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In this article, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral
method coupled with a specially designed second-order time-stepping for the numerical solution of the
“good” Boussinesq equation. Our analysis improves the existing results presented in earlier literature in
two ways. First, a �∞(0, T ∗; H 2) convergence for the solution and �∞(0, T ∗; �2) convergence for the time-
derivative of the solution are obtained in this article, instead of the �∞(0, T ∗; �2) convergence for the solution
and the �∞(0, T ∗; H−2) convergence for the time-derivative, given in De Frutos, et al., Math Comput 57
(1991), 109–122. In addition, we prove that this method is unconditionally stable and convergent for the
time step in terms of the spatial grid size, compared with a severe restriction time step restriction �t ≤ Ch2

required by the proof in De Frutos, et al., Math Comput 57 (1991), 109–122. © 2014 Wiley Periodicals, Inc.
Numer Methods Partial Differential Eq 31: 202–224, 2015
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I. INTRODUCTION

The soliton-producing nonlinear wave equation is a topic of significant scientific interest. One
commonly used example is the so-called “good” Boussinesq (GB) equation

utt = −uxxxx + uxx + (up)xx , with an integer p ≥ 2. (1.1)
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It is similar to the well-known Korteweg-de Vries (KdV) equation; a balance between disper-
sion and nonlinearity leads to the existence of solitons. The GB equation and its various extensions
have been investigated by many authors. For instance, a closed form solution for the two soliton
interaction of Eq. (1.1) was obtained by Manoranjan et al. in [1] and a few numerical experiments
were performed based on the Petrov–Galerkin method with linear “hat” functions. In [2], it was
shown that the GB equation possesses a highly complicated mechanism for the solitary waves
interaction. Ortega and Sanz-Serna [3] discussed nonlinear stability and convergence of some
simple finite difference schemes for the numerical solution of this equation. More analytical and
numerical works related to GB equations can be found in the literature, for example, [4–15].

In this article, we consider the GB equation (1.1), with a periodic boundary condition over an
one-dimensional (1D) domain � = (0,L) and initial data u(x, 0) = u0(x), ut(x, 0) = v0(x), both
of which are L-periodic. It is assumed that a unique, periodic, smooth enough solution exists for
(1.1) over the time interval (0,T ). This L-periodicity assumption is reasonable if the solution to
(1.1) decays exponentially outside [0,L].

Due to the periodic boundary condition, the Fourier collocation (pseudospectral) differentia-
tion is a natural choice to obtain the optimal spatial accuracy. There has been a wide and varied
literature on the development of spectral and pseudospectral schemes. For instance, the stability
analysis for linear time-dependent problems can be found in [16, 17], and so forth, based on
eigenvalue estimates. Some pioneering works for nonlinear equations were initiated by Maday
and Quarteroni [18–20] for steady-state spectral solutions. Also, note the analysis of 1D con-
servation laws by Tadmor and coworkers [21–27], semidiscrete viscous Burgers’ equation and
Navier–Stokes equations by Weinan [28, 29], the Galerkin spectral method for Navier–Stokes
equations led by Guo [22, 30–32] and Shen [33, 34], and the fully discrete (discrete both in space
and time) pseudospectral method applied to viscous Burgers’ equation in [11] by Gottlieb and
Wang and [35] by Bressan and Quarteroni, and so forth.

In addition, an application of spectral and pseudospectral approximation to dispersive nonlin-
ear wave equation, such as KdV equation has attracted a great deal of attention. Many interesting
theoretical analysis and numerical results have been reported in the existing literature; for exam-
ple, see [36] for the semidiscrete spectral methods, [37] for the error estimate of a fully discrete
scheme, and [38, 39] for the error estimates of the Benjamin–Ono equation or related nonlocal
models, and so forth. For the GB equation (1.1), it is worth mentioning De Frutos et al.’s work
[10] on the nonlinear analysis of a second-order (in time) pseudospectral scheme for the GB
equation (with p = 2). However, as the authors point out in their remark on page 119, these
theoretical results were not optimal: “... our energy norm is an L2-norm of u combined with a
negative norm of ut . This should be compared with the energy norm in [40]: there, no integra-
tion with respect to x is necessary and convergence is proved in H2 for u and L2 for ut .” The
difficulties in the analysis are due to the absence of a dissipation mechanism in the GB equation
(1.1), which makes the nonlinear error terms much more challenging to analyze than that of a
parabolic equation. The presence of a second-order spatial derivative for the nonlinear term leads
to an essential difficulty of numerical error estimate in a higher order Sobolev norm. In addition
to the lack of optimal numerical error estimate, the analysis in [10] also imposes a severe time
step restriction: �t ≤ Ch2 (with C a fixed constant), in the nonlinear stability analysis. Such a
constraint becomes very restrictive for a fine numerical mesh and leads to a high computational
cost.

In this work, we propose a second-order (in time) pseudospectral scheme for the GB equa-
tion (1.1) with an alternate approach, and provide a novel nonlinear analysis. In more detail, a
�∞(0, T ∗; H 2) convergence for u and �∞(0, T ∗; �2) convergence for ut are derived, compared with
the �∞(0, T ∗; �2) convergence for u and �∞(0, T ∗; H−2) convergence for ut , as reported in [10].
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Furthermore, such a convergence is unconditional (for the time step �t in terms of space grid
size h) so that the severe time step constraint �t ≤ Ch2 is avoided.

The methodology of the proposed second-order temporal discretization is very different from
that in [10]. To overcome the difficulty associated with the second-order temporal derivative in the
hyperbolic equation, we introduce a new variable ψ to approximate ut , which greatly facilitates
the numerical implementation. Conversely, the corresponding second-order consistency analysis
becomes nontrivial because of a O(�t2) numerical error between the centered difference of u
and the midpoint average of ψ . Without a careful treatment, such a O(�t2) numerical error might
seem to introduce a reduction of temporal accuracy, because of the second-order time deriva-
tive involved in the equation. To overcome this difficulty, we perform a higher order consistency
analysis by an asymptotic expansion; as a result, the constructed approximate solution satisfies
the numerical scheme with a higher order truncation error. Furthermore, a projection of the exact
solution onto the Fourier space leads to an optimal regularity requirement.

For the nonlinear stability and convergence analysis, we have to obtain a direct estimate of the
(discrete) H2 norm of the nonlinear numerical error function. This estimate relies on the aliasing
error control lemma for pseudospectral approximation to nonlinear terms, which was proven in a
recent work [11]. That is the key reason we are able to overcome the key difficulty in the nonlinear
estimate and obtain a �∞(0, T ∗; H 2) convergence for u and �∞(0, T ∗; �2) convergence for ut . We
prove that the proposed numerical scheme is fully consistent (with a higher order expansion),
stable and convergent in the H2 norm up to some fixed final time T ∗. In turn, the maximum norm
bound of the numerical solution is automatically obtained, because of the H2 error estimate and
the corresponding Sobolev embedding. Therefore, the inverse inequality in the stability analysis
is not needed and any scaling law between �t and h is avoided, compared with the �t ≤ Ch2

constraint reported in [10].
This article is outlined as follows. In Section II, we review the Fourier spectral and pseu-

dospectral differentiation, recall an aliasing error control lemma (proven in [11]), and present
an alternate second-order (in time) pseudospectral scheme for the GB equation (1.1). In Section
III, the consistency analysis of the scheme is studied in detail. The stability and convergence
analysis is reported in Section IV. A simple numerical result is presented in Section V. Finally,
some concluding remarks are made in Section VI.

II. THE NUMERICAL SCHEME AND THE MAIN RESULT

A. Review of Fourier Spectral and Pseudospectral Approximations

For f (x) ∈ L2(�), � = (0, L), with Fourier series

f (x) =
∞∑

l=−∞
f̂le

2π ilx/L, with f̂l =
∫

�

f (x)e−2π ilx/Ldx, (2.1)

its truncated series is defined as the projection onto the space BN of trigonometric polynomials
in x of degree up to N, given by

PNf (x) =
N∑

l=−N

f̂le
2π ilx/L. (2.2)
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To obtain a pseudospectral approximation at a given set of points, an interpolation operator IN

is introduced. Given a uniform numerical grid with (2N + 1) points and a discrete vector function f
where fi = f (xi), for each spatial point xi . The Fourier interpolation of the function is defined by

(INf )(x) =
N∑

l=−N

(f̂ N
c )

l
e2π ilx/L, (2.3)

where the (2N + 1) pseudospectral coefficients (f̂ N
c )

l
are computed based on the interpolation con-

dition f (xi) = (INf )(xi) on the 2N + 1 equidistant points [41–43]. These collocation coefficients
can be efficiently computed using the fast Fourier transform (FFT). Note that the pseudospectral
coefficients are not equal to the actual Fourier coefficients; the difference between them is known
as the aliasing error. In general, PNf (x) �= INf (x), and even PNf (xi) �= INf (xi), except of
course in the case that f ∈ BN .

The Fourier series and the formulas for its projection and interpolation allow one to easily take
derivative by simply multiplying the appropriate Fourier coefficients (f̂ N

c )
l

by 2lπ i/L. Further-
more, we can take subsequent derivatives in the same way, so that differentiation in physical space
is accomplished via multiplication in Fourier space. As long as f and all is derivatives (up to mth
order) are continuous and periodic on �, the convergence of the derivatives of the projection and
interpolation is given by

||∂kf (x) − ∂kPNf (x)|| ≤ C||f (m)||hm−k , for 0 ≤ k ≤ m,

||∂kf (x) − ∂kINf (x)|| ≤ C||f ||Hmhm−k , for 0 ≤ k ≤ m, m >
d

2
, (2.4)

in which ||·|| denotes the L2 norm. For more details, see the discussion of approximation theory
by Canuto and Quarteroni [44].

For any collocation approximation to the function f (x) at the points xi

f (xi) = (INf )i =
N∑

l=−N

(f̂ N
c )

l
e2π ilxi , (2.5)

one can define discrete differentiation operator DN operating on the vector of grid values
f = f (xi). In practice, one may compute the collocation coefficients (f̂ N

c )
l

via FFT, and then
multiply them by the correct values (given by 2lπ i) and perform the inverse FFT. Alternatively,
we can view the differentiation operator DN as a matrix, and the above process can be seen as
a matrix-vector multiplication. The same process is performed for the second and fourth deriv-
atives ∂2

x , ∂4
x , where this time the collocation coefficients are multiplied by (−4π 2l2/L2) and

(16π 4l4/L4), respectively. In turn, the differentiation matrix can be applied for multiple times,
that is, the vector f is multiplied by D2

N and D4
N , respectively.

Because the pseudospectral differentiation is taken at a point-wise level, a discrete L2 norm and
inner product need to be introduced to facilitate the analysis. Given any periodic grid functions f
and g (over the numerical grid), we note that these are simply vectors and define the discrete L2

inner product and norm

‖f‖2 = √〈f , f〉, with 〈f , g〉 = 1

2N + 1

2N∑
i=0

figi . (2.6)
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The following summation by parts (see [11]) will be of use:

〈f , DNg〉 = −〈DN f , g〉, 〈f , D2
Ng〉 = −〈DN f , DNg〉, 〈f , D4

Ng〉 = 〈D2
N f , D2

Ng〉. (2.7)

B. An Aliasing Error Control Estimate in Fourier Pseudospectral Approximation

This lemma, established in [11], allows us to bound the aliasing error for the nonlinear term, and
will be critical to our analysis. For any function ϕ(x) in the space BpN , its collocation coeffi-
cients q̂N

l are computed based on the 2N + 1 equidistant points. In turn, INϕ(x) is given by the
continuous expansion based on these coefficients:

INϕ(x) =
N∑

l=−N

q̂N
l e2π ilx/L. (2.8)

Since ϕ(x) ∈ BpN , we have INϕ(x) �= PNϕ(x) due to the aliasing error.
The following lemma enables us to obtain an Hm bound of the interpolation of the nonlinear

term; the detailed proof can be found in [11].

Lemma 2.1. For any ϕ ∈ BpN (with p an integer) in dimension d, we have

‖INϕ‖Hk ≤ (
√

p)
d‖ϕ‖Hk . (2.9)

C. Formulation of the Numerical Scheme and the Convergence Result

We propose the following fully discrete second-order (in time) scheme for Eq. (1.1):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψn+1 − ψn

�t
= − D4

N

(
un+1 + un

2

)
+ D2

N

(
un+1 + un

2

)
+ D2

N

(
3

2
(un)

p − 1

2
(un−1)

p

)
,

un+1 − un

�t
= ψn+1 + ψn

2
,

(2.10)

whereψ is a second-order approximation to ut and DN denotes the discrete differentiation operator.
The main result of this article is given later.

Theorem 2.2. For any final time T > 0, assume the exact solution ue to the GB equation (1.1)
given by (3.21). Denote u�t ,h as the continuous (in space) extension of the fully discrete numerical
solution given by scheme (2.10). As �t , h → 0, the following convergence result is valid:

‖u�t ,h − ue‖�∞(0,T ∗;H2) + ‖ψ�t ,h − ψe‖�∞(0,T ∗;L2) ≤ C(�t2 + hm), (2.11)

provided that the time step �t and the space grid size h are bounded by given constants which are
only dependent on the exact solution. Note that the convergence constant in (2.11) also depends
on the exact solution as well as T.

Remark 2.3. With a substitution ψn+1 = 2(un+1−un)

�t
−ψn, the scheme (2.10) can be reformulated

as a closed equation for un+1:

2un+1

�t2
+ 1

2
(D4

N − D2
N)un+1 = D2

N

(
3

2
(un)

p − 1

2
(un−1)

p

)
− 1

2
(D4

N − D2
N)un +

2un

�t
+ 2ψn

�t
.

(2.12)
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As the treatment of the nonlinear term is fully explicit, this resulting implicit scheme requires
only a linear solver. Furthermore, a detailed calculation shows that all the eigenvalues of the
linear operator on the left-hand side are positive, and so the unique unconditional solvability of
the proposed scheme (2.10) is assured. In practice, the FFT can be used to efficiently obtain the
numerical solutions.

Remark 2.4. An introduction of the variable ψ allows us to rewrite the wave equation as a
first-order system in time. This rewritten form not only facilitates the numerical implementation,
but also improves the numerical stability. The stability analysis and error estimate for the linear
version of (2.10) were provided in an earlier article [45].

Remark 2.5. In contrast, three time steps tn+1, tn, and tn−1 are involved in the numerical
approximation to the second-order temporal derivative as presented in the earlier work [10] (with
p = 2):

un+1 − 2un + un−1

�t2
= −1

4
D4

N(un+1 + 2un + un−1) + D2
Nun + D2

N((un)
2
). (2.13)

A careful analysis in [10] shows that the numerical stability for (2.13) could only be theoreti-
cally justified under a severe time step constraint �t ≤ Ch2, although an intuitive and linearized
stability analysis, as well as the numerical results, indicate that a standard Courant–Friedrichs–
Lewy (CFL) condition �t = O(h) is sufficient. Conversely, the special structure of our proposed
scheme (2.10) results in an unconditional stability and convergence for a fixed final time, as will
be presented in later analysis.

These subtle differences in terms of the stability conditions will be analyzed in later sections.
See Remarks 4.3–4.6 below.

III. THE CONSISTENCY ANALYSIS

In this section, we establish a truncation error estimate for the fully discrete scheme (2.10) for the
GB equation (1.1). A finite Fourier projection is applied to the exact solution of the GB equation
(1.1) and a local truncation error is derived. Moreover, we perform a higher order consistency
analysis in time, through an addition of a correction term, so that the constructed approximate
solution satisfies the numerical scheme with higher order temporal accuracy. This approach avoids
a key difficulty associated with the accuracy reduction in time due to the appearance of the second
in time temporal derivative.

A. Truncation Error Analysis for UN

Given the domain � = (0,L), the uniform mesh grid (xi), 0 ≤ i ≤ 2N , and the exact solution ue,
we denote UN as its projection into BN :

UN(x, t) := PNue(x, t). (3.1)

The following approximation estimates are clear:

‖UN − ue‖L∞(0,T ∗;Hr ) ≤ Chm‖ue‖L∞(0,T ∗;Hm+r ), for r ≥ 0, (3.2)

‖∂k
t (UN − ue)‖Hr ≤ Chm‖∂k

t ue‖Hm+r , for r ≥ 0, 0 ≤ k ≤ 4, (3.3)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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in which the second inequality comes from the fact that ∂k
t UN is the truncation of ∂k

t ue for any
k ≥ 0, as projection and differentiation commute:

∂k

∂tk
UN(x, t) = ∂k

∂tk
PNue(x, t) = PN

∂kue(x, t)

∂tk
. (3.4)

As a direct consequence, the following linear estimates are straightforward:

‖∂2
t (UN − ue)‖L2 ≤ Chm‖∂2

t ue‖Hm , (3.5)

‖∂2
x (UN − ue)‖L2 ≤ Chm‖ue‖Hm+2 , ‖∂4

x (UN − ue)‖L2 ≤ Chm‖ue‖Hm+4 . (3.6)

Conversely, a discrete ‖ · ‖2 estimate for these terms is needed in the local truncation derivation.
To overcome this difficulty, we observe that

‖∂2
t (UN − ue)‖2 = ‖IN(∂2

t (UN − ue))‖L2 ≤ ‖∂2
t (UN − ue)‖L2 + ‖∂2

t (INue − ue)‖L2 , (3.7)

in which the second step comes from the fact that IN∂2
t UN = ∂2

t UN , since ∂2
t UN ∈ BN . The first

term has an estimate given by (3.5), whereas the second term could be bounded by

‖(∂2
t (INue − ue))‖L2 = ‖IN(∂2

t ue) − ∂2
t ue‖L2 ≤ Chm‖∂2

t ue‖Hm , (3.8)

as an application of (2.4). In turn, its combination with (3.7) and (3.5) yields

‖∂2
t (UN − ue)‖2 ≤ Chm‖∂2

t ue‖Hm . (3.9)

Using similar arguments, we also arrive at

‖∂2
x (UN − ue)‖2 ≤ Chm‖ue‖Hm+2 , ‖∂4

x (UN − ue)‖2 ≤ Chm‖ue‖Hm+4 . (3.10)

For the nonlinear term, we begin with the following expansion:

∂2
x (u

p
e ) = p((p − 1)up−2

e (ue)
2
x + up−1

e (ue)xx), which in turn gives

∂2
x (u

p
e − (UN)p) = p

(
(p − 1)U

p−2
N (ue + UN)x(ue − UN)x

+ (p − 1)(ue − UN)(ue)
2
x

p−3∑
k=0

uk
eU

p−3−k

N

+ U
p−1
N (ue − UN)xx + (ue − UN)(ue)xx

p−2∑
k=0

uk
eU

p−2−k

N

)
. (3.11)

Subsequently, its combination with (3.2) implies that

‖∂2
x (u

p
e − (UN)p)‖

L2

≤ C(‖UN‖p−2
L∞ · ‖ue + UN‖W1,∞ · ‖ue − UN‖H1 + ‖UN‖p−1

L∞ · ‖ue − UN‖H2

+ ‖ue − UN‖L∞ · (‖ue‖p−2
L∞ + ‖UN‖p−2

L∞ ) · (‖ue‖H2 + ‖ue‖2
W1,4))

≤ C(‖UN‖p−2

H1 · ‖ue + UN‖H2 · ‖ue − UN‖H1 + ‖UN‖p−1

H1 · ‖ue − UN‖H2

+ ‖ue − UN‖H1 · (‖ue‖p−2

H1 + ‖UN‖p−2

H1 ) · (‖ue‖H2 + ‖ue‖2
H2))
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≤ C(‖ue‖p

H2 + ‖UN‖p

H2) · ‖ue − UN‖H2

≤ C‖ue‖p

H2 · ‖ue − UN‖H2 ≤ Chm‖ue‖p

H2 · ‖ue‖Hm+2 , (3.12)

in which an 1D Sobolev embedding was used in the second step.
The following interpolation error estimates can be derived in a similar way, based on (2.4):

‖∂2
x (u

p
e ) − IN(∂2

x (u
p
e ))‖L2 ≤ Chm‖∂2

x (u
p
e )‖Hm ≤ Chm‖ue‖p

H2 · ‖ue‖Hm+2 , (3.13)

‖∂2
x (U

p

N) − IN(∂2
x (U

p

N))‖
L2 ≤ Chm‖∂2

x (U
p

N)‖
Hm ≤ Chm‖ue‖p

H2 · ‖ue‖Hm+2 . (3.14)

In turn, a combination of (3.12)–(3.14) implies the following estimate for the nonlinear term

‖∂2
x (u

p
e − (UN)p)‖2 = ‖IN(∂2

x (u
p
e − (UN)p))‖

L2

≤ ‖∂2
x (u

p
e − (UN)p)‖

L2 + ‖∂2
x (u

p
e ) − IN(∂2

x (u
p
e ))‖L2

+ ‖∂2
x (U

p

N) − IN(∂2
x (U

p

N))‖
L2 ≤ Chm‖ue‖p

H2 · ‖ue‖Hm+2 . (3.15)

By observing (3.9), (3.10), and (3.15), we conclude that UN satisfies the original GB equation
(1.1) up to a O(hm) (spectrally accurate) truncation error:

∂2
t UN = −∂4

xUN + ∂2
xUN + ∂2

x (U
p

N) + τ0, with ‖τ0‖2 ≤ Chm(‖ue‖p

H2 + 1) · ‖ue‖Hm+4 .
(3.16)

Moreover, we define the following profile, a second-order (in time) approximation to ∂tue:


N(x, t) := ∂tUN(x, t) − �t2

12
∂3

t UN(x, t). (3.17)

For any function G = G(x,t), given n > 0, we define Gn(x) := G(x, n�t).

B. Truncation Error Analysis in Time

For simplicity of presentation, we assume T = K�t with an integer K. The following two pre-
liminary estimates are excerpted from a recent work [46], which will be useful in later consistency
analysis.

Proposition 3.1 ([46]). For f ∈ H 3(0, T ), we have

‖τ tf ‖�2(0,T ) ≤ C�tm‖f ‖Hm+1(0,T ), with τ tf n = f n+1 − f n

�t
− f ′(tn+1/2), (3.18)

for 0 ≤ m ≤ 2, where C only depends on T , ‖ · ‖�2(0,T ) is a discrete L2 norm (in time) given by

‖g‖�2(0,T ) =
√

�t
∑K−1

n=0 (gn)2.

Proposition 3.2 ([46]). For f ∈ H 2(0, T ), we have

‖D2
t/2f ‖

�2(0,T )
:=

(
�t

K−1∑
n=0

(
D2

t/2f
n+1/2

)2

) 1
2

≤ C‖f ‖H2(0,T ), (3.19)
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‖D2
t f ‖

�2(0,T )
:=

(
�t

K−1∑
n=0

(
D2

t f
n
)2

) 1
2

≤ C‖f ‖H2(0,T ),

with D2
t/2f

n+1/2 = 4(f n+1 − 2f ( · , tn+1/2) + f n)

�t2
, D2

t f
n = f n+1 − 2f n + f n−1

�t2
, (3.20)

where C only depends on T.

The following theorem is the desired consistency result. To simplify the presentation below,
for the constructed solution (UN , ψN), we define its vector grid function (Un, 
n) = I(UN , ψN)

as its interpolation: Un
i = Un

N(xi , tn), 
n
i = 
n

N(xi , tn).

Theorem 3.1. Suppose the unique periodic solution for Eq. (1.1) satisfies the following
regularity assumption

ue ∈ H 4(0, T ; L2) ∩ L∞(0, T ; Hm+4) ∩ H 2(0, T ; H 4). (3.21)

Set (UN , 
N) as the approximation solution constructed by (3.1), (3.17) and let (U , 
) as its
discrete interpolation. Then, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩


n+1 − 
n

�t
= −D4

N

(
Un+1 + Un

2

)
+ D2

N

(
Un+1 + Un

2

)
+ D2

N

(
3

2
(Un)

p − 1

2
(Un−1)

p

)
+ τ n

1 ,

Un+1 − Un

�t
= 
n+1 + 
n

2
+ �tτn

2 ,

(3.22)

where τ k
i satisfies

‖τi‖�2(0,T ;�2) :=
(

�t

K∑
k=0

‖τ k
i ‖2

2

) 1
2

≤ M(�t2 + hm), i = 1, 2, (3.23)

in which M only depends on the regularity of the exact solution ue.

Proof. We define the following notation:

F
n+1/2
0 = Un+1−Un

�t
,

F
n+1/2
1 = 
n+1−
n

�t
, F

n+1/2
1e = (∂2

t UN)(·, tn+1/2),

F
n+1/2
2 = D4

NUn+1/2, F
n+1/2
2e = (∂4

xUN)(·, tn+1/2),

F
n+1/2
3 = D2

NUn+1/2, F
n+1/2
2e = (∂2

xUN)(·, tn+1/2),

F
n+1/2
4 = D2

N( 3
2 (U

p)n − 1
2 (U

p)n−1), F
n+1/2
4e = (∂2

xU
2
N)(·, tn+1/2),

F
n+1/2
5 = 
n+1+
n

2 .

(3.24)

Note that the quantities on the left side are defined on the numerical grid (in space) point-wise,
whereas the ones on the right-hand side are continuous functions.
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To begin with, we look at the second-order time derivative terms, F1 and F1e. From the definition
(3.17), we get

F
n+1/2
1 = ∂tu

n+1
N − ∂tu

n
N

�t
− �t2

12

∂3
t u

n+1
N − ∂3

t u
n
N

�t
:= F

n+1/2
11 − �t2

12
F

n+1/2
12 , (3.25)

at a point-wise level, where F11 and F12 are the finite difference (in time) approximation to
∂2

t UN , ∂4
t UN , respectively. We define F11e and F12e in a similar way as (3.24), that is,

F
n+1/2
11e = ∂2

t UN(·, tn+1/2), F
n+1/2
12e = ∂4

t UN(·, tn+1/2). (3.26)

The following estimates can be derived by using Proposition 3.1 (with m = 2 and m = 0):

‖F11 − F11e‖�2(0,T ) ≤ C�t2‖UN‖H4(0,T ), ‖F12 − F12e‖�2(0,T ) ≤ C‖UN‖H4(0,T ), (3.27)

for each fixed grid point. This in turn yields

‖F1 − F1e‖�2(0,T ) ≤ C�t2‖UN‖H4(0,T ). (3.28)

In turn, an application of discrete summation in � leads to

‖F1 − I(F1e)‖�2(0,T ;�2) ≤ C�t2‖UN‖H4(0,T ;L2) ≤ C�t2‖ue‖H4(0,T ;L2), (3.29)

due to the fact that UN ∈ BN , and (3.3) was used in the second step.
For the terms F2 and F2e, we start from the following observation (recall that U

k+1/2
N =

Uk+1
N

+Uk
N

2 )

‖F n+1/2
2 − I(∂4

xU
n+1/2
N )‖2 ≡ 0, since U

n+1/2
N ∈ BN . (3.30)

Meanwhile, a comparison between U
n+1/2
N and UN(· , tn+1/2) shows that

U
n+1/2
N − UN( · , tn+1/2) = 1

8
�t2D2

t/2U
n+1/2
N . (3.31)

Meanwhile, an application of Proposition 3.2 gives

‖D2
t/2∂

4
xUN‖

�2(0,T )
≤ C‖∂4

xUN‖
H2(0,T )

, (3.32)

at each fixed grid point. As a result, we get

‖F2 − I(F2e)‖�2(0,T ;�2) ≤ C�t2‖ue‖H2(0,T ;H4). (3.33)

The terms F3 and F3e can be analyzed in the same way. We have

‖F3 − I(F3e)‖�2(0,T ;�2) ≤ C�t2‖ue‖H2(0,T ;H2). (3.34)

For the nonlinear terms F4 and F4e, we begin with the following estimate∥∥∥∥F
n+1/2
4 − I

(
∂2

x

(
3

2
(U

p

N)
n − 1

2
(U

p

N)
n−1

)) ∥∥∥∥
2

≤ Chm

∥∥∥∥3

2
(U

p

N)
n − 1

2
(U

p

N)
n−1

∥∥∥∥
Hm+2

≤ Chm
(‖Un

N‖p

Hm+2 + ‖Un−1
N ‖p

Hm+2

) ≤ Chm‖UN‖p

L∞(0,T ;Hm+2)
, (3.35)
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with the first step based on the fact that 3
2 (U

p

N)
n − 1

2 (U
p

N)
n−1 ∈ BpN . Meanwhile, the following

observation

3

2
(U

p

N)
n − 1

2
(U

p

N)
n−1 − U

p

N(·, tn+1/2) = 1

8
�t2D2

t/2(U
p

N) − 1

2
�t2D2

t (U
p

N) (3.36)

indicates that ∥∥∥∥I
(

∂2
x

(
3

2
(U

p

N)
n − 1

2
(U

p

N)
n−1

)
− F

n+1/2
4e

) ∥∥∥∥
2

=
∥∥∥∥I

(
∂2

x

(
1

8
�t2D2

t/2(U
p

N) − 1

2
�t2D2

t (U
p

N)

)) ∥∥∥∥
2

≤ 1

8
�t2‖D2

t/2(U
p

N)‖
H2+η + 1

2
�t2‖D2

t (U
p

N)‖
H2+η , η >

1

2
, (3.37)

with the last step coming from (2.4). Conversely, applications of Propositions 3.1 and 3.2 imply
that

‖D2
t/2(U

p

N)‖
�2(0,T ;H3)

≤ C‖Up

N‖
H2(0,T ;H3)

, ‖D2
t (U

p

N)‖
�2(0,T ;H3)

≤ C‖Up

N‖
H2(0,T ;H3)

. (3.38)

Note that an H2 estimate (in time) is involved with a nonlinear term U
p

N . A detailed expansion
in its first- and second-order time derivatives shows that

∂t (U
p

N) = pU
p−1
N ∂tUN , ∂2

t (U
p

N) = p(U
p−1
N ∂2

t UN + (p − 1)U
p−2
N (∂tUN)2), (3.39)

which in turn leads to

‖Up

N‖
H2(0,T )

≤ C(‖UN‖p−1
L∞(0,T ) · ‖UN‖H2(0,T ) + ‖UN‖p−2

L∞(0,T ) · ‖UN‖2
W1,4(0,T )

)

≤ C‖UN‖p

H2(0,T )
, (3.40)

at each fixed grid point, with an 1D Sobolev embedding applied at the last step. Going back to
(3.38) gives

‖D2
t/2(U

p

N)‖
�2(0,T ;H3)

≤ C‖UN‖p

H2(0,T ;H3)
, ‖D2

t (U
p

N)‖
�2(0,T ;H3)

≤ C‖UN‖p

H2(0,T ;H3)
. (3.41)

A combination of (3.37), (3.41), and (3.35) leads to the consistency estimate of the nonlinear
term

‖F4 − I(F4e)‖�2(0,T ;�2) ≤ C(�t2 + hm)(‖ue‖p

H2(0,T ;H3)
+ ‖ue‖p

L∞(0,T ;Hm+2)
). (3.42)

Therefore, the local truncation error estimate for τ1 is obtained by combining (3.29), (3.33),
(3.34), and (3.42), combined with the consistency estimate (3.16) for UN . Obviously, constant M
only dependent on the exact solution ue.

The estimate for τ2 is very similar. We denote the following quantity

F
n+1/2
5e =

(
∂tUN + �t2

24
∂3

t UN

)
( · , tn+1/2). (3.43)
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A detailed Taylor formula in time gives the following estimate:

F
n+1/2
0 − I(F

n+1/2
5e ) = τ

n+1/2
21 , with

‖τ21‖�2(0,T ) ≤ C�t3‖UN‖H4(0,T ) ≤ C�t3‖ue‖H4(0,T ), (3.44)

at each fixed grid point. Meanwhile, from the definition of (3.17), it is clear that F5 has the
following decomposition:

F
n+1/2
5 = 
n+1

N
+
n

N

2 = ∂tU
n+1
N

+∂tU
n
N

2 − �t2

12 · ∂3
t Un+1

N
+∂3

t Un
N

2 := F
n+1/2
51 + F

n+1/2
52 , (3.45)

at a point-wise level. To facilitate the analysis below, we define two more quantities:

F
n+1/2
51e =

(
∂tUN + �t2

8
∂3

t UN

)
( · , tn+1/2), F

n+1/2
52e = −�t2

12
∂3

t UN( · , tn+1/2).

A detailed Taylor formula in time gives the following estimate:

F
n+1/2
51 − I(F

n+1/2
51e ) = τ

n+1/2
22 , F

n+1/2
52 − I(F

n+1/2
52e ) = τ

n+1/2
23 , with

‖τ22‖�2(0,T ) ≤ C�t3‖UN‖H4(0,T ) ≤ C�t3‖ue‖H4(0,T ), (3.46)

‖τ23‖�2(0,T ) ≤ C�t3‖UN‖H4(0,T ) ≤ C�t3‖ue‖H4(0,T ), (3.47)

at each fixed grid point. Consequently, a combination of (3.44)–(3.47) shows that

F
n+1/2
0 − F

n+1/2
5 = τ

n+1/2
2 , with ‖τ2‖�2(0,T ) ≤ C�t3‖ue‖H4(0,T ). (3.48)

This in turn implies that

‖F0 − F5‖�2(0,T ;�2) ≤ C�t3‖ue‖H4(0,T ;L2). (3.49)

Consequently, a discrete summation in � gives the second estimate in (3.23) (for i = 2), in
which the constant M only dependent on the exact solution. The consistency analysis is thus
completed.

IV. THE STABILITY AND CONVERGENCE ANALYSIS

Note that the numerical solution (u,ψ) of (2.10) is a vector function evaluated at discrete grid
points. Before the convergence statement of the numerical scheme, its continuous extension in
space is introduced, defined by uk

�t ,h = uk
N , ψk

�t ,h = ψk
N , in which uk

N , ψk
N ∈ BN , ∀k, are the

continuous version of the discrete grid functions uk , ψk , with the interpolation formula given
by (2.5).

The point-wise numerical error grid function is given by

ũn
i = Un

i − un
i , ψ̃n

i = 
n
i − ψn

i , (4.1)

To facilitate the presentation below, we denote (ũn
N , ψ̃n

N) ∈ BN as the continuous version of
the numerical solution ũn and ψ̃n, respectively, with the interpolation formula given by (2.5).
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The following preliminary estimate will be used in later analysis. For simplicity, we assume
the initial value for ut for the GB equation (1.1) is given by v0(x) = ut(x, t = 0) ≡ 0. The general
case can be analyzed in the same manner, with more details involved.

Lemma 4.1. At any time step t k , k ≥ 0, we have

||ũk
N ||H2 ≤ C(||D2

N ũk||2 + hm), (4.2)

Proof. First, we recall that the exact solution to the GB equation (1.1) is mass conservative,
provided that v0(x) = ut(x, t = 0) ≡ 0:∫

�

ue(·, t) dx ≡
∫

�

ue(·, 0) dx, with ∀t > 0. (4.3)

Since UN is the projection of ue into BN , as given by (3.1), we conclude that∫
�

UN(·, t) dx =
∫

�

ue(·, t) dx ≡
∫

�

ue(·, 0) dx =
∫

�

UN(·, 0) dx, with ∀t > 0. (4.4)

Conversely, the numerical scheme (2.10) is mass conservative at the discrete level, provided
that ψ0 ≡ 0:

uk := h

N−1∑
i=0

uk
i ≡ u0 = C̄0. (4.5)

Meanwhile, for Uk
N ∈ BN , for any k ≥ 0, we observe that

Uk =
∫

�

UN(·, t k) dx ≡
∫

�

UN(·, 0) = U 0. (4.6)

As a result, we arrive at a O(hm) order average for the numerical error function at each time
step:

ũk = Uk − uk = Uk − uk = U 0 − u0 = O(hm), ∀k ≥ 0, (4.7)

which comes from the error associated with the projection. This is equivalent to∫
�

ũk
N dx = ũk = O(hm), ∀k ≥ 0, (4.8)

with the first step based on the fact that ũk
N ∈ BN . As an application of elliptic regularity, we

arrive at

||ũk
N ||H2 ≤ C

(
‖∂2

x ũ
k
N‖

L2 +
∫

�

ũk
N dx

)
≤ C(‖D2

N ũk‖2 + hm), (4.9)

in which the fact that ũk
N ∈ BN was used in the last step. This finishes the proof of Lemma 4.1.

Meanwhile, for a semidiscrete function w (continuous in space and discrete in time), the
following norms are defined:

‖w‖�∞(0,T ∗;Hk) = max
0≤k≤K

‖wk‖Hk , for any integer k ≥ 0. (4.10)
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Finally, we provide the detailed proof of Theorem 2.2, the main result of this article.

Proof. Subtracting (2.10) from (3.22) yields

ψ̃n+1 − ψ̃n

�t
= −1

2
D4

N(ũn+1 + ũn) + 1

2
D2

N(ũn+1 + ũn) + τ n
1

+ D2
N

(
3

2
ũn

p−1∑
k=0

(Un)
k
(un)

p−1−k − 1

2
ũn−1

p−1∑
k=0

(Un−1)
k
(un−1)

p−1−k

)
, (4.11)

ũn+1 − ũn

�t
= ψ̃n+1 + ψ̃n

2
+ �tτn

2 . (4.12)

Also note a W 2,∞ bound for the constructed approximate solution

‖UN‖L∞(0,T ∗;W2,∞) ≤ C∗, that is , ‖Un
N‖

L∞ ≤ C∗, ‖(UN)n
x‖L∞ ≤ C∗, ‖(UN)n

xx‖L∞ ≤ C∗,
(4.13)

for any n ≥ 0, which comes from the regularity of the constructed solution.
An a priori H2 assumption up to time step tn: We assume a priori that the numerical error

function (for u) has an H2 bound at time steps tn, tn−1,

‖ũk
N‖

H2 ≤ 1, with ũk
N = IN ũk , for k = n, n − 1, (4.14)

so that the H2 and W 1,∞ bound for the numerical solution (up to tn) is available

‖uk
N‖

H2 = ‖Uk
N − ũk

N‖
H2 ≤ ‖Uk

N‖
H2 + ‖ũk

N‖
H2 ≤ C∗ + 1 := C̃0,

‖uk
N‖

W1,∞ ≤ C‖uk
N‖

H2 ≤ CC̃0 := C̃1, (4.15)

for k = n, n − 1, with an 1D Sobolev embedding applied at the final step.
Taking a discrete inner product with (4.11) by the error difference function (ũn+1 − ũn) gives

〈
ψ̃n+1 − ψ̃n

�t
, ũn+1 − ũn

〉
=

〈
− 1

2
D4

N(ũn+1 + ũn), ũn+1 − ũn

〉

+
〈
D2

N

(
3

2
ũn

p−1∑
k=0

(Un)
k
(un)

p−1−k

− 1

2
ũn−1

p−1∑
k=0

(Un−1)
k
(un−1)

p−1−k

)
, ũn+1 − ũn

〉

+
〈

1

2
D2

N(ũn+1 + ũn), ũn+1 − ũn

〉
+ 〈τ n

1 , ũn+1 − ũn〉. (4.16)

The leading term of (4.16) can be analyzed with the help of (4.12):

〈
ũn+1 − ũn

�t
, ψ̃n+1 − ψ̃n

〉
=

〈
ψ̃n+1 + ψ̃n

2
+ �tτn

2 , ψ̃n+1 − ψ̃n

〉
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= 1

2
(‖ψ̃n+1‖2

2 − ‖ψ̃n‖2

2) + �t〈τ n
2 , ψ̃n+1 − ψ̃n〉

≥ 1

2
(‖ψ̃n+1‖2

2 − ‖ψ̃n‖2

2) − 1

2
�t‖τ n

2 ‖2
2 − �t(‖ψ̃n+1‖2

2 + ‖ψ̃n‖2

2).

(4.17)

The first term on the right-hand side of (4.16) can be estimated as follows.〈
− 1

2
D4

N(ũn+1 + ũn), ũn+1 − ũn

〉
= −1

2
〈D2

N(ũn+1 + ũn), D2
N(ũn+1 − ũn)〉

= −1

2
(‖D2

N ũn+1‖2

2 − ‖D2
N ũn‖2

2). (4.18)

A similar analysis can be applied to the third term on the right-hand side of (4.16)〈
1

2
D2

N(ũn+1 + ũn), ũn+1 − ũn

〉
= −1

2
〈DN(ũn+1 + ũn), DN(ũn+1 − ũn)〉

= −1

2
(‖DNũn+1‖2

2 − ‖DNũn‖2
2). (4.19)

The inner product associated with the truncation error can be handled in a straightforward way:

〈τ n
1 , ũn+1 − ũn〉 = 1

2
�t〈τ n

1 , ψ̃n+1 + ψ̃n〉 + �t2〈τ n
1 , τ n

2 〉

≤ 1

2
(‖ψ̃n+1‖2

2 + ‖ψ̃n‖2

2) + 1

2
�t‖τ n

1 ‖2
2 + 1

2
�t2‖τ n

2 ‖2
2, (4.20)

with the error equation (4.12) applied in the first step.
For nonlinear inner product, we start from the following decomposition of the nonlinear term:

NLT = NLT 1 + NLT 2, with NLT 1 = 3

2
ũn

p−1∑
k=0

(Un)
k
(un)

p−1−k ,

NLT 2 = −1

2
ũn−1

p−1∑
k=0

(Un−1)
k
(un−1)

p−1−k
. (4.21)

For NLT 1, we observe that each term appearing in its expansion can be written as a discrete
interpolation form:

ũn(Un)
k
(un)

p−1−k = I(ũn
N(Un

N)
k
(un

N)
p−1−k

), 0 ≤ k ≤ p − 1, (4.22)

so that the following equality is valid:

‖D2
N(ũn(Un)

k
(un)

p−1−k
)‖2 = ‖∂2

x (IN(ũn
N(Un

N)
k
(un

N)
p−1−k

))‖
L2 . (4.23)

Conversely, we see that ũn
N(Un

N)k(un
N)p−1−k ∈ BpN (for each 0 ≤ k ≤ p − 1), so that an

application of Lemma 2.1 gives

‖∂2
x (IN(ũn

N(Un
N)

k
(un

N)
p−1−k

))‖
L2 ≤ √

p‖ũn
N(Un

N)
k
(un

N)
p−1−k‖

H2 . (4.24)
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Meanwhile, a detailed expansion for ∂j
x (ũn

N(Un
N)k(un

N)p−1−k) (for 0 ≤ j ≤ 2) implies that

‖∂j
x (ũn

N(Un
N)

k
(un

N)
p−1−k

)‖
L2 ≤ C(‖Un

N‖p−1

H2 + ‖un
N‖p−1

H2 + 1)‖ũn
N‖

H2 , 0 ≤ j ≤ 2, (4.25)

with repeated applications of 1D Sobolev embedding, Hölder inequality and Young inequality.
Furthermore, a substitution of the bound (4.13) for the constructed solution UN and the a priori
assumption (4.14) into (4.24) leads to

‖ũn
N(Un

N)
k
(un

N)
p−1−k‖

H2 ≤ C((C∗)p−1 + (C̃1)
p−1 + 1)‖ũn

N‖
H2 . (4.26)

In turn, a combination of (4.23), (4.24), and (4.26) implies that

‖D2
N(ũn(Un)

k
(un)

p−1−k
)‖2 ≤ C((C∗)p−1 + (C̃1)

p−1 + 1)‖ũn
N‖

H2 . (4.27)

This bound is valid for any 0 ≤ k ≤ p − 1. As a result, going back to (4.21), we get

‖D2
N(NLT 1)‖2 ≤ C̃2‖ũn

N‖
H2 , with C̃2 = C((C∗)p−1 + (C̃0)

p−1 + 1). (4.28)

A similar analysis can be performed to NLT 2 so that we have

‖D2
N(NLT 2)‖2 ≤ C̃2‖ũn−1

N ‖
H2 . (4.29)

These two estimates in turn lead to

‖D2
N(NLT )‖2 = ‖D2

N(NLT 1)‖2 + ‖D2
N(NLT 2)‖2 ≤ C̃2(‖ũn

N‖
H2 + ‖ũn−1

N ‖
H2). (4.30)

Consequently, the nonlinear inner product can be analyzed as

〈D2
N(NLT ), ũn+1 − ũn〉 ≤ �t‖D2

N(NLT )‖2 ·
∥∥∥∥ ũn+1 − ũn

�t

∥∥∥∥
2

≤ C̃2�t(‖ũn
N‖

H2 + ‖ũn−1
N ‖

H2) ·
(

1

2
(‖ψ̃n+1‖2 + ‖ψ̃n‖2 + �t‖τ n

2 ‖2)

)

≤ CC̃2�t(‖ũn
N‖2

H2 + ‖ũn−1
N ‖2

H2 + ‖ψ̃n+1‖2

2 + ‖ψ̃n‖2

2) + C�t3‖τ n
2 ‖2

2

≤ CC̃2�t(‖D2
N ũn‖2

2 + ‖D2
N ũn−1‖2

2 + ‖ψ̃n+1‖2

2 + ‖ψ̃n‖2

2)

+ C�t3‖τ n
2 ‖2

2 + C�th2m, (4.31)

in which the preliminary estimate (4.2), given by Lemma 4.1, was applied in the last step.
Therefore, a substitution of (4.18), (4.19), (4.20), and (4.31) into (4.16) results in

Ẽn+1 − Ẽn ≤ C̃3�t(‖D2
N ũn‖2

2 + ‖D2
N ũn−1‖2

2 + ‖ψ̃n+1‖2

2 + ‖ψ̃n‖2

2)

+ C�t(‖τ n
1 ‖2

2 + ‖τ n
2 ‖2

2)

≤ C�t(Ẽn + Ẽn+1) + CM2(�t2 + hm)
2
, (4.32)

with C̃3 = CC̃2, with an introduction of a modified energy for the error function

Ẽn = 1

2
(‖ψ̃n‖2

2 + ‖D2
N ũn‖2

2 + ‖DNũn‖2
2).
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As a result, an application of discrete Grownwall inequality gives

Ẽl ≤ C̃4(�t2 + hm)
2
, ∀0 ≤ l ≤ K , (4.33)

which is equivalent to the following convergence result:

‖ψ̃ l‖2 + ‖ũl
N‖

H2 ≤ C̃4(�t2 + hm), ∀0 ≤ l ≤ K . (4.34)

Recovery of the H2 a priori bound (4.14): With the help of the �∞(0, T ; H 2) error estimate
(4.34) for the variable u, we see that the a priori H2 bound (4.14) is also valid for the numerical
error function ũN at time step tn+1, provided that

�t ≤ (C̃4)
− 1

2 , h ≤ (C̃4)
− 1

m , with C̃6 dependent on T .

This completes the convergence analysis, �∞(0, T ∗; H 2) for u, and �∞(0, T ∗; �2) for ψ .
Moreover, a combination of (4.34) and the classical projection (3.2) leads to (2.11). The proof

of Theorem 2.2 is finished.

Remark 4.2. One well-known challenge in the nonlinear analysis of pseudospectral schemes
comes from the aliasing errors. For the nonlinear error terms appearing in (4.21), it is clear that
any classical approach would not be able to give a bound for its second-order derivative in a
pseudospectral set-up. However, with the help of the aliasing error control estimate given by
Lemma 2.1, we could obtain an estimate for its discrete H2 norm; see the detailed derivations in
(4.22)–(4.31).

This technique is the key point in the establishment of a high order convergence analysis,
�∞(0, T ∗; H 2) for u, and �∞(0, T ∗; �2) for ψ . Without such an aliasing error control estimate,
only a �∞(0, T ∗; �2) convergence for u, and �∞(0, T ∗; �2) convergence can be obtained for ψ , at
the theoretical level; see the detailed discussions in an earlier work [10].

Remark 4.3. For the temporal discretization, our proposed numerical method (2.10) is uncon-
ditionally stable and convergent, for the time step size �t in terms of spatial grid size h. This
unconditional stability is due to the fact that it is an application of the trapezoidal rule for a first-
order system in time, which turns out to be A-stable, and all the eigenvalues of the linear part
of the spatial GB operator lie on the purely imaginary axis, in terms of ψ = ∂tu (instead of u).
The nonlinear term, which lags behind in time because of the explicit treatment, does not play a
crucial role in this stability analysis.

Conversely, we should remark that, this intuitive argument is not sufficient to theoretically
justify the unconditional stability. The reason is that, ψ and ∂tu are not equivalent at the same
time step, due to the temporal discretization, so that the linearized stability analysis is not directly
applicable, although it provides an intuitive and useful view-point. For the theoretical justification,
the detailed proof in this section is referred.

Remark 4.4. A severe stability condition �t ≤ Ch2 reported in De Frutos’ earlier work [10]
comes more from the technical difficulty in the theoretical analysis than an essential constraint
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in practical computations. In fact, for the following linear scheme, which corresponds to the
numerical method (2.13), with only the fourth-order diffusion involved in the spatial GB operator:

un+1 − 2un + un−1

�t2
= −1

4
D4

N(un+1 + 2un + un−1), (4.35)

a careful estimate shows its unconditional stability, by taking inner product by un+1 −un−1. Also,
see the related analysis by Dupont [47].

However, due to certain technical difficulties, for its combination with the nonlinear term as
appeared in (2.13), the stability and convergence could only be justified under a severe constraint
�t = O(h2).

Again, the authors believe that such a stability condition only corresponds to a theoretical
difficulty, and it may not be needed in practical computations.

Remark 4.5. For the following linear scheme, which corresponds to the numerical method
(2.13), with only the second-order diffusion involved in the spatial GB operator:

un+1 − 2un + un−1

�t2
= D2

Nun, (4.36)

a careful estimate indicates its stability under a standard CFL condition: �t ≤ Ch.

As a result, we conclude that the second-order numerical scheme presented in [10] is condi-
tionally stable, and the stability condition is the standard CFL one: �t ≤ Ch, from the practical
view-point. The severe stability constraint �t = O(h2) (as reported in [10]) is more associated
with the theoretical difficulties.

In fact, an analysis of a similar numerical scheme has been provided in [3], in which the
explicit centering was applied to all the terms associated with the spatial GB operator, with a
finite difference approximation taken in the space.

Remark 4.6. The authors have also observed that, for the following numerical scheme, which
is a slight modification of the one reported in [10]:

un+1 − 2un + un−1

�t2
= −1

2
D4

N(un+1 + un−1) + 1

2
D2

N(un+1 + un−1) + D2
N((un)

2
), (4.37)

an unconditional stability and convergence could be derived in a careful manner. The details are
left to interested readers.

V. NUMERICAL RESULTS

In this section, we perform a numerical accuracy check for the fully discrete pseudospectral
scheme (2.10). Similar to [10], the exact solitary wave solution of the GB equation (with p = 2)
is given by

ue(x, t) = −Asech2

(
P

2
(x − c0t)

)
, (5.1)
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FIG. 1. Discrete L2 numerical errors for ψ = ut and H2 numerical errors for u at T = 4.0, plotted versus
N, the number of spatial grid point, for the fully discrete pseudospectral scheme (2.10). The time step size
is fixed as �t = 10−4. An apparent spatial spectral accuracy is observed for both variables.

in which 0 < P ≤ 1. In more detail, the amplitude A, the wave speed c0 and the real parameter
P satisfy

A = 3P 2

2
, c0 = (1 − P 2)

1/2
. (5.2)

Since the exact profile (5.1) decays exponentially as |x| → ∞, it is natural to apply Fourier
pseudospectral approximation on an interval (−L,L), with L large enough. In this numerical
experiment, we set the computational domain as � = (−40, 40). A moderate amplitude A = 0.5
is chosen in the test.

A. Spectral Convergence in Space

To investigate the accuracy in space, we fix �t = 10−4 so that the temporal numerical error is
negligible. We compute solutions with grid sizes N = 32 to N = 128 in increments of 8, and we
solve up to time T = 4. The following numerical errors at this final time

‖ψ − ψe‖2, and ‖D2
N(u − ue)‖2, (5.3)

are presented in Fig. 1. The spatial spectral accuracy is apparently observed for both u and
ψ = ut . Due to the fixed time step �t = 10−4, a saturation of spectral accuracy appears with an
increasing N.

B. Second-Order Convergence in Time

To explore the temporal accuracy, we fix the spatial resolution as N = 512 so that the numerical
error is dominated by the temporal ones. We compute solutions with a sequence of time step sizes,
�t = T

NK
, with NK = 100 to NK = 1000 in increments of 100, and T = 4. Figure 2 shows the
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FIG. 2. Discrete L2 numerical errors for ψ = ut and H2 numerical errors for u at T = 4.0, plotted versus
NK , the number of time steps, for the fully discrete pseudospectral scheme (2.10). The spatial resolution is
fixed as N = 512. The data lie roughly on curves CN−2

K , for appropriate choices of C, confirming the full
second-order temporal accuracy of the proposed scheme.

discrete L2 and H2 norms of the errors between the numerical and exact solutions, for ψ = ut

and u, respectively. A clear second-order accuracy is observed for both variables.

VI. CONCLUDING REMARKS

In this article, we propose a fully discrete Fourier pseudospectral scheme for the GB equation (1.1)
with second-order temporal accuracy. The nonlinear stability and convergence analysis are pro-
vided in detail. In particular, with the help of an aliasing error control estimate (given by Lemma
2.1, a �∞(0, T ∗; H 2) error estimate for u and �∞(0, T ∗; �2) error estimate for ψ = ut are derived.
Moreover, an introduction of an intermediate variable ψ greatly improves the numerical stability
condition; an unconditional convergence (for the time step �t in terms of the spatial grid size h) is
established in this article, compared with a severe time step constraint �t ≤ Ch2, reported in an
earlier literature [10]. A simple numerical experiment also verifies this unconditional convergence,
second-order accuracy in time, and spectral accuracy in space.

The authors greatly appreciate many helpful discussions with Panayotis Kevrekidis, in
particular for his insightful suggestion and comments.
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