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Abstract. A reformulation of the planetary geostrophic equations (PGEs) with inviscid bal-

ance equation is proposed and the existence of global weak solutions is established, provided

that the mechanical forcing satisfies an integral constraint. There is only one prognostic

equation for the temperature field and the velocity field is statically determined by the plan-

etary geostrophic balance combined with the incompressibility condition. Furthermore, the

velocity profile can be accurately represented as a functional of the temperature gradient. In

particular, the vertical velocity depends only on the first order derivative of the temperature.

As a result, the bound for the L∞(0, t1;L
2) ∩ L2(0, t1;H

1) norm of the temperature field is

sufficient to show the existence of the weak solution.
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1. Introduction

The planetary geostrophic equations (PGEs) have played an important role in large-

scale ocean circulation since the pioneering work of A. Robinson and H. Stommel [6] and P.

Welander [12]. This system arises as an asymptotic approximation to the primitive equations

(PEs) for planetary-scale motions in the limit of small Rossby number. The PGEs are

considerably simpler than the PEs, but retain the dynamics necessary to represent the large-

scale, low-frequency dynamics of the mid-latitude oceans.
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The PGEs with viscous geostrophic balance has been analyzed at the PDE level in recent

articles. See [1, 8, 9] for relevant discussions. One distinguishing feature of the PGEs is that

there is only one prognostic equation in the system for the temperature field; the velocity

field is diagnostically determined by the planetary geostrophic balance. The addition of a

diffusion term in the geostrophic balance equation is for the sake of simplicity in mathematical

analysis, due to the lack of regularity for the velocity field by a straightforward manipulation.

In this article, we consider the original formulation of the PGEs, with no viscous term

in the geostrophic balance equations. In such a formulation, both horizontal and vertical

velocity profiles are accurately represented as functionals of the temperature gradient. The

representation formula for the horizontal velocity field is based on the planetary geostrophic

balance. Since every variable can be uniquely determined by the combination of its mean

(in vertical direction) and its vertical derivative, the horizontal velocity turns out to be

the solution of a differential equation at each fixed horizontal point, depending only on the

temperature gradient. The vertical velocity can be recovered by the continuity equation.

Using the special form of the Coriolis parameter, we arrive at a two-point boundary value

ordinary differential equations (O.D.E.) in the vertical direction at each fixed horizontal

point for the vertical velocity, with the right hand side depending only on the first order

derivative of the temperature field.

The new formulation is derived in Section 2 and the existence of the global (in time) weak

solution of the reformulated PGEs is provided in Section 3. The approach of Galerkin ap-

proximation is used. Standard energy estimate for the temperature equation gives the bound

of the L∞(0, t1;L
2)∩L2(0, t1;H

1) norm of the temperature variable, which in turn shows the

bound of the L2(0, t1;L
2) norm of the horizontal velocity. Moreover, the L2(0, t1;L

2) norm

of the vertical velocity is also uniformly bounded since it satisfies the second order O.D.E.,

in which the force term only involves the temperature gradient. The compactness for the

time derivative of the temperature field can be established in a similar manner. Thus the

existence of the global weak solution is proven.
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2. Reformulation of the Inviscid Planetary Geostrophic Equations

The non-dimensional PGEs can be written as

(2.1)



Tt + (v ·∇)T + w
∂T

∂z
=
( 1

Rt1
4+

1

Rt2
∂2
z

)
T ,

fk × v +∇p = F ,

∂p

∂z
= T ,

∇·v + ∂zw = 0 ,

where T represents the temperature, v = (u, v) the horizontal velocity, w the vertical veloc-

ity, and p the pressure. The term fk×v corresponds to the Coriolis force with f depending

only on the latitude y. As a typical example used in geophysical literatures, its β−plane

approximation is given by f = f0+βy. The parameters 1/Rt1, 1/Rt2 stand for the horizontal

and vertical heat conductivity coefficients. The operators ∇, ∇⊥, ∇·, 4 stand for the gradi-

ent, perpendicular gradient, divergence and Laplacian in horizontal plane, respectively. For

simplicity, we set κ1 = 1/Rt1, κ2 = 1/Rt2. The forcing term F = (F x, F y)⊥ appearing in the

geostrophic balance equation (2.1)2 comes from the wind stress at the ocean surface, which

is a boundary layer approximation. It may or may not depend on the vertical variable z.

For simplicity, we assume in this article F = F (x, y) =
(
F x(x, y), F y(x, y)

)
. The discussion

of a general case can be carried out in the same fashion and does not add any mathematical

difficulty. See the relevant references on both the physical and mathematical descriptions of

the PGEs in [2, 3, 4, 5, 6, 8, 9, 10, 12], etc.

The computational domain is taken as M =M0 × [−H0, 0], where M0 is the surface of

the ocean. The boundary condition at the top and bottom surfaces are given by

(2.2)
w = 0 and κ2

∂T

∂z
= T f , at z = 0 ,

w = 0 and κ2
∂T

∂z
= 0 , at z = −H0 ,

where the term T f represents the heat flux at the surface of the ocean. Usually T f can be

taken as either a fixed heat flux function or of the form T f = −α(T − θ∗), where θ∗ is a

reference temperature. Both boundary conditions can be dealt with in an efficient way. In

this article for simplicity we choose T f as a given flux. On the lateral boundary section

∂M0 × [−H0, 0], the fixed boundary condition is prescribed for the temperature field

(2.3) T = Tlb , on ∂M0 × [−H0, 0] ,
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where Tlb is a given distribution. As will be shown later, the purpose of the choice of a

Dirichlet boundary condition is to facilitate the analysis of the system at the PDE level, al-

though the no-flux boundary condition for the temperature field is physically more relevant.

The boundary condition (2.3) can also be viewed as an approximation such that the distur-

bance of oceanic circulation motion is far away from the lateral boundary. For simplicity of

the presentation, we set the homogeneous profile Tlb = 0 in the theoretical and numerical

analysis. There is no real change for the non-homogeneous case. The normal component of

the vertically averaged horizontal velocity turns out to have a vanishing flux

(2.4) v ·n = 0 , on ∂M0 ,

which is compatible with the continuity equation (2.1)4. We recall that the average (in the

vertical direction) of any 3-D field g is given by g(x, y) = 1
H0

∫ 0
−H0

g(x, y, z) dz. See [4, 8] for

a detailed explanation for the choice of this nonlocal boundary condition in the case where

no viscosity is present in the geostrophic balance equation.

We now derive an equivalent formulation of the system of PGEs (2.1)-(2.4). The key

point in this reformulation is that both the horizontal and vertical velocity variables can

be determined by the first order derivative of the temperature field. This makes valid the

analysis of the well-posedness for the system.

The horizontal velocity field is the solution of the following system

(2.5)


∂zu =

−Ty
f

, ∂zv =
Tx
f
,

u(x, y) = ue , v(x, y) = ve =
−∂yF x + ∂xF

y

∂yf
,

where ue is explicitly given below.

Equation (2.5) is derived from the geostrophic equation and hydrostatic equation. Taking

the vertical derivative of the geostrophic balance equation fk×v+∇p = F gives the thermal

wind equation

(2.6) vz =
∇⊥pz + ∂zF

⊥

f
=
∇⊥T
f

, i.e. uz =
−Ty
f

, vz =
Tx
f
,

where the hydrostatic balance ∂p/∂z = T and the independence on z of F and f = f(y)

were used. In other words, the profile vz can be expressed by the temperature gradient.
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Meanwhile, integrating the geostrophic balance equation fk×v +∇p = F in the vertical

direction and dividing by H0, we find

(2.7) fk × v +∇p = F .

Applying the curl operator ∇⊥ to (2.7) results in

(2.8) (∂yf)v + f(vy + ux) = ∇× F = −∂yF x + ∂xF
y .

Moreover, the continuity equation ∇ · v + ∂zw = 0 and the boundary condition for the

vertical velocity w( ·, 0) = w( ·,−H0) = 0 show that the averaged horizontal velocity field is

divergence-free, i.e.,

(2.9) ∇ · v = 0 .

The combination of (2.8) and (2.9) yields

(2.10) ve = v(x, y) =
−∂yF x + ∂xF

y

∂yf
.

By taking the tangential part of (2.7) and applying (2.4), one obtains the vertically aver-

aged tangential pressure gradient (and thus the pressure, aside from an arbitrary constant)

on the boundary from the tangential component of the forcing F :

(2.11)
∂p

∂τ
= F · τ ,

where τ is the unit tangential vector on the boundary. Integrating this relation around the

boundary, one obtains the constraint that the line integral of F around the boundary must

be zero:

(2.12)
∫
∂M′

F · τ dl = 0 .

This means that the forcing must not give a net torque on the fluid.

From (2.9), we can find a 2-D mean stream function ψ(x, y) for the vertically averaged

velocity field, such that (u, v) = (−∂yψ, ∂xψ). Moreover, the boundary condition (2.4)

indicates that ψ is a constant on the lateral boundary. For simplicity of the discussion,

we take ψ = 0 on ∂M0. In addition, we denote γ1(y0), γ2(y0) by the x-coordinates of the
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intersection points between ∂M0 and y = y0. The mean stream function ψ and the mean

velocity u can be determined by the kinematic relationship and formula (2.10):

(2.13) ψe(x, y) =
∫ x

γ1(y)

∇× F
∂yf

dx′ , ue(x, y) = −∂yψe(x, y) ,

with γ1(y) being a point on ∂M0. Evaluating ψ at another boundary point (γ2(y), y) with

the same y-value, we obtain an additional constraint on the forcing:

(2.14)
∫ γ2(y)

γ1(y)

∇× F
∂yf

dx′ = 0 ,

since ψ is identically 0 on the lateral boundary. Constraint (2.14) amounts to saying that

the average forcing across the domain at a fixed y must not give a torque on the fluid.

The combination of (2.6), (2.10) and (2.13) leads to the system (2.5). By the represen-

tation formula valid for any 3-D variable g:

(2.15) g(x, y, z) =
∫ z

−H0

gz(x, y, z1) dz1 + g(x, y)− 1

H0

∫ 0

−H0

∫ z

−H0

gz(x, y, z1) dz1 dz ,

the solution of (2.5) can be expressed explicitly using an integration formula:

(2.16a) u(x, y, z) = −
∫ z

−H0

Ty
f

(x, y, z1) dz1 + ue(x, y) +
1

H0

∫ 0

−H0

∫ z

−H0

Ty
f

(x, y, z1) dz1 dz ,

(2.16b) v(x, y, z) =
∫ z

−H0

Tx
f

(x, y, z1) dz1 + ve(x, y)− 1

H0

∫ 0

−H0

∫ z

−H0

Tx
f

(x, y, z1) dz1 dz ,

with ue, ve given by (2.10) and (2.13).

The vertical velocity can be calculated by integrating the horizontal divergence of the

horizontal velocity field, due to the incompressibility condition

(2.17) w(x, y, z) = −
∫ z

−H0

∇· v(x, y, s) ds .

The substitution of (2.16) into (2.17) gives

(2.18)

w(x, y, z) =
∫ z

−H0

∫ z2

−H0

(∂yf)Tx
f 2

(x, y, z1) dz1 dz2

− 1

H0

(z +H0)
∫ 0

−H0

∫ z

−H0

(∂yf)Tx
f 2

(x, y, z1) dz1 dz .
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Therefore, w can be expressed as a functional of the temperature gradient, like the horizontal

velocity v.

The vertical velocity can also be represented as the solution of a differential equation.

By taking the vertical derivative of the continuity equation

(2.19) ∇ · vz + ∂2
zw = 0 ,

combined with (2.6), we arrive at

(2.20) ∂2
zw = −∂x(uz)− ∂y(vz) = ∂x

(Ty
f

)
− ∂y

(Tx
f

)
=

(∂yf)Tx
f 2

.

It can be observed that the second order derivatives for the temperature field cancel each

other due to the special form of the Coriolis parameter f = f(y). Therefore, the vertical

velocity w can be reformulated as the solution of the following system of second order O.D.E.s

(2.21)


∂2
zw =

(∂yf)Tx
f 2

,

w = 0 , at z = 0 , −H0 ,

in which the right hand side includes only the first order derivative of the temperature. This

key point is crucial to the analysis presented below.

We then have the following formulation, where the velocities are expressed as functionals

of the temperature gradient.

Temperature Transport Equation

(2.22a)



Tt + (v ·∇)T + w
∂T

∂z
=
(
κ14+ κ2∂

2
z

)
T ,

∂T

∂z
= Tf , at z = 0 ,

∂T

∂z
= 0 , at z = −H0 ,

T = 0 , on ∂M0 × [−H0, 0] ;

Recovery of the horizontal velocity

(2.22b)


∂zu = −Ty

f
, ∂zv =

Tx
f
,

u(x, y) = ue , v(x, y) = ve ;
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Recovery of the vertical velocity

(2.22c)


∂2
zw =

(∂yf)Tx
f 2

,

w = 0 , at z = 0 , −H0 .

Remark 2.1. It is observed that the alternate formulation (2.22a-c) is equivalent to

the original formulation (2.1)-(2.4) of the PGEs, from which they were derived. Indeed, to

recover (2.1)-(2.4) from (2.22a-c), we need to show that φ = ∇ · v + ∂zw ≡ 0. A simple

calculation utilizing (2.22b) and (2.22c) leads to

(2.23) ∂zφ = ∂z
(
∇·v+∂zw

)
= ∂x(∂zu)+∂y(∂zv)+∂2

zw = −∂x
(Ty
f

)
+∂y

(Tx
f

)
+

(∂yf)Tx
f 2

= 0 ,

(2.24) φ =
(
∇ · v + ∂zw

)
= ∇ · v + ∂zw = 0 ,

since the average of v is divergence-free in the horizontal plane. The combination of (2.23)

and (2.24) results in the incompressibility condition. In addition, a direct calculation

(2.25) ∇× (fk × v − F ) = (∂yf)v −∇× F = 0 ,

indicates the existence of a mean pressure field p such that fk × v +∇p = F . Accordingly,

we define the total pressure field as

(2.26) p(x, y, z) =
∫ z

−H0

T (x, y, s) ds+ p(x, y)− 1

H0

∫ 0

−H0

∫ z

−H0

T (x, y, s) ds dz .

Clearly, the hydrostatic balance is satisfied by taking the vertical derivative of (2.26). The

geostrophic balance equation can also be verified by using the integration formulas for v in

(2.16), which comes from the recovery equation (2.22b), combined with the horizontal gradient

of (2.26):

(2.27) ∇p =
∫ z

−H0

∇T ds+∇p− 1

H0

∫ 0

−H0

∫ z

−H0

∇T ds dz .

All the boundary conditions presented in (2.1)-(2.4) are included in the system (2.22). Hence,

(T,u, p) is also a solution of (2.1)-(2.4). This completes the proof of the formal equivalence

of smooth solutions between the two formulations.
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3. Existence of a Global Weak Solution

Before starting the discussion on the weak solutions, we introduce the following functional

setting:

(3.1)
H = L2(M) , V = the closure of C∞lat,0(M) in H1(M) ,

Cm
lat,0(M) = {T ∈ Cm(M) | T = 0 on ∂M0 × [−H0, 0]} .

Note that the introduction of Cm
lat,0(M) is motivated by the boundary condition for T on the

lateral boundary sections. Let ( ·, ·) be the inner product in L2(M) = L2(M0 × [−H0, 0]),

and ‖·‖ the corresponding L2 norm.

For any positive final time t1 > 0, the functions (T, u, v, w)

T ∈ L∞
(
0, t1 ;H

)
∩ L2

(
0, t1 ;V

)
, u , v , w ∈ L2

(
0, t1 ;L2(M)

)
,

are called a weak solution of the original PGEs formulated in (2.22) if

(3.2a)∫
M0

∫ 0

−H0

(
∂t(Tφ) + uTφx + vTφy + wTφz + κ1(∇T )·(∇φ) + κ2(∂zT )·(∂zφ)

)
dx dz

+κ2

∫
M0

α

κ2

(T (x, 0)− θ∗)φ(x, 0) dx = 0 , ∀φ ∈ C1
lat,0(M) ∩H3(M) ,

where

(3.2b)

u(x, y, z) = −
∫ z

−H0

Ty
f

(x, y, z1) dz1 + ue(x, y) +
1

H0

∫ 0

−H0

∫ z

−H0

Ty
f

(x, y, z1) dz1 dz ,

v(x, y, z) =
∫ z

−H0

Tx
f

(x, y, z1) dz1 + ve(x, y)− 1

H0

∫ 0

−H0

∫ z

−H0

Tx
f

(x, y, z1) dz1 dz ,

(3.2c)

w(x, y, z) =
∫ z

−H0

∫ z2

−H0

(∂yf)Tx
f 2

(x, y, z1) dz1 dz2

− 1

H0

(z +H0)
∫ 0

−H0

∫ z

−H0

(∂yf)Tx
f 2

(x, y, z1) dz1 dz .

Theorem 3.1 Suppose F ∈ H2(M0) is given and the constraint (2.14) is satisfied so that

ue, ve can be consistently determined. Let T0 = T (·, 0) ∈ L2(M). Then there exists at least

one global weak solution for the PGEs (2.22), such that for any t1 > 0

(3.3)
T ∈ L∞

(
0, t1 ;H

)
∩ L2

(
0, t1 ;V

)
, ∂tT ∈ L

4
3

(
0, t1 ;H−2(M)

)
,

u , v , w ∈ L2
(
0, t1 ;L2(M)

)
, ∂zu , ∂zv , ∂

2
zw ∈ L2

(
0, t1 ;L2(M)

)
,
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(3.4)

‖T (·, t)‖2 + 2
∫ t

0

(
κ1‖∇T (·, s)‖2 + κ2‖∂zT (·, s)‖2

)
ds ≤ ‖T0‖2 + C∗t , for 0 < t < t1 ,

with C∗ = α
∫
M0

(θ∗)2 dx ,

(3.5)

∇ ·
∫ 0

−H0

v dz = 0 , in the sense of distribution ,∫ 0

−H0

v dz ·n = 0 , on ∂M0 ,

w = 0 , at z = 0 ,−H0 .

Proof. The proof can be accomplished by the Galerkin procedure. A standard energy

estimate is used to obtain the uniform bound for the L∞(0, t1 ;L2(M)) and L2(0, t1 ;H1(M))

norms of the temperature field.

Let {Φj}j≥1 ⊂ H2(M) be the eigenvectors of the diffusion operator corresponding to the

eigenvalues λj, j = 1, 2, ..., such that

(3.6)



(
κ14+ κ2∂

2
z

)
Φj = λjΦj , λj →∞ ,

∂Φj

∂z
= −αΦj

κ2

, at z = 0 ,
∂Φj

∂z
= 0 , at z = −H0 ,

Φj = 0 , on ∂M0 × [−H0, 0] .

The diffusion operator A = κ14 + κ2∂
2
z with the given boundary condition is a self-adjoint

linear operator and admits a compact inverse. Then {Φn}n≥1 defines a complete orthogonal

basis in L2(M). To seek a weak solution of the reformulated PGEs defined in (3.2), we find

an approximate solution {Tm} such that

(3.7) Tm(x, z; t) =
m∑
j=1

βmj (t)Φj(x, z) ,

(3.8)

d

dt

(
Tm,Φj

)
+
(
vmTm,∇Φj

)
+
(
wmTm, ∂zΦj

)
+ κ1

(
∇Tm,∇Φj

)
+ κ2

(
∂zTm, ∂zΦj

)
+κ2

∫
M0

α

κ2

(Tm(x, 0)− θ∗)Φj(x, 0) dx = 0 , j = 1, 2, ...,m ,

(3.9)

um(x, y, z) = −
∫ z

−H0

∂yTm
f

(x, y, z1) dz1 + ue(x, y) +
1

H0

∫ 0

−H0

∫ z

−H0

∂yTm
f

(x, y, z1) dz1 dz ,

vm(x, y, z) =
∫ z

−H0

∂xTm
f

(x, y, z1) dz1 + ve(x, y)− 1

H0

∫ 0

−H0

∫ z

−H0

∂xTm
f

(x, y, z1) dz1 dz ,
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(3.10)

wm(x, y, z) =
∫ z

−H0

∫ z2

−H0

(∂yf)∂xTm
f 2

(x, y, z1) dz1 dz2

− 1

H0

(z +H0)
∫ 0

−H0

∫ z

−H0

(∂yf)∂xTm
f 2

(x, y, z1) dz1 dz ,

(3.11) Tm |t=0= PmT0 ,

where Pm is the orthogonal projection operator in L2(M):

Pm: L2(M)→ Span {Φ1, ...,Φm}.
The scheme (3.8) and (3.11) proposes an initial value problem for a system of m O.D.E.s,

with the velocities determined by (3.9) and (3.10). Therefore, it is straightforward to con-

clude the local (in time) existence of the approximate solution. To get the global (in time)

solution, the energy estimates are necessary.

We observe that the approximated velocity field um = (vm, wm) satisfies

(3.12)
∇ · vm + ∂zwm = 0 ,

vm · n |∂M0×[−H0,0]= ve · n |∂M0×[−H0,0]= 0 , wm |z=0,−H0= 0 ,

which comes from the construction (3.9), (3.10) and the homogeneous Dirichlet boundary

condition for Tm on the lateral boundary. As a result, we find by integration by parts that

(3.13)
(
vmTm,∇Tm

)
+
(
wmTm, ∂zTm

)
= 0 .

Multiplying (3.8) by βmj (t) and adding up the resulting equations leads to

(3.14)

1

2

d

dt
‖Tm‖2 + κ1‖∇Tm‖2 + κ2‖∂zTm‖2 = −κ2

∫
M0

α

κ2

(
Tm(·, 0)− θ∗

)
Tm(·, 0) dx

= −α
∫
M0

(
Tm(·, 0)− θ∗

)
Tm(·, 0) dx

≤ −α
2

∫
M0

T 2
m(·, 0) dx +

α

2

∫
M0

(θ∗)2 dx

≤ α

2

∫
M0

(θ∗)2 dx .

Applying the Gronwall inequality to (3.14) results in

(3.15)

‖Tm(·, t)‖2 + 2
∫ t

0
(κ1‖∇Tm‖2 + κ2‖∂zTm‖2) ds ≤ ‖T0‖2 + C∗t , with C∗ = α

∫
M0

(θ∗)2 dx ,
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which in turn indicates that

(3.16) Tm ∈ a bounded set of L∞
(
0, t1 ;L2(M)

)
∩ L2

(
0, t1 ;H1(M)

)
.

Moreover, by the recovery formulation (3.9), (3.10), we have

(3.17)
um , vm , wm ∈ a bounded set of L2

(
0, t1 ;L2(M)

)
,

∂zum , ∂zvm , ∂
2
zwm ∈ a bounded set of L2

(
0, t1 ;L2(M)

)
.

Furthermore, we need an estimate for ∂tTm so that we can obtain compactness and a

strong convergence result. Consider T̃ ∈ H2(M) given by T̃ =
∑∞
j=1 β̃jΦj. Equation (3.8)

shows that

(3.18)(
∂tTm , T̃

)
=
(
∂tTm , PmT̃

)
=
(
vmTm ,∇PmT̃

)
+
(
wmTm , ∂zPmT̃

)
+ κ1

(
∇Tm,∇PmT̃

)
+ κ2

(
∂zTm, ∂zPmT̃

)
+κ2

∫
M0

α

κ2

(Tm(x, 0)− θ∗)PmT̃ ( ·, 0) dx .

Regarding the nonlinear term, we have

(3.19)∣∣∣∣∫
M

vmTm∇PmT̃ dx
∣∣∣∣ ≤ ‖vm‖L2‖Tm‖L3‖∇PmT̃‖L6 ≤ C‖vm‖‖Tm‖1/2‖Tm‖1/2H1 ‖PmT̃‖H2 .

It is observed that

(3.20)

∂PmT̃

∂z
= −αPmT̃

κ2

, at z = 0 ,
∂PmT̃

∂z
= 0 , at z = −H0 ,

PmT̃ = 0 , on ∂M0 × [−H0, 0] ,

since PmT̃ =
∑m
j=1 β̃jΦj and each Φj satisfies the boundary condition in (3.6). Consequently,

an application of the elliptic regularity for PmT̃ gives

(3.21) ‖PmT̃‖H2 ≤ C‖A(PmT̃ )‖ .

In more detail, we have

(3.22)

A(PmT̃ ) = A
( m∑
j=1

β̃jΦj

)
=

m∑
j=1

β̃jAΦj =
m∑
j=1

λjβ̃jΦj , by (3.6) ,

AT̃ = A
( ∞∑
j=1

β̃jΦj

)
=
∞∑
j=1

β̃jAΦj =
∞∑
j=1

λjβ̃jΦj , by (3.6) ,
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which along with the orthogonality of {Φj}j≥1 in L2(M) leads to

(3.23) ‖A(PmT̃ )‖2 =
m∑
j=1

λ2
j β̃

2
j ‖Φj‖2 ≤

∞∑
j=1

λ2
j β̃

2
j ‖Φj‖2 = ‖AT̃‖2 .

The combination of (3.21) and (3.22) results in

(3.24) ‖PmT̃‖H2 ≤ C‖AT̃‖ ≤ C‖T̃‖H2 .

The substitution of (3.24) into (3.19) leads to

(3.25)
∣∣∣∣∫
M

vmTm∇PmT̃ dx
∣∣∣∣ ≤ C‖vm‖‖Tm‖1/2H1 ‖Tm‖1/2‖T̃‖H2 ≤ C‖Tm‖3/2H1 ‖Tm‖1/2‖T̃‖H2 .

Similarly, we have the following estimates

(3.26)

∣∣∣∣∫
M
wmTm ∂zPmT̃ dx

∣∣∣∣ ≤ ‖wm‖L2‖Tm‖L3‖∂zPmT̃‖L6

≤ C‖Tm‖3/2H1 ‖Tm‖1/2‖T̃‖H2 ,

(3.27)

∣∣∣∣(∇Tm,∇PmT̃)+
(
∂zTm, ∂zPmT̃

)∣∣∣∣ ≤ C‖Tm‖H1‖T̃‖H2 ,

(3.28)

∣∣∣∣∫
M0

α

κ2

(Tm(x, 0)− θ∗)PmT̃ (·, 0) dx
∣∣∣∣ ≤ C‖Tm‖H1‖T̃‖H2 ,

By the combination of (3.16), (3.17), (3.25)-(3.28), we arrive at

(3.29) ∂tTm ∈ a bounded set of L4/3
(
0, t1 ;H−2(M)

)
,

for any t1 > 0 and independent of m.

The estimates (3.16), (3.17), (3.29) imply the existence of T ∈ L∞(0, t1 ;L2)∩L2(0, t1 ;H1)

and u , v , w ∈ L2(0, t1 ;L2) and a subsequence {Tm′ ,vm′ , wm′} such that

(3.30)

Tm′ ⇀ T weakly in L2(0, t1 ;H1) ,

Tm′
∗
⇀ T weak-star in L∞(0, t1 ;L2) ,

vm′ , wm′ ⇀ v , w weakly in L2(0, t1 ;L2) ,
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With the use of (3.29), (3.30) and Aubin’s compactness theorem, we also have

(3.31) Tm′ −→ T strongly in L2(0, t1 ;L2) .

Then it is standard to pass to the limit in (3.9)-(3.11) and prove that the limit function

(T,v, w) is indeed a weak solution as defined in (3.2). The details are omitted for brevity.

The proof for the first part of Theorem 3.1 is completed.

Furthermore, we multiply (3.15) by φ(t), where φ ∈ D
(
(0, t1)

)
, φ(t) ≥ 0, and integrate

in time:

(3.32)

∫ t1

0

(
‖Tm(·, t)‖2 + 2

∫ t

0
(κ1‖∇Tm(·, s)‖2 + κ2‖∂zTm(·, s)‖2) ds

)
φ(t) dt

≤
∫ t1

0

(
‖T0‖2 + C∗t

)
φ(t) dt .

Using the weak convergence (3.30) we pass the lower limit in this inequality and obtain

(3.33)

∫ t1

0

(
‖T (·, t)‖2 + 2

∫ t

0
(κ1‖∇T (·, s)‖2 + κ2‖∂zT (·, s)‖2) ds

)
φ(t) dt

≤
∫ t1

0

(
‖T0‖2 + C∗t

)
φ(t) dt ,

for all φ ∈ D
(
(0, t1)

)
, φ ≥ 0. This amounts to saying that the energy inequality (3.4) is

satisfied for almost every t ∈ [0, t1].

For the second part, we note that, by a direct calculation using the representation for-

mulas for the horizontal velocity field in (3.2b),

(3.34)
∫ 0

−H0

v(x, y, z) dz = ve(x, y) , ∀(x, y) ∈M0 .

This leads to the first identity of (3.5), due to the free divergence of ve given by formulas

(2.10) and (2.13). Moreover, the second identity of (3.5) is valid since ve satisfies the specified

boundary condition on the lateral boundary. The third identity of (3.5) is also found by direct

verification using formula (3.2c). This completes the proof of Theorem 3.1.
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