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In this paper, we propose and analyze a positivity-preserving, energy stable numerical 
scheme for a certain type of reaction-diffusion systems involving the Law of Mass Action 
with the detailed balance condition. The numerical scheme is constructed based on 
a recently developed energetic variational formulation, in which the reaction part is 
reformulated in terms of reaction trajectories. The fact that both the reaction and diffusion 
parts dissipate the same free energy opens a path of designing an energy stable, operator 
splitting scheme for these systems. At the reaction stage, we solve equations of reaction 
trajectories by treating all the logarithmic terms in the reformulated form implicitly due 
to their convex nature. The positivity-preserving property and unique solvability can be 
theoretically proved, based on the singular behavior of the logarithmic function around 
the limiting value. Moreover, the energy stability of this scheme at the reaction stage can 
be proved by a careful convexity analysis. Similar techniques are used to establish the 
positivity-preserving property and energy stability for the standard semi-implicit solver at 
the diffusion stage. As a result, a combination of these two stages leads to a positivity-
preserving and energy stable numerical scheme for the original reaction-diffusion system. 
Several numerical examples are presented to demonstrate the robustness of the proposed 
operator splitting scheme.

 2021 Elsevier Inc. All rights reserved.

1. Introduction

Reaction-diffusion type equations play an important role in modeling many physical and biological systems, such as 
pattern formation [50,61,83], tumor growth [52,70,85] and molecular motors [21,55]. Mathematically, a reaction-diffusion 
system often takes a form of

∂t c = ∇ · (D(c, x)∇c) + r(c), (1.1)

subject to a suitable boundary condition, where c(x, t) represents the number density of each species in this system, r(c)
accounts for all local reactions, and D(c, x) is the matrix of diffusion coefficients that might depend on c and location x. 
There are substantial interests in studying reaction-diffusion systems both analytically and numerically, see [13,26,27,39,42,
51,54,72,74,75,103] for instance.
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The numerical computation of reaction-diffusion systems is often very challenging, due to the nonlinearity and stiffness 
brought by reaction terms [78]. In addition, some standard numerical schemes may fail to preserve the positivity and 
conservation properties of species densities, which is a natural requirement for any numerical approximations [39]. Although 
many numerical schemes have been developed to solve reaction kinetics and reaction-diffusion systems [13,39,54,103], a 
theoretical justification of these properties has been very limited. Recently, there have been growing interests in developing 
structure-preserving numerical schemes for gradient-flow type PDEs with energy-dissipation laws. Examples include the 
convex splitting idea [97], invariant energy quadratization (IEQ) [101], and scalar auxiliary variable (SAV) scheme [92]. Some 
theoretical analysis of the positivity-preserving property and the energy stability have been reported for these numerical 
schemes for certain systems with singular energy potential, such as Poisson-Nernst-Planck (PNP) system [91], and the Cahn-
Hilliard equation with Flory-Huggins energy [20,30–32]. However, for a general reaction-diffusion system (1.1), a variational 
structure may not exist, so that these structure-preserving ideas may be not directly applicable. Fortunately, for a certain 
type of reaction-diffusion systems, in which the reaction part satisfies the law of mass action with the detailed balance
condition, it has been discovered that, these systems admit Lyapunov functions and possess variational structures [2,26,27,
42,51,64,74,75,88,95], which opens a new door to develop a structure-preserving numerical scheme for these systems.

In this paper, we propose and analyze a positivity-preserving and energy-stable operator splitting scheme for reaction-
diffusion systems with variational structures, based on an energetic variational formulation proposed in [95]. In this 
formulation, the reaction part is reformulated in terms of the reaction trajectory R , and the reaction and diffusion parts 
impose different dissipation mechanisms for the same physical energy. As a result, it opens a path of an operator split-
ting numerical scheme that preserves the energy dissipation property of the whole system. In more details, since the same 
physical energy dissipates at both the reaction and diffusion stages, the combined operator splitting scheme dissipates the 
discrete energy at each time step, with a careful transformation between two splitting stages. The idea of operator splitting 
schemes has been applied to many nonlinear PDEs [5,93], including reaction-diffusion systems [24,103] for a long time. 
However, most existing works didn’t use the variational structure, or have different physical energy in different computa-
tional stages so that a combined energy stability estimate becomes very challenging at a theoretical level. Moreover, since 
the physical free energy is in the form of logarithmic functions of the concentration c , which is a linear function of reaction 
trajectories R , the positivity-preserving analysis of the numerical scheme at both stages can be established. Similar to the 
analysis in a recent article [20] for the Flory-Huggins Cahn-Hilliard flow, an implicit treatment of the nonlinear singular 
logarithmic term is crucial to theoretically justify its positivity-preserving property. A more careful analysis reveals that, 
the convex and the singular natures of the implicit nonlinear parts prevent the numerical solutions approach the singular 
limiting values, so that the positivity-preserving property is available for all the species density variables. To fix the idea, 
we only consider a reaction-diffusion system taking the form

∂tci = ∇ · (Di(ci)∇ci) + ri(c), i = 1, . . . N, (1.2)

where Di(ci) only depend on ci , so that the diffusion part is fully decoupled. The presented numerical approach can be 
applied to a more complicate system that couples chemical reactions with a cross-diffusion, Cahn-Hilliard or PNP type 
diffusion [41].

The rest of this paper is organized as follows. In Section 2, we introduce the energetic variational approach to reaction-
diffusion systems with detailed balance, which forms a basis of the numerical scheme design. The operator splitting scheme 
is presented in Section 3, along with a detailed analysis on the positivity-preserving property and the unconditional energy 
stability. Finally, some numerical results are shown in Section 4 to demonstrate the robustness of the proposed operator 
splitting scheme.

2. Energetic variational approach

Originated from seminal works of Rayleigh [86] and Onsager [79,80], the Energetic Variational Approach (EnVarA) pro-
vides a paradigm to derive the dynamics of a complicated system from a prescribed energy-dissipation law, through two 
distinct variational processes: the Least Action Principle (LAP) and the Maximum Dissipation Principle (MDP) [36,41,65]. 
These approaches have been successfully applied to build up many mathematical models [41], including systems with 
chemical reactions [95,96]. In the meantime, the energetic variational formulations also provide a guideline of designing 
structure-preserving numerical schemes for systems with variational structures [67,68].

For an isothermal closed system, an energy-dissipation law, which comes from the first and second laws of thermody-
namics, is often given by [37,41]

d
dt

Etotal(t) = −$(t) ≤ 0. (2.1)

Here Etotal is the total energy, which is the sum of the Helmholtz free energy F and the kinetic energy K; $(t) stands for 
the energy dissipation rate. The Least Action Principle (LAP) states that, the dynamics of the Hamiltonian part of the system 
is determined by a critical point of the action functional A(x) =

∫ T
0 K − Fdt with respect to x (the trajectory in Lagrangian 

coordinates, if applicable) [3,41], which derives the conservative force
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δA =
T∫

0

∫

#(t)

( f inertial − fconv) · δxdxdt. (2.2)

On the other hand, according to Onsager [79,80], the dissipative force in a dissipative system ($(t) ≥ 0) can be obtained by 
minimizing the Onsager dissipation functional D = 1

2 $(t) with respect to the “rate” xt in the linear response regime, i.e.,

δD =
∫

#(t)

fdiss · δxt dx. (2.3)

This principle is known as Onsager’s Maximum dissipation principle [41]. Hence, the force balance condition (Newton’s 
second law, in which the inertial force plays a role of ma) results in

δA
δx

= δD
δxt

, (2.4)

which defines the dynamics of the system.
In the framework of the EnVarA, a generalized diffusion for a conserved quantity ρ can be derived from the energy-

dissipation law

d
dt

F[ρ] = −
∫

#

ξ(ρ)|u|2dx, (2.5)

along with the kinematics

ρt + ∇ · (ρu) = 0. (2.6)

Here F [ρ] is the free energy, u is the macroscopic velocity, and ξ(ρ) > 0 is the friction coefficient. The kinematics (2.6) is 
the consequence of the mass conservation of ρ . Through this paper, we assume that

F[ρ] =
∫

#

ω(ρ)dx,

where ω(ρ) is the free energy density.
To derive the equation of u by using the EnVarA, one should reformulate the energy-dissipation law (2.5) in Lagrangian 

coordinates. Let x(X, t) be the flow map associated with the velocity field u(x(X, t), t), i.e.,

d
dt

x(X, t) = u(x(X, t), t),

where X are Lagrangian coordinates. In Lagrangian coordinates, the conservation of mass indicates that

ρ(x(X, t), t) = ρ0(X)

det F
,

where F = ∇Xx(X, t) is the deformation tensor associated with the flow map x(X, t). Thus, the energy-dissipation law (2.5)
can be reformulated as

d
dt

∫

#0

ω
( ρ0

det F

)
det FdX = −

∫
ξ

( ρ0

det F

)
|xt |2 det FdX (2.7)

in Lagrangian coordinates. Performing the LAP, i.e., computing the variation of A =
∫ T

0 −Fdt with respect to x(X, t), leads 
to

δA = −δ

T∫

0

∫

#0

ω(ρ0(X)/det F)det FdX

= −
T∫

0

∫

#0

(
−ωρ

(
ρ0(X)

det F

)
ρ0(X)

det F
+ ω

(
ρ0(X)

det F

))
(F−T : ∇Xδx)det FdX,

(2.8)

where δ̃x(x(X, t), t) = δx(X, t) is a test function satisfying δ̃x · n = 0 and n is the outer normal of #. Pushing forward to the 
Eulerian coordinate and applying the integration by parts, we have
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δA = −
T∫

0

∫

ω

(−ωρρ + ω)∇ · (δx)dx =
T∫

0

∫

#

−∇ · (ωρρ − ω) · δxdx. (2.9)

Hence,

δA
δx

= −∇ · (ωρρ − ω) = −∇µ, µ = ωρ = δF
δρ

,

where µ is known as the chemical potential. In the meantime, the MDP yields 
δD
δxt

= ξ(ρ)|xt |. So the force balance condition 
(2.4) leads to the equation for u, given by

ξ(ρ)u = −ρ∇µ. (2.10)

Remark 2.1. Formally, the equation of u can be derived by using the fact that

d
dt

∫
ω(ρ)dx =

∫
µρtdx =

∫
µ(−∇ · (ρu))dx =

∫
∇µ · (ρu)dx. (2.11)

Therefore, the energy-dissipation law (2.5) indicates that ξ(ρ)u = −ρ∇µ. Such a derivation corresponds to the principle of 
virtual work.

A combination of (2.10) with (2.6) leads to a diffusion equation

ρt = ∇ ·
(

ρ2

ξ(ρ)
∇µ(ρ)

)
, (2.12)

which can be rewritten as

ρt = ∇ · (D(ρ)∇ρ) , (2.13)

where D(ρ) = ρ2µ′(ρ)/ξ(ρ) is the nonlinear diffusion coefficient. We refer the readers to [41,67] for more detailed de-
scriptions.

The energy-dissipation law (2.5) has a natural L2-gradient flow structure in the space of diffeomorphism, which provides 
a basis to study a structure preserving Lagrangian method for generalized diffusions [17,56,67]. To develop a energy stable 
Eulerian method, it is more convenient to formulate the energy dissipation law as

d
dt

∫
ω(ρ)dx = −

∫
M(ρ)|∇µ|2dx, (2.14)

where M(ρ) = ρ2

ξ(ρ)
is called the mobility function, and µ is the chemical potential.

2.1. EnVarA to reaction kinetics

In general, a chemical reaction system containing N species {X1, X2, . . . XN } and M reactions can be represented by

αl
1 X1 + αl

2 X2 + . . .αl
N XN −−⇀↽−− βl

1 X1 + βl
2 X2 + . . .βl

N XN , l = 1, . . . , M. (2.15)

Here we assume that all the reactions are reversible [40]. From a modeling perspective, an irreversible chemical reaction 
can be viewed as a singular limit of a reversible one [43]. In a spatially homogeneous case, the macroscopic kinetics of this 
system is described by a system of ordinary differential equations

dc
dt

= σ r(c(t), t), (2.16)

where c = (c1, c2, . . . , cN)T ∈ RN
+ denotes the concentrations of all species, r = (r1, r2 . . . , rM)T ∈ RM represents the cor-

responding reaction rates, and σ ∈ RN×M is the stoichiometric matrix, with the (i, l) element given by σ l
i = βl

i − αl
i . The 

system (2.16) admits N − rank(σ ) linearly independent conserved quantities (invariants), due to the fact that

d
dt

(e · c) = e · σ r(c(t), t) = 0, (2.17)

for e ∈ K er(σ T). One challenge in designing an efficient numerical method for a reaction kinetics system is to preserve the 
conservation properties (2.17), as well as the positivity of c , after a numerical discretization [39,87].
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In classical chemical kinetics, it is often assumed that the reaction rate is directly proportional to the product of the 
concentrations of the reactants, known as the Law of Mass Action, that is

rl(c) = k+
l cαl − k−

l cβl
, (2.18)

where k+
l and k−

l are the forward and backward reaction rate constants for the l-th reaction, and

cαl =
N∏

i=1

c
αl

i
i , cβl =

N∏

i=1

c
βl

i
i . (2.19)

It has been discovered for a long time that there exists a Lyapunov function for the reaction kinetics (2.16) with law of mass 
action (2.18), if the system satisfies the detailed balance condition [27,74,88]. The detailed balance condition can be defined 
as follows [74]:

Definition 1. An equilibrium point c∞ ∈ RN
+ is said to be a detailed balance equilibrium if and only if any forward reaction 

is balanced with its corresponding backward reaction at the equilibrium, i.e.,

kl+cαl

∞ = kl−cβl

∞, l = 1, . . . M. (2.20)

For a reaction kinetic system satisfies the detailed balance condition, the Lyapunov function of the system is given by

F[ci] =
N∑

i=1

ci

(
ln

(
ci

c∞
i

)
− 1

)
, (2.21)

where c∞ ∈ RN
+ is a detailed balance equilibrium. The Lyapunov function can be understood through a thermodynamics 

argument [76,95] by reformulating it as

F[ci] =
N∑

i=1

(ci(ln ci − 1) + ci Ui) , (2.22)

where the first part corresponds to the entropy, and the constant Ui is the internal energy per mole associated with each 
species. The choice of Ui determines the equilibrium of the system c∞

i , i.e.,

N∑

i=1

σ l
i (ln c∞

i + Ui) = 0, l = 1, . . . M. (2.23)

Remark 2.2. It is worth mentioning that the form of free energy (2.22) is also valid for a reaction network without the 
detailed balance condition, as if Ui are given. However, for arbitrary given Ui , the system may not admit a chemical equi-
librium [33]. Under the detailed balance condition, one can simply specify Ui = − ln c∞

i [74].

Like other variational principles, the classical energetic variational approach cannot be applied to chemical reaction 
systems directly. During the last couple of decades, many papers try to build an Onsager type variational theory for chemical 
reaction systems [9,15,12,74,81]. Recently, by using the concept of reaction trajectory R(t), an energetic variational formula 
of reactions kinetics has been proposed in [95]. One can view the reaction trajectory R(t) ∈ RM as an analogy to the flow 
map x(X, t) in a mechanical system. Roughly speaking, the l-th component of R(t) accounts for the number of the l-th 
reaction has happened in the forward direction by time t . Given an initial condition c(0) ∈ RN

+ , the value of c(t) can be 
expressed in terms of R(t) as

c(t) = c(0) + σ R(t), (2.24)

where σ ∈RN×M is the stoichiometric matrix. Equation (2.24) is the kinematics of a reaction network, which embodies the 
conservation property (2.17). The positivity of c(t) requires that

σ R(t) + c(0) > 0,

which imposes a constraint on R(t).
The reaction trajectory was originally introduced by De Donder as a new state variable for a chemical reaction system 

[22,60], and has been widely used in different theoretical approaches to study chemical reactions [2,81]. The reaction rate r
can be defined as Ṙ . We abbreviate Ṙ = d

dt R throughout this paper. The reaction rate r or Ṙ can be thought as the reaction 
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velocity [60]. In the framework of the EnVarA, we can describe the reaction kinetics by imposing the energy-dissipation law 
in terms of R and Ṙ , that is

d
dt

F[R] = −Dchem[R, Ṙ], (2.25)

where Dchem[R, Ṙ] is the rate of energy-dissipation (entropy production) due to chemical reactions.
Unlike a mechanical system, the linear response assumption may only be valid at the last stage of chemical reactions 

[44]. Therefore, the energy-dissipation rate Dchem may not be quadratic in terms of Ṙ [12,44]. To deal with the nonlinear 
dissipation rate, we have to extend the classical energetic variational approach. A general nonlinear energy dissipation could 
be expressed as

Dchem[R, Ṙ] =
(
!(R, Ṙ), Ṙ

)
=

M∑

l=1

,l(R, Ṙ)Ṙl ≥ 0, (2.26)

Notice that

d
dt

F =
(

δF
δR

, Ṙ
)

=
M∑

l=1

δF
δRl

Ṙl, (2.27)

which indicates that

,l(R, Ṙ) = − δF
δRl

. (2.28)

One can view (2.28) as a nonlinear gradient flow on R . It is interesting to point out that

δF
δRl

=
N∑

i=1

δF
δci

δci

δRl
=

N∑

i=1

σ l
i µi, (2.29)

is known as the chemical affinity, where µi = δF
δci

is the chemical potential of i-th species. The chemical affinity is the 
driving force of a chemical reaction [22,23,60]. The choice of dissipation links reaction rate Ṙ and the chemical affinity. 
Different choices of dissipation specify different reaction rates.

A typical form of Dchem[R, Ṙ] is given by [95]

Dchem[R, Ṙ] =
M∑

l=1

Ṙl ln
(

Ṙl

ηl(c)
+ 1

)
,

where ηl(c) is the mobility for the l-th reaction. Then (2.28) becomes

ln
(

Ṙl

ηl(Rl)
+ 1

)
= −

∑
σ l

i µi, l = 1,2, . . . M. (2.30)

The law of mass action can be derived by choosing ηl(c) = k−
l cβl

.
As an illustration, we consider a single chemical reaction

α1 X1 + α2 X2
k1−−⇀↽−−
k2

β3 X3, (2.31)

with σ = (−α1, −α2, β3)
T. According to the previous discussion, the variational approach gives

ln

(
∂t R

k−
1 cβ3

3

+ 1

)

= −∂F
∂ R

, (2.32)

where

∂F
∂ R

=
3∑

i=1

σiµi =
3∑

i=1

σi(ln(ci) + Ui) (2.33)

is the affinity of this chemical reaction. Let c = (c∞
1 , c∞

2 , c∞
3 )T be a detailed balance equilibrium of the system satisfying 

k+
1 (c∞

1 )α1 (c∞
2 )α2 = k−

1 cβ3
3 . Recalling (2.23), we have

6
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ln Keq = ln

(
k+

1

k−
1

)

= ln

(
cβ3

3

(c∞
1 )α1(c∞

2 )α2

)

= U1 + U2 − U3. (2.34)

Hence, from (2.32), we obtain

∂t R = k−
1 cβ3

3

(
1

Keq

cα1
1 cα2

2

cβ3
3

− 1

)

= k+
1 cα1

1 cα2
2 − k−

1 cβ3
3 , (2.35)

which is exactly the law of mass action.

2.2. EnVarA to reaction-diffusion systems

The above energetic variational formulation for reaction kinetics with the detailed balance condition enables us to model 
a large class of reaction-diffusion systems in a unified variational way. In general, for a reaction-diffusion system with N
species and M reactions, the concentration c ∈RN satisfies the following kinematics

∂tci + ∇ · (ciui) =
(
σ Ṙ

)
i , i = 1,2, . . . N, (2.36)

where ui is the average velocity of each species due to its own diffusion, R(x, t) ∈ RM represents the reaction trajectory 
defined at x, Ṙ is the time derivative of R , and σ ∈ RN×M is the stoichiometric matrix as defined in section 2.1. The 
reaction-diffusion equation can be modeled through the energy-dissipation law [16,95]:

d
dt

F[ci] = −(2Dmech + Dchem), (2.37)

where the free energy F [ci] is the one given in (2.22), 2Dmech and Dchem are dissipation terms for the mechanical and 
reaction parts respectively. It is important to notice that the reaction and diffusion parts share the same free energy. As 
discussed above, Dmech can be taken as

Dmech = 1
2

∫

#

N∑

i=1

ξi(ci)|ui|2dx,

where ξi(ci) is the friction coefficient. Here we assume that ξi(ci) only depends on ci for simplicity. In the meantime, the 
dissipation for the reaction part is assumed to be

Dchem =
∫

#

M∑

l=1

Ṙl ln
(

Ṙl

ηl(c(R))

)
dx.

One can view the reaction-diffusion system as a nonlinear gradient flow on R , coupled with generalized diffusions on ci .
We can employ the EnVarA to obtain equations for the reaction and diffusion parts respectively, i.e., the “force balance 

equation” of the chemical and mechanical subsystems. Indeed, a direct computation yields

d
dt

F[c] =
∫ N∑

i=1

δF
δci

∂tcidx =
∫ N∑

i=1

δF
δci

(−∇ · (ci ui) + (σ Ṙ)i)dx

=
∫ N∑

i=1

(

ci∇µi · ui + ci

M∑

l=1

σ l
i Ṙl

)

dx =
N∑

i=1

(ci∇µi,ui) +
M∑

l=1

(
N∑

i=1

σ l
i µi, Ṙl

)

,

(2.38)

which indicates that
{

ξi(ci)ui = −ci∇µi, i = 1,2, . . . N,

ln
(

Ṙl
ηl(c(R))

)
= −∑N

i=1 σ l
i µi, l = 1, . . . , M.

(2.39)

By taking ξi(ci) = 1
Di

ci , we have a reaction-diffusion system

∂tci = Di.ci + (σ Ṙ)i . (2.40)

Here (σ Ṙ)i is the reaction term, the form of which is discussed in the last subsection. Other choices of ξi(ci) can result in 
some porous medium type nonlinear diffusion [67], given by

∂tci = ∇ · (D(ci)∇ci) + (σ Ṙ)i, (2.41)

where D(ci) = ci
ξi(ci)

is the concentration-dependent diffusion coefficient.
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3. The numerical method

In this section, we introduce the operator splitting scheme for the reaction-diffusion system (2.41) with the energy-
dissipation law (2.37). Notice that the dissipation in (2.37) consists of two parts: a gradient flow type dissipation on the 
reaction trajectory R , and dissipations for generalized diffusions. It is natural to apply an operator splitting scheme for the 
time integration to preserve the variational structures, and make the discrete energy non-increasing. More precisely, the 
reaction-diffusion system (2.41) can be written as

ct = Ac + Bc, (3.1)

where A is the reaction operator and B is the diffusion operator. We propose the following operator splitting scheme. For 
simplicity, we present the numerical algorithm on the computational domain # = (0, 1)3 with a periodic boundary condi-
tion, and .x = .y = .z = h = 1

N0
with N0 to be the spatial mesh resolution throughout this section; other computational 

domains with other boundary conditions and other numerical meshes could be handled in a similar fashion. Given cn with 
cn

i, j,k ∈RN
+ , we update cn+1, via the following two stages:

1. Reaction stage: Starting with cn , we solve for ct = Ac using a positivity-preserving, energy stable numerical scheme for 
the reaction kinetics at each mesh point, and get cn+1,∗ satisfying

Fh(cn+1,∗) ≤ Fh(cn), Fh(c) := 〈F(c),1〉 is the discrete energy, (3.2)

in which F(c) is given by (2.22), and 〈 f , g〉 = h3 ∑N0−1
i, j,k=0 f i, j,k gi, j,k denotes the discrete L2-inner product.

2. Diffusion stage: Starting with the intermediate variable cn+1,∗ , we update cn+1 by a suitable positive preserving, and 
energy stable numerical scheme for diffusion equations such that

Fh(cn+1) ≤ Fh(cn+1,∗). (3.3)

Therefore, a combination of (3.2) and (3.3) results in

Fh(cn+1) ≤ Fh(cn). (3.4)

In the remainder of this section, we will outline the details of the numerical algorithm at each stage. The convergence and 
error estimates will be left to future works. We focus on a single reversible chemical reaction with the detailed balance 
condition, given by

α1 X1 + . . .αr Xr

k+
1−−⇀↽−−

k−
1

βr+1 Xr+1 + . . .βN XN, (3.5)

where k+
1 and k−

1 are constants. The proposed numerical scheme can be applied to reaction-diffusion equations involving 
M reactions with the detailed balance condition directly, but a theoretical justification for the reaction stage will be much 
more complicated.

3.1. Numerical scheme for the reaction stage

We first introduce a positivity-preserving, energy stable scheme for reaction kinetics, which will be used for the reaction 
stage in the operator scheme. Many numerical schemes for reaction kinetics have been developed in the existing litera-
ture, such as semi-implicit Runge-Kutta [1] and Patankar-type methods [54,82]; we refer the interested readers to [39] for 
detailed discussions.

Unlike these existing algorithms, the numerical scheme presented here is based on the energy-dissipation law (2.25). The 
main idea is to discretize the reaction trajectory R instead of the concentration field c , so that the conservation property 
(2.17) is automatically satisfied. Recall that the energy-dissipation law of (3.5) for the reversible chemical reaction (3.5) can 
be formulated as

d
dt

F[c(R)] = −Ṙ ln
(

Ṙ
η(c(R))

+ 1
)

, (3.6)

in a spatial homogeneous case, where

F[c] =
N∑

m=1

cm(ln cm − 1) + cmUm,

8
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c(R) = c0 + σ R with σ = (−α1, . . . − αr, βr+1, . . .βN )T, and η(c(R)) = k−
1

∏N
m=r+1 cβi

i . As shown in section 2.2, the equation 
of R can be derived as

ln
(

Ṙ
η(c(R))

+ 1
)

= −
N∑

m=1

σmµm(R), (3.7)

where µm(R) = δF
δcm

= ln cm(R) + Um is the chemical potential of m-th species determined by R . Based on (3.7), we propose 
the following semi-implicit scheme

ln
(

Rn+1 − Rn

η(c(Rn)).t
+ 1

)
= −

N∑

m=1

σmµm(Rn+1), (3.8)

which takes the mobility η(c(R)) explicitly and other parts implicitly. An explicit treatment for η(c(R)) is crucial for the 
following unique solvability analysis.

Theorem 3.1. Given Rn, with c(Rn) ∈RN
+ and η(c(Rn)) > 0, there exists a unique solution Rn+1 for the numerical scheme (3.8) in the 

admissible set

Vn = {R | c(R) ∈R+
N , R − Rn + η(c(Rn)).t > 0},

so that c(Rn+1) ∈RN
+ and the numerical scheme is well-defined.

Proof. We denote

Jn(R) = (R − Rn + η(c(Rn)).t) ln
(

R − Rn

η(c(Rn)).t
+ 1

)
− (R − Rn) + F[c(R)]. (3.9)

It is easy to see that J (R) is a strictly convex function over Vn . Indeed, a direct computation shows that

d2

dR2 (R − Rn + η(c(Rn)).t) ln
(

R − Rn

η(c(Rn)).t
+ 1

)
= 1

R − Rn + η(c(Rn))
> 0. (3.10)

Since F [c(R)] is strictly convex function of c ∈R+
N , it is clear that Jn(R) is strictly convex over Vn .

The key point of the proof is to show that the minimizer of Jn(R) over Vn could not occur on the boundary of Vn , so 
that a minimizer gives a solution of the numerical scheme (3.8) in Vn . To prove this fact, we consider the following closed 
domain:

Vn
δ =

{
R | ci(R) ≥ δ, R − Rn + η(c(Rn)).t ≥ δ

}
⊂ V. (3.11)

For the single chemical reaction (3.5), since

c0
m + σm R ≥ δ ⇒ max

r+1≤m≤N

(
1

βm
(δ − c0

m)

)
≤ R ≤ min

1≤m≤r

(
− 1

αm
(δ − c0

m)

)
, (3.12)

it is easy to show that

V n
δ =

(
Rn − η(c(Rn)).t + δ ≤ R ≤ min

1≤m≤r

1
αm

(c0
m − δ)

)
or

V n
δ =

(
max

r+1≤m≤N

1
βm

(δ − c0
m) ≤ R ≤ min

1≤m≤r

1
αm

(c0
m − δ)

)
.

Thus, Vn
δ is a bounded, compact set in the real domain and there exists a minimizer of Jn(R) over Vn

δ . We need to show 
that such a minimizer could not occur on the boundary points of Vn

δ if δ is small enough.
Assume a minimizer of Jn(R) occurs at a boundary point of Vn

δ . Without loss of generality, we set the minimization 
point as R∗ = Rn − η(c(Rn)).t + δ. A careful calculation reveals the following derivative

J ′
n(R) |R=R∗ = ln

(δ − η(c(Rn)).t
η(c(Rn)).t

+ 1
)

+
N∑

m=1

σmµm(R∗)

= ln δ − ln(η(c(Rn)).t) +
N∑

m=1

σm ln cm(R∗) +
N∑

m=1

σmUm

≤ ln δ +
N∑

m=1

σm ln cm(Rn − η(c(Rn)).t) + Q (0), (3.13)

9
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where Q 0 = − ln(η(c(Rn)).t) + ∑N
m=1 σmUm . Since 

∑N
m=1 σm ln cm(Rn − η(c(Rn)).t) could be taken as a fixed constant, at 

a fixed time step, we can choose δ small enough such that

J ′
n(R) |R=R∗< 0. (3.14)

As a result, there exists R∗∗ = Rn − η(c(Rn)).t + δ + δ′ ∈ V n
δ such that

Jn(R∗∗) < Jn(R∗). (3.15)

This makes a contradiction to the assumption that J (R) reaches a minimization point at R∗ over V n
δ . Using similar argu-

ments, with δ sufficiently small, if R∗ = min1≤m≤r
1

αm
(c0

m − δ), we have

J ′
n(R) |R=R∗> 0.

Meanwhile, if R∗ = maxr+1≤m≤N
1

βm
(δ − c0

m), we will get J ′
n(R) |R=R∗< 0.

As a result, since Jn(R) is a strictly convex function over Vn , the global minimum of Jn(R) over V n
δ could only possibly 

occur at an interior point, if δ is sufficiently small. We conclude that there exists a global minimizer R∗ ∈ (V n
δ )o, the interior 

region of V n
δ , of Jn(R∗), so that J ′

n(R∗) = 0, i.e., R∗ is the numerical solution of (3.8). In addition, since Jn(R) is a strictly 
convex function over Vn , the uniqueness analysis for this numerical solution is straightforward. This completes the proof of 
Theorem 3.1. !

Remark 3.1. The theorem states that there exists a unique global minimizer of Jn(R) over Vn , which is a solution of the 
nonlinear scheme (3.8). In the numerical implementation, it is important to choose a proper optimization method and 
initial condition, such that the unique minimizer of Jn(R) in Vn can be found. In practice, we take the initial guess as 
Rn+1,0 = .t(k+

1
∏r

m=1(cn
m)αi −k−

1
∏N

m=r+1(cn
m)βm ) + Rn and use the gradient descent with Barzilai-Borwein (BB) step-size [6]

to solve the optimization problem. A backtracking line search is applied to ensure that Rn+1,k ∈ Vn at k-th iteration.

The numerical scheme (3.8) can be used in the operator splitting scheme by applying it to each mesh point at the 
reaction stage. With the positivity-preserving property and unique solvability, we can prove its unconditional energy stability 
(3.2).

Theorem 3.2. Given cn, with cn
i, j,k ∈RN

+ at all mesh points. By setting c0 = cn and Rn = 0, and applying (3.8) to each mesh point, we 
have the following energy dissipation property

Fh[c(Rn+1)] ≤ Fh[c(Rn)], (3.16)

where Fh(c) := 〈F(c), 1〉 is the discrete energy with F(c) is given by (2.22), and c(R) = c0 + σ R.

Proof. Multiplying (3.8) by Rn+1
i, j,k − Rn

i, j,k at each mesh point, and taking a discrete summation over # yields

ln

(
Rn+1

i, j,k − Rn
i, j,k

η(c i, j,k(Rn
i, j,k)).t

+ 1

)

· (Rn+1
i, j,k − Rn

i, j,k) +
N∑

m=1

σmµm(Rn+1
i, j,k) · (Rn+1

i, j,k − Rn
i, j,k) = 0,

so that
〈

ln
(

Rn+1 − Rn

η(c(Rn)).t
+ 1

)
, Rn+1 − Rn

〉
+

〈 N∑

m=1

σmµm(Rn+1), Rn+1 − Rn
〉
= 0,

(3.17)

in which we have recalled the definition for the discrete inner product, 〈 f , g〉 = h3 ∑N0−1
i, j,k=0 f i, j,k gi, j,k , while the second 

equation comes from a discrete summation of the first equality. And also, µm = δF
δcm

stands for the chemical potential of m-
th species, as the notation consistent with (2.29). The non-negative feature of the first inner product term is straightforward:

〈
ln

( Rn+1 − Rn

η(c(Rn)).t
+ 1

)
, Rn+1 − Rn

〉
≥ 0, (3.18)

which comes from the fact that ln( a−b
κ + 1) ≥ 0 if a − b ≥ 0 and ln( a−b

κ + 1) ≤ 0 if a − b ≤ 0 for ∀a, b and ∀κ > 0. On the 
other hand, by the convexity inequality, x1(ln x1 − 1) − x0(ln x0 − 1) =

∫ x1
x0

(ln x)dx ≤ ln x1(x1 − x0), we have

− αm(ln(c0
m − αm Rn+1) + Um) · (Rn+1 − Rn) ≥ (c0

m − αm Rn+1)
(

ln(c0
m − αm Rn+1) − 1 + Um

)

− (c0
m − αm Rn)

(
ln(c0

m − αm Rn) − 1 + Um

)
, m = 1, . . . r,

βi(ln(c0
m + βm Rn+1) + Um) · (Rn+1 − Rn) ≥ (c0

m + βm Rn+1)
(

ln(c0
m + βm Rn+1) − 1 + Um

)

− (c0
m + βm Rn)

(
ln(c0

m + βm Rn) − 1 + Um

)
, m = r + 1, . . . N,

10
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at each mesh point (here we omit the index (i, j, k) for simplicity). In turn, a discrete summation of the above estimates 
leads to

〈 N∑

m=1

σmµm(Rn+1), Rn+1 − Rn
〉
≥ Fh[c(Rn+1)] − Fh[c(Rn)]. (3.19)

Again, the notation of discrete inner product, 〈 f , g〉 = h3 ∑N0−1
i, j,k=0 f i, j,k gi, j,k , as well as the definition for the discrete energy, 

Fh(c) = 〈F(c), 1〉 (given by (3.2)), have been recalled. In turn, a substitution of (3.18) and (3.19) into (3.17) leads to (3.16), 
which proves unconditional energy stability. !

For a general reversible reaction network with M reaction and N reaction, we can construct a similar numerical scheme, 
given by

ln

(
Rn+1

l − Rn
l

ηl(c(Rn)).t
+ 1

)

= −
N∑

m=1

σ l
mµn+1

m , l = 1,2, . . . M, (3.20)

where µn+1
m is the chemical potential of m-th species for given Rn+1. The corresponding optimization problem can be 

defined by

Rn+1 = argminR∈Vn J (R)

J (R) =
M∑

l=1

(
(Rl − Rn

l + ηl(c(Rn
l )).t) ln

(
Rl − Rn

l

ηl(c(Rn).t
+ 1

)
− (Rl − Rn

l )

)
+ F[c(R)],

(3.21)

where c(R) = c0 + σ R , and

Vn = {R ∈ RM | c(R) ∈RN
+, Rl − Rn

l + ηl(c(Rn)).t > 0}. (3.22)

It is easy to show that J (R) is strictly convex over Vn . Following the same arguments, it would be possible to establish 
the positivity-preserving property, unique solvability, and energy stability when rank (σ ) = M and M < N . However, the 
technical details will be much more complicated than the single reaction case. In this paper, we will show that the numerical 
scheme (3.20) works well practically for multiple reactions case through a numerical example. The theoretical justification 
for numerical scheme (3.20) will be explored in future works.

Remark 3.2. The numerical scheme (3.21) is similar to the mirror descent in optimization. For an optimization problem 
minR F(R), the implicit mirror descent can be formulated as

Rn+1 = arg min
R∈V

1
η

Dϕ(Rn, R) + F(R), (3.23)

where V is the admissible set, η is the step-size, and Dϕ(R, Rn) is the Bregman divergence induced by ϕ

Dϕ(z, x) = ϕ(x) − ϕ(z) − 〈∇ϕ(z), (x − z)〉. (3.24)

The Bregman Dϕ(R, Rn) measures the distance between R and Rn . The classical implicit Euler method corresponds to the 
case that ϕ(x) = 1

2 |x|2. Recall the definition of J (R) in (3.21), which can be reformulated as

J (R) = 1
.t

1

(
R∗,

R − Rn

.t

)
+ F[c(R)], (3.25)

where 1 
(

R∗, R−Rn

.t

)
corresponds to a Bregman divergence that measures the distance between R and Rn . Notice that

1
.t

δ1
(

R∗, R−Rn

.t

)

δR
= !(R∗,

R − Rn

.t
). (3.26)

Under a certain limit, we have

δ1(R, Ṙ)

δ Ṙ
= !(R, Ṙ), (3.27)

so the dynamics for the reaction kinetics can be reformulated as

δ1(R, Ṙ)

δ Ṙ
= −δF

δR
. (3.28)

11
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One can view the left-hand side as generalized Onsager’s maximum dissipation principle and 1(R, Ṙ) is the pseudo-
potential of dissipative forces [77]. For a given energy dissipation rate $(R, Ṙ), one way to define 1(R, Ṙ) is given by [77]

1(R, Ṙ) =
1∫

0

1
θ

$(R, θ Ṙ)dθ, (3.29)

which implies that

(
δ1

δ Ṙ
, Ṙ

)
=

1∫

0

(
δ$(R, θ Ṙ)

δ Ṙ
, Ṙ

)
dθ = $(R, Ṙ) − $(R,0) = $(R, Ṙ). (3.30)

In general, an explicit form of 1(R, Ṙ) may not be available.

Remark 3.3. The unconditional energy stability of the proposed scheme (3.8) follows the idea from the convex-concave 
decomposition of the energy, an idea popularized in Eyre’s work [38]. The method has been applied to the phase field 
crystal (PFC) equation [46,97]; epitaxial thin film growth models [18,94]; non-local gradient model [48]; the Cahn-Hilliard 
model coupled with fluid flow [19,71], etc. Second-order accurate energy stable schemes have also been reported in recent 
years, based on either the Crank-Nicolson or BDF2 approach [7,8,28,29,47,49,53,89,98], etc. In fact, the discrete energy 
functional, introduced in (3.2), is convex in terms of c, and no concave term is involved. As a result, all the logarithmic 
terms are implicitly treated, for the sake of both the energy stability and positivity-preserving property. The implicit and 
singular nature of these terms prevents the numerical solution reaching the limiting values, as demonstrated in the analysis. 
Meanwhile, the denominator term η(c(R)), which appears in ln

(
Rr

η(c(R)) + 1
)

, is treated explicitly, which plays a similar role 
as a mobility. Such an explicit treatment ensures the convexity of the corresponding numerical approximation associated 
with the temporal discretization, which makes the theoretical analysis pass through.

3.2. Numerical scheme for the diffusion stage

It is noticed that for the cases that we consider, the equations for each species are fully decoupled at the diffusion stage 
ct = Bc . Henceforth, we only need to construct a positivity-preserving, energy stable scheme for a single diffusion equation

ρt = ∇ · (D(ρ)∇ρ). (3.31)

There have been extensive existing works of positivity-preserving and energy stable scheme for generalized diffusion 
equations [66,91,45,17,67]. For the diffusion equation that considered in this paper, we can adopt the classical semi-implicit 
scheme

ρn+1 − ρn

.t
= ∇h ·

(
Ah[D(ρn)]∇hρ

n+1) , (3.32)

where ∇h and ∇h· stand for the discrete gradient and the discrete divergence, respectively. The spatially averaged field 
Ah[D(ρn)], which is introduced to obtain the value of D(ρn) at the staggered mesh points, is defined as

(Ah[D(ρn)])i+1/2, j,k = 1
2
((D(ρn))i, j,k + (D(ρn))i+1, j,k),

(Ah[D(ρn)])i, j+1/2,k = 1
2
((D(ρn))i, j,k + (D(ρn))i, j+1,k),

(Ah[D(ρn)])i, j,k+1/2 = 1
2
((D(ρn))i, j,k + (D(ρn))i, j,k+1).

(3.33)

Such an average operator is associated with the feature that Ah[D(ρn)] > 0 at all staggered mesh points, provided that 
D(ρn)i, j,k > 0. For the standard semi-implicit scheme (3.32), its positivity-preserving property, as well as the energy stability, 
could be theoretically developed, where the logarithmic function in the free energy plays an essential role.

Indeed, the positivity-preserving property for this numerical scheme is obvious, due to the discrete maximum principle.

Theorem 3.3. Given ρn, with ρn
i, j,k > 0, 0 ≤ i, j, k ≤ N0 , there exists a unique solution ρn+1 for the numerical scheme (3.32), with 

the discrete periodic boundary condition, with ρn+1
i, j,k > 0, 0 ≤ i, j, k ≤ N0 .

To prove the energy stability, we first introduce the discrete free energy for any discrete grid function ρ:

Fh(ρ) := 〈ρ lnρ + Cρ,1〉, (3.34)

12
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where C is an arbitrary constant, 〈 f , g〉 = h3 ∑N0−1
i, j,k=0 f i, j,k gi, j,k denotes the discrete L2-inner product. Thanks to the 

positivity-preserving property and the unique solvability, we are able to establish an unconditional energy stability for 
the numerical scheme (3.32).

Theorem 3.4. For the numerical solution (3.32), with the discrete periodic boundary condition, we have 〈ρn+1, 1〉 = 〈ρn, 1〉 and

Fh(ρ
n+1) ≤ Fh(ρ

n), (3.35)

so that Fh(ρ
n) ≤ Fh(ρ0), an initial constant.

Proof. The conservation property can be proved by taking a discrete inner product with (3.32) by 1, which results in

〈ρn+1 − ρn,1〉 = 0, (3.36)

due to the discrete periodic boundary condition. Moreover, taking a discrete inner product with (3.32) by µn+1 = lnρn+1 +C
yields

1
τ

〈µn+1 + C,ρn+1 − ρn〉 =〈µn+1,∇h ·
(
Ah[D(ρn)]∇hρ

n+1)〉
= − 〈∇h(lnρn+1),Ah[D(ρn)]∇hρ

n+1〉∗ ≤ 0,
(3.37)

where the last step follows the inequality (a − b) ln(a − b) ≥ 0, combined with the fact that Ah[D(ρn)] > 0. Here 〈·, ·〉∗
denotes the discrete inner product defined on the staggered mesh points.

Due to convexity of the discrete energy Fh(ρ) = 〈ρ lnρ + Cρ, 1〉, we have

Fh(ρ
n+1) − Fh(ρ

n) ≤ 〈µn+1,ρn+1 − ρn〉 ≤ 0. (3.38)

In turn, a substitution of (3.38) into (3.37) leads to (3.35), so that the unconditional energy stability is proved. !

Remark 3.4. Such an energy stability analysis is available when the free energy is convex with respect to ρ , so that µ(ρ) is 
increasing in ρ . The discrete energy-dissipation law corresponding (3.32) becomes

Fn+1 − Fn

.t
= −

〈

Ah

[ (

Mn

ρn

]

∇hρ
n+1,∇hµ

n+1

〉

≤ 0. (3.39)

Remark 3.5. Although the stability for the free energy (3.34) can be proved for the semi-implicit scheme, the algorithm 
is not based on the variational structure associated with this energy. In fact, the semi-implicit scheme corresponds to the 
minimization problem

ρ = arg min
ρ

1
2.t

‖ρ − ρn‖2
2 +

∫
D(ρn)∇ρ · ∇ρ dx. (3.40)

A variational structure preserving scheme for a diffusion equation with the free energy (3.34) can be developed by using 
Lagrangian methods [17,67] or numerical methods for Wasserstein gradient flows [11].

Remark 3.6. Recently, there have been various works devoted to designing a positivity-preserving and energy stable scheme 
for generalized diffusion systems, such as Poisson-Nernst-Planck equations [66,91] and the porous medium equations [45]. 
The basic idea is to use the numerical scheme

ρn+1 − ρn

.t
= ∇h ·

(
Ah[

(

M n]∇hµ
n+1

)
, (3.41)

where ∇h and ∇h· are the discrete gradient and the discrete divergence, Ah[

(

M n] is the spatial average of the mobility at 
the staggered mesh points, and µn+1 is the chemical potential taken in the (n + 1)-th time step. By taking the mobility 
explicitly, the proof of the unique solvability, the positivity-preserving, as well as the energy stability, follows through the 
convexity analysis for the logarithmic terms in the free energy. Moreover, if Fh is a convex energy, the numerical solution 
(3.41) satisfies the following discrete energy-dissipation law

Fn+1
h − Fn

h

.t
= −〈Ah[

(

M n]∇hµ
n+1,∇hµ

n+1〉 ≤ 0. (3.42)

An interesting fact we show here is that, if the physical energy is convex, such as the porous medium type diffusion with 
ρ lnρ as the physical energy, it is not necessary to use the nonlinear scheme (3.41). Instead, a standard semi-implicit linear 
scheme can achieve a similar theoretic goal.

13
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3.3. The operator splitting scheme for the reaction-diffusion system

Based on the previous discussion for the reaction-diffusion system (2.41) with the detailed balance condition, the fol-
lowing operator splitting scheme is proposed. For simplicity of presentation, only the case with a single reversible chemical 
reaction is considered, and an extension to a case with multiple reactions is expected to be straightforward.

Given cn , with cn
i, j,k ∈RN

+ at all mesh points. We update cn+1, via the following two stages.

Stage 1. First, we set cn,0 = cn , and apply the following scheme (corresponding to (3.8)) at each mesh point:

ln
(

Rn+1 − Rn

η(cn)).t
+ 1

)
= −

N∑

m=1

σmµm(Rn+1), Rn ≡ 0, (3.43)

where µm(Rn+1) is the chemical potential of m-th species for given Rn+1. Here we omit the index (i, j, k) for simplicity. By 
Theorem 3.1, there exists a unique solution Rn+1

i, j,k at each mesh point such that cn
i, j,k + σ Rn+1

i, j,k ∈RN
+ . We denote

cn+1,∗
i, j,k := cn

i, j,k + σ Rn+1
i, j,k, (3.44)

and we have the following energy dissipation property

Fh(cn+1,∗) ≤ Fh(cn), (3.45)

according to Theorem 3.2, where Fh(c) := 〈F(c), 1〉 is the discrete energy with F(c) is given by (2.22).
Stage 2. The intermediate variable cn+1,∗ has been proved to be positive at each mesh point. Next, we update cn+1 by the 
semi-implicit scheme (3.32)

cn+1
m − cn+1,∗

m

.t
= ∇h ·

(
Ah[Dm(cn+1,∗

m )]∇hcn+1
m

)
, 1 ≤ m ≤ N. (3.46)

With an application of Theorem 3.3 and 3.4, both the positivity-preserving property and energy stability are established:

cn+1
i, j,k ∈RN

+, Fh(cn+1) ≤ Fh(cn+1,∗). (3.47)

A combination of (3.45) and (3.47) results in

Fh(cn+1) ≤ Fh(cn). (3.48)

Therefore, we arrive at the following theoretical result for the operator splitting scheme.

Theorem 3.5. Given cn, with cn
i, j,k ∈ RN

+ , there exists a unique solution cn+1 , with discrete periodic boundary condition, for the 
operator splitting numerical scheme (3.43)-(3.44), combined with (3.46). The point-wise positivity is ensured, i.e., cn+1

i, j,k ∈ RN
+ at all 

mesh points. In addition, we have the energy dissipation estimate: Fh(cn+1) ≤ Fh(cn), so that Fh(cn) ≤ Fh(c0), ∀n.

Remark 3.7. There have been many existing works of operator splitting numerical schemes to nonlinear PDEs, such as 
[24,25,103] for reaction-diffusion systems, [5,14,73,90,93] for the nonlinear Schrödinger equation, [4] for the incompressible 
magnetohydrodynamics system, [10] for the delay equation, [34] for the nonlinear evolution equation, [35] for the Vlasov-
type equation, [59] for a generalized Leland’s mode, [99,100] for the “Good” Boussinesq equation, [62] for the Allen-Cahn 
equation, [63] for the molecular beamer epitaxy (MBE) equation, [102] for nonlinear solvation problem, etc. On the other 
hand, different computational stages correspond to different physical energy for most existing operator splitting schemes, 
so that a combined energy stability estimate becomes very challenging at a theoretical level. In comparison, the same free 
energy, in the form of Fh(c) = 〈F(c), 1〉, dissipates at both the reaction and diffusion stages in our proposed scheme, 
so that the combined operator splitting scheme yields an energy dissipation property at each time step, with a careful 
transformation (3.44) between two splitting stages. In the authors’ best knowledge, it is the first time to report a free 
energy dissipation for a combined operator splitting scheme to a nonlinear PDE with variational structures.

Remark 3.8. The proposed numerical method is designed for reaction-diffusion equations with variational structures, i.e., 
the reaction part satisfies the law of mass action with the detailed balance condition. The variational structure is the key 
point that enables one to develop a positivity-preserving and energy stable numerical scheme. The proposed numerical 
framework is not limited to reaction-diffusion systems, but can be applied to more general dissipative systems with differ-
ent components of dissipations [58,69,96]. In the existing literature, extensive higher-order positivity-preserving numerical 
schemes have been developed for general reaction-diffusion equation [39,54,87], while most of them didn’t use the varia-
tional structure, so that the energy stability was not theoretically justified. In comparison, it is straightforward to apply our 
proposed approach to develop high-order schemes for dissipative systems.
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Remark 3.9. The proposed scheme is very efficient for numerical implementations, for both 2-D and 3-D computations. At 
the reaction stage, the optimization problem (3.21) corresponds to a convex energy to be optimized, and this fact has greatly 
facilitated the computational efforts. In fact, a lot of optimization methods have been available for this convex optimization 
problem. In the current study, we use a simple gradient descent method with Barzilai-Borwein (BB) step-size and apply 
a backtracking line search to ensure R is in the admissible set; see the detailed descriptions in Remark 3.1. In particular, 
such a numerical solver is point-wise applied over the numerical grid, and there is no coupling between the numerical 
mesh points, because of the ODE nature of the system (3.20) (and (3.43)). Therefore, only an order of O (Nd

0) (with d the 
dimension) calculations are needed in the reaction stage, which corresponds to a computational cost less than a standard 
Poisson solver.

In terms of the numerical implementation for (3.46) in the diffusion stage, we observe that it is a linear elliptic equation 
with given variable coefficients. Many existing numerical solvers, such as the conjugate gradient method and the precon-
ditioned steepest descent gradient iteration algorithm, could be very efficiently applied. Extensive numerical experiments 
have demonstrated that, the computational cost of such a numerical solver is at the same level as the Poisson solvers, 
maybe three to five times of a standard Poisson solver, with a reasonable initial iteration guess. In addition, the availability 
of FFT-based computational tools can further improve the numerical efficiency. As a result, the proposed numerical algo-
rithm (3.46) in the diffusion stage has a great advantage in terms of the numerical efficiency; it is indeed computationally 
much more efficient than many other positivity-preserving and energy stable schemes, such as the scheme in [66] for the 
Poisson-Nernst-Planck system and the one in [45] for the porous medium equations.

Since the computational cost at the reaction stage is of order O (Nd
0), even less than a standard Poisson solver, and the 

computational cost at the diffusion stage is at the same level as the Poisson solvers, the spatial dimension does not pose 
a great computational challenge to the proposed operator splitting scheme (3.43)-(3.46). Both 2-D and 3-D computations 
could be efficiently performed. In this article we focus on the 2-D computational results, and more 3-D modeling and 
numerical results will be reported in future works.

4. Numerical results

In this section, we perform some numerical tests for the proposed numerical scheme to demonstrate the energy stability, 
as well as the positivity-preserving property.

4.1. Reaction kinetic: accuracy test

We first consider a simple test case, as used in [54], given by





dc1

dt
= c2 − ac1,

dc2

dt
= ac1 − c2,

(4.1)

where a > 0 is a constant. This equation corresponds to a simple reversible chemical reaction X1
a−−⇀↽−−
1

X2. For a given initial 

condition ci(0) = c0
i , the exact solution can be computed as

c1(t) =
(

1 +
(

c0
1

c∞
1

− 1

)

exp(−(a + 1))t

)

c∞
1 , c2(t) = c0

1 + c0
2 − c1(t), (4.2)

where c∞
1 = (c0

1 + c0
2)/(a + 1) is the equilibrium concentration of X1. Let R be the reaction trajectory, the corresponding 

energy-dissipation law can be expressed as

d
dt

( 2∑

i=1

ci(ln ci − 1) + c1 ln a + c2 ln(1)

)

= −Ṙ ln
(

Ṙ
c2

+ 1
)

. (4.3)

The errors between numerical solutions and the exact solution at T = 1 are displayed in Fig. 4.1 (a). A clear first-order 
accuracy is observed. Since the proposed operator splitting scheme only has first-order temporal accuracy, a first-order 
numerical approximation for the reaction part is adequate for our purpose. Fig. 4.1 (b) shows the evolution of the numerical 
free energy with respect to time (.t = 1/160), which verifies the energy stability of the scheme.

4.2. Generalized Michaelis-Menten kinetics

In this subsection, we test our numerical scheme for a multiple reaction case. Consider a generalized Michaelis-Menten 
enzyme kinetics with two intermediate states [57,84], in which the reactions are given by
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Fig. 4.1. (a) Error table for the linear ODE system (4.1). (b) Numerical free energy with respect to time (.t = 1/160).

Fig. 4.2. Numerical results for the Generalized Michaelis-Menten kinetics with two intermediate states (.t = 1/50): (a) The concentrations of different 
species with respect to time, (b) The numerical free energy with respect to time.

E + S
k1

+
−−⇀↽−−

k1
− ES, ES

k2
+

−−⇀↽−−
k2

− EP, EP
k3

+
−−⇀↽−−

k3
− E + P. (4.4)

This is a reaction network with 5 species and 3 reactions, where E is the enzyme that catalyzes the reaction S −−⇀↽−− P, SE and 
SP are two intermediates. It is often assumed that k−

2 2 k+
2 and k−

3 2 k+
3 , so that most of S will be converted to E. One can 

view the reaction network (4.4) as a thermodynamically consistent modification of the classical Michaelis-Menten kinetics 

S + S
k1

+
−−⇀↽−−

k1
1

ES
kcat−−→ P, which doesn’t have a variational structure [81]. In a modeling perspective, it would be interesting to 

compare both models and study the singular limit of (4.4) with k−
2 → 0 and k−

3 → 0. We are working on this direction.
Let c1 = [E], c2 = [S], c3 = [ES], c4 = [EP], c5 = [P] and R = (R1, R2, R3)

T denote three reaction trajectories, the energy-
dissipation law of the system can be formulated as

d
dt

( 5∑

i=1

ci(ln ci − 1 + Ui)

)

= −
3∑

l=1

Ṙl ln
(

Ṙl

ηl(c(R))
− 1

)
, (4.5)

where Ui can be taken as

U1 = − ln(k−
1 k−

2 k−
3 ), U2 = ln(k+

1 k−
3 ) U3 = − ln[k−

2 ], U4 = − ln[k+
2 ], U5 = − ln(k+

1 k+
2 k+

3 ),

and

η1(c) = k−
1 c3, η2(c) = k−

2 c4, η2(c) = k−
3 c1c5.

We can derive the law of mass action for (4.4) under the above choice of parameters.
In the numerical simulation, we take k+

1 = 1, k−
1 = 0.5, k+

2 = 100, k−
2 = 1, k+

3 = 100 and k−
3 = 1. The initial condition 

is set as [S](0) = 1, [E](0) = 0.8, [ES](0) = [EP](0) = [P][0] = 0.01. Fig. 4.2 displays the numerical result with .t = 1/50. 
This numerical simulation turns out to be very challenging due to the low concentration levels of ES and EP. Indeed, for 
the parameters we used, [ES] is about 3.57 × 10−4 in the late stage of the simulation. The numerical results have clearly 
demonstrated the positivity-preserving property and energy stability of our proposed numerical scheme in the case with 
multiple reactions.
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Fig. 4.3. (a)-(d): Numerical results for the reaction-diffusion system (4.6) with Du = 0.2, D v = 0.1, k+
1 = 1 and k−

1 = 0.1 at (a) t = 0, (b) t = 0.7, (c) t = 0.75 
and (d) t = 1. (e): The discrete free energy in the time evolution.

4.3. Reaction-diffusion: accuracy test

Next we consider a reaction-diffusion system
{

∂t u = Du.u − k+
1 uv2 + k−

1 v3

∂t v = D v.v + k+
1 uv2 − k−

1 v3,
(4.6)

in which the reaction is given by

U + 2 V
k1

+
−−⇀↽−−

k1
− 3 V.

Such a type reaction plays an important role in pattern formation in biochemical systems when k−
1 = 0 [83,50]. For k±

1 > 0, 
the energy-dissipation law is given by

d
dt

∫
u(ln u − 1 + Uu) + v(ln v − 1 + U v)dx = −

∫
Ṙ ln

(
Ṙ

k−
1 v3

+ 1

)

+ 1
Du

|∇µu|2 + 1
D v

|∇µv |2dx,

where Uu = ln k+
1 and U v = ln k−

1 so that Ṙ = k+
1 uv2 − k−

1 v3.
In the simulation, we take the computational domain # = (−1, 1)2, and impose a periodic boundary condition for both 

u and v on ∂#. Fig. 4.3 displays numerical results for Du = 0.2, D v = 0.1, k+
1 = 1 and k−

1 = 0.1 at different time instants, 
with the initial condition given by

u = (− tanh((

√
x2 + y2 − 0.4)/0.1) + 1)/2 + 1; v = (tanh((

√
x2 + y2 − 0.4)/0.1) + 1)/2 + 1.

In the computation, we take h = 1/50 and .t = 1/100. As shown in Fig. 4.3(e), the numerical solution is energy stable for 
this reaction-diffusion system.

We also perform an accuracy test for this example. The numerical error at T = 0.2 is considered, before the system 
reaches the constant steady state. Since the analytical solution is not available in this example, we use the numerical 
solution with h = 1/200 and .t = 1/1600 as the reference solution. In the accuracy test for the temporal numerical errors, 
we fix the spatial resolution as h = 1

200 , so that the spatial numerical error is negligible. Table 4.1 displays the 4∞ numerical 
errors at T = 0.2, as well as the CPU time for numerical simulations with a sequence of time step sizes: .t = 1

25 , 1
50 , 1

100 , 
1

200 and 1
400 . A very clear first order temporal accuracy for the operator splitting scheme has been observed in the table, as 

the time step size becomes more refined.
To verify the spatial accuracy of the proposed numerical scheme for this example, we perform the computations on a 

sequence of mesh resolutions: h = 1
20 , 1

30 , 1
40 , 1

50 , 1
60 , and the time step size is set as .t = h2 to eliminate the effect of

temporal errors. Since an analytical form of the exact solution is not available, we compute the 4∞ differences between 
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Table 4.1
Numerical errors, order of accuracy and CPU time for numerical simulations of (4.6) at T = 0.2. The 
numerical solution with h = 1/200 and .t = 1/1600 is taken as the reference solution.

.t h 4∞ error of u Order in time 4∞ error of v Order in time CPU (s)

1/25 1/200 1.117e-1 9.971e-2 5.88
1/50 1/200 6.045e-2 0.8858 5.357e-2 0.8963 11.92
1/100 1/200 3.083e-2 0.9714 2.721e-2 0.9773 23.08
1/200 1/200 1.479e-2 1.0620 1.302e-2 1.0634 47.08
1/400 1/200 6.428e-3 1.2022 5.655e-3 1.2031 93.86

Table 4.2
The 4∞ differences and the convergence order for the numerical solutions 
of u and v at time T = 0.2. Various mesh resolutions are tested: h1 = 1

20 , 
h2 = 1

30 , h3 = 1
40 , h4 = 1

50 , h5 = 1
60 , and the time step size is taken as 

.t = h2.

— ψ = u Order ψ = v Order

‖ψh1 − ψh2 ‖∞ 5.586e-3 - 4.900e-3 -
‖ψh2 − ψh3 ‖∞ 1.979e-3 1.970 1.727e-3 1.983
‖ψh3 − ψh4 ‖∞ 9.204e-4 1.983 8.014e-4 1.991
‖ψh3 − ψh4 ‖∞ 5.011e-4 1.990 4.360e-4 1.993

numerical solutions with consecutive spatial resolutions, h j−1, h j and h j+1, in the Cauchy convergence test. Since we expect 
the numerical scheme preserves a second order spatial accuracy, we can compute the following quantity

ln
(

1
A∗ · ‖uh j−1 −uh j ‖∞

‖uh j −uh j+1 ‖∞

)

ln h j−1
h j

, A∗ =
1 − h2

j

h2
j−1

1 − h2
j+1

h2
j

, for h j−1 > h j > h j+1,

to check the convergence order [66]. As demonstrated in Table 4.2, the numerical errors at time T = 0.2 improve robustly 
as the spatial mesh refines, and an almost perfect second order spatial convergence rate for the proposed operator splitting 
scheme is observed.

4.4. Reaction-diffusion: nonlinear diffusion

In the last example, we consider a case that couples a chemical reaction with a nonlinear diffusion given by
{

at = .am − k1a + k2b
bt = ε.a + k1a − k2b.

(4.7)

The corresponding chemical reaction is given by A
k1−−⇀↽−−
k2

B. Equation (4.7) has potential applications in modeling the tumor 
growth (see [70,85] for more discussions on modeling perspectives). Here we only use equation (4.7) as the numerical test; 
the values that we take may not have the physical meaning. The corresponding energy-dissipation law for (4.7) can be 
written as

d
dt

∫
a(ln a − 1) + b(ln b − 1) + aUa + bUbdx = −

∫
Ṙ ln

(
Ṙ

k2b
+ 1

)
+ 1

m
a2−m|ua|2 + 1

ε
b|ub|2dx. (4.8)

We take Ua = ln k1 and Ub = ln k2 to obtain the original equation. In the numerical simulation, we set the domain as 
# = (−1, 1)2 and impose a periodic boundary conditions for both a and b. The parameters in the equations are chosen as

m = 4, k1 = 2, k2 = 1, ε = 0.01. (4.9)

Fig. 4.4 shows the numerical results for h = 1/50 and t = 1/100, in which the initial condition is given by

a(x, y) =
{

1, |x| ≤ 0.2 and |y| ≤ 0.2,

0.01, otherwise,
b(x, y) = − tanh((

√
(x − 0.4)2 + (y − 0.4)2 − 0.1)/0.1) + 0.005.

It is noticed that the chemical reaction is at its chemical equilibrium for a = 0.01 and c = 0.005. This numerical example 
has also demonstrated the energy stability and positivity-preserving property of the proposed operator splitting scheme. In 
addition, the finite speed propagation property for the PME can be observed in the numerical solutions.
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Fig. 4.4. (a)-(d): Numerical results for the reaction-diffusion system (4.7) with m = 4, k1 = 2, k2 = 1, ε = 0.01 at (a) t = 0, (b) t = 0.7, (c) t = 0.75 and 
(d) t = 1. (e): The discrete free energy in the time evolution.

5. Summary

We propose a positivity-preserving and energy stable operator splitting numerical scheme for reaction-diffusion systems 
with the detailed balance condition. The numerical discretization is based on a recently-developed energetic variational 
formulation, in which the reaction part is reformulated as a generalized gradient flow of the reaction trajectory and both 
the reaction and diffusion parts dissipates the same free energy. This discovery enables us to develop an operator splitting 
scheme, with both the positivity-preserving property and energy stability established at a theoretical level. In more details, 
the convex splitting technique is applied to the reformulated reaction part; all the logarithmic terms are treated implicitly 
because of their convex nature. The positivity-preserving property and unique solvability are theoretically proved, based on 
the subtle fact that, the singularity of the logarithmic function around the limiting value prevents the numerical solution 
reaching these singular values. The energy stability follows a careful convexity analysis. Using similar ideas, we establish the 
positivity-preserving property and the energy stability for the standard semi-implicit solver in the diffusion stage as well. 
Therefore, a combination of these two stages leads to a numerical scheme satisfying both theoretical properties. Several 
numerical results have also been presented to demonstrate the robustness of the proposed operator splitting scheme. Such 
an operator splitting approach can be applied to general dissipative systems that contain different components of dissipa-
tions, such problems with dynamical boundary conditions [58,69], and chemomechanical systems in biology and soft matter 
physics [55,96].
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