2 = (φ,ψ)2. (3.2)

In turn, we denote the following norm for the discrete gradient, corresponding to the long stencil difference:

∥∇h,(4)f ∥2
2 = ∥∇hf ∥2

2 +
h2

12
∥∆hf ∥2

2. (3.3)

In addition, the discrete ∥ · ∥H1
h
and ∥ · ∥H2

h
norms are given by

∥f ∥2
H1
h

:= ∥f ∥2
2 + ∥∇hf ∥2

2 , ∥f ∥2
H2
h

:= ∥f ∥2
H1
h

+ ∥∆hφ∥
2
2 . (3.4)

For any periodic grid function φ, the discrete energy is introduced as

Eh(φ) =
1
4
∥φ∥

4
4 −

1
2
∥φ∥

2
2 +

1
4
|Ω| +

ε2

2
∥∇h,(4)φ∥

2
2. (3.5)
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The following result, a discrete Sobolev embedding from H1
h to ℓ6, could be derived in the same manner as Lemma 2.1

in [17], and Lemma 5.1 in [40]. The details are left to interested readers; also see the related analyses in [41].

Lemma 3.1. For any periodic grid function f , we have

∥f ∥6 ≤ C(∥f ∥2 + ∥∇hf ∥2), (3.6)

for some constant C only dependent onΩ .

The inequalities in the next lemma will play an important role in the energy stability and optimal rate convergence
analysis. A direct calculation is not able to derive these inequalities; instead, a discrete Fourier analysis has to be applied in
the derivation; the details will be left in Appendix A.

Lemma 3.2. We have

∥f ∥2
2 ≤ ∥f ∥−1,h · ∥∇h,(4)f ∥2, ∀f ∈ V̊per, (3.7)

∥∆hf ∥2 ≤ ∥∆h,(4)f ∥2, ∀f ∈ Vper. (3.8)

3.2. The fully discrete scheme and the main theoretical results

Amodified second order BDF temporal discretization is applied to the Cahn–Hilliard equation, combinedwith long stencil
fourth order difference approximation in space:

3
2φ

k+1
− 2φk

+
1
2φ

k−1

∆t
= ∆h,(4)µ

k+1
h , (3.9)

µk+1
h = (φk+1)3 − 2φk

+ φk−1
− ε2∆h,(4)φ

k+1
− A∆t∆h,(4)(φk+1

− φk). (3.10)

In comparison with the standard BDF algorithm, the concave diffusion term is updated explicitly, for the sake of unique
solvability. In addition, a second order Douglas–Dupont-type regularization term is added in the chemical potential. Similar
ideas could be found in [25], with the finite element approximation in space, and [41], inwhich the epitaxial thin film growth
model is analyzed.

Remark 3.3. For the rectangular domains considered in this article, other than the fourth order finite difference algorithm,
the implementation of higher order finite element method is also feasible, while with more involved details. The use of
C0-cubic elements for φ and the chemical potential would be relatively straightforward, and the fourth order numerical
accuracy in space could be carefully obtained, with at least H4 regularity assumption for φ, φt and φtt . On the other hand,
most computational challenges in this approach are focused on the numerical evaluation of the integrals for the nonlinear
terms, since one would have to develop a quadrature rule to handle the nonlinear integrals. In addition, one could also do
various cross-product finite element spaces with C1-cubic elements or, again, just C0-cubic elements.

We denoteΦ as the exact solution for (1.2), and the initial value is taken as φ0
i,j = Φ(xi, yj, t = 0). In addition, it is noticed

that (3.9)–(3.10) is a two-step numerical method, so that a ‘‘ghost’’ point extrapolation for φ−1 is needed. To preserve the
second order accuracy in time, we apply the following approximation:

φ−1
= φ0

−∆t∆h,(4)µ
0
h, with µ0

h := (φ0)3 − φ0
− ε2∆h,(4)φ

0. (3.11)

A careful Taylor expansion indicates an O(∆t2 + h4) accuracy for such an approximation:

∥φ−1
−Φ−1

∥2 ≤ C(∆t2 + h4). (3.12)

Theorem 3.4. Given φk, φk−1
∈ Vper, with φk = φk−1, there exists a unique solution φk+1

∈ Vper for the numerical scheme (3.9)–
(3.10). And also, this scheme is mass conservative, i.e., φk ≡ φ0 := β0, for any k ≥ 0.

Theorem 3.5. For k ≥ 1, we introduce

Eh(φk+1, φk) := Eh(φk+1) +
1

4∆t
∥φk+1

− φk
∥
2
−1,h +

1
2
∥φk+1

− φk
∥
2
2. (3.13)

For A ≥
1
16 , a modified energy-decay property is available for the numerical scheme (3.9)–(3.10):

Eh(φk+1, φk) ≤ Eh(φk, φk−1). (3.14)
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Remark 3.6. The energy stability for a gradient flow has always played an essential role in the accuracy of long time
numerical simulation. Originated from the pioneering Refs. [5,42], the related works could also be found for many related
physical models, such as the phase field crystal (PFC) equation and the modified version [43–47]; epitaxial thin film
growth models [48–51]; non-local gradient model [52–54]; the Cahn–Hilliard model coupled with fluid flow [55–59]; etc.
Meanwhile, most of these works are associated with either the second order centered difference or finite element spatial
approximations; this article is the first work to justify the energy stability for a fourth order finite difference scheme,
combined with a second order temporal accuracy.

Remark 3.7. The pioneering numerical algorithm of second order accurate (in time), energy stable scheme for the Cahn–
Hilliard equation could be found in the work of Du & Nicolaides [23], with many subsequent follow-ups. Such a numerical
approach is based on the standard Crank–Nicolson approximation,with a slightmodification in the nonlinear approximation.
One challenge associated with this numerical scheme is the theoretical justification of the unique solvability, which comes
from the Crank–Nicolson approximation to the concave diffusion term. In more details, the unique solvability for this
numerical scheme is ensured under a time step constraint: ∆t ≤ Ch2, because of the implicit treatment of the concave
term. A few more recent works [9,17] have used a second order explicit extrapolation formula for the concave term, so
that the unique solvability and energy stability could be both satisfied. Another computational challenge in the numerical
implementation of the scheme reported in [23] comes from a special quadrature rule needed in the nonlinear integration,
which is associated with its Galerkin feature. In comparison, the finite difference implementation of the nonlinear terms
in (3.9)–(3.10) is more straightforward, due to its collocation feature.

As a direct consequence of the energy stability, a uniform in time H1
h bound for the numerical solution is given as follows.

Corollary 3.8. Suppose that the initial data are sufficiently regular so that

Eh(φ0) +
∆t
4

∥∇h,(4)µ
0
h∥

2
2 +

∆t2

2
∥∆h,(4)µ

0
h∥

2
2 ≤ C̃0,

for some C̃0 that is independent of h, and A ≥
1
16 . Then we have the following uniform (in time) H1

h bound for the numerical
solution:φm


H1
h

≤ C̃1, ∀m ≥ 1, (3.15)

in which C̃1 only depends onΩ , ε and C̃0, independent on h,∆t and final time.

With an initial data with sufficient regularity, we could assume that the exact solution has regularity of class R:

Φ ∈ R := H3(0, T ; C0) ∩ H2(0, T ;H4) ∩ L∞(0, T ;H8). (3.16)

Theorem 3.9. Given initial data Φ0 ∈ H8
per(Ω), suppose the exact solution for Cahn–Hilliard equation (1.2) is of regularity class

R. Then, provided∆t and h are sufficiently small, for all positive integers n, such that n∆t ≤ T , we have

∥Φn
− φn

∥2 + (ε2∆t
n∑

m=1

∥∆h(Φm
− φm)∥2

2)
1/2

≤ C(∆t2 + h4), (3.17)

where C > 0 is independent of ∆t and h.

4. The detailed proof

4.1. Proof of Theorem 3.4: unique solvability

Proof. We see that the scheme (3.9)–(3.10) can be rewritten as

Nh[φ] = f , (4.1)

with Nh[φ] := −∆−1
h,(4)

(
3
2
φ − 2φk

+
1
2
φk−1

)
+∆tφ3

−∆t(A∆t + ε2)∆h,(4)φ,

f := −2∆tφk
+∆tφk−1

+ A∆t2∆h,(4)φ
k.

Meanwhile, the nonlinear equation (4.1) can be recast as a minimization problem for the following discrete energy
functional:

Fh[φ] :=
1
3

32φ − 2φk
+

1
2
φk−1

2
−1,h

+
∆t
4

∥φ∥
4
4 +

∆t
2

(A∆t + ε2)
∇h,(4)φ

2
2 − (f , φ)2, (4.2)
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for anyφ ∈ Vper. In turn, the strong convexity of Fh (in terms ofφ), over the hyperplane of φ̄ = β0, implies a unique numerical
solution for (3.9)–(3.10).

By taking a discrete summation of (3.9), and making use of the fact that∆h,(4)µ
k+1
h = 0, as well as the mass conservation

of the previous time steps: φk = φk−1 = β0, we are able to conclude that φk+1 = β0, for any k ≥ 0. □

4.2. Proof of Theorem 3.5: energy stability

Proof. Since φk+1
− φk

∈ V̊per, we take a discrete inner product with (3.9) by (−∆h,(4))−1(φk+1
− φk), with the following

inequalities derived:(
3
2φ

k+1
− 2φk

+
1
2φ

k−1

2∆t
, (−∆h,(4))−1(φk+1

− φk)

)
2

=
1
∆t

(
3
2

φk+1
− φk

2
−1,h −

1
2
(φk

− φk−1, φk+1
− φk)−1

)
≥

1
∆t

(
5
4

φk+1
− φk

2
−1,h −

1
4

φk
− φk−1

2
−1,h

)
, (4.3)(

−∆h,(4)((φk+1)3), (−∆h,(4))−1(φk+1
− φk)

)
2

=
(
(φk+1)3, φk+1

− φk)
2 ≥

1
4
(∥φk+1

∥
4
4 − ∥φk

∥
4
4), (4.4)(

∆2
h,(4)φ

k+1, (−∆h,(4))−1(φk+1
− φk)

)
2

=
(
−∆h,(4)φ

k+1, φk+1
− φk)

2

=
1
2

(
∥∇h,(4)φ

k+1
∥
2
− ∥∇h,(4)φ

k
∥
2
+ ∥∇h,(4)(φk+1

− φk)∥2) , (4.5)

∆t
(
∆2

h,(4)(φ
k+1

− φk), (−∆h,(4))−1(φk+1
− φk)

)
2

= ∆t∥∇h,(4)(φk+1
− φk)∥2, (4.6)(

∆h,(4)(2φk
− φk−1), (−∆h,(4))−1(φk+1

− φk)
)
2 = −

(
2φk

− φk−1, φk+1
− φk)

2

≥ −
1
2

(
∥φk+1

∥
2
2 − ∥φk

∥
2
2

)
−

1
2
∥φk

− φk−1
∥
2
2. (4.7)

Meanwhile, an application of Cauchy inequality indicates the following estimate:
1
∆t

φk+1
− φk

2
−1,h + A∆t∥∇h,(4)(φk+1

− φk)∥2
2

≥ 2A1/2
φn+1

− φn


−1,h · ∥∇h,(4)(φn+1
− φn)∥2 ≥ 2A1/2

∥φn+1
− φn

∥
2
2, (4.8)

in which (3.7) (in Lemma 3.2) has been used in the second step. In turn, a combination of (4.3)–(4.7) and (4.8) yields

Eh(φk+1) − Eh(φk) +
1

4∆t

(
∥φk+1

− φk
∥
2
−1,h − ∥φk

− φk−1
∥
2
−1,h

)
+

1
2

(
∥φn+1

− φn
∥
2
2 − ∥φn

− φn−1
∥
2
2

)
≤ (−2A1/2

+
1
2
)∥φn+1

− φn
∥
2
2 ≤ 0, if A ≥

1
16
. (4.9)

Then we arrive at (3.14), provided that A ≥
1
16 . This completes the proof of Theorem 3.5. □

4.3. Proof of Corollary 3.8: uniform in time H1
h bound

Proof. As a result of (3.14), the following energy bound is available:

Eh(φm) ≤ Eh(φm, φm−1) ≤ Eh(φ0, φ−1) = Eh(φ0) +
1

4∆t
∥φ0

− φ−1
∥
2
−1,h +

1
2
∥φ0

− φ−1
∥
2
2

= Eh(φ0) +
∆t
4

∥∇h,(4)µ
0
h∥

2
2 +

∆t2

2
∥∆h,(4)µ

0
h∥

2
2 ≤ C̃0, ∀m ≥ 1. (4.10)

On the other hand, the point-wise quadratic inequality, 1
8φ

4
−

1
2φ

2
≥ −

1
2 , implies that

1
8
∥φm

∥
4
4 −

1
2
∥φm

∥
2
2 ≥ −

1
2
|Ω|. (4.11)

Its substitution into (4.10) yields

1
2
∥φm

∥
2
2 +

ε2

2
∥∇h,(4)φ

m
∥
2
2 ≤ C̃0 +

3
4
|Ω|, so that ∥φm

∥
2
2 + ∥∇h,(4)φ

m
∥
2
2 ≤ 2ε−2(C̃0 +

3
4
|Ω|). (4.12)
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In turn, we arrive at

∥φm
∥
2
H1
h

≤ ∥φm
∥
2
2 + ∥∇hφ

m
∥
2
2 ≤ ∥φm

∥
2
2 + ∥∇h,(4)φ

m
∥
2
2 ≤ 2ε−2(C̃0 +

3
4
|Ω|),

so that ∥φm
∥H1

h
≤ ε−1

(
2(C̃0 +

3
4
|Ω|)

)1/2
:= C̃1, ∀m ≥ 1, (4.13)

in which the second step comes from an obvious fact that ∥∇hφ
m
∥2 ≤ ∥∇h,(4)φ

m
∥2. This completes the proof of Corol-

lary 3.8. □

Remark 4.1. As a combination of the uniform in time H1
h bound (3.15) and the discrete Sobolev embedding inequality (3.6),

we arrive at a uniform in time ℓ6 estimate for the numerical solution:

∥φm
∥6 ≤ CC̃1, ∀m ≥ 1. (4.14)

This estimate will be useful in the convergence analysis presented below.

4.4. Proof of Theorem 3.9: the ℓ2(0, T ; ℓ2) ∩ ℓ2(0, T ;H2
h ) convergence analysis

Before the ℓ2(0, T ; ℓ2) ∩ ℓ2(0, T ;H2
h ) convergence analysis, we recall a modified version of discrete Gronwall inequality,

excerpted from [4]; this result will be used in the convergence estimate, due to the 2nd order BDF stencil.

Lemma 4.2 ([4]). Fix T > 0. Let M be a positive integer, with∆t ≤
T
M . Suppose {am}

M
m=0, {bm}

M
m=0 and {cm}

M−1
m=0 are non-negative

sequences such that ∆t
∑M−1

m=0 cm ≤ D1, with D1 independent of ∆t and M. Suppose that, for all ∆t > 0 and for some constant
0 < α < 1,

aℓ +∆t
ℓ∑

m=0

bm ≤ D2 +∆t
ℓ−1∑
m=0

cm
m∑
j=0

αm−jaj, ∀ 1 ≤ ℓ ≤ M, (4.15)

where D2 > 0 is a constant independent of ∆t and M. Then, for all∆t > 0,

aℓ +∆t
ℓ∑

m=0

bm ≤ (D2 + a0D1) exp
(

D1

1 − α

)
, ∀ 1 ≤ ℓ ≤ M. (4.16)

Proof. ForΦ ∈ R, a careful consistency analysis indicates the following truncation error estimate:
3
2Φ

k+1
− 2Φk

+
1
2Φ

k−1

∆t
= ∆h,(4)

(
(Φk+1)3 − 2Φk

+Φk−1
− ε2∆h,(4)Φ

k+1

− A∆t∆h,(4)(Φk+1
−Φk)

)
+ τ k+1, (4.17)

with ∥τ k+1
∥2 ≤ C(∆t2 + h4). The derivation of (4.17) is accomplished with the help of Proposition 2.4 and other related

estimates; the details are left to interested readers.
The numerical error function is defined at a point-wise level:

φ̃k
:= Φk

− φk, ∀m ≥ 0. (4.18)

In turn, subtracting the numerical scheme (3.9)–(3.10) from (4.17) gives
3
2 φ̃

k+1
− 2φ̃k

+
1
2 φ̃

k−1

∆t
= ∆h,(4)

(
NL(Φk+1, φk+1) − 2φ̃k

+ φ̃k−1
− ε2∆h,(4)φ̃

k+1

− A∆t∆h,(4)(φ̃k+1
− φ̃k)

)
+ τ k+1, (4.19)

with NL(Φk+1, φk+1) = ((Φk+1)2 +Φk+1φk+1
+ (φk+1)2)φ̃k+1. (4.20)

Taking a discrete inner product with (4.19)–(4.20) by φ̃k+1, with a repeated application of summation by parts, we
get (3

2
φ̃k+1

− 2φ̃k
+

1
2
φ̃k−1, φ̃k+1

)
2
+ ε2∆t∥∆h,(4)φ̃

k+1
∥
2
2 + A∆t2

(
∆h,(4)(φ̃k+1

− φ̃k),∆h,(4)φ̃
k+1
)
2

= ∆t
(
NL(Φk+1, φk+1),∆h,(4)φ̃

k+1)
2 +∆t(φ̃k+1, τ k+1)2. (4.21)
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The time marching term could be analyzed as follows:(
3
2
φ̃k+1

− 2φ̃k
+

1
2
φ̃k−1, φ̃k+1

)
2

=
3
2

(
φ̃k+1

− φ̃k, φ̃k+1)
2 −

1
2

(
φ̃k

− φ̃k−1, φ̃k+1)
2

≥

(
3
4
∥φ̃k+1

∥
2
2 −

1
4
∥φ̃k

∥
2
2

)
−

(
3
4
∥φ̃k

∥
2
2 −

1
4
∥φ̃k−1

∥
2
2

)
+

1
2

(
∥φ̃k+1

− φ̃k
∥
2
2 − ∥φ̃k

− φ̃k−1
∥
2
2

)
. (4.22)

The third term on the left hand side of (4.21) could be handled as follows:(
∆h,(4)(φ̃k+1

− φ̃k),∆h,(4)φ̃
k+1
)
2

≥
1
2
(∥∆h,(4)φ̃

k+1
∥
2
2 − ∥∆h,(4)φ̃

k
∥
2
2). (4.23)

The term associated with the local truncation error could be bounded with the help of Cauchy inequality:

(φ̃k+1, τ k+1)2 ≤ ∥φ̃k+1
∥2 · ∥τ k+1

∥2 ≤
1
2
(∥φ̃k+1

∥
2
2 + ∥τ k+1

∥
2
2). (4.24)

For the nonlinear error term, we begin with an application of discrete Hölder inequality:

∥NL(Φk+1, φk+1)∥2 ≤ ∥(Φk+1)2 +Φk+1φk+1
+ (φk+1)2∥3 · ∥φ̃k+1

∥6

≤ C(∥Φk+1
∥
2
6 + ∥φk+1

∥
2
6)∥φ̃

k+1
∥6 ≤ C((C∗)2 + C̃2

1 )∥φ̃
k+1

∥6, (4.25)

in which the estimates ∥Φk+1
∥6 ≤ C∗, and ∥φk+1

∥6 ≤ CC̃1 (which comes from the uniform in time estimate (4.14) for
the numerical solution, as given by Remark 4.1), have been used. On the other hand, we make use of the discrete Sobolev
embedding inequality (3.6) again, and obtain

∥φ̃k+1
∥6 ≤ C(∥φ̃k+1

∥2 + ∥∇hφ̃
k+1

∥2) ≤ C(∥φ̃k+1
∥2 + ∥∇h,(4)φ̃

k+1
∥2)

≤ C(∥φ̃k+1
∥2 + ∥φ̃k+1

∥
1/2
2 · ∥∆h,(4)φ̃

k+1
∥
1/2
2 ), (4.26)

in which the second step comes from the fact that ∥∇hφ̃
k+1

∥2 ≤ ∥∇h,(4)φ̃
k+1

∥2, while the last step is based on the following
estimate:

∥∇h,(4)φ̃
k+1

∥
2
2 = (φ̃k+1,−∆h,(4)φ̃

k+1)2 ≤ ∥φ̃k+1
∥2 · ∥∆h,(4)φ̃

k+1
∥2. (4.27)

Consequently, a substitution of (4.26) into (4.25) yields

∥NL(Φk+1, φk+1)∥2 ≤ C̃2(∥φ̃k+1
∥2 + ∥φ̃k+1

∥
1/2
2 · ∥∆h,(4)φ̃

k+1
∥
1/2
2 ), (4.28)

with C̃2 = C((C∗)2 + C̃2
1 ). In turn, a bound for the nonlinear error inner product term could be derived:(

NL(Φk+1, φk+1),∆h,(4)φ̃
k+1)

2 ≤ ∥NL(Φk+1, φk+1)∥2 · ∥∆h,(4)φ̃
k+1

∥2

≤ C̃2(∥φ̃k+1
∥2 · ∥∆h,(4)φ̃

k+1
∥2 + ∥φ̃k+1

∥
1/2
2 · ∥∆h,(4)φ̃

k+1
∥
3/2
2 )

≤ C̃3,ε∥φ̃
k+1

∥
2
2 +

ε2

2
∥∆h,(4)φ̃

k+1
∥
2
2, (4.29)

with the Young’s inequality applied in the last step.
Subsequently, a substitution of (4.22)–(4.24) and (4.29) into (4.21) yields

Gk+1
− Gk

+
ε2

2
∆t∥∆h,(4)φ̃

k+1
∥
2
2 ≤ (C̃3,ε +

1
2
)∆t∥φ̃k+1

∥
2
2 +∆t∥τ k+1

∥
2
2, (4.30)

with Gk+1
:=

3
4
∥φ̃k+1

∥
2
2 −

1
4
∥φ̃k

∥
2
2 +

1
2
∥φ̃k+1

− φ̃k
∥
2
2 +

A
2
∆t2∥∆h,(4)φ̃

k+1
∥
2
2. (4.31)

Meanwhile, for the term ∥φ̃k+1
∥
2
2, the following inductive estimate is available:

∥φ̃k+1
∥
2
2 ≤

4
3
Gk+1

+
1
3
∥φ̃k

∥
2
2 ≤

4
3
Gk+1

+
4
9
Gk

+
1
9
∥φ̃k−1

∥
2
2 ≤ ...

≤
4
3

k+1∑
i=0

(
1
3
)iGk+1−i. (4.32)

This in turn leads to the following inequality

Gk+1
− Gk

+
ε2

2
∆t∥∆h,(4)φ̃

k+1
∥
2
2 ≤

4
3
(C̃3,ε +

1
2
)∆t

k+1∑
i=0

(
1
3
)iGk+1−i

+∆t∥τ k+1
∥
2
2. (4.33)
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Therefore, with an application of Lemma 4.2, and making use of the fact that ∥τ k+1
∥2 ≤ C(∆t2 + h4), we conclude that

Gk+1
+ ε2∆t

k+1∑
i=1

∥∆h,(4)φ̃
i
∥
2
2 ≤ Ĉ(∆t4 + h8), (4.34)

with Ĉ independent on∆t and h. Furthermore, with an application of (4.32), we arrive at the desired convergence estimate:

∥φ̃k+1
∥2 +

(
ε2∆t

k+1∑
i=1

∥∆hφ̃
i
∥
2
2

)1/2
≤ CĈ1/2(∆t2 + h4). (4.35)

This completes the proof of Theorem 3.9. □

Remark 4.3. The phase field models, such as Allen–Cahn and Cahn–Hilliard equations, have a broader impact on many
scientific disciplines. A detailed study of these nonlinear gradient flows is vital for understanding phase transformations of
materials at the atomic and nanometer scales, the complex processes in biological growth and development, etc. A coupling
of phase field model and fluid motion, such as the Cahn–Hilliard–Navier–Stokes equation [60], turns out be even more
interesting, since its ability to describemulti-phase flows and its application in tumor growth evolution. Many techniques in
the numerical analysis for the phase field models could be applied to these coupled systems, with more careful treatments
for the nonlinear coupled convection terms. See the related error estimates in recent years [4,55,56,58,61]; manymore such
works are also expected in the future works.

Remark 4.4. Other than the finite difference analysis presented in this article, there have been extensive works on the finite
element analysis for the Cahn–Hilliard equation, such as [62–66], etc. In fact, many ideas in the stability and convergence
estimates for these two different numerical approaches have followed similar mathematical principles; while the technical
details have to be presented in different forms.

5. Numerical results

The numerical implementation of the proposed fourth order finite difference scheme (3.9)–(3.10) requires a nonlinear
solver. Meanwhile, since the nonlinear term corresponds to a convex functional, as indicated by (4.2), some ideas associated
with convex optimization could be efficiently applied. We use the precondition steepest descent (PSD) iteration to
implement this numerical algorithm; such an iteration has been proposed and analyzed for the regularized p-Laplacian
problem in recent works [40,41], and its extension to Cahn–Hilliard-type problem is straightforward.

5.1. Precondition steepest descent (PSD) solver

The main idea of the PSD solver is to use a linearized version of the nonlinear operator as a pre-conditioner, or in other
words, as a metric for choosing the search direction. A linearized version of the nonlinear operator Lh : V̊per → V̊per, is
defined as follows:

Lh[ψ] := −∆−1
h,(4)ψ +∆tψ −∆t(ε2 + A∆t)∆2

h,(4)ψ. (5.1)

Given the current iterate φ(n)
∈ Vper, we define the following search direction problem: find d(n) ∈ V̊per such that

Lh[d(n)] = f − Nh[φ
(n)

] := r (n),

where r (n) is the nonlinear residual of the nth iterate φ(n). This equation can be solved efficiently using the Fast Fourier
Transform (FFT).

In turn, the next iterate is given by

φ(n+1)
= φ(n)

+ αd(n), (5.2)

where α ∈ R is the unique solution to the steepest descent line minimization problem

α := argmax
α∈R

Fh[φ(n)
+ αd(n)] = argzero

α∈R
δFh[φ(n)

+ αd(n)](d(n)). (5.3)

The geometric convergence analysis of the PSD solver has been established in [40], for regularized p-Laplacian problem.
For the Cahn–Hilliard-type problem (3.9)–(3.10), the corresponding nonlinearity is weaker than that of the p-Laplacian
problem, and the geometric convergence rate: φ(n)

→ φk+1, (where φk+1 is the exact numerical solution to (3.9)–(3.10)), as
n → ∞, is expected to be derived in a similar way; the details are left to interested readers.

5.2. Convergence test for the numerical scheme

In this subsection we perform some numerical experiments to support the theoretical results, using a uniform Cartesian
grid and set periodic boundary conditions. In particular, it is observed that the searchdirection andPoisson-like equations can
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Table 1
Discrete ℓ2 and ℓ∞ error norms and the convergence rates for the computed
solution with scheme (3.9)–(3.10). The time step size is fixed as ∆t = 10−4 .

h ∥φ − Ihφe∥∞ Rate ∥φ − Ihφe∥2 Rate
3.2
32 2.8431 × 10−6 – 4.5964 × 10−6 –
3.2
48 5.6591 × 10−7 3.98 9.1001 × 10−7 3.99
3.2
64 1.7970 × 10−7 3.99 2.8843 × 10−7 3.99
3.2
80 7.3859 × 10−8 3.98 1.1845 × 10−7 3.99
3.2
96 3.5787 × 10−8 3.97 5.7364 × 10−8 3.98
3.2
112 1.9454 × 10−8 3.96 3.1174 × 10−8 3.96
3.2
128 1.1523 × 10−8 3.94 1.8461 × 10−8 3.94

Table 2
Discrete ℓ2 and ℓ∞ error norms and the convergence rates for the computed
solution with scheme (3.9)–(3.10). The spatial resolution is fixed as N = 256.

∆t ∥φ − Ihφe∥∞ Rate ∥φ − Ihφe∥2 Rate
0.32
100 2.8918 × 10−7 – 4.6310 × 10−7 –
0.32
200 7.2833 × 10−8 1.99 1.1664 × 10−7 1.99
0.32
300 3.2762 × 10−8 1.97 5.2466 × 10−8 1.97
0.32
400 1.8737 × 10−8 1.95 3.0006 × 10−8 1.95
0.32
500 1.2241 × 10−8 1.92 1.9604 × 10−8 1.92

also be efficiently solved efficiently by using the Fourier pseudo-spectral method (see the related discussions in [35–37,67])
and Fast Fourier Transform (FFT).

To test the convergence rate, we choose the data such that the exact solution of (1.2) on the square domain Ω =

(0, 3.2) × (0, 3.2):

φe(x, y, t) =
1
2π

sin
(
2πx/3.2

)
cos
(
2πy/3.2

)
cos(t). (5.4)

We take a quadratic refinement path for scheme (3.9)–(3.10) , i.e. ∆t = Ch2. The final time is taken as T = 0.32, and we
expect the global error to be O(h4) under the ∥ · ∥∞ and ∥ · ∥2 norm, as h,∆t → 0. The other parameters are given by
Lx = Ly = 3.2, ε = 0.1.

To investigate the accuracy in space, we fix∆t = 10−4 so that the temporal numerical error is negligible, andwe compute
solutions with grid sizes N = 32 to N = 128 in increments of 16, and we solve up to time T = 0.32. The numerical errors
are displayed in Table 1; the fourth order spatial accuracy is apparently observed for the phase variable.

To explore the temporal accuracy, we fix the spatial resolution as N = 256 so that the numerical error is dominated by
the temporal ones. We compute solutions with a sequence of time step sizes, ∆t =

T
Nk

, with Nk = 100 to Nk = 500 in
increments of 100, and the same final time T = 0.32. Table 2 shows the discrete ℓ2 and ℓ∞ norms of the errors between the
numerical and exact solutions. A clear second-order accuracy is observed for the phase variable.

5.3. Numerical simulation of spinodal decomposition and energy dissipation

We simulate the spinodal decomposition of a mixed binary fluid and present the energy dissipation in this subsection.
The parameters are given by Lx = Ly = 12.8, ε = 0.03, h = 12.8/512,. The initial data for this simulation is taken as a
random field values φ0

i,j = φ̄ + 0.1 · (2ri,j − 1), with an average composition φ̄ = 0 and ri,j ∈ [0, 1]. For the temporal step
size ∆t , we use increasing values of ∆t in the time evolution: ∆t = 0.01 on the time interval [0, 2000] and ∆t = 0.04 on
the time interval [2000, 6000]. Whenever a new time step size is applied, we initiate the two-step numerical scheme by
taking φ−1

= φ0, with the initial data φ0 given by the final time output of the last time period. The snapshots of spinodal
decomposition for the proposed numerical scheme, with second order accuracy in time and fourth order accuracy in space,
can be found in Fig. 1. The corresponding energy decay plot is displayed in Fig. 2.

The log–log plots of energy evolution and the corresponding linear regression in Fig. 2 shows that the energy indeed
decays like t−1/3 for the proposed scheme, which verifies the one-third power law. The detailed scaling ‘‘exponent’’ is
obtained using least squares fits of the computed data up to time t = 400. A clear observation of the aet−be scaling law
can be made, with ae = 2.3670, be = 0.3332. In other words, an almost perfect t−1/3 energy dissipation law is confirmed by
our numerical simulation.

The linear regressions is only taken up to t = 6000, since the saturation time would be of the order of ε−2.
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Fig. 1. (Color online). Snapshots of spinodal decomposition of Cahn-Hilliard equation for a mixed binary fluid with scheme (3.9)–(3.10) in Ω =

(0, 12.8)× (0, 12.8) at a sequence of time instants: 1, 10, 100, 200, 400 and 2000. The surface diffusion parameter is taken to be ε = 0.03 and the time step
size is∆t = 0.01.

Fig. 2. The evolutions of discrete energy. The parameters are given in the text and in the caption of Fig. 1. The energy decays like t−1/3 , which verifies the
one-third power law. More precisely, the linear fit has the form aet−be with ae = 2.3670, be = 0.3332.

6. Concluding remarks

In this article, we propose and analyze an energy stable fourth order finite difference scheme for the Cahn–Hilliard
equation, with second order temporal accuracy. As a preliminary truncation error estimate for the long stencil difference
operator, over a uniform numerical grid with a periodic boundary condition, the discrete ℓ2 estimate only requires an Hm

regularity for the test function, which in turn results in a reduced regularity requirement. In the temporal approximation, we
apply amodified BDF algorithm, combinedwith a second order extrapolation formula applied to the concave term. And also,
a second order artificial Douglas–Dupont regularization is included in the numerical scheme, to ensure the energy stability
at a discrete level. With such a careful construction, the unique solvability and energy stability are proved for the proposed
numerical scheme, and a uniform in timeH1

h bound for the numerical solution is established. As a result of thisH1
h bound, we
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are able to derive an optimal rate convergence analysis for the proposed numerical scheme, in the ℓ∞(0, T ; ℓ2)∩ℓ2(0, T ;H2
h )

norm. In addition, a few numerical experiments have confirmed these theoretical results, and the numerical simulations
results of spinodal decomposition in a mixed binary fluid have indicated an energy dissipation law of t−1/3.
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Appendix A. Proof of Lemma 2.6

By substituting (2.38), we see that the first inequality of (2.46) is equivalent to⏐⏐⏐⏐−4sin2(kπh/L) −
4
3
sin4(kπh/L) +

4k2π2h2

L2

⏐⏐⏐⏐ ≤ C1h6
(
2kπ
L

)6

, ∀ 0 ≤ k ≤ N. (A.1)

We denote ck = kπh/L. Due to the fact that h =
L

2N+1 , we have

0 ≤ ck ≤
π

2
, ∀ 1 ≤ k ≤ N. (A.2)

In turn, we need both the lower and upper bounds of −4sin2ck −
4
3 sin

4ck + 4c2k to establish the estimate (A.1). For the
lower bound, the following inequality is observed:

h1(t) := sin2t +
1
3
sin4t ≤ h2(t) := t2, ∀ t ≥ 0. (A.3)

The derivation of this inequality is based on the fact that

h1(0) = h2(0) = 0, h′

1(0) = h′

2(0) = 0, (A.4)

and a careful comparison between their second order derivatives:

h′′

1(t) = 2
(
cos2t + sin2tcos2t −

5
3
sin4t

)
≤ h′′

2(t) = 2, ∀ t ≥ 0. (A.5)

As a result of (A.3), we obtain the following lower bound:

0 ≤ −4sin2ck −
4
3
sin4ck + 4c2k , ∀ 0 ≤ k ≤ N. (A.6)

For the upper bound, we begin with a Taylor expansion for sin t:

sin t ≥ t −
t3

3!
= t −

t3

6
≥ 0, ∀ 0 ≤ t ≤

π

2
, (A.7)

in which the second inequality comes from the range that 0 ≤ t ≤
π
2 . Subsequently, we set ck = kπh/L and arrive at

4sin2ck +
4
3
sin4ck ≥ 4

(
ck −

c3k
6

)2

+
4
3

(
ck −

c3k
6

)4

= 4c2k −
7
9
c6k +

2
9
c8k −

2
81

c10k +
1

972
c12k , (A.8)

for any 0 ≤ k ≤ N . In turn, the following estimate is available:

− 4sin2ck −
4
3
sin4ck + 4c2k ≤

7
9
c6k −

2
9
c8k +

2
81

c10k −
1

972
c12k , ∀ 0 ≤ k ≤ N. (A.9)

Consequently, a combination of (A.6) and (A.9) results in⏐⏐⏐⏐−4sin2ck −
4
3
sin4ck + 4c2k

⏐⏐⏐⏐ ≤
7
9
c6k −

2
9
c8k +

2
81

c10k −
1

972
c12k , ∀ 0 ≤ k ≤ N. (A.10)

On the other hand, by the definition ck = kπh/L, the following estimates can be derived:

c6k = h6(kπ/L)6 ≤
1
64

h6(2kπ/L)6, ∀ 0 ≤ k ≤ N, (A.11)

cmk = c6k · cm−6
k ≤

(π
2

)m−6
·
1
64

h6(2kπ/L)6, ∀ m ≥ 6, 0 ≤ k ≤ N. (A.12)

Finally, a combination of (A.10), (A.11) and (A.12) implies (A.1), with an appropriate choice of C1. The proof of the first part
of Lemma 2.6 is finished. The second inequality can be derived in the same manner.
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Appendix B. Proof of Lemma 2.7

We see that the expansion for
∆3f


L2 in (2.34) can be decomposed in the following way:

∆3f
2
2 =

N∑
k,l=−N

Ik,l, with

Ik,l = L2
∞∑

k1,l1=−∞

((
2(k + k1N∗)π

L

)2

+

(
2(l + l1N∗)π

L

)2
)6⏐⏐⏐f̂k+k1N∗,l+l1N∗

⏐⏐⏐2. (B.1)

In particular, we observe that((
2(k + k1N∗)π

L

)2

+

(
2(l + l1N∗)π

L

)2
)6⏐⏐⏐f̂k+k1N∗,l+l1N∗

⏐⏐⏐2 ≤
Ik,l
L2
,

i.e.
⏐⏐⏐f̂k+k1N∗,l+l1N∗

⏐⏐⏐ ≤

((
2(k + k1N∗)π

L

)2

+

(
2(l + l1N∗)π

L

)2
)−3√

Ik,l
L3
. (B.2)

Meanwhile, the following fact is obvious⏐⏐⏐⏐λkx,(4) +
4(k + k1N∗)2π2

L2

⏐⏐⏐⏐ ≤
4(k + k1N∗)2π2

L2
, since λkx,(4) ≤ 0 and |λkx,(4)| ≤

4k2π2

L2
. (B.3)

Therefore, the following estimate is valid for a fixed (k, l) and (k1, l1) ̸= (0, 0):⏐⏐⏐⏐(λkx,(4) +
4(k + k1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐ ≤
4(k + k1N∗)2π2

L2

⏐⏐⏐f̂k+k1N∗,l+l1N∗

⏐⏐⏐
≤

((
2(k + k1N∗)π

L

)2

+

(
2(l + l1N∗)π

L

)2
)−2√

Ik,l
L2

≤

(
4(N∗)2π2

L2

(
(|k1| −

1
2
)2 + (|l1| −

1
2
)2
))−2√ Ik,l

L2

≤
1
16

h4π−4

√
Ik,l
L2

1(
(|k1| −

1
2 )

2 + (|l1| −
1
2 )

2
)2 , (B.4)

in which the grid size h =
L

2N+1 was recalled. Also note that we used the following estimate in the third step

⏐⏐k + k1N∗
⏐⏐ ≥

(|k1| −
1
2 )N

∗

2
,
⏐⏐l + l1N∗

⏐⏐ ≥
(|l1| −

1
2 )N

∗

2
, for k1 ̸= 0, l1 ̸= 0, (B.5)

due to the fact that |k|, |l| ≤ N∗/2. Consequently, its substitution into (2.47) shows that⏐⏐⏐⏐⏐⏐⏐⏐
∞∑

k1,l1=−∞

(k1,l1)̸=(0,0)

(
λkx,(4) +

4(k + k1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐⏐⏐⏐⏐
≤

∞∑
k1,l1=−∞

(k1,l1)̸=(0,0)

⏐⏐⏐⏐(λkx,(4) +
4(k + k1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐
≤

∞∑
k1,l1=−∞

(k1,l1)̸=(0,0)

1
16

h4π−4

√
Ik,l
L2

1(
(|k1| −

1
2 )

2 + (|l1| −
1
2 )

2
)2 = C∗h4

√
Ik,l
L2
, (B.6)

where

C∗
=

1
16
π−4

∞∑
k1,l1=−∞

(k1,l1)̸=(0,0)

1(
(|k1| −

1
2 )

2 + (|l1| −
1
2 )

2
)2 . (B.7)
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Note that the double series
∞∑

k1,l1=−∞

(k1,l1)̸=(0,0)

1(
(|k1| −

1
2 )

2 + (|l1| −
1
2 )

2
)β0 , (B.8)

with β0 = 2, is convergent. In turn, we arrive at

N∑
k,l=−N

⏐⏐⏐⏐⏐⏐⏐⏐
∞∑

k1,l1=−∞

(k1,l1)̸=(0,0)

(
λkx,(4) +

4(k + k1N∗)2π2

L2

)
f̂k+k1N∗,l+l1N∗

⏐⏐⏐⏐⏐⏐⏐⏐
2

≤

N∑
k,l=−N

(C∗)2h8
·
Ik,l
L2

=
(C∗)2

L2
h8

N∑
k,l=−N

Ik,l =
(C∗)2

L2
h8
∆3f

2
=

(C∗)2

L2
h8

∥f ∥2
H6 , (B.9)

in which the decomposition (B.1) was used in the second to the last step. Therefore, the first inequality of Lemma 2.7 is
proven by taking C2 =

(C∗)2

L2
. The second inequality of Lemma 2.7 can be established in the samemanner. This completes the

proof of Lemma 2.7.

Appendix C. Proof of Lemma 3.2

Proof. For any periodic grid function f , it has a corresponding discrete Fourier transformation:

fi,j =

N∑
ℓ,m=−N

f̂ Nℓ,me
2π i(ℓxi+myj)/L, (C.1)

where xi = (i − 1
2 )h, yj = (j − 1

2 )h, and f̂ Nℓ,m are the coefficients. In turn, for an application of the operator −∆h,(4) to f , the
following discrete Fourier expansion is available:

−∆hfi,j =

N∑
ℓ,m=−N

(νℓ + νm)f̂ Nℓ,me
2π i(ℓxi+myj)/L, (C.2)

−∆h,(4)fi,j =

N∑
ℓ,m=−N

Λℓ,m f̂ Nℓ,me
2π i(ℓxi+myj)/L, (C.3)

with νk =
4sin2 ℓπh

L

h2 , µk = ν2k +
h2

12
ν2k , Λℓ,m = µℓ + µm. (C.4)

For any f ∈ V̊per, we observe that f̂ Nℓ,m = 0, due to the fact that f = 0. In turn, a similar expansion could be derived for
(−∆h,(4))−1f :

(−∆h,(4))−1fi,j =

∑
ℓ,m̸=(0,0)

Λ−1
ℓ,m f̂

N
ℓ,me

2π i(ℓxi+myj)/L. (C.5)

On the other hand, the following identities could be derived, based on the orthonormal property of the Fourier basis
function:

∥f ∥2
−1,h = (f , (−∆h,(4))−1f )2 = L2

∑
ℓ,m̸=(0,0)

Λ−1
ℓ,m|f̂ Nℓ,m|

2
, (C.6)

∥∇h,(4)f ∥2
2 = (f ,−∆h,(4)f )2 = L2

∑
ℓ,m̸=(0,0)

Λℓ,m|f̂ Nℓ,m|
2
, (C.7)

for any f ∈ V̊per. Meanwhile, an application of Parseval equality to (C.1) implies that

∥f ∥2
= L2

∑
ℓ,m̸=(0,0)

|f̂ Nℓ,m|
2
. (C.8)
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An application of discrete Cauchy–Schwarz inequality leads to⎛⎝ ∑
ℓ,m̸=(0,0)

|f̂ Nℓ,m|
2

⎞⎠2

≤

⎛⎝ ∑
ℓ,m̸=(0,0)

Λ−1
ℓ,m|f̂ Nℓ,m|

2

⎞⎠ ·

⎛⎝ ∑
ℓ,m̸=(0,0)

Λℓ,m|f̂ Nℓ,m|
2

⎞⎠ , (C.9)

which is equivalent to ∥f ∥4
2 ≤ ∥f ∥2

−1,h · ∥∇h,(4)f ∥2
2, for any f ∈ V̊per. This completes the proof of (3.7).

The proof of (3.8) follows a similar argument. By making a comparison between (C.2) and (C.3), combined with an
application of Parseval equality, we get

∥∆hf ∥2
2 = L2

N∑
ℓ,m=−N

(νℓ + νm)2|f̂ Nℓ,m|
2
, (C.10)

∥∆h,(4)f ∥2 = L2
N∑

ℓ,m=−N

Λ2
ℓ,m|f̂ Nℓ,m|

2
. (C.11)

Therefore, (3.8) becomes a direct consequence of the following fact:

|νℓ + νm| = νℓ + νm ≤ Λℓ,m = |Λℓ,m|. (C.12)

The proof of Lemma 3.2 is finished. □
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