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Abstract The planetary geostrophic equations with inviscid balance equation are
reformulated in an alternate form, and a fourth-order finite difference numerical
method of solution is proposed and analyzed in this article. In the reformulation,
there is only one prognostic equation for the temperature field and the velocity field is
statically determined by the planetary geostrophic balance combined with the incom-
pressibility condition. The key observation is that all the velocity profiles can be
explicitly determined by the temperature gradient, by utilizing the special form of the
Coriolis parameter. This brings convenience and efficiency in the numerical study. In
the fourth-order scheme, the temperature is dynamically updated at the regular nume-
rical grid by long-stencil approximation, along with a one-sided extrapolation near the
boundary. The velocity variables are recovered by special solvers on the 3-D staggered
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grid. Furthermore, it is shown that the numerical velocity field is divergence-free at
the discrete level in a suitable sense. Fourth order convergence is proven under mild
regularity requirements.

Mathematics Subject Classification (2000) 35Q35 · 65M06 · 65M12 · 86A10

1 Introduction

The primary purpose of this article is to propose a fourth-order numerical method
for the planetary geostrophic equations (PGEs) with an inviscid balance equation.
In addition, the fourth-order convergence analysis is provided under an appropriate
regularity assumption for the exact solution.

The PGEs have been used in large-scale ocean circulation since the pioneering work
of Welander [29] and Robinson and Stommel [16]. This system arises as an asymptotic
approximation to the primitive equations (PEs) for planetary-scale motions in the limit
of small Rossby number. One of the most distinguishing features is that there is only
one prognostic equation in the system for the temperature field; the velocity field is
diagnostically determined by the planetary geostrophic balance.

We consider the original formulation of the PGEs, with no viscous term in the
geostrophic balance equations. The viscous case has been discussed in earlier litera-
tures [2,19,20]. However, the inviscid geostrophic balance presents a serious chal-
lenge, since regularity estimates are not available for the vertical velocity by a direct
manipulation. To overcome this difficulty, we consider an equivalent formulation of
the original PGE system. The key point is that both horizontal and vertical velocity
profiles are represented in terms of the temperature gradient, by utilizing the planetary
geostrophic balance. The horizontal velocity turns out to be the solution of a diffe-
rential equation at each fixed horizontal point, depending only on the temperature
gradient. The vertical velocity is recovered by the continuity equation. In more detail,
a two-point boundary value ordinary differential equations (ODE) in the vertical direc-
tion can be derived for the vertical velocity at each fixed horizontal point, with the
right-hand side depending only on the first-order derivative of the temperature field.
This is crucial to the well-posedness of the reformulated system. See a recent article
by Liu et al. [10].

Thanks to the new formulation, stable, efficient and accurate numerical methods
can be derived. We consider a fourth-order scheme in this article, since this is a widely
accepted way to improve the accuracy within limited resolution, due to the enormous
scale of the three-dimensional setting. Regarding the spatial discretization, at each
time step (stage), the temperature field is dynamically updated at the regular nume-
rical grid using fourth-order long stencil differences, with a one-sided extrapolation
to obtain the “ghost” point values near each boundary section. The velocity variables,
which are located at a 3-D staggered grid known as the marker and cell (MAC) grid,
are statically determined by a special procedure. The horizontal velocity field is reco-
vered by vertical integration of the temperature orthogonal gradient at the discrete
level (with the Coriolis parameter on the denominator because of the geostrophic
balance), combined with the constraint regarding its discrete average in the vertical
direction. The vertical velocity is solved by a discrete realization of the two-point
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A fourth-order numerical method for the planetary geostrophic equations 671

boundary value ODE, in which the source term is merely related to the horizontal
derivative of the temperature field and the Coriolis force parameter evaluated at the
corresponding staggered grid. To reduce the computational effort, we use compact dif-
ference operators to approximate the derivatives in the vertical direction. The source
term appearing in the compact difference equations to determine the vertical velocity,
which is a fourth-order approximation to the original ODE, is chosen to ensure that
the numerical velocity field satisfies the divergence-free property in a weaker sense.
This is remarkable since for the usual discretizations of the Navier–Stokes or Maxwell
equations, only second-order difference methods, such as the usual MAC scheme or
Yee scheme, can achieve the divergence-free condition for the velocity field at the
discrete level. A relevant discussion can be found e.g., in [12].

It is the first time that one derives a fourth-order method on a staggered grid,
especially for a 3-D oceanic flow calculation. In the classical MAC schemes, the diffi-
culty of solving for the pressure, the staggered location of different physical variables,
and the treatment of the boundary conditions make a fourth-order finite difference
scheme infeasible. In this article, the pressure variable is eliminated in the reformula-
tion, and each velocity variable is determined by the temperature gradient. Moreover,
the suitable usage of both the long-stencil and compact operators, along with the high-
order one-sided extrapolation around the boundary, avoids the difficulty related to
the boundary conditions. In addition, the theoretical fourth-order convergence of the
spatial discretization scheme is established in the article.

The temporal discretization is also discussed. The nonlinear convection term is
updated explicitly and the thermal diffusion terms can be treated by either an implicit
approach, such as the Crank–Nicholson method, or by an explicit multi-stage time
approach, such as the classical fourth-order Runge-Kutta method. Both approaches
lead to a stable and accurate method as shown in the accuracy check using smooth test
solutions. The main computations reduce to the evolution of a convection-diffusion
equation and the recovery procedures for the horizontal and vertical velocities, thus
providing an efficient numerical scheme.

In addition, the convergence analysis of the proposed numerical method is provided
in this article. Due to the special feature of the alternate formulation, the nonlinearity of
the temperature transport equation is overcome by the fact that the velocity is control-
led by the temperature gradient. As a result, the methodology to analyze a regular
convection–diffusion equation can be applied in a convenient way. The analysis of the
temporal discretization to deal with convection–diffusion equation, either a Crank–
Nicholson or forward Euler, is standard. We omit the detail in this article for brevity
of presentation. In other words, we only look at the spatial discretization, i.e., method
of lines, in the fourth-order convergence analysis. The consistency analysis is carried
out by constructing approximate solutions to satisfy the numerical scheme up to an
O(h4) accuracy and the corresponding error estimate. A cancellation methodology
in the approximation is explored, to avoid a typical difficulty arising in the analysis
of finite difference methods, if a direct truncation error estimate is performed. Subse-
quently, the error analysis is implemented by the energy estimate of the temperature
error equation. The stability of the numerical scheme is indicated by the fact that the
numerical difference operators appearing in the long-stencil operator are well-posed.
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672 R. Samelson et al.

This article is organized as follows. The derivation of the alternate formulation
for the PGEs is recalled in Sect. 2. The fourth-order numerical method, including
spatial discretization of the transport equation on a regular grid, the determination of
the velocity field on the staggered grid, and the time stepping, is presented in Sect. 3.
Section 4 gives a numerical accuracy check for the numerical scheme. The convergence
analysis for the fourth-order scheme is provided in Sect. 5.

2 Review of an alternate formulation of the inviscid PGEs

The PGEs can be written in a non-dimensional form
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t T + (v ·∇)T + w∂T
∂z =

(
1

Rt1
� + 1

Rt2
∂2

z

)
T,

f k × v + ∇ p = F,

∂p
∂z = T,

∇·v + ∂zw = 0,

(2.1)

where T represents the temperature, u = (v, w) = (u, v, w) the velocity, and p

the pressure. The term f k × v = f
(−v

u

)
corresponds to the Coriolis force with

f depending only on the latitude y. As a typical example used in the geophysical
literature, its β−plane approximation is given by f = f0 + βy, where f0 and β
are constants. For simplicity, we set κ1 = 1/Rt1, κ2 = 1/Rt2, which stand for the
horizontal and vertical thermal diffusivity. To avoid confusion, we use the operators ∇,
∇⊥, ∇·, � to denote the gradient, perpendicular gradient, divergence and Laplacian
in the horizontal plane, respectively. The forcing term F = (F x , F y)⊥ appearing
in the geostrophic balance equation (2.1)2 comes from the wind stress at the ocean
surface, which is a boundary layer approximation. It may or may not depend on the
vertical variable z. For simplicity, we assume in this article that F = F(x, y) =
(F x (x, y), F y(x, y)). The discussion of a general case can be carried out in the same
fashion. See the relevant references on both the physical and mathematical descriptions
of the PGEs in [3–5,13–17,19–24,29], etc.

The computational domain is taken as M = M0 ×[−H0, 0], M0 being the surface
of the ocean. The boundary condition at the top and bottom surfaces are given by

w = 0 and κ2
∂T

∂z
= T f , at z = 0,

(2.2)
w = 0 and κ2

∂T

∂z
= 0, at z = −H0.

Usually the heat flux term T f at the ocean surface can be taken as either a fixed heat
flux function or of the form T f = −α(T −θ∗), with θ∗ being a reference temperature.
For simplicity we choose T f as a given flux. On the lateral boundary, the temperature
field is prescribed

T = Tlb, on ∂M0 × [−H0, 0], (2.3)
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A fourth-order numerical method for the planetary geostrophic equations 673

where Tlb is given. The purpose of this choice is a simplification of the analysis
of the system, although the no-flux boundary condition for the temperature field is
physically more relevant. It can also be viewed as an approximation such that the
disturbance of oceanic circulation motion is far away from the lateral boundary. For
the sake of simplicity in the presentation, we set the homogeneous profile Tlb = 0 in
the numerical analysis. There is no real change for the non-homogeneous case. The
normal component of the vertically averaged horizontal velocity turns out to have a
vanishing flux

v ·n = 0, on ∂M0, (2.4)

which is compatible with the continuity equation (2.1)4. We recall that the average (in
the vertical direction) of any 3-D field g is given by g(x, y) = 1

H0

∫ 0
−H0

g(x, y, z)dz.
See Pedlosky [14] and Samelson et al. [19] for a detailed explanation for the choice
of this nonlocal boundary condition in the case where no viscosity is present in the
geostrophic balance equation.

The PGEs with viscous geostrophic balance have been analyzed in recent articles;
see Cao and Titi [2], Samelson et al. [19,20], etc. The difficulty of the original system
(2.1) (with no diffusion term in the geostrophic balance equation) is due to the lack of
regularity for the velocity field, as discussed in detail in [20]. In this article, we consider
an equivalent formulation of Eqs. (2.1)–(2.4) to facilitate the numerical study. The key
point in this reformulation is that both the horizontal and vertical velocity variables
can be determined by the first-order derivative of the temperature field.

Indeed, the horizontal velocity field is the solution of the following system

{
∂zu = −Ty

f , ∂zv = Tx
f ,

u(x, y) = ue, v(x, y) = ve = −∂y F x +∂x F y

∂y f ,
(2.5)

where ue is explicitly given by Eq. (2.8) below.
Equation (2.5)1, the thermal wind equation, is derived by taking the vertical deriva-

tive of the geostrophic balance equation f k × v + ∇ p = F . Note that the hydrostatic
balance ∂p/∂z = T and the independence on z of F and f = f (y) were used.
Meanwhile, averaging the geostrophic balance equation f k × v + ∇ p = F in the
vertical direction leads to

f k × v + ∇ p = F. (2.6)

Applying the curl operator ∇⊥ to Eq. (2.6) results in

(∂y f )v + f (vy + ux ) = (∂y f )v = ∇ × F = −∂y F x + ∂x F y, (2.7a)

which in turn yields

ve = v(x, y) = −∂y F x + ∂x F y

∂y f
. (2.7b)
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The second step of Eq. (2.7a) utilizes the fact that the averaged horizontal velocity
field is divergence-free, that is ∇ · v = 0, which comes from the continuity equation
∇ · v + ∂zw = 0 and the boundary condition for the vertical velocity w( ·, 0) =
w( ·,−H0) = 0.

The vertically averaged horizontal velocity ue is determined by ve given by
Eq. (2.7b). Because of the divergence-free property of the profile v, we can find a
2-D mean stream function ψ(x, y), such that (u, v) = (−∂yψ, ∂xψ). Moreover, the
boundary condition (2.4) indicates that ψ is constant on the lateral boundary. We can
set ψ = 0 on ∂M0. In addition, we denote by γ1(y0), γ2(y0) the x-coordinates of the
intersection points between ∂M0 and y = y0. The mean stream function ψ and the
mean velocity u can be determined by the kinematic relationship and formula (2.7b):

ψe(x, y) =
x∫

γ1(y)

∇ × F

∂y f
dx ′, ue(x, y) = −∂yψe(x, y), (2.8)

where γ1(y) is a point on ∂M0. Evaluating ψ at another boundary point (γ2(y), y)
with the same y-value, we obtain an additional constraint on the forcing:

γ2(y)∫

γ1(y)

∇ × F

∂y f
dx ′ = 0, (2.9)

since ψ is identically 0 on the lateral boundary. Constraint (2.9) amounts to saying
that the average forcing across the domain at a fixed y must not give a torque on the
fluid.

The vertical velocity can also be represented as the solution of a differential equation.
By taking the vertical derivative of the continuity equation

∇ · vz + ∂2
zw = 0, (2.10)

and recalling the thermal wind equation (2.5)1, we arrive at

∂2
zw = −∂x (uz)− ∂y(vz) = ∂x

(
Ty

f

)

− ∂y

(
Tx

f

)

= (∂y f )Tx

f 2 . (2.11)

Note that the second-order derivatives for the temperature field cancel each other due
to the special form of the Coriolis parameter f = f (y). Then we have the following
system of second-order ODEs

{
∂2

zw = (∂y f )Tx

f 2 ,

w = 0, at z = 0, −H0,
(2.12)

in which the right hand side includes only the first-order derivative of the temperature.
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The PGEs with inviscid balance equation can now be formulated as follows.

Temperature transport equation

⎧
⎪⎪⎨

⎪⎪⎩

Tt + (v ·∇)T + w∂T
∂z = (

κ1� + κ2∂
2
z

)
T,

∂T
∂z = T f

κ2
, at z = 0, ∂T

∂z = 0, at z = −H0,

T = 0, on ∂M0 × [−H0, 0];
(2.13a)

Recovery of the horizontal velocity

{
∂zu = − Ty

f , ∂zv = Tx
f ,

u(x, y) = ue, v(x, y) = ve;
(2.13b)

Recovery of the vertical velocity

{
∂2

zw = (∂y f )Tx

f 2 ,

w = 0, at z = 0, −H0.
(2.13c)

The well-posedness of this reformulation at the PDE level was analyzed in a recent
article by Liu et al. [10], in which the global existence of weak solution was proven.

3 The fourth-order numerical scheme

The methodology of the numerical scheme follows the derivation of the alternate
formulation (2.13). At each time step (stage), the temperature field is first updated
at regular numerical grid, using centered difference approximations. Subsequently,
the horizontal and vertical velocities are determined by discrete realizations of the
differential equations (2.13b) and (2.13c), respectively.

For simplicity of the presentation, we consider the homogeneous forcing term
F = 0 in the geostrophic balance and wind stress T f = 0 in the temperature boundary
condition hereafter. The case with non-homogeneous force term or wind stress can be
dealt with in the same fashion and does not add any mathematical difficulty.

A fourth-order numerical scheme has an obvious advantage over the standard
second-order centered difference scheme, because of the enormous scale of the three-
dimensional setting. However, the difficulty of numerical stability (especially near the
boundary) may lead to a numerical artifact, as shown in many earlier articles. Further-
more, the efficiency of the numerical implementation of a fourth-order method has
always been another challenging issue. See the detailed discussions in e.g., Anderson
and Reider [1], Henshaw et al. [8], E and Liu [6].

A new methodology is utilized in this article to deal with a fourth-order scheme for
the 3-D PGEs formulated in (2.13). The temperature variable is located at the regular
grid and the velocity variables are evaluated at the 3-D staggered grid. The spatial
derivatives of the temperature transport equation is approximated with fourth-order
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T
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Fig. 1 The 3-D MAC grid for the PGEs

accuracy by long stencil differences, with the “ghost” point values recovered by one-
sided extrapolation near the boundary. Such an extrapolation is accomplished by using
information from the original PDE, to reduce the number of interior points needed in
the one-sided formula for better stability property. Subsequently, both the horizontal
and vertical velocity variables are determined on the staggered grid by the data of
temperature gradient, which are calculated by long stencil differences, via compact
difference equations.

The main computation efforts in the fourth-order scheme at each time step (stage)
reduce to this: explicit long stencil finite difference updating in the temperature trans-
port equation, along with fourth-order recovery for the velocity field. This makes the
scheme efficient and accurate.

It is assumed that M0 = [0, 1]2 and �x = �y = �z = h. The temperature
variable is evaluated at the regular numerical grid points (xi , y j , zk); see Fig. 1. In order
to assure the divergence-free property of the computed velocity field at the discrete
level in an appropriate sense, we choose a staggered grid for the velocity field, in
which u = (v, w) = (u, v, w) are evaluated at the mesh points (i, j ± 1/2, k ± 1/2),
(i ±1/2, j, k ±1/2), (i ±1/2, j ±1/2, k), respectively. More precisely, the u velocity
is located at the triangle points, the v velocity at the circle points, and the w velocity
at the star points. This staggered grid is also known as the 3-D MAC grid, whose 2-D
version was first proposed by Harlow and Welch in [7] to deal with the numerical
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A fourth-order numerical method for the planetary geostrophic equations 677

solution of the NSEs. Its advantage here will be addressed in Sect. 3.4. A similar
staggered grid was proposed and analyzed in a recent article by Samelson et al. [18]
to deal with the 3-D PEs. Its relationship with a regular numerical grid based on the
vorticity formulation was discussed in [25–27].

Before the formal discussion of the scheme, we introduce some finite difference
and average operators to simplify the explanations below. The following notations of
centered differences using different stencils at different grid points are introduced to
facilitate the description:

Dx g(x) = g
(
x + 1

2�x
) − g

(
x − 1

2�x
)

�x
,

D̃x g(x) = g(x + �x)− g(x − �x)

2�x
, (3.1)

D2
x g(x) = g(x − �x)− 2g(x)+ g(x + �x)

�x2 ,

Dx

(

1 − �x2

24
D2

x

)

g(x)

= g
(
x − 3

2 h
) − 27g

(
x − 1

2 h
) + 27g

(
x + 1

2 h
) − g

(
x + 3

2 h
)

24�x
, (3.2a)

D̃x

(

1 − �x2

6
D2

x

)

g(x)

= g(x − 2h)− 8g(x − h)+ 8g(x + h)− g(x + 2h)

12�x
, (3.2b)

D2
x

(

1 − �x2

12
D2

x

)

g(x)

= −g(x − 2h)+ 16g(x − h)− 30g(x)+ 16g(x + h)− g(x + 2h)

12�x2 . (3.3)

It can be easily verified by a careful Taylor expansion that both long-stencil operators
in (3.2) are fourth-order approximations to ∂x , and the operator in Eq. (3.3) is a fourth-
order approximation to ∂2

x . Note that Eqs. (3.2b) and (3.3) are the standard long stencil
differences on a regular grid, while Eq. (3.2b) is evaluated for variables located at a
staggered grid. The corresponding operator in the y and z directions can be defined in
a similar way. We omit the details here.

Moreover, because of the staggered grid used in the scheme, the following fourth-
order average operator is needed to interpolate the numerical values of the different

123



678 R. Samelson et al.

physical variables at a special mesh point:

Ax g(x) = − 1

16
g

(

x − 3

2
h

)

+ 9

16
g

(

x− 1

2
h

)

+ 9

16
g

(

x+ 1

2
h

)

− 1

16
g

(

x+ 3

2
h

)

.

(3.4)

The analogous definitions of Ay , Az can be similarly given.

3.1 Update of the temperature in the PGEs: method of lines

Regarding the temperature variable, the fourth-order long-stencil differences (3.2b),
(3.3) are used to replace the derivatives in the transport equation (2.13a) at each grid
point (i, j, k), 1 ≤ i, j ≤ N − 1, 0 ≤ k ≤ Nz . In other words, the method of lines
gives

∂t T +Nh(u, T )=
(

κ1

(

D2
x − h2

12
D4

x +D2
y − h2

12
D4

y

)

+κ2

(

D2
z − h2

12
D4

z

))

T, at(i, j,k),

(3.5)

with the nonlinear convection term

Nh(u, T )=u D̃x

(

1 − h2

6
D2

x

)

T +v D̃y

(

1 − h2

6
D2

y

)

T +wD̃z

(

1 − h2

6
D2

z

)

T,

(3.6)

and average values of u, v, w at the regular mesh points given by:

ui, j,k = Ay(Azu)i, j,k, vi, j,k = Ax (Azv)i, j,k, wi, j,k = Ax (Ayw)i, j,k . (3.7)

3.1.1 Ghost point values for T

Due to the Neumann boundary condition imposed on the top and bottom, the tempera-
ture on the boundary is not known explicitly, only its normal derivative. Consequently,
the determination of “ghost” point values, e.g., Ti, j,−1 and Ti, j,−2 around the bottom
boundary section z = −H0, is required.

We begin by deriving one-sided approximations. A local Taylor expansion near the
bottom boundary z = −H0 gives

Ti, j,−1 = Ti, j,1 − 2�z∂zTi, j,0 − �z3

3
∂3

z Ti, j,0 + O(h5),

(3.8)

Ti, j,−2 = Ti, j,2 − 4�z∂zTi, j,0 − 8�z3

3
∂3

z Ti, j,0 + O(h5),

in which the term ∂z Ti, j,0 is known to vanish because of the no-flux boundary condition
for the temperature. The remaining work is focused on the determination of ∂3

z T at
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k = 0, for which we use information from the original PDE and its derivatives. More
precisely, applying the vertical derivative ∂z to the temperature transport equation
leads to

Tzt + uzTx + uTzx + vzTy + vTzy + wzTz + wTzz

= κ1(Tzxx + Tzyy)+ κ2∂
3
z T, at z = −H0. (3.9)

Using the no-flux boundary condition for T and the vanishing boundary condition for
w at z = −H0, we have

∂3
z T = 1

κ2

(
uzTx + vzTy

)
, at z = −H0, (3.10)

which combined with the geostrophic balance (uz, vz) = (−∂y T/ f, ∂x T/ f ) results in

∂3
z T = 0, at z = −H0. (3.11)

Inserting Eq. (3.11) into Eq. (3.8) shows that

Ti, j,−1 = Ti, j,1 + O(h5), Ti, j,−2 = Ti, j,2 + O(h5). (3.12)

Analogous formulas for one-sided extrapolations of Ti, j,Nz+1, Ti, j,Nz+2 around the
top boundary z = 0 can be derived in a similar way. The evaluation of the vertical deri-
vative of the transport equation as shown in Eq. (3.9) is still valid. Furthermore, the heat
flux boundary condition at the top z = 0, combined with the average approximation
(3.4) gives

∂3
z T = 1

κ2
2

(
Ay(Azu)∂x (T

f )+ Ax (Azv)∂y(T
f )

+ Ax (Ay D̃zw)T
f
)

+ O(h2), at z = 0, (3.13)

with the average operators Ax , Ay , Az given by Eq. (3.4). Therefore, we arrive at the
extrapolation formulas around the top boundary

Ti, j,Nz+1 = Ti, j,Nz−1 + 2�z(T f )i, j,N + �z3

3κ2
2

(
Ay(Azu)∂x (T

f )+ Ax (Azv)∂y(T
f )

+ Ax (Ay D̃zw)T
f
)

i, j,N
+ O(h5),

(3.14)

Ti, j,Nz+2 = Ti, j,Nz−2+4�z(T f )i, j,N + 8�z3

3κ2
2

(
Ay(Azu)∂x (T

f )+Ax (Azv)∂y(T
f )

+ Ax (Ay D̃zw)T
f
)

i, j,N
+ O(h5).
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On the lateral boundary sections, the homogeneous Dirichlet boundary condition
for the temperature implies its numerical realization

T0, j,k = 0, TN , j,k = 0, Ti,0,k = 0, Ti,N ,k = 0. (3.15)

In addition, the determination of T at one “ghost” point, e.g., T−1, j,k around the left
boundary section x = 0 (corresponding to the grid i = 0), is needed to implement the
fourth-order difference scheme (3.5). We utilize a similar idea as that of Wang et al.
[11,28], in which a fourth-order scheme for the 2-D Boussinesq system in vorticity
formulation was studied. A local Taylor expansion of the fifth-order near the boundary
gives

T−1, j,k = 20

11
T0, j,k − 6

11
T1, j,k − 4

11
T2, j,k + 1

11
T3, j,k + 12

11
�x2∂2

x Ti, j,0 + O(h5).

(3.16)

The realization of Eq. (3.16) requires an accurate evaluation of ∂2
x T at i = 0. Such

a term can be determined by considering the original temperature transport equation
evaluated on the boundary

∂t T |i=0 +(u∂x T ) |i=0 +(v∂y T ) |i=0 +(w∂zT ) |i=0

= κ1
(
∂2

x T
) |i=0 +(

κ1∂
2
y + κ2∂

2
z

)
T |i=0 . (3.17)

Note that the following terms vanish on the left boundary

∂t T =0, ∂2
y T = 0, ∂2

z T =0, v∂y T =0, w∂zT =0, at x = 0, (3.18)

which comes from the homogeneous Dirichlet boundary condition for T . Moreover,
the normal velocity component of u also vanishes on the boundary, due to the deter-
mination of the horizontal velocity given by Eq. (2.13b)

∂zu = − ∂y T

f (y)
= 0, u = 0, at x = 0. (3.19)

As a result, we have

u |x=0= 0, which implies (u∂x T ) |x=0= 0. (3.20)

The combination of Eqs. (3.18), (3.20) and (3.17) shows that

∂2
x T = 0, at x = 0. (3.21)

Going back to Eq. (3.16), we arrive at the following fifth-order approximation for the
temperature at the “ghost” point:

T−1, j,k = 20

11
T0, j,k − 6

11
T1, j,k − 4

11
T2, j,k + 1

11
T3, j,k + O(h5). (3.22)
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The one sided extrapolation for T around the three other lateral boundary sections
can be derived in a similar way. The details are omitted.

TN+1, j,k = 20

11
TN , j,k − 6

11
TN−1, j,k − 4

11
TN−2, j,k + 1

11
TN−3, j,k + O(h5),

Ti,−1,k = 20

11
Ti,0,k − 6

11
Ti,1,k − 4

11
Ti,2,k + 1

11
Ti,3,k + O(h5), (3.23)

Ti,N+1,k = 20

11
Ti,N ,k − 6

11
Ti,N−1,k − 4

11
Ti,N−2,k + 1

11
Ti,N−3,k + O(h5).

3.2 Recovery of the horizontal velocity field

After the numerical values for the temperature T at the regular mesh grid points are
determined by the finite difference method outlined above, the vertical derivative of
the horizontal velocity vz is given by (−∂y T/ f , ∂x T/ f ) as indicated by Eq. (2.13b).
For simplicity, we use the β-plane approximation f = f0 + βy.

As shown in Fig. 1, the discrete derivatives of the horizontal velocity v = (u, v) in
the vertical direction are evaluated at the mesh point (i, j + 1/2, k + 1/2), (i + 1/2,
j, k+1/2), respectively. Yet, a straightforward fourth-order approximation of ∂z using
the long stencil operator as in Eq. (3.2b) would lead to a linear system difficult to solve.
To reduce the computational effort, we aim to introduce a compact fourth-order solver
so that a recovery procedure can be efficiently applied. A fourth-order Taylor expansion
in the vertical direction shows that

Dz =∂z + �z2

24
∂3

z +O(h4)=∂z

(

1+ �z2

24
∂2

z

)

+O(h4)=∂z

(

1+ �z2

24
D2

z

)

+O(h4),

(3.24)

which in turn gives a compact approximation to ∂z

∂z = Dz

1 + �z2

24 D2
z

+ O(h4). (3.25)

Note that at z = zk , Dz requires the grid zk−1/2, zk+1/2, and D2
z requires the values at

zk−1, zk , zk+1. That is the reason it is called a compact operator. On the other hand, the
fourth-order long stencil difference (3.2b) can be chosen to approximate the source
term of Eq. (2.13b)

−
(
∂y T

f

)

i, j+1/2,k
= − 1

f0 + βy j+1/2
Dy

(

1 − h2

24
D2

y

)

Ti, j+1/2,k + O(h4),

(3.26)(
∂x T

f

)

i+1/2, j,k
= 1

f0 + βy j
Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j,k + O(h4).
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The combination of Eqs. (3.24), (3.25) and (3.26) results in a fourth-order difference
equation

(Dzu)i, j+1/2,k = ξi, j+1/2,k ≡ −
(

1 + �z2

24
D2

z

)
1

f0 + βy j+1/2
Dy

×
(

1 − h2

24
D2

y

)

Ti, j+1/2,k, (3.27)

(Dzv)i+1/2, j,k = ζi+1/2, j,k ≡
(

1 + �z2

24
D2

z

)
1

f0 + βy j
Dx

×
(

1 − h2

24
D2

x

)

Ti+1/2, j,k . (3.28)

Note that Eqs. (3.27) and (3.28) are evaluated at zk , 1 ≤ k ≤ Nz − 1.
Moreover, constraints (2.7b) and (2.8), which state that the vertical average of the

horizontal velocity field vanishes everywhere on the horizontal plane (if the homo-
geneous forcing term F is not present), need to be implemented by a fourth-order
integration operator over a staggered grid. For any variable g located at zk+1/2 (in
the vertical direction), the following integral using a corrected trapezoid rule over a
staggered grid is introduced

g∗∗ ≡ 1

H0

⎛

⎝
Nz−1∑

k=0

�z gk+1/2 + �z

24
(gN+1/2 − gN−1/2 − g1/2 + g−1/2)

⎞

⎠

= 1

H0

0∫

−H0

g dz + O(h4), (3.29)

in which the fourth-order accuracy can be verified through a local Taylor expansion
of g over each sub-interval (zk, zk+1), 0 ≤ k ≤ Nz − 1. As a result, a fourth-order
approximation of Eqs. (2.7b) and (2.8) becomes

u∗∗ ≡ 1

H0

⎛

⎝
Nz−1∑

k=0

�z uk+1/2 + �z

24
(uN+1/2 − uN−1/2 − u1/2 + u−1/2)

⎞

⎠ = 0,

(3.30)

v∗∗ ≡ 1

H0

⎛

⎝
Nz−1∑

k=0

�z vk+1/2 + �z

24
(vN+1/2 − vN−1/2 − v1/2 + v−1/2)

⎞

⎠ = 0,

in which the terms are evaluated at (i, j + 1/2), (i + 1/2, j), respectively. Note
that �z

24 (gN+1/2 − gN−1/2 − g1/2 + g−1/2) is a higher order correction term analo-

gous to the standard second-order integral operator g∗ = 1
H0

∑Nz−1
k=0 �z gk+1/2 =

1
H0

∫ 0
−H0

g dz + O(h2). For the horizontal velocity field, such a high-order correction
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term can be easily handled by geostrophic balance. On the bottom boundary, a careful
calculation indicates

(Dzu)i, j+1/2,0 = ∂zui, j+1/2,0 + O(h2),

i.e. ,
ui, j+1/2,1/2 − ui, j+1/2,−1/2

�z
= −(∂y T )i, j+1/2,0

f0 + βy j+1/2
+ O(h2) (3.31)

= −Dy Ti, j+1/2,0

f0 + βy j+1/2
+ O(h2),

which in turn shows that

ui, j+1/2,1/2 − ui, j+1/2,−1/2 = −�z
Dy Ti, j+1/2,0

f0 + βy j+1/2
+ O(h3). (3.32)

On the top boundary, the estimate turns out to be

ui, j+1/2,N+1/2 − ui, j+1/2,N−1/2 = −�z
Dy Ti, j+1/2,N

f0 + βy j+1/2
+ O(h3). (3.33)

The substitution of Eqs. (3.32) and (3.33) into Eq. (3.30) gives

u∗∗
i, j+1/2 = 1

H0

⎡

⎣
Nz−1∑

k=0

�z ui, j+1/2,k+1/2 + �z2

24

1

f0 + βy j+1/2

× (−Dy Ti, j+1/2,N + Dy Ti, j+1/2,0
)

⎤

⎦ + O(h4). (3.34)

Similarly, we have (the details are omitted)

v∗∗
i+1/2, j = 1

H0

⎡

⎣
Nz−1∑

k=0

�z vi+1/2, j,k+1/2 + �z2

24

1

f0 + βy j

× (
Dx Ti+1/2, j,N − Dx Ti+1/2, j,0

)

⎤

⎦ + O(h4). (3.35)
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Therefore, a fourth-order solver to the constraint (3.30)) can be obtained

Nz−1∑

k=0

�z ui, j+1/2,k+1/2 ≡ C RUi, j+1/2 = −�z2

24

1

f0 + βy j+1/2

× (−Dy Ti, j+1/2,N + Dy Ti, j+1/2,0
)
,

Nz−1∑

k=0

�z vi+1/2, j,k+1/2 ≡ C RVi+1/2, j = −�z2

24

1

f0 + βy j

× (
Dx Ti+1/2, j,N − Dx Ti+1/2, j,0

)
.

(3.36)

The combination of Eqs. (3.27), (3.28) and (3.36) forms a linear system for the
numerical values of the horizontal velocity field, which is composed of Nz unknowns
and Nz equations for each component at each fixed horizontal point. The difference
equations (3.27) and (3.28) indicate the introduction of (with ξ , ζ given by Eqs. (3.27)
and (3.28)

Ui, j+1/2,1/2 = 0, Ui, j+1/2,k+1/2 = Ui, j+1/2,k−1/2 + �z ξi, j+1/2,k,

for 1 ≤ k ≤ Nz − 1, (3.37)

Vi+1/2, j,1/2 = 0, Vi+1/2, j,k+1/2 = Vi+1/2, j,k−1/2 + �z ζi+1/2, j,k,

for 1 ≤ k ≤ Nz − 1, (3.38)

so that the differences between (U ,V) and (u, v) are constants. Using the constraint
(3.36), we arrive at

ui, j+1/2,k+1/2 = Ui, j+1/2,k+1/2 − U∗
i, j+1/2 + 1

H0
C RUi, j+1/2,

vi+1/2, j,k+1/2 = Vi+1/2, j,k+1/2 − V∗
i+1/2, j + 1

H0
C RVi+1/2, j , (3.39)

where C RU and C RV were defined in Eq. (3.36).

3.3 Recovery of the vertical velocity field

A fourth-order finite difference method using a mixed approach is applied to Eq. (2.13c)
for the determination of the vertical velocity w located at (i + 1/2, j + 1/2, k).
A compact operator is used to approximate the derivative ∂2

z

∂2
z = D2

z

1 + �z2

12 D2
z

+ O(h4). (3.40)

Meanwhile, due to the staggered location in the x direction between T and w, the
source term βTx/( f0 + βy)2 should be approximated by the long stencil difference
(3.4) to facilitate the calculation. Furthermore, to ensure the divergence-free property
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of the velocity field at the weakly discrete level as stated below, we choose the source
term as

FW = β

f0 + βy j+1/2
·
(

− 1

16

1

f0 + βy j−1
Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j−1,k

+ 9

16

1

f0 + βy j
Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j,k

+ 9

16

1

f0 + βy j+1
Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j+1,k

− 1

16

1

f0 + βy j+2
Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j+2,k

)

, (3.41)

which is an O(h4) estimate of the source term evaluated at the grid point
(i + 1/2, j + 1/2, k) as shown by a careful analysis. The combination of Eqs. (3.40)
and (3.41) leads to the following scheme for the vertical velocity

{
D2

zwi+1/2, j+1/2,k =
(

1 + �z2

12 D2
z

)
FW i+1/2, j+1/2,k,

wi+1/2, j+1/2,0 = wi+1/2, j+1/2,Nz = 0.
(3.42)

At each fixed horizontal grid point (i + 1/2, j + 1/2), the difference equation (3.42)
can be easily solved by the FFT-based method in which only the Sine transformation
is needed, due to the Dirichlet boundary condition.

3.4 Divergence-free property for the numerical velocity field in a weaker sense

As mentioned earlier, the reason for the choice of the source term (3.41) in the
determination of the vertical velocity is to guarantee the calculated velocity field to be
divergence-free at the discrete level. However, due to the compact operators used in
the recovery procedure for both horizontal and vertical velocities, (namely, Eq. (3.25)
and (3.40)), a direct verification is not valid. We need to extend the incompressibility
constraint ∇ · v + ∂zw = 0 to a generalized form

∇ · vz + ∂2
zw = 0. (3.43)

The key point in this subsection is the following proposition, which is a verification
of Eq. (3.43) at the discrete level.

Proposition 3.1 The numerical velocity determined by the fourth-order scheme
satisfies, at the grid point (i + 1/2, j + 1/2, k),

Dx

(

1− h2

24
D2

x

)
Dz

1+ �z2

24 D2
z

u+Dy

(

1− h2

24
D2

y

)
Dz

1+ �z2

24 D2
z

v+ D2
z

1+ �z2

12 D2
z

w=0,

(3.44a)
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or equivalently,

Dx

(

1 − h2

24
D2

x

)

Dz

(

1 + �z2

12
D2

z

)

u + Dy

(

1 − h2

24
D2

y

)

× Dz

(

1 + �z2

12
D2

z

)

v + D2
z

(

1 + �z2

24
D2

z

)

w = 0. (3.44b)

Proof We note that all three terms are evaluated at the mesh point (i +1/2, j +1/2, k).
The following identity is obtained by using the difference equations (3.27) and (3.28),
from which v is recovered

Dx

(

1 − h2

24
D2

x

)
Dz

1 + �z2

24 D2
z

u

= − 1

f0 + βy j+1/2
·Dy

(

1 − h2

24
D2

y

)[

Dx

(

1 − h2

24
D2

x

)

T

]

= − 1

f0 + βy j+1/2
· 1

24�y

(

Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j−1,k − 27Dx

(

1 − h2

24
D2

x

)

× Ti+1/2, j,k +27Dx

(

1− h2

24
D2

x

)

Ti+1/2, j+1,k −Dx

(

1− h2

24
D2

x

)

Ti+1/2, j+2,k

)

.

(3.45)

We note that the operators in the x , y, z directions commute. Regarding the second
term, a similar reformulation is given by

Dy

(

1− h2

24
D2

y

)
Dz

1 + �z2

24 D2
z

v= Dy

(

1− h2

24
D2

y

)[
1

f0 + βy j
·Dx

(

1− h2

24
D2

x

)

T

]

= 1

24�y

(
1

f0 + βy j−1
·Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j−1,k

− 27

f0 + βy j
·Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j,k

+ 27

f0 + βy j+1
·Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j+1,k

− 1

f0 + βy j+2
·Dx

(

1 − h2

24
D2

x

)

Ti+1/2, j+2,k

)

. (3.46)

A careful calculation shows that

Dx

(

1 − h2

24
D2

x

)
Dz

1 + �z2

24 D2
z

u + Dy

(

1 − h2

24
D2

y

)
Dz

1 + �z2

24 D2
z

v = −FW,

(3.47)
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in which FW was defined in Eq. (3.41). The substitution of the difference equation
(3.42) into Eq. (3.47) leads to exactly Eq. (3.44a). The identity (3.44b) is a direct

consequence of Eq. (3.44a), after multiplication by the operator
(
1 + �z2

12 D2
z

)(
1 +

�z2

24 D2
z

)
. Proposition 3.1 is proven. �	

We note that Eq. (3.44a) is a fourth-order discrete approximation of Eq. (3.43),
yet it is not convenient to enforce. The equivalent form (3.44b) is easy to check
numerically, yet its left side is an O(h2) discretization of ∇ ·v+∂2

zw, (more precisely,

an O(h4) discretization of
(
1+ �z2

12 D2
z

)(
1+ �z2

24 D2
z

)(∇ ·v +∂2
zw

)
). In our numerical

experiment, we observed that Eq. (3.44b) is satisfied at every numerical grid point
(i + 1/2, j + 1/2, k) up to a machine error.

Because of the complexity of 3-D flows, it is usually very difficult to prove uniform
convergence of fourth-order schemes with physical boundary conditions, especially if
an inviscid balance equation is involved. The appropriate usage of both the long-stencil
and compact operators, along with the high-order one-sided extrapolation around the
boundary, makes the scheme very efficient to implement and enables us to provide a
relatively simple convergence analysis under mild regularity assumptions. The follo-
wing is the main result in this article. Its proof will be provided in Sect. 5.

Theorem 3.2 Let ue = (ve, we) ∈ L∞([0, t1]; C8,α), Te ∈ L∞([0, t1]; C9,α) be the
exact solution of the PGEs (2.13), let (vh, wh, Th) be the numerical solution of method
of lines using the fourth-order method with the MAC grid as described above. Then
the following convergence result holds

‖Te − Th‖L∞(0,t1;L2) ≤ Ch4, (3.48a)

where the constant C depends only on the regularity of the exact solution and on the
data:

C = C
(‖Te‖L∞(0,t1;C9,α), κ1, κ2

)
. (3.48b)

Note that the exact solution Te is defined on [0, t1] × M, while the numerical
solution Th is defined only on the grid points for t ∈ [0, t1].

3.5 Temporal discretization

At each time step (stage), the temperature variable is temporally updated at regu-
lar numerical grids. Explicit treatment of the nonlinear convection, along with either
implicit or explicit time stepping for the temperature diffusion terms, is utilized. After-
ward, the velocity field located at the staggered grids is solved via the temperature
data by using the methodology outlined above. This approach dramatically simplifies
the computation.

The Crank–Nicholson method is chosen as the example of an implicit scheme for
the diffusion terms. The classical fourth-order Runge-Kutta method, a multi-stage
explicit time stepping procedure, is chosen as a fully explicit scheme. Such an explicit
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treatment makes the whole scheme efficient and avoids stability concerns caused by
the cell-Reynolds number constraint, especially for high Reynolds number flows.

Given the temperature field T n
i, j,k , 1 ≤ i, j ≤ N − 1, 0 ≤ k ≤ N , we update all the

profiles at the time step tn+1 through the following procedure.

Step 1 Temporal evolution of the temperature

Crank–Nicholson Method The semi-implicit scheme for the temperature transport
equation is given by

T n+1 − T n

�t
+RH S1n+ 1

2 = 1

2

(

κ1

(

D2
x − h2

12
D4

x +D2
y − h2

12
D4

y

)

+ κ2

(

D2
z − h2

12
D4

z

))(
T n + T n+1

)
, (3.49a)

in which the nonlinear convection term is calculated by a second-order Adams-Basfrod
approximation

RH S1
n+ 1

2
i, j,k = 3

2
Nh(un, T n)i, j,k − 1

2
Nh(un−1, T n−1)i, j,k . (3.49b)

Note that the scheme (3.49) is composed of one Poisson-like equation for T n+1 with the
prescribed boundary condition (3.15), along with the one-sided extrapolations (3.12),
(3.22) and (3.23) at the “ghost” computational points, since long-stencil operators
appear. Some fast Poisson solver, such as the FFT-based method, can be applied to
facilitate the computation. A mixture of Cosine and Sine transformations are needed
in the FFT-based solution due to the boundary condition for T n+1.
RK4 Method For simplicity, we only present the forward Euler time-discretization.
Its extension to the RK4 method is straightforward. At each time step (stage), we

update
{

T n+1
i, j,k

}
, at (xi , y j , zk), for 1 ≤ i, j ≤ N − 1, 0 ≤ k ≤ N , by

T n+1 − T n

�t
+ Nh(un, T n)

=
(

κ1

(

D2
x − h2

12
D4

x + D2
y − h2

12
D4

y

)

+ κ2

(

D2
z − h2

12
D4

z

))

T n . (3.50)

The same extrapolation formulas for T at “ghost” points are used.

Step 2 Solve for the horizontal velocity field

With the data of T n+1 at hand, which are updated by either Eq. (3.49) or (3.50),
we are able to solve for the horizontal velocity field at tn+1 via the following system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Dzun+1)i, j+1/2,k ≡ ξn+1
i, j+1/2,k = −

(
1 + �z2

24 D2
z

)
1

f0+βy j+1/2

× Dy

(
1 − h2

24 D2
y

)
T n+1

i, j+1/2,k,

(Dzv
n+1)i+1/2, j,k ≡ζ n+1

i+1/2, j,k =
(

1 + �z2

24 D2
z

)
1

f0+βy j

×Dx

(
1 − h2

24 D2
x

)
T n+1

i+1/2, j,k,

un+1
∗∗
i, j+1/2 = 0, vn+1

∗∗
i+1/2, j = 0,

(3.51)

which is analogous to Eqs. (3.27), (3.28) and (3.30). The recovery procedure (3.37)–
(3.39) can be applied.

Step 3 Solve for the vertical velocity
We recover the vertical velocity field wn+1 as the solution of the following linear

system

⎧
⎨

⎩

D2
zw

n+1
i+1/2, j+1/2,k =

(
1 + �z2

12 D2
z

)
FWn+1

i+1/2, j+1/2,k,

wn+1
i+1/2, j+1/2,0 = wn+1

i+1/2, j+1/2,Nz
= 0.

(3.52)

with FW given by Eq. (3.41).

4 Numerical accuracy check

In this section we give an accuracy check for the proposed fourth-order scheme of the
PGEs in the alternate formulation. The computational domain is M = M0×[−H0, 0],
where M0 = [0, 1]2 and H0 = 1. The Coriolis force parameters are given by f0 = 1,
β = 1. The exact temperature function is set to be

Te(x, y, z, t) = 1

π2 sin(πx)sin(πy)cos(π z)cost, (4.1)

so that there is no heat flux at z = 0, −H0 and the temperature vanishes on the
four lateral boundary sections. The corresponding exact horizontal velocity ve =
(ue, ve) and the vertical velocity we are determined by the geostrophic balance and
incompressibility condition as formulated in Eqs. (2.13b) and (2.13c), respectively,

{
∂zue = − ∂y Te

f0+βy = − 1
π

1
1+y sin(πx)cos(πy)cos(π z)cos(t),

ue(x, y) = 0,
(4.2a)

{
∂zve = ∂x Te

f0+βy = 1
π

1
1+y cos(πx)sin(πy)cos(π z)cos(t),

ve(x, y) = 0,
(4.2b)
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{
∂2

zwe = βTx
( f0+βy)2

= 1
π

1
(1+y)2

cos(πx)sin(πy)cos(π z)cos(t),

we = 0, at z = 0, −1.
(4.3)

The solutions of Eqs. (4.2) and (4.3) turn out to be

ue(x, y, z, t) = − 1

π

1

1 + y
sin(πx)cos(πy)

(
1

π
sin(π z)+ 2

π2

)

cos(t),

ve(x, y, z, t) = 1

π

1

1 + y
cos(πx)sin(πy)

(
1

π
sin(π z)+ 2

π2

)

cos(t), (4.4)

we(x, y, z, t) = 1

π

1

(1 + y)2
cos(πx)sin(πy)

(

− 1

π2 cos(π z)+ 2

π2 z + 1

π2

)

cos(t).

It can be observed that the exact pressure field in the original formulation can be
calculated as

pe(x, y, z, t) = 1

π2 sin(πx)sin(πy)

(
1

π
sin(π z)+ 2

π2

)

cost, (4.5)

so that both the hydrostatic balance ∂pe/∂z = Te and the geostrophic balance
f k × ve + ∇ pe = 0 are satisfied.

Then we arrive at the following system of PGEs in the alternate formulation (2.13),
with the forcing term f added in the temperature transport equation

⎧
⎪⎪⎨

⎪⎪⎩

∂t Te + (ve ·∇)Te + we
∂Te
∂z = (

κ1� + κ2∂
2
z

)
Te + f ,

∂Te
∂z = 0, ∂Te

∂z = 0, at z = 0, −H0,

Te = 0, on ∂M0 × [−H0, 0],
(4.6a)

{
∂zue = − ∂y Te

f0+βy , ∂zve = ∂x Te
f0+βy ,

ue(x, y) = ve(x, y) = 0,
(4.6b)

{
∂2

zwe = β∂x Te
( f0+βy)2

,

we = 0, at z = 0, −H0.
(4.6c)

The fourth-order method described in Sect. 3, along with the explicit time stepping
utilizing the classical RK4 can be used to solve the system (4.6) with the forcing term
f . Table 1 lists the absolute errors between the numerical and exact solutions for the
velocity and temperature. As shown in the table, exact fourth-order accuracy in both
the L1, L2 and L∞ norms are obtained for the velocity field u and the temperature field.
The velocities v and w receive almost fourth-order accuracy in the L1 and L2 norms
and slightly less than fourth-order accuracy in the L∞ norm. The corresponding order
of accuracy in the L∞ norm approaches 4 as the grid is refined. It can be observed that
the proposed fourth-order scheme indeed gives an almost exact fourth-order accuracy
for all the variables.
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Table 1 Error and order of accuracy for velocity and temperature of the PGEs at t = 2 when the fourth-order
scheme on staggered grid combined with classical RK4 time stepping are used. We take �t = 0.4�x

N L1 error L1 order L2 error L2 order L∞ error L∞ order

u 16 1.85e−08 2.62e−08 7.97e−08

32 1.16e−09 3.99 1.65e−09 3.99 5.01e−09 3.99

64 7.24e−11 4.00 1.03e−10 4.00 3.14e−10 4.00

128 4.52e−12 4.00 6.43e−12 4.00 1.96e−11 4.00

v 16 1.84e−08 2.70e−08 1.23e−07

32 1.17e−09 3.98 1.73e−09 3.96 8.18e−09 3.91

64 7.41e−11 3.98 1.10e−10 3.98 5.24e−10 3.96

128 4.65e−12 3.99 6.89e−12 4.00 3.31e−11 3.98

w 16 8.09e−09 1.12e−08 2.94e−08

32 5.13e−10 3.98 6.99e−10 4.00 1.88e−09 3.97

64 3.22e−11 3.99 4.37e−11 4.00 1.18e−10 3.99

128 2.01e−12 4.00 2.73e−12 4.00 7.36e−12 4.00

T 16 2.25e−08 3.35e−08 1.16e−07

32 1.42e−09 3.99 2.09e−09 4.00 7.20e−09 4.00

64 8.87e−11 4.00 1.30e−10 4.00 4.50e−10 4.00

128 5.54e−12 4.00 8.11e−12 4.00 2.81e−11 4.00

5 Proof of the fourth-order convergence for smooth solutions

The convergence proof of Theorem 3.2 is composed of a technical consistency analysis
for the approximate solutions and the corresponding error estimate. A typical difficulty
arises in the analysis of finite difference methods, if a direct truncation error estimate
is performed, due to the loss of accuracy near the boundary by a formal observation.
To obtain the full accuracy estimate, some cancellation methodology in the approxi-
mation must be explored. Instead of substituting the exact solution into the numerical
scheme, a careful construction of an approximate temperature profile is performed by
adding an O(h4) correction term to the exact solution to satisfy the full fourth-order
truncation error. The approximate velocities (both horizontal and vertical) are given by
the numerical recovery solver presented in Sect. 3. Both the approximate temperature
and the velocity are shown to be within O(h4) difference in the W 2,∞ and L∞ norms,
respectively. That gives an O(h4) consistency of the constructed variables. The ana-
lysis of the error functions is implemented by the energy estimate of the temperature
error equation. It is noted that both the second and fourth-order difference operators
appearing in the long-stencil Laplacian operator in Eq. (3.5) are well-posed. This is a
crucial fact which leads to the stability of the scheme for the dynamic equation, with
a careful treatment of the boundary terms. Furthermore, the L2 norm of the velocity
error functions turns out to be bounded by the corresponding norms of the temperature
gradient (at the discrete level). This makes the estimate for the nonlinear convection
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terms feasible, under an a-priori L∞ assumption for the error functions, which can be
verified by an O(h4) accuracy in the L2 norm of the temperature.

For simplicity, we set T f = 0 so that the one-sided extrapolation around the top
z = 0 turns out to be

Ti, j,N+1 = Ti, j,N−1, Ti, j,N+2 = Ti, j,N−2, (5.1)

by inserting T f = 0. The corresponding extrapolation formulas around z = −H0 and
on the four lateral boundary sections are given by Eqs. (3.12), (3.22) and (3.23).

We denote by Te, ve, we the exact solution of (2.13), extend Te smoothly to
[−δ, 1 + δ]2 × [−H0 − δ, δ]. To facilitate the analysis of the diffusion term for the
temperature, we construct an approximate temperature field � by adding an O(h4)

term to the exact solution Te to maintain the higher order consistency. In more detail,

� = Te + h4T̂ , (5.2)

in which the correction function T̂ satisfies the Poisson equation

�T̂ = 0, (5.3a)

with a mixed-type boundary condition

∂z T̂ (x,−H0) = 1

80
∂5

z Te(x,−H0), ∂z T̂ (x, 0) = 1

80
∂5

z Te(x, 0),

T̂ (0, y, z) = 0, T̂ (1, y, z) = 0, T̂ (x, 0, z) = 0, T̂ (x, 1, z) = 0. (5.3b)

Note that Te = 0 on the lateral boundary sections, which implies ∂5
z Te = 0 on

∂M0 × [−H0, 0], hence the difficulty of compatibility at “corner” boundary points is
avoided in (5.3). Furthermore, performing a homogenization procedure and applying
the Schauder estimate to the above Poisson equation yield

‖T̂ ‖Cm,α ≤ C‖Te‖Cm+5,α , for m ≥ 2. (5.4)

The choice of the Neumann boundary condition for T̂ at z = 0,−H0 in Eq. (5.3b) is
explained below. We concentrate on the bottom boundary z = −H0. The top boundary
can be dealt with in the same way because of the choice T f = 0. A local Taylor
expansion for the exact temperature field Te around the boundary z = −H0 gives

(Te)i, j,−1 = (Te)i, j,1 − h5

60
∂5

z Te(xi , y j ,−H0)+ O(h7)‖Te‖C7 ,

(Te)i, j,−2 = (Te)i, j,2 − 32h5

60
∂5

z Te(xi , y j ,−H0)+ O(h7)‖Te‖C7 , (5.5)

due to the no-flux boundary condition for Te and the derivation for ∂3
z Te in Eq. (3.11) by

applying the original PDE on the boundary. The substitution of the boundary condition
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given by Eq. (5.3b) into the Taylor expansion of T̂ , along with the Schauder estimate
‖T̂ ‖C3 ≤ C‖Te‖C8,α given by Eq. (5.4), leads to

T̂i, j,−1 = T̂i, j,1 − 2h∂z T̂i, j,0 + O(h3)∂3
z T̂i, j,0

= T̂i, j,1 − h

40
∂5

z Te(xi , y j ,−H0)+ O(h3)‖Te‖C8,α ,

T̂i, j,−2 = T̂i, j,2 − 4h∂z T̂i, j,0 + O(h3)∂3
z T̂i, j,0

= T̂i, j,2 − h

20
∂5

z Te(xi , y j ,−H0)+ O(h3)‖Te‖C8,α . (5.6)

The combination of Eqs. (5.5) and (5.6) results in the following estimate for � =
Te + h4T̂ :

�i, j,−1 =�i, j,1 − h5

24
∂5

z Te(xi , y j ,−H0)+ O(h7)‖Te‖C8,α ,

�i, j,−2 =�i, j,2 − 7h5

12
∂5

z Te(xi , y j ,−H0)+ O(h7)‖Te‖C8,α . (5.7)

Similar results can be obtained at the top boundary section z = 0. It can be seen that
the O(h5) coefficients of�i, j,−1,�i, j,−2 have the ratio 1 : 14. This ratio is needed to
carry out the error analysis of the inner product of the temperature with its diffusion
term. This crucial point is the cause for the choice of the boundary condition for T̂ in
Eq. (5.3b).

An approximation for � around the lateral boundary sections can be similarly
derived. On the left boundary x = 0, expansions for Te and T̂ read

(Te)−1, j,k = 20

11
(Te)0, j,k − 6

11
(Te)1, j,k − 4

11
(Te)2, j,k + 1

11
(Te)3, j,k +O(h5)‖Te‖C5 ,

T̂−1, j,k = 20

11
T̂0, j,k − 6

11
T̂1, j,k − 4

11
T̂2, j,k + 1

11
T̂3, j,k + O(h2)‖T̂ ‖C2 , (5.8)

in which the first expansion comes from the derivation (3.22). Applying the Schauder
estimate ‖T̂ ‖C2 ≤ C‖Te‖C7,α (given by Eq. (5.4)) to Eq. (5.8) results in the extrapo-
lation for � = Te + h4T̂

�−1, j,k = 20

11
�0, j,k − 6

11
�1, j,k − 4

11
�2, j,k + 1

11
�3, j,k + O(h5)‖Te‖C7,α .

(5.9)

Similar results can be obtained around the three other lateral boundary sections.
One direct consequence of the Schauder estimate (5.4) is

‖T̂ ‖W 2,∞(M) ≤ C‖T̂ ‖C2,α ≤ C‖Te‖C7,α , (5.10)

in which ‖ · ‖W m,∞(M) represents the maximum value at the numerical grids of the
given function up to mth-order finite-difference, over the 3-D domain M. As a result,
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we have

‖�− Te‖W 2,∞(M) = h4‖T̂ ‖W 2,∞(M) ≤ Ch4‖Te‖C7,α . (5.11)

The approximate horizontal velocity V = (U, V ) is constructed via the numerical
difference scheme given by Eqs. (3.27), (3.28) and (3.36), namely,

(DzU )i, j+1/2,k = −
(

1 + �z2

24
D2

z

)
1

f0 + βy j+1/2
Dy

(

1 − h2

24
D2

y

)

�i, j+1/2,k,

(5.12)

(Dz V )i+1/2, j,k =
(

1 + �z2

24
D2

z

)
1

f0 + βy j
Dx

(

1 − h2

24
D2

x

)

�i+1/2, j,k, (5.13)

Nz−1∑

k=0

�z Ui, j+1/2,k+1/2 = −�z2

24

1

f0 + βy j+1/2

(−Dy�i, j+1/2,N + Dy�i, j+1/2,0
)
,

Nz−1∑

k=0

�z Vi+1/2, j,k+1/2 = −�z2

24

1

f0 + βy j

(
Dx�i+1/2, j,N − Dx�i+1/2, j,0

)
.

(5.14)

The solver for the linear system (5.12)–(5.14) is analogous to Eqs. (3.37), (3.38) and
(3.39). The approximate vertical velocity W is given by the following system at each
fixed mesh point (i + 1/2, j + 1/2)

{
D2

z Wi+1/2, j+1/2,k =
(

1 + �z2

12 D2
z

)
FW(�)i+1/2, j+1/2,k,

Wi+1/2, j+1/2,0 = Wi+1/2, j+1/2,Nz = 0,
(5.15a)

in which the force term FW(�) is defined as

FW(�) = β

f0 + βy j+1/2
·
(

− 1

16

1

f0 + βy j−1
Dx

(

1 − h2

24
D2

x

)

�i+1/2, j−1,k

+ 9

16

1

f0 + βy j
Dx

(

1 − h2

24
D2

x

)

�i+1/2, j,k

+ 9

16

1

f0 + βy j+1
Dx

(

1 − h2

24
D2

x

)

�i+1/2, j+1,k

− 1

16

1

f0 + βy j+2
Dx

(

1 − h2

24
D2

x

)

�i+1/2, j+2,k

)

. (5.15b)

The estimate for the constructed vertical velocity is given below.
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Proposition 5.1 We have

‖W − we‖L∞ ≤ Ch4‖Te‖C8 . (5.16)

Proof A detailed calculation of the Taylor expansion for the exact temperature Te and
the vertical velocity we gives

(

1 + �z2

12
D2

z

)

FW(Te)i+1/2, j+1/2,k

=
(

1 + �z2

12
∂2

z

)(
β∂x Te

( f0 + βy)2

)

i+1/2, j+1/2,k
+ O(h4)‖Te‖C5 , (5.17)

D2
zwe =

(

1 + �z2

12
D2

z

)

∂2
zwe + O(h4)‖we‖C6 =

(

1+ �z2

12
∂2

z

)

× β∂x Te

( f0+βy)2
+O(h4)‖we‖C6 , at (i +1/2, j +1/2, k). (5.18)

Also, an application of Eq. (5.11) yields

FW(�)− FW(Te) = FW(�− Te) ≤ C‖�− Te‖W 1,∞(M) ≤ Ch4‖Te‖C6,α ,

(5.19)

since FW is a linear operator which involves only a discrete gradient of temperature.
The combination of Eqs. (5.17)–(5.19) leads to the following system

{
D2

z (we)i+1/2, j+1/2,k =
(

1 + �z2

12 D2
z

)
FW(�)i+1/2, j+1/2,k + h4 f w,

(we)i+1/2, j+1/2,0 = (we)i+1/2, j+1/2,Nz = 0,
(5.20)

in which f w ≤ C‖Te‖C8 . Subtracting Eq. (5.15) from Eq. (5.20) results in

{
D2

z (we − W )i+1/2, j+1/2,k = h4 f w,

(we − W )i+1/2, j+1/2,0 = (we − W )i+1/2, j+1/2,Nz = 0.
(5.21)

Due to the homogeneous Dirichlet boundary condition for ˜̃w = we − W at k = 0, N ,
we apply the maximum principle to Eq. (5.21) and arrive at

‖W − we‖L∞(i+1/2, j+1/2) ≤ C‖D2
z

˜̃w‖L∞(i+1/2, j+1/2) ≤ Ch4‖Te‖C6 . (5.22)

Note that Eq. (5.22) is valid for each fixed grid (i + 1/2, j + 1/2). Then we arrive at
Eq. (5.16). Proposition 5.1 is proven. �	

123



696 R. Samelson et al.

The estimate for the approximate horizontal velocity determined by Eqs. (5.12)–
(5.14) comes from the Taylor expansion for Te and the recovery formulas (3.37)–(3.39).
The following results can be obtained

‖U − ue‖L∞ + ‖V − ve‖L∞ ≤ Ch4‖Te‖C8 . (5.23)

As a result of Eqs. (5.16) and (5.23), we have the following estimate of the averaged
velocities at the regular numerical grid points (i, j, k):

Ay(AzU )i, j,k − (ue)i, j,k = Ay(Az[U − ue])i, j,k + Ay(Azue)i, j,k − (ue)i, j,k

=O(h4)‖Te‖C8 +O(h4)‖ue‖C4 = O(h4)‖Te‖C8 ,

Ax (Az V )i, j,k − (ve)i, j,k = O(h4)‖Te‖C8 , (5.24)

Ax (Ay W )i, j,k − (we)i, j,k = O(h4)‖Te‖C8 .

The combination of Eqs. (5.11) and (5.24), along with Taylor expansion for Te,
leads to

Ay(AzU )D̃x

(

1 − h2

6
D2

x

)

� = ue∂x Te + O(h4)‖Te‖C8‖Te‖C7,α ,

Ax (Az V )D̃y

(

1 − h2

6
D2

y

)

� = ve∂y Te + O(h4)‖Te‖C8‖Te‖C7,α , (5.25)

Ax (Ay W )D̃y

(

1 − h2

6
D2

z

)

� = we∂zTe + O(h4)‖Te‖C8‖Te‖C7,α ,

(

κ1

(

D2
x − h2

12
D4

x + D2
y − h2

12
D4

y

)

+ κ2

(

D2
z − h2

12
D4

z

))

�

= (κ1� + κ2∂
2
z )Te + O(h4)‖Te‖C7,α . (5.26)

Moreover, taking the temporal derivative of (5.3) leads to a Poisson equation for
∂t T̂

�(∂t T̂ ) = 0, (5.27a)

∂z(∂t T̂ )(x,−H0) = 1

80
(∂t∂

5
z Te)(x,−H0), ∂z(∂t T̂ )(x, 0) = 1

80
(∂t∂

5
z Te)(x, 0),

(5.27b)
∂t T̂ (0, y, z) = 0, ∂t T̂ (1, y, z) = 0, ∂t T̂ (x, 0, z) = 0, ∂t T̂ (x, 1, z) = 0.

The Schauder estimate applied to the above Poisson equation reads

‖∂t T̂ ‖Cm,α ≤ C‖∂t Te‖Cm+5,α

≤ C
(‖ue‖Cm+5,α‖Te‖Cm+6,α + ‖Te‖Cm+7,α

)
, for m ≥ 2, (5.28)
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in which the original temperature transport equation ∂t Te + (v · ∇)Te + we∂zTe =
(κ1� + κ2∂

2
z )Te was used. It can be seen that Eq. (5.28) amounts to saying that

∂t� = ∂t Te + O(h4)
(
‖Te‖2

C8,α + ‖Te‖C9,α

)
. (5.29)

The combination of Eqs. (5.25), (5.26), (5.29) and the original temperature equation
gives

∂t�+ Nh(U,�) =
(

κ1

(

D2
x − h2

12
D4

x + D2
y − h2

12
D4

y

)

+ κ2

(

D2
z − h2

12
D4

z

))

�

+ h4 f T , (5.30)

where | f T | ≤ C(‖Te‖2
C8,α + ‖Te‖C9,α ).

We define the error functions of the temperature and the velocity at different mesh
points by

T̃ = �− T, ṽ = (ũ, ṽ) = (U − u, V − v), w̃ = W − w. (5.31)

Subtracting Eqs. (5.30), (5.12)–(5.14) and (5.15) from the numerical scheme (3.5),
(3.27), (3.28), (3.36) and (3.42) gives

⎧
⎪⎪⎨

⎪⎪⎩

∂t T̃ + Nh(ũ, T )+ Nh(U, T̃ ) =
(
κ1
(
D2

x − h2

12 D4
x + D2

y − h2

12 D4
y

)

+κ2
(
D2

z − h2

12 D4
z

))
T̃ + h4 f T ,

T̃0, j,k = 0, T̃N , j,k = 0, T̃i,0,k = 0, T̃i,N ,k = 0,

(5.32a)

(Dzũ)i, j+1/2,k = −
(

1 + �z2

24
D2

z

)
1

f0 + βy j+1/2
Dy

(

1 − h2

24
D2

y

)

T̃i, j+1/2,k,

(5.32b)

(Dz ṽ)i+1/2, j,k =
(

1 + �z2

24
D2

z

)
1

f0 + βy j
Dx

(

1 − h2

24
D2

x

)

T̃i+1/2, j,k,

Nz−1∑

k=0

�z ũi, j+1/2,k+1/2 = −�z2

24

1

f0 + βy j+1/2

(
−Dy T̃i, j+1/2,N + Dy T̃i, j+1/2,0

)
,

Nz−1∑

k=0

�z ṽi+1/2, j,k+1/2 = −�z2

24

1

f0 + βy j

(
Dx T̃i+1/2, j,N − Dx T̃i+1/2, j,0

)
,

{
D2

z w̃i+1/2, j+1/2,k =
(

1 + �z2

12 D2
z

)
FW(T̃ )i+1/2, j+1/2,k,

w̃i+1/2, j+1/2,0 = w̃i+1/2, j+1/2,Nz = 0.
(5.32c)
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Regarding the “ghost” point values for T̃ , we conclude from Eqs. (5.7), (5.9) and
(5.11) that

T̃i, j,−1 = T̃i, j,1 − h5

24
rb

i, j + h7eb1
i, j , T̃i, j,−2 = T̃i, j,2 − 7h5

12
rb

i, j + h7eb2
i, j ,

T̃−1, j,k = 20

11
T̃0, j,k − 6

11
T̃1, j,k − 4

11
T̃2, j,k + 1

11
T̃3, j,k + h5el1

j,k, (5.33a)

with

rb
i, j =∂5

z Te(xi , y j ,−H0), |eb1
i, j |,|eb2

i, j |≤C‖Te‖C8,α , |el1
j,k | ≤ C‖Te‖C7,α . (5.33b)

Once again, we observe that the O(h5) coefficients of T̃i, j,−1, T̃i, j,−2 have the ratio
1 : 14. Such a ratio is crucial to the error analysis of the temperature diffusion term in
Eq. (5.32a).

To proceed with the energy estimate of the nonlinear system (5.32), (5.33), we
introduce the following notation. For any pair of variables f , g which are evaluated
at the 3-D regular mesh points (i, j, k), the following discrete L2-inner product are
introduced

〈 f, g〉 = �z

(
1

2
〈 f, g〉z0 +

N−1∑

k=1

〈 f, g〉zk + 1

2
〈 f, g〉zN

)

,

with 〈 f, g〉zk = h2
N−1∑

j=1

N−1∑

i=1

fi, j,k gi, j,k . (5.34)

The corresponding L2 norm can be defined. In addition, the L2 norm for the discrete
temperature gradient is defined as

‖∇h T̃ ‖2
2 = ‖Dx T̃ ‖2

2 + ‖Dy T̃ ‖2
2, with

‖Dx T̃ ‖2
2 = �z

(
1

2
‖Dx T̃ ‖2

z0 +
N−1∑

k=1

‖Dx T̃ ‖2
zk + 1

2
‖Dx T̃ ‖2

zk

)

,

‖Dx T̃ ‖2
zk = h2

N−1∑

j=1

N−1∑

i=0

(D+
x T̃ )2i, j,k,

‖Dy T̃ ‖2
2 = �z

(
1

2
‖Dy T̃ ‖2

z0 +
N−1∑

k=1

‖Dy T̃ ‖2
zk + 1

2
‖Dy T̃ ‖2

zk

)

,

‖Dy T̃ ‖2
zk = h2

N−1∑

j=1

N−1∑

i=0

(D+
y T̃ )2i, j,k (5.35)

‖DzT̃ ‖2
2 = h3

N−1∑

j=1

N−1∑

i=1

N−1∑

k=0

(D+
z T̃ )2i, j,k . (5.36)
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A key point in the stability analysis of the system (5.32) is that the velocity error is
bounded by the temperature gradient error in the L2 norm, which comes from a careful
analysis of Eqs. (5.32b) and (5.32c). The results are stated below. Its verification is
straightforward:

‖Ay(Az ũ)‖, ‖Ax (Az ṽ)‖, ‖Ax (Ayw̃)‖ ≤ C1‖∇h T̃ ‖2. (5.37)

Taking the 〈 , 〉 product of Eq. (5.32a) with T̃ yields (see the definition (5.34))

1

2

d

dt
‖T̃ ‖2 − κ1

〈

T̃ ,

(

�h − h2

12

(
D4

x + D4
y

)
)

T̃

〉

− κ2

〈

T̃ ,

(

D2
z − h2

12
D4

z

)

T̃

〉

= −〈T̃ ,Nh(U, T̃ )〉 − 〈T̃ ,Nh(ũ, T )〉 + h4〈T̃ , f T 〉. (5.38)

The estimate of the temperature diffusion term is outlined in the next two proposi-
tions. Its proof relies on the stability of the long-stencil operator. We note that both the
second-order (such as D2

x , D2
y , D2

z ) and fourth-order difference operators (such as D4
x ,

D4
y , D4

z ) appearing in the long-stencil Laplacian operator in Eq. (3.5) have negative
eigenvalues with respect to either the Dirichlet or Neumann boundary condition. This
is the crucial reason for the feasibility of its stability analysis. In addition, a careful
treatment of the boundary terms is required to carry out the estimate.

Proposition 5.2 We have

−
〈

T̃ , (D2
z − h2

12
D4

z )T̃

〉

≥ 3

4
‖DzT̃ ‖2

2 − 1

2
h8 − h2‖T̃ ‖2. (5.39)

Proof Summing by parts under the inner product 〈 , 〉 and using the boundary extra-
polation (5.33) give

〈

T̃ , (D2
z − h2

12
D4

z )T̃

〉

= −‖Dz T̃ ‖2
2 − h2

12
‖D2

z T̃ ‖2 + Bb1 + Bb2, (5.40)

in which Bb1, corresponding to the boundary term around z = −H0, reads

Bb1 = h

12

N−1∑

j=1

N−1∑

i=1

(

T̃i, j,1
(
T̃i, j,−1 − T̃i, j,1

) + 1

2
T̃i,0

×
[(

T̃i, j,−2 − T̃i, j,2
) − 16

(
T̃i, j,−1 − T̃i, j,1

)])

= h

12

N−1∑

j=1

N−1∑

i=1

(

T̃i, j,1

[

−h5

24
rb

i, j + h7eb1
i, j

]

+ 1

2
T̃i, j,0

[

−7h5

12
rb

i, j + eb2
i, j − 16

(

−h5

24
rb

i, j + h7eb1
i, j

)])

, (5.41)
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and Bb2 can be similarly given. It should be noted that the derivation of Eq. (5.41)
comes from the formula for T̃i, j,−1, T̃i, j,−2 in Eq. (5.33a) and that rb, eb1, eb2 are

given by Eq. (5.33b). More precisely, Bb1 can be simplified as

Bb1 = h8

12

N−1∑

j=1

N−1∑

i=1

(

eb1
i, j

(
T̃i, j,1 − 8T̃i, j,0

) + 1

2
eb2

i, j T̃i, j,0

)

+ h6

288

N−1∑

j=1

N−1∑

i=1

rb
i, j

(
T̃i, j,0 − T̃i, j,1

)

≡ I b
1 + I b

2 . (5.42)

The term I b
1 can be controlled by the Cauchy inequality and the estimate (5.33b)

I b
1 ≤Ch8

∣
∣
∣
∣
∣
∣

N−1∑

j=1

N−1∑

i=1

eb1
i, j T̃i, j,1

∣
∣
∣
∣
∣
∣
+Ch8

∣
∣
∣
∣
∣
∣

N−1∑

j=1

N−1∑

i=1

eb1
i, j T̃i, j,0

∣
∣
∣
∣
∣
∣
≤C‖T̃ ‖2+Ch9,

(5.43)

since e is bounded.
What remains is the estimate of I b

2 . As can be seen, the detailed estimate for T̃i, j,−1,
T̃i, j,−2 in (5.33), which shows that the O(h5) coefficients of T̃i, j,−1, T̃i, j,−2 have the

ratio 1 : 14, makes the term I b
2 have the form h6

288

∑N−1
j=1

∑N−1
i=1 rb

i, j (T̃i, j,0 − T̃i, j,1).
That is crucial to the error analysis below. The application of the Cauchy inequality
shows that

I b
2 = h6

288

N−1∑

j=1

N−1∑

i=1

rb
i, j (T̃i, j,0 − T̃i, j,1)

≤ 1

288
h3

N−1∑

j=1

N−1∑

i=1

(T̃i, j,0 − T̃i, j,1)
2

h2 + 1

288
h11

N−1∑

j=1

N−1∑

i=1

(rb
i, j )

2. (5.44)

It is observed that the first term appearing above can be absorbed into ‖DzT̃ ‖2
2.

Meanwhile, we note that rb
i, j = ∂5

z Te(xi , y j ,−H0) is a bounded quantity. Then we
obtain

I b
2 = h6

288

N−1∑

j=1

N−1∑

i=1

rb
i, j (T̃i, j,0 − T̃i, j,1) ≤ 1

288
‖DzT̃ ‖2

2 + Ch9. (5.45)

The combination of Eqs. (5.43) and (5.45) leads to

Bb1 ≤ 1

288
‖DzT̃ ‖2

2 + 1

8
h8. (5.46)
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The other boundary term Bb2 can be similarly treated. Going back to Eq. (5.40), we
obtain the estimate (5.39). Proposition 5.2 is proven. �	
Proposition 5.3 We have

−
〈

T̃ ,

(

D2
x − h2

12
D4

x

)

T̃

〉

≥ 1

2
‖Dx T̃ ‖2

2 − h8. (5.47)

Proof At each fixed vertical grid point zk , the temperature error T̃ vanishes at
i = 0, N . As a result, summing by parts gives

−
〈

T̃ ,

(

D2
x − h2

12
D4

x

)

T̃

〉

zk
=‖Dx T̃ ‖2

zk + h2

12
‖D2

x T̃ ‖2
zk + h2

12
Bl1+ h2

12
Bl2,

(5.48)

where Bl1, Bl2 correspond to the boundary terms

Bl1 =
N−1∑

j=1

T̃1, j,k(D
2
x T̃ )0, j,k, Bl2 =

N−1∑

j=1

T̃N−1, j,k(D
2
x T̃ )N , j,k . (5.49)

By the boundary condition for T̃ at the “ghost points” as in (5.33), (D2
x T̃ )0, j,k can be

written as

(D2
x T̃ )0, j,k = 1

h2

(

− 2

11
T̃0, j,k + 5

11
T̃1, j,k − 4

11
T̃2, j,k + 1

11
T̃3, j,k

)

+h3el1
j,k . (5.50)

Since T̃ does vanish at i = 0, N , Eq. (5.50) can be rewritten as

(D2
x T̃ )0, j,k = − 2

11
(D2

x T̃ )1, j,k + 1

11
(D2

x T̃ )2, j,k + h3el1
j,k . (5.51)

The purpose of this transformation is to control local terms by global terms as is shown
later. Using the Cauchy inequality for each term appearing in Eq. (5.51) leads to

T̃1, j,k
(
D2

x T̃
)

0, j,k ≥ − 22

4·112 ·h2 T̃ 2
1, j,k − h2(D2

x T̃1, j,k
)2 − 12

4·112 ·h2 T̃ 2
1, j,k

− h2(D2
x T̃2, j,k

)2− 1

4h2 T̃ 2
1, j,k −h8(el1

j,k

)2

≥ − 1

2h2T̃ 2
1, j,k − h2(D2

x T̃1, j,k
)2−h2(D2

x T̃2, j,k
)2 − h8(el1

j,k

)2
.

(5.52)

The first term appearing above can be controlled by ‖Dx T̃ ‖2
zk , since we will multiply

it by h2

12 , leaving more than 1
2‖Dx T̃ ‖2

zk ; the second and third terms will be controlled
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by ‖D2
x T̃ ‖2

zk ; the last term can be controlled by

h2

12

N−1∑

j=1

h8(el1
j,k

)2 ≤ Nh10 ·C‖Te‖2
C6,α ≤ Ch9‖Te‖2

C6,α , (5.53)

where we used the fact that h = 1
N . Then we arrive at

−
〈

T̃ ,

(

D2
x − h2

12
D4

x

)

T̃

〉

zk
≥ 1

2
‖Dx T̃ ‖2

zk − 1

8
h8. (5.54)

Proposition 5.3 is proven since Eq. (5.54) is valid for each fixed k. �	

Similar to Eq. (5.47), we can also obtain

−
〈

T̃ ,

(

D2
y − h2

12
D4

y

)

T̃

〉

≥ 1

2
‖Dy T̃ ‖2

2 − h8. (5.55)

The analysis for the linearized convection terms is given below.

Proposition 5.4 Assume a-priori that the error function for the temperature field
satisfies

‖T̃ ‖L∞ ≤ h2. (5.56)

Then we have

∣
∣
∣〈T̃ ,Nh(ũ, T )〉

∣
∣
∣ ,

∣
∣
∣〈T̃ ,Nh(U, T̃ )〉

∣
∣
∣≤ C̃1‖T̃ ‖2+ κ0

2

(
‖∇h T̃ ‖2

2 + ‖DzT̃ ‖2
2

)
, (5.57)

with κ0 = min(κ1, κ2) and C̃1 = C
(‖Te‖C9,α , κ0

)
.

Proof By the a-priori bound (5.56) and the estimate (5.11), we have

‖T̃ ‖W 1,∞(M) ≤ Ch, which implies

‖T ‖W 1,∞(M) ≤ ‖�‖W 1,∞(M) + ‖T̃ ‖W 1,∞(M) ≤ ‖Te‖C1 + 1. (5.58)
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This result will be used later. The inner product of T̃ with the linearized convection
terms can be decomposed as

〈T̃ ,Nh(ũ, T )〉 =
〈

T̃ ,Ay(Az ũ) D̃x

(

1 − h2

6
D2

x

)

T

〉

+
〈

T̃ ,Ax (Az ṽ) D̃y

(

1 − h2

6
D2

y

)

T

〉

+
〈

T̃ ,Ax (Ayw̃) D̃z

(

1 − h2

6
D2

z

)

T

〉

,

(5.59)

〈T̃ ,Nh(U, T̃ )〉 =
〈

T̃ ,Ay(AzU ) D̃x

(

1 − h2

6
D2

x

)

T̃

〉

+
〈

T̃ ,Ax (Az V ) D̃y

(

1 − h2

6
D2

y

)

T̃

〉

+
〈

T̃ ,Ax (Ay W ) D̃z

(

1 − h2

6
D2

z

)

T̃

〉

.

For the first term appearing in 〈T̃ ,Nh(ũ, T )〉, we see that

∣
∣
∣
∣

〈

T̃ ,Ay(Az ũ) D̃x (1 − h2

6
D2

x )T

〉∣
∣
∣
∣

≤ ‖T ‖W 1,∞(M)‖T̃ ‖‖Ay(Az ũ)‖
≤ C1(‖Te‖C1 + 1)‖T̃ ‖‖∇h T̃ ‖2, (by (5.37) and (5.58)),

≤ C̃2

κ0
‖T̃ ‖2 + κ0

12
‖∇h T̃ ‖2

2, (by Cauchy’s inequality), (5.60)

with C̃2 = CC2
1 (‖Te‖C1 + 1)2. Similarly, for the second term, we have

∣
∣
∣
∣

〈

T̃ ,Ay(AzU ) D̃x (1 − h2

6
D2

x )T̃

〉∣
∣
∣
∣

≤ ‖U‖L∞‖T̃ ‖‖∇h T̃ ‖2

≤ C(‖Te‖C1 + 1)‖T̃ ‖‖∇h T̃ ‖2, (by (5.23)),

≤ C̃2

κ0
‖T̃ ‖2 + κ0

12
‖∇h T̃ ‖2

2, (by Cauchy’s inequality). (5.61)

The other terms in Eq. (5.59) can be analyzed in the same manner. Therefore, the
combination of Eqs. (5.60) and (5.61) leads to Eq. (5.57). Proposition 5.4 is proven.

�	
Remark 5.5 The reason for the a-priori assumption (5.56) in Proposition 5.4 is to make
sure that the L∞ error of the velocity field is bounded by Ch, henceforth bounded
by a constant 1. Note that the L∞ norm of the velocity (both horizontal and vertical)
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is bounded by C/h times the L∞ norm of the temperature, which comes from the
recovery formula for the velocity in terms of the temperature gradient. In addition,
due to the O(h4) accuracy in the L2 norm, the L∞ error of the temperature is bounded
by Ch5/2 ≤ h2, by using an inverse inequality in a 3-D mesh. This avoids the need
to perform higher order consistency analysis, which shows another advantage of a
fourth-order scheme.

The above argument is valid on some time interval (0, t1), and the constant C
depends on t1. In other words, the convergence analysis provided in this article is for
the solution of a fixed final time.

Substituting Eqs. (5.39), (5.47), (5.55) and (5.57) into the energy Eq. (5.38) results
in

1

2

d

dt
‖T̃ ‖2 ≤ Ch8 + C‖ f T ‖2 + CC̃1‖T̃ ‖2. (5.62)

Integrating in time and applying the Gronwall inequality yields

‖T̃ ‖2 ≤ Ch8, (5.63)

with C = C(‖Te‖C9,α ) as introduced in Theorem 3.2 In other words, we have proven
that

‖T (·, t)− Te(t)‖L2 ≤ Ch4. (5.64)

Using the inverse inequality at the 3-D mesh points gives

‖T̃ ‖L∞ ≤ C
‖T̃ ‖
h3/2 ≤ Ch5/2. (5.65)

Consequently, the a-priori assumption (5.56) will never be violated if h is small enough.
Theorem 3.2 is proven. �	
Acknowledgments The authors thank J.-G. Liu for many insightful discussions of a staggered grid for
three-dimensional geophysical fluid.
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