
Physica D 197 (2004) 149–173

Boundary-layer separation and adverse pressure gradient
for 2-D viscous incompressible flow

Michael Ghila,b, Jian-Guo Liuc, Cheng Wangd, Shouhong Wange,∗
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Abstract

We study the detailed process of bifurcation in the flow’s topological structure for a two-dimensional (2-D) incompressible
flow subject to no-slip boundary conditions and its connection with boundary-layer separation. The boundary-layer separation
theory of M. Ghil, T. Ma and S. Wang, based on the structural-bifurcation concept, is translated into vorticity form. The vorticity
formulation of the theory shows that structural bifurcation occurs whenever a degenerate singular point for the vorticity appears
on the boundary; this singular point is characterized by nonzero tangential second-order derivative and nonzero time derivative
of the vorticity. Furthermore, we prove the presence of an adverse pressure gradient at the critical point, due to reversal in the
direction of the pressure force with respect to the basic shear flow at this point. A numerical example of 2-D driven-cavity flow,
governed by the Navier Stokes equations, is presented; boundary-layer separation occurs, the bifurcation criterion is satisfied,
and an adverse pressure gradient is shown to be present.
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1. Introduction and outline of main results

The primary aim of this article is to investigate, theoretically as well as numerically, the topological aspects of
boundary-layer separation in two-dimensional (2-D) incompressible flows. It is well-known that a boundary layer
appears in any viscous incompressible flow, due to the slow-down of the flow by a no-slip boundary[13]. A shear
flow is present in the transition area between the wall and the free fluid. The width of this shear layer, before the
separation occurs, is proportional to

√
1/Re, whereReis the Reynolds number[29]. However, this shear layer can

detach and separate from the boundary, generating vorticity and a recirculation area, which leads to the break-down
of the monotone velocity profile in the boundary layer. Characterizing this separation is a long-standing problem in
fluid mechanics, going back to the pioneering work of Prandtl[26].

The Prandtl equation is an asymptotic approximation of the Navier–Stokes equations within a thin layer near the
boundary, which is only valid when no separation occurs. The mathematical analysis of the Prandtl equation up to
date is reviewed in a recent book by Oleinik and Samokhin[24]. The book mainly deals with the regularity of the
Prandtl equation when the pressure gradient along the boundary does not vanish. The blow-up of the Prandtl equation
in finite time was established in[6]; this result, however, is not related to boundary-layer separation, which would
render the equation invalid altogether. Some related work on this subject can also be found in[17,23,27,28,33,34].

It is observed experimentally that the point where the vorticity vanishes is a candidate for separation of the
boundary layer. No known theorem, which can be applied to determine the separation point a priori, seems to have
been available until the recent work of Ghil, Ma and Wang[10,11,19]. These authors developed a new theory to
determine structural bifurcation of 2-D nondivergent vector fieldsu = u(x, t) near a so-called singular pointx0 on
the boundary∂M of a compact manifoldM, by analyzing the orbits ofu nearx0 and a critical transition timet0. This
∂-singularity condition forx0 is related to the Prandtl condition for boundary-layer separation. It was shown that a
2-D incompressible velocity fieldu becomes structurally unstable, i.e., it changes its topological-equivalence class,
if a ∂-singular pointx0 on∂M is degenerate. Such a pointx0 corresponds precisely to a degenerate critical point for
the scalar vorticity. This theory agrees with experimental observations, as well as with numerical simulations and
physical reasoning.

The normal derivative of the velocity field∂u/∂n has to satisfy the following sufficient criteria for structural
bifurcation to occur: (1) a degenerate singular pointx0 of ∂u/∂n appears on the boundary at the critical moment
t0; (2) one of the higher-order tangential derivatives of∂u/∂n is nonzero; and (3) its time derivative is nonzero.
The structural transition in the flow pattern predicted by these conditions gives rise to boundary-layer separation in
the case that∂u/∂n has a nonzero second-order derivative in the second condition, and the index of the shear field
ind(∂u/∂n, x0) vanishes at the critical moment.

This result was obtained in[10] for the very general case in whichu(x, t) is a nondivergent vector field in
2-D, ∇ · u = 0, but the dependence on the parametert is unspecified, except for the requirement that it be once
continuously differentiable. The analysis in[10] was carried out for no-penetration, free-slip boundary conditions. A
structural stability theorem for the same type of vector field, but with homogeneous Dirichlet boundary conditions,
was proven by Ma and Wang[19]. The structural bifurcation result quoted above was obtained for Dirichlet boundary
conditions in[11]. It is the latter result that corresponds to boundary-layer separation and will be used in the present
paper.

The theory developed in[10,11,19]is recapitulated inSection 2. In Section 3, the above conditions in velocity
form are translated into vorticity form. Naturally, the previous conclusion for the bifurcation is still valid under the
same set of the conditions, put into this vorticity form. This is the first part of our analytical result here, which is
stated as Theorem 3.2. An application of the maximum principle for subharmonic functions yields the presence of
an adverse pressure gradient in the tangential direction along the boundary near the isolated singular point and the
critical transition time. This is the second part of Theorem 3.2.

More precisely, we consider 2-D viscous incompressible flows described by the Navier–Stokes equations. An
incompressible solution of these equations can be viewed as a one-parameter family of divergence-free vector fields
with time t as the parameter. We show inSection 3that an adverse pressure gradient is present near the critical
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pointP∗ and the critical momentT ∗ of boundary-layer separation, which correspond tox0 andt0 in the analysis of
Section 2. Under the above conditions, the vorticity reaches a local extremum in space and, according to whether
this extremum is a maximum or a minimum, it decreases or increases in time. Applying the vorticity transport
equation near the boundary pointP∗ and using no-slip boundary conditions for the velocity field shows that the
vorticity field is subharmonic or superharmonic in a small neighborhood ofP∗. Since the critical pointP∗ is also a
spatially local extremum for the vorticity, we conclude from the Hopf Lemma that the vorticity gradient is directed
outward or inward there. Thus the presence of an adverse pressure gradient follows directly from the fact that the
tangential derivative of the pressure is exactly the normal derivative of the vorticity, which can be seen by applying
the original Navier–Stokes equations near the boundary. The combination of these results provides an explanation
for the mechanism of boundary-layer separation, in a rigorous mathematical context.

A numerical example of driven-cavity flow is presented inSection 4to illustrate the structural bifurcation of 2-D
incompressible flow associated with boundary-layer separation. No-slip boundary conditions are imposed on the
left, right and bottom boundary sections, while a parabolic velocity profile is imposed on the top boundary, with
the velocity vector parallel to this boundary section and pointing to the right. The cavity flow is computed as the
solution of the 2-D incompressible Navier–Stokes equations with the prescribed Dirichlet boundary conditions. An
Essentially Compact Fourth-Order Scheme (EC4)[8,31,32]is applied to solve the equations on a high-resolution
grid of (N + 1) × (N + 1) points, with increasing values ofN = 1024, 1536 and 2048. The Reynolds number is
taken to beRe = 105 and the flow behavior with respect to boundary-layer separation near the mid-point of the
right boundary is investigated in detail.

A thin boundary layer forms due to the combination of the no-slip boundary condition and the basic circulation in
the cavity. The vorticity field stays positive initially throughout the boundary layer. As time goes on, if a degenerate
singular point for the vorticity, with positive second-order tangential derivative and negative time derivative, appears
on the right boundary, structural transition is assured to happen and the boundary layer separates.

The numerical solution shows the detailed process of the flow’s structural bifurcation and boundary-layer sepa-
ration, including the accurate location of the degenerate singular points for the vorticity, the first and second critical
time, and the fine details of the flow in the recirculation area. The zoom plot of the vorticity near the bifurcation point
exhibits a negative normal derivative, which indicates a reverse pressure gradient at that point. This numerical result
matches the analytical argument inSection 3. Zoom plots of the vortex shedding after the structural bifurcation are
also presented.Section 4concludes with a discussion of the way that the separated and rolled-up boundary layer
interacts with the flow in the interior of the rectangular cavity.

The theory presented here is restricted to 2-D cases. The analysis for the kinematic theory, as well as the
connections to dynamics in three-dimensional (3-D) cases are still wide open. It is clear that the classical notion of
structural stability does not appear to be applicable, and the full classification of 3-D divergence-free vector fields
is not within immediate reach: it is quite difficult to classify bifurcations and transitions of 3-D flow structures in
general. Large-scale, planetary flows, atmospheric and oceanic, however, are characterized by fast rotation (small
Rossby number) and strong stratification (small vertical-to-horizontal aspect ratio), at least in the midlatitudes; see
Ghil and Childress[9] and Pedlosky[25]. It is expected that progress can be made for such geophysical flows
modeled by the 3-D baroclinic quasi-geostrophic equations. Likewise, generalizations of the present theory might
be possible for 3-D axis-symmetric flows, which possess a so-called Stokes stream function[1].

2. Recapitulation of structural bifurcation in 2-D flows

In this section, we recall the key concepts and results of the structural bifurcation theory developed recently
by Ghil, Ma and Wang[10,11,19]. This theory provides a full classification of the topological structure of 2-
D nondivergent vector fields on a compact manifold with boundary, subject to either no-penetration or Dirichlet
boundary conditions, along with the conditions for transition from one topological class to another. As a by-product,
this theory gives a rigorous characterization of boundary-layer separation of 2-D incompressible fluid flows.
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For simplicity, we treat here the Euclidean case, but a piece of a sphereS2 is also covered by the general theory of
[10,11,19]. So, letM ⊂ R

2 be a closed and bounded domain with a sufficiently smooth boundary∂M ∈ Cr+1(r ≥ 2),
andTM be the tangent bundle ofM. LetCrn(TM) be the space of allCr vector fields onM with the no-penetration
boundary condition,Dr(TM) the subspace ofCrn(TM) that is divergence-free, andBr0(TM) the subspace ofDr(TM)
that satisfies homogeneous Dirichlet boundary conditions:

Crn(TM) = {u ∈ Cr(TM) |un|∂M = 0},
Dr(TM) = {u ∈ Cr(TM) |un|∂M = 0,div u = 0},
Br0(TM) = {u ∈ Dr(TM) |u|∂M = 0}.

Here,un = u · n anduτ = u · τ, wheren andτ are the unit normal and tangent vectors on∂M, respectively. It is
easy to see that

Br0(TM) ⊂ Dr(TM) ⊂ Crn(TM) ⊂ Cr(TM).

We start with some basic concepts. LetX = Dr(TM) orBr0(TM) in the following definitions.

Definition2.1. Two vector fieldsu,v ∈ Dr(TM) are called topologically equivalent if there exists a homeomorphism
of ϕ : M → M, which takes the orbits ofu to orbits ofv and preserves their orientation.

Definition 2.2. Let u ∈ C1([0, T ], X). The vector fieldu0 = u(·, t0) (0< t0 < T ) is called a bifurcation point of
u at the parameter valuet = t0 if, for any t− < t0 andt0 < t+ with t− andt+ sufficiently close tot0, the vector field
u(·; t−) is not topologically equivalent tou(·; t+). In this case, we say thatu(x, t) has a bifurcation att0 in its global
structure.

Definition 2.3. Let u ∈ C1([0, T ], X). We say thatu(x, t) has a bifurcation in its local structure in a neighborhood
U ⊂ M of x0 at the parameter valuet = t0(0< t0 < T ) if, for any t− < t0 andt0 < t+ with t− andt+ sufficiently
close tot0, the vector fieldsu(·; t−) andu(·; t+) are not topologically equivalent locally inU ⊂ M.

The difference between bifurcation in local vs. global structure is further clarified in Fig. 1 of[11].

Definition 2.4. A vector fieldv ∈ X is called structurally stable inX if there exists a neighborhoodO ⊂ X of v

such that for anyu ∈ O, u andv are topologically equivalent.

We recall next some basic facts and definitions on divergence-free vector fields. Letv ∈ Dr(TM).

(1) A pointp ∈ M is called asingular pointof v if v(p) = 0; a singular pointp of v is callednon-degenerate if
the Jacobian matrixDv(p) is invertible;v is calledregular if all singular points ofv are non-degenerate.

(2) An interior non-degenerate singular point ofv can be either a center or a saddle, and a non-degenerate boundary
singularity must be a saddle.

(3) Saddles ofv must be connected to saddles. An interior saddlep ∈ M is calledself-connectedif p is connected
only to itself, i.e.p occurs in a graph whose topological form is that of the number 8.

(4) The vector fieldv is structurally stable near each of its non-degenerate singular points.

Whenu ∈ Br0(TM), r ≥ 2, a different singularity concept was introduced for pointson the boundary in[19]. We
recall it as follows.
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(1) A point p ∈ ∂M is called a∂-regular pointof u if ∂uτ(p)/∂n �= 0; otherwise,p ∈ ∂M is called a∂-singular
pointof u.

(2) A ∂-singular pointp ∈ ∂M of u is callednon-degenerateif

det









∂2
uτ(p)

∂τ∂n

∂2
uτ(p)

∂n2

∂2
un(p)

∂τ∂n

∂2
un(p)

∂n2









�= 0.

A non-degenerate∂-singular point ofu is also called a∂-saddle pointof u.
(3) A vectoru ∈ Br0(TM) (r ≥ 2) is calledD-regular ifu is regular in the interiorM◦, and all∂-singular points of

u on ∂M are non-degenerate.

The following theorem of T. Ma and S. Wang in[19] provides necessary and sufficient conditions for structural
stability of a divergence-free vector field.

Theorem 2.5 (Ma and Wang[19]). Letu ∈ Br0(TM)(r ≥ 2).Thenu is structurally stable inBr0(TM) if and only if

(1) u isD-regular;
(2) all interior saddle points ofu are self-connected; and
(3) each∂-saddle point ofu on ∂M is connected to a∂-saddle point on the same connected component of∂M.

Moreover, the set of all structurally stable vector fields is open and dense inBr0(TM).

Next, we recall the definition of indices of singular points of a vector field[22]. Letp ∈ M be an isolated singular
point ofv ∈ Crn(TM); then

ind(v, p) = deg(v, p),

where deg(v, p) is the Brouwer degree ofv atp.
Let p ∈ ∂M be an isolated singular point ofv, andM̃ ⊂ R

2 be an extension ofM, i.e.M ⊂ M̃ such thatp ∈ M̃

is an interior point ofM̃. In a neighborhood ofp in M̃, v can be extended by reflection toṽ such thatp is an interior
singular point of̃v, thanks to the no-penetration conditionv · n|∂M = 0. Then we define the index ofv atp ∈ ∂M by

ind(v, p) = 1
2 ind(ṽ, p).

Let p ∈ M be an isolated singular point ofv ∈ Cr(TM). An orbit γ of v is said to be a stable orbit (resp. an
unstable orbit) connected top, if the limit setω(x) = p (resp.α(x) = p) for anyx ∈ γ; hereω(x) andα(x) are the
forward and backward limit sets ofx, respectively.

We now recall a singularity classification theorem for 2-D nondivergent vector fields, which will be useful in our
discussion of structural bifurcation.

Theorem2.6(Singularity Classification Theorem[10]). LetMbea2-Dcompactmanifoldwithorwithout boundary,
andp ∈ M be an isolated singular point ofu ∈ Dr(TM), r ≥ 1.Then p is connected only to a finite number of orbits
and the stable and unstable orbits connected to p alternate when tracing a closed curve around p. Furthermore,

(1) if p ∈M◦, then p is connected by2n (n ≥ 0) orbits, n of which are stable, and the other n unstable, while the
index ofu at p is:

ind(u, p) = 1 − n;
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(2) if p ∈ ∂M, then p is connected byn+ 2 (n ≥ 0) orbits, two of which are on the boundary∂M, and the index of
p is:

ind(u, p) = −1
2n.

For simplicity, we assume here that the boundary∂M contains a flat partΓ ⊂ ∂M and consider structural
bifurcation near a∂-singular pointx0 ∈ Γ . In such a case, a coordinate system (x1, x2) can be chosen such that
x0 = (x0,0) andΓ be given by

Γ = {(x1,0) | |x1 − x0| ≤ δ},

for someδ > 0.
Next letu, v ∈ C1([0, T ], Br0(TM)) be Taylor expanded as:




























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u
0(x) = u(x, t0), u

1(x) =
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∂t
|
t=t0

,

v
0(x) =

∂u0

∂n
, v

1(x) =
∂u1

∂n
.

(2.1)

Before we state the main result, we make the following assumption.

Assumption (H). There exists an isolated,∂-singular pointx0 ∈ ∂M of v
0 and an integerk ≥ 2 such thatv0, v1 ∈

Ck+1 near the pointx0, and

v
0(x0) = 0 (Prandtl condition) (2.2)

ind(v0, x0) �= −1
2 (first necessary condition) (2.3)

v
1(x0) �= 0 (second necessary condition) (2.4)

∂k(v0
τ (x0))

∂τk
�= 0 (technical condition). (2.5)

Under Assumption (H), the flow structure ofu nearx0 andt0 is fully classified in[10,11]and structural bifurcation
is shown to occur atx0, ast crossest0.

Theorem 2.7 ([11]). Letu ∈ C1([0, T ], Br0(TM)) (r ≥ 2)satisfyAssumption (H).Then there exists a neighborhood
Γ0 ⊂ ∂M of x0 and anǫ0 > 0 such that all∂-singular points ofu(x, t ± ε) in Γ 0 are non-degenerate for any
0< ε ≤ ǫ0. Moreover,

(1) if the indexind(v0, x0) is an integer, then one ofu(x, t0 ± ε) has two∂-singular points onΓ0, and the other one
has no∂-singular point onΓ0; and

(2) if the indexind(v0, x0) is not an integer, then each ofu(x, t0 ± ε) has only one∂-singular point onΓ0.

Theorem 2.8 (Structural bifurcation theorem[11]). Let u ∈ C1([0, T ], Br0(TM))(r ≥ 2) satisfyAssumption (H).
Then

(1) u(x, t) has a bifurcation in its local structure at(x0, t0); and
(2) if x0 ∈ ∂M is a unique singular point which has the same index asind(v0, x0) on ∂M, thenu(x, t) has a

bifurcation in its global structure att = t0.
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Fig. 1. Structural bifurcation for ind(v0, x0) = 0.

In the case where ind(v
0, x0) = 0, the above structural bifurcation theorem corresponds toboundary-layer sep-

aration in 2-D incompressible flows, as outlined inSection 1. Here,u0 is given byFig. 1(b). For a sufficiently
smallε > 0, u(x, t0 − ε) given byFig. 1(a) has no singular points nearx0. On the other hand,u(x, t0 + ε) given
by Fig. 1(c) has two singular points nearx0 on the boundary and one center nearx0 in the interior, all of which are
non-degenerate.

The analysis is delicate and was done first for the case with boundary conditions of no normal flow[10], and
then for the case with homogeneous Dirichlet boundary conditions[11,19].

3. Adverse pressure gradient at the separation point

In this section, we show the existence of an adverse pressure gradient in the neighborhood of the bifurcation point
(x0, t0) by utilizing the relation between the vorticity and pressure in the solutions of the Navier–Stokes equations
and applying the Hopf Lemma[12] for subharmonic functions. We use the 2-D Navier–Stokes equations in the
incompressible form

{

∂tu + (u · ∇)u + ∇p = 1
Re
(u,

∇ · u = 0,
(3.1)

with the no-slip boundary conditions:

u = 0, on ∂M. (3.2)

In the system (3.1)–(3.2),u = (u, v) is the velocity,p the pressure, andRethe Reynolds number. For simplicity we
let ν = 1/Re. The solutions of this system can be viewed as one-parameter families of divergence-free vector fields
with the timet as the parameter. Hence, the analysis reviewed inSection 2can be applied to such a solution. For such
a family of divergence-free vector fieldsu(t), structural bifurcation, i.e., change in topological equivalence class,
occurs atT ∗ if the normal derivative of the velocity fieldun = ∂u/∂n has a degenerate singular pointP∗ ∈ ∂M

such that∂un/∂t is nonzero. Note thatT ∗, un, andP∗ ∈ ∂M correspond tot0, the vector fieldv0 andx0 ∈ ∂M in
Section 2, respectively.

The connection between the structural bifurcation analysis and the solution of the incompressible Navier–Stokes
Eqs. (3.1) and (3.2) is made through the introduction of the vorticityω = ∇ × u = −∂yu+ ∂xv. Applying the curl
operator∇× to the momentumEq. (3.1) gives a transport equation for the scalar fieldω:

∂tω + (u · ∇)ω = ν(ω. (3.3)

Numerical simulations, like the one given inSection 4below, as well as laboratory experiments, show that the
formation of recirculating cells starts at the moment when the vorticity reaches its zero point on the boundary as a
local maximum (minimum) point in space and decreases (increases) in time. That point is known as the separation
point and we denote it asP∗ ∈ ∂M at the momentt = T ∗. For simplicity of presentation and in agreement with
the numerical example inSection 4, we assume that a section of the vertical linex = 1, which is denoted by
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Γ 0, is included in∂M and thatP∗ lies on the boundary sectionΓ 0. The unit normal and tangential vectors on
Γ 0 aren = (1,0), τ = (0,1), respectively; this determines the normal and tangential derivatives to be∂/∂n = ∂x,
∂/∂τ = ∂y.

In the boundary layer, pure shear flow occurs along the boundary sectionΓ 0 before the critical timeT ∗. Without
loss of generality and for the sake of consistency with the numerical example inSection 4, it is assumed that this
shear flow is downward, i.e., toward negativey-values. Mathematically speaking, this amounts to assuming that
there exists a neighborhoodU1 of P∗ such that the boundary ofU1 includes a portion ofΓ 0 and

ω ≥ 0 in U1, when t < T ∗. (3.4)

This condition implies that the vorticity reaches zero at (P∗, T ∗) as a local minimum in space and decreases afterward
in time. In this case, the formation of a recirculating flow region is given by the following conditions

ω(P∗, T ∗) = 0,
∂ω

∂τ
(P∗, T ∗) = 0,

∂2ω

∂τ2
(P∗, T ∗) > 0,

∂ω

∂t
(P∗, T ∗) < 0. (3.5)

In fact, we have the following proposition connecting (3.5) to Assumption (H); the proof of this proposition will
be given at the end of the present section.

Proposition 3.1.

(1) Assumption (H)with k = 2 for the velocity fieldu is equivalent to the following conditions on the vorticityω:

ω(P∗, T ∗) = 0,
∂ω

∂τ
(P∗, T ∗) = 0,

∂2ω

∂τ2
(P∗, T ∗) �= 0,

∂ω

∂t
(P∗, T ∗) �= 0. (3.6)

(2) If (3.4)holds true, i.e.,only downward shear flow is present aroundΓ 0 for t < T ∗, Assumption (H)is equivalent
to (3.5).

The main result of this section is the following theorem, showing the existence of an adverse pressure gradient
at the separation point.

Theorem 3.2. Let (u, p) be the solution of the 2-D Navier–Stokes equations(3.1)with boundary conditions(3.2).
Assume that there exist a boundary pointP∗ ∈ ∂M and a critical timeT ∗ such that(3.4)and(3.5)hold true. Then

(1) structural bifurcation occurs in the local structure ofu at the boundary pointP∗ as t crossesT ∗, and boundary-
layer separation evolves exactly as shown inFig. 1; and

(2) an adverse pressure gradient in the tangent direction is present atP∗, i.e.,

∂p

∂τ
=
∂p

∂y
< 0, at (P∗, T ∗). (3.7)

Proof of Theorem3.2.The first part is a direct consequence of Proposition 3.1 here and of Theorem 2.8 inSection 2.
For the second part, we see that the vorticity transportEq. (3.3) at the boundary pointP∗ gives

(ω =
1

ν
(∂tω + (u · ∇)ω) = ν−1∂tω < 0, at (P∗, T ∗). (3.8)

The second equality in (3.8) is based on the no-slip boundary condition for the velocity field, and the inequality
comes from the criterion∂ω(P∗, T ∗)/∂t < 0 in (3.5). Thus, we arrive at the conclusion that the vorticity field stays
strictly subharmonic in a neighborhoodU2 of P∗, atT ∗,

(ω(·, ·, T ∗) < 0, in U2; (3.9)
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like U1, U2 has a portion ofΓ 0 as part of its boundary. Moreover, the assumption (3.4) shows that the vorticity field
ω remains non-negative inU1 at the bifurcation time

ω(·, ·, T ∗) ≥ 0, in U1. (3.10)

By denotingU∗ = U1 ∩ U2, we have, by (3.9) and (3.10),
{

(ω < 0, in U
∗,

ω ≥ 0, on ∂U∗.
(3.11)

The application of the strong maximum principle for subharmonic functions in the setU
∗ gives

ω > 0, in U
∗0. (3.12)

Subsequently, the Hopf Lemma implies that

∂ω

∂n
(P∗, T ∗) < 0. (3.13)

On the other hand,

τ ·(u =
∂ω

∂n
, onΓ 0, (3.14)

due to the definition of vorticityω = −∂yu+ ∂xv and the incompressibility conditionux + vy = 0. Consequently,
taking the inner product of the momentum equation in (3.1), applied on the boundaryΓ 0, with the tangential vector
field τ gives

∂p

∂τ
=
∂p

∂y
= ν

∂ω

∂n
, on Γ 0, (3.15)

since the termut and the nonlinear term disappear onΓ 0 because of the no-slip boundary condition for the velocity
field. The insertion of (3.13) into (3.15) results in (3.7), thus completing the proof of Theorem 3.2. �

Remark 3.3. The contribution of the pressure force to the flow acceleration for the vertical velocity field is−∂yp.
We thus conclude from (3.7) that the pressure pushes the flow upward at the bifurcation pointP∗ when t = T ∗,
opposite to the shear flow direction. This force gives rise to the boundary-layer separation atP∗ andT ∗ and to the
recirculating flow nearP∗ afterward. Although the appearance of an adverse pressure gradient is well known to be
the main mechanism for boundary-layer layer separation, the mathematically rigorous argument above is new and
will be carefully verified in the numerical experiment presented inSection 4.

Remark 3.4. If the vorticity field stays smooth enough near the boundary segmentΓ 0, then

∂p

∂n
= −ν

∂ω

∂τ
= 0, at (P∗, T ∗); (3.16)

the first equality in (3.16) comes from a similar argument as in (3.15), while the second one is based on the assumption
thatP∗ is a degenerate singular point for the vorticity as stated in (3.5). Accordingly, the normal gradient of the
pressure stays small near the bifurcation point, which is still consistent with the assumptions of boundary-layer
theory[13,24,29]. This assertion is verified in the case of the first bifurcation timet = T ∗

1 for the numerical example
in Section 4, as can be seen in the vorticity plot along the right boundary (Fig. 6) there. At that time, the separated
boundary layer is still confined to a thin layer near the wall.

The phenomenon changes dramatically at the second and later separation times. A cusp occurs in the vorticity
profile at the critical point fort = T ∗

2 ; seeFig. 12. The large vorticity gradient along the boundary indicates there
is a strong normal pressure gradient that pushes the vortex to shed.
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Remark 3.5. The critical timeT ∗ refers to the structural bifurcation whose criteria were discussed in detail in
Section 2. This is not identical to the critical time with respect to the appearance of an adverse pressure gradient.
At the bifurcation pointP∗ ∈ ∂M and the corresponding momentt = T ∗, the pressure pushes the flow opposite
to the basic shear flow in the immediate vicinity ofP∗. In fact, the adverse pressure gradient appears at some
instantt < T ∗, and will take effect after a while, causing the recirculation. The pressure gradient can be in the same
direction as the shear flow or opposite to it from time to time. The moment, however, when the pressure gradient
switches sign is not the critical time that we are discussing. The rigorous derivation of the presence of an adverse
pressure gradient at the bifurcation point just gives a reasonable explanation for the mechanism of boundary-layer
separation.

Remark 3.6. Assumption (3.4) in Theorem 3.2, which states that pure shear flow was present near the critical
point before the occurrence of the bifurcation, corresponds to the index of the vector field∂u/∂n atP∗ being 0, i.e.,
ind(∂u/∂n, P∗) = 0.

Remark 3.7. When the shear flow is unidirectionally upward nearΓ 0, rather than downward, Assumption (H) with
k = 2 is equivalent to the following conditions:

ω(P∗, T ∗) = 0,
∂ω

∂τ
(P∗, T ∗) = 0,

∂2ω

∂τ2
(P∗, T ∗) < 0,

∂ω

∂t
(P∗, T ∗) > 0. (3.17)

In other words, by Proposition 3.1, Assumption (H) is equivalent to either (3.5) or (3.17), depending on whether
the flow is upward or downward before the critical time.

Remark 3.8. The assumption that the boundary sectionΓ 0 can be represented as a segment of the vertical line
x = 1 was only made for simplicity of presentation. All the analyses in this section can be extended to the case of
a horizontal or curved boundary.

Proposition 3.1 states that the criteria for the start of recirculating flow, as given in (3.5), are exactly the same
as the structural bifurcation criteria stated inSection 2, i.e., a degenerate singular point for the normal derivative of
the velocity vector fieldun, with positive second-order derivative along the boundaryand negative time derivative,
appears at a boundary pointP∗ ∈ Γ 0. The proof is given below.

Proof of Proposition 3.1.
Step 1. Note that

v
0 =

∂u

∂n
= ∂xu = (ux, vx) = (0, ω), onΓ 0. (3.18)

The first componentux vanishes identically because of the incompressibility conditionux + vy = 0 and the no-slip
boundary conditionv ≡ 0 onΓ 0, while the second componentvx is exactly the vorticity field since

ω = −uy + vx = vx, onΓ 0, (3.19)

due to the no-penetration boundary conditionu ≡ 0 onΓ 0. According to (3.18), the singular point forv0 is the
same as the zero point forω on the boundary sectionΓ 0. As a result, the Prandtl condition (2.2) in Assumption (H)
is equivalent to the first condition in (3.6), i.e., the vanishing of the vorticityω at (P∗, T ∗).

Step 2. Furthermore, the vorticity field has the same tangential derivatives asvx to any order, i.e., for any integer
k = 1,2,3, . . .,

∂kτω = ∂kτ (−uy + vx) = −∂kyuy + ∂ky vx = −∂k+1
y u+ ∂ky vx = ∂kτvx, onΓ 0, (3.20)

due to the the no-penetration boundary condition foru. Note that the termvx is exactly the tangential component of
the normal derivative of the velocity field, i.e.,vx = v

0
τ . Thus, the third condition in (3.6),∂2ω(P∗, T ∗)/∂2τ �= 0, is

equivalent to the technical condition (2.5) in Assumption (H) withk = 2.
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Step 3. The necessary condition (2.3) in Assumption (H) is exactly equivalent to the condition that the Jacobian
matrixD of un at the critical point (x0, t0) is degenerate, i.e.,

det

(

D
∂u

∂n

)

= det

(

uxx uxy

vxx vxy

)

= 0, at x0 ∈ Γ 0. (3.21)

On the other hand,uxy is identically zero onΓ 0 sinceux is, as shown in (3.18). Hence, (3.21) is the same
as

det

(

D
∂u

∂n

)

= det

(

uxx uxy

vxx vxy

)

= uxxvxy = −(vxy)
2 = 0, at x0 ∈ Γ 0; (3.22)

the last step in (3.22) is based on the identity thatuxx ≡ −vxy, due to the incompressibility ofu = (u, v). The only
possible solution for (3.22) is given byvxy = 0, which implies that

∂τω = ωy = −uyy + vxy = vxy = 0, at x0 ∈ Γ 0. (3.23)

Therefore, we proved that the necessary condition (2.3), ind(v
0, x0) �= −1/2 in Assumption (H), is equivalent to

the second condition in (3.6).
Step 4. Next we show the equivalence between the second necessary condition (2.4),v

1(x0) �= 0 in Assumption
(H), and the fourth condition in (3.6),∂ω(P∗, T ∗)/∂t �= 0. We recall from the Taylor expansion (2.1) thatv

1 = ∂tv
0.

The insertion of the evaluation (3.18) gives

v
1 = ∂t(0, ω) = (0,

∂ω

∂t
), onΓ 0, (3.24)

which leads to the equivalence between (2.4) and the last condition in (3.6).
The first part of Proposition 3.1 is thus proven. The verification of the second part is essentially the same and we

omit the details here. �

4. Numerical example of driven-cavity flow

In this section, we give a numerical verification of the necessary and sufficient criteria for structural bifurcation
in 2-D incompressible flow by presenting an example of smoothly started, driven-cavity flow at Reynolds number
Re = 105.

4.1. Formulation of the problem

We consider the flow in a nondimensional square cavityM = [0,1] × [0,1], which is driven by slip velocity with
a parabolic profile on the top boundary. The flow is governed by the 2-D incompressible Navier–Stokes equations
(3.1). The boundary∂M in (3.2) is now composed of four sections: the left, right and bottom boundary sections are
denoted byΓr and the top section is denoted byΓt. The following Dirichlet boundary conditions for the velocity
field are imposed

u = 0, onΓr,

u = us = 16x2(1 − x)2, v = 0, onΓt;
(4.1)

us denotes the slip velocity along the top boundary that drives the flow inside the cavity. In other words, no-slip
boundary conditions are imposed onΓr and a purely tangential velocity is prescribed on the top boundaryΓt.



160 M. Ghil et al. / Physica D 197 (2004) 149–173

The initial velocity profile is taken as

u(x, y,0) = −16x2(1 − x)2(2y − 3y2), v(x, y,0) = 32(x− 3x2 + 2x3)(y2 − y3), (4.2)

so that the flow is started smoothly.

4.1.1. Vorticity formulation
Equations (3.1) can be written in the vorticity–stream function formulation











∂tω + (u · ∇)ω = ν(ω,

(ψ = ω,

u = −∂yψ, v = ∂xψ,

(4.3)

whereω is the vorticity, as in (3.3), andψ the stream function. The boundary conditions for velocity can be expressed
as boundary conditions for the stream function. The no-penetration boundary conditionu · n = 0 is equivalent to
∂ψ/∂τ |Γ= 0 and thus, without loss of generality, to the homogeneous Dirichlet boundary conditionψ |Γ= 0. The
no-slip boundary conditionu · τ = 0, which is imposed onΓr, is equivalent to a Neumann boundary condition
for the stream function∂ψ/∂n |Γr= 0, while the boundary condition on the top boundaryΓt can be written as
∂ψ/∂y |Γt= −us = −16x2(1 − x)2. We thus have the following boundary conditions for the stream function:

ψ = 0, on ∂M,
∂ψ
∂n |Γr= 0, ∂ψ

∂y
|Γt= −us = −16x2(1 − x)2.

(4.4)

4.2. Numerical method

The closed system (4.3), (4.4) is solved using the EC4 scheme developed by E and Liu[8] and analyzed by
C. Wang and J.-G. Liu[31,32]. A regular grid{xi = i/N, yj = j/N, i, j = 0,1, . . . , N}, with mesh size(x =
(y = h = 1/N is used to cover the computational domainM. Let D̃x andD̃y represent the standard second-order
centered-difference approximation to∂x and∂y, D2

x andD2
y be second-order centered-difference approximations

to ∂2
x and∂2

y, and(h = D2
x +D2

y the standard five-point Laplacian. The term “compact” in the name of the EC4
scheme refers to the stencil needed to evaluate the derivatives being as small as possible.

4.2.1. Description of EC4 scheme
The starting point of the scheme is the fact that the Laplacian operator( can be estimated with fourth-order

accuracy by

(4 =
(h + (h2/6)D2

xD
2
y

1 + (h2/12)(h

+ O(h4). (4.5)

Multiplying the momentum equation by the difference operator 1+ (h2/12)(h gives

(1 + 1
12h

2(h)∂tω + (1 + 1
12h

2(h)∇ · (uω) = ν((h + 1
6h

2D2
xD

2
y)ω, (4.6)

while the same operation applied to the kinematic equation(ψ = ω results in

((h + 1
6h

2D2
xD

2
y)ψ = (1 + 1

12h
2(h)ω. (4.7)

The homogeneous Dirichlet boundary conditionψ |Γ= 0 can be used to solve the discrete Poisson-like equation
(4.7) very efficiently, using a sine transform. The Neumann boundary condition for the stream function can be
converted into a boundary condition for the vorticity in solving (4.6); it will be given in detail later.



M. Ghil et al. / Physica D 197 (2004) 149–173 161

The nonlinear convection term in (4.6) is estimated as

(1 + 1
12h

2(h)(u · ∇ω) = D̃x(1 + 1
6h

2D2
y)(uω) + D̃y(1 + 1

6h
2D2

x)(vω)

− 1
12h

2(h(uD̃xω + vD̃yω) + O(h4). (4.8)

The first two terms on the right-hand side of (4.8) are compact. Although the third term is not compact, it does not
cause any trouble in practical computation:uD̃xω + vD̃yω can be taken as 0 onΓr because of the no-slip boundary
condition, and the corresponding term on the top boundaryΓt can be treated in a similar fashion as

(uD̃xω + vD̃yω)i,N = us · (D̃xω)i,N , (4.9)

whereus is the slip velocity onΓt, as given in (4.1).
By introducing an intermediate variable ¯ω

ω̄ = (1 + 1
12h

2(h)ω, (4.10)

and combining (4.6)–(4.10), the whole momentum equation can be approximated by

∂tω̄ + D̃x(1 + 1
6h

2D2
y)(uω) + D̃y(1 + 1

6h
2D2

x)(vω) − 1
12h

2(h(uD̃xω + vD̃yω) = ν((h + 1
6h

2D2
xD

2
y)ω.

(4.11)

The velocityu = ∇Tψ = (−∂yψ, ∂xψ) can be obtained by the fourth-order approximation to∂x and∂y

u = −D̃y(1 − 1
6h

2D2
y)ψ, v = D̃x(1 − 1

6h
2D2

x)ψ, (4.12)

which is not compact.
The vorticityω is determined from ¯ω via (4.10). To solve the Poisson-like equation (4.10) requires a boundary

condition forω, which is discussed in the following subsection.

4.2.2. Boundary condition for vorticity
The boundary values for the vorticity are very important in order to capture the exact location of its singular

point, as well as the critical momentT ∗ and the bifurcation pointP∗ of Section 3, and thus help illustrate the detailed
process of vortex shedding. Physically the vorticity boundary condition enforces the no-slip boundary condition for
the velocity. More precisely, one converts the Neumann boundary condition for the stream function intoω |Γ by
the kinematic relation(ψ = ω. On the right boundary section wherex = 1, i = N, either Briley’s formula[2,8]

ωN,j =
1

18h2
(108ψN−1,j − 27ψN−2,j + 4ψN−3,j), (4.13)

or a new fourth-order formula for the vorticity[32],

ωN,j =
1

h2

(

8ψN−1,j − 3ψN−2,j + 8
9ψN−3,j − 1

8ψN−4,j

)

, (4.14)

can be applied to solve (4.10).
Both Briley’s formula (4.13) and the new formula (4.14) are derived by combining the Dirichlet boundary

conditionψ |x=1= 0 and the Neumann boundary condition∂ψ/∂x |x=1= 0 for the stream function. It was proven in
[31,32]that the above one-sided vorticity boundary conditions are consistent with the centered differences applied at
interior points. In addition, both formulas preserve stability and result in fourth-order accuracy for the 2-D Navier–
Stokes equations. For computational convenience, we use Briley’s formula in the calculation. On the top boundary,
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where the slip velocityus given in (4.1) drives the flow in the cavity, the corresponding Briley’s formula turns out
to be[2,31,32]:

ωi,N =
1

18h2
(108ψi,N−1 − 27ψi,N−2 + 4ψi,N−3) −

11

3h
us(xi). (4.15)

The stability analysis of the final scheme and the relevant convergence theorems guarantee the accuracy of the
profiles reported in this section.

4.2.3. Temporal discretization
To solve the time-dependent system of spatially discretized equations obtained by the above finite-difference

method, we use a fourth-order Runge–Kutta method in time. It was argued in[7] that the stability concern associated
with the cell Reynolds number constraint can be avoided in higher-order Runge-Kutta methods. One advantage of
the EC4 scheme is that at each time step or, more precisely, at each stage in Runge-Kutta time stepping, only two
Poisson solvers, (4.7) and (4.10), are required to achieve fourth-order accuracy. In addition, the vorticity boundary
condition is explicitly enforced.

The combination of these features makes the whole scheme quite efficient, accurate and robust. All the figures
in Section 4.3 below are plotted atN = 1536, where the numerical results have clearly stabilized.

4.3. Structural bifurcation

The velocityus alongΓt drives the flow clockwise in the cavity. We call this clockwise rotation the basic
circulation. As a result of this circulation, the flow moves downward near the mid-portion of the right boundary.
We concentrate on this area, which is away from the corners, to illustrate the flow’s behavior with respect to the
issue of structural bifurcation caused by boundary-layer separation. In other words, the recirculation areas near the
corners are not taken into consideration, since they are caused by corner singularity rather than by boundary-layer
separation. The contour plot of the stream function at timet = 1 inFig. 2shows the structure of the basic circulation.

Near the mid-portion of the right boundary, the tangential velocityv is negative, as a result of the basic circulation.
The combination of the no-slip boundary condition and the basic circulation results in the presence of a thin boundary
layer, due to the sharp, initially monotone transition of the velocity from zero tangential velocity on the boundary
to a negative value ofv in the interior. The width of this layer is proportional to O(Re−1/2) [13,24]. Accordingly,
the vorticityω = −∂yu+ ∂xv is positive in the boundary layer, at least initially. The vorticity near and on the right
boundary att = 1 is plotted inFig. 3.

As shown inFig. 3(b), the vorticity has positive values along much of the right boundary, say, from 0.5 to 0.9 iny.
The negative vorticity along the top and bottom portions comes from the recirculation in the two corner areas, which
is not considered here. The two singular points for the vorticity on the right boundary, aty1 = 0.4365,y2 = 0.9531,
are non-degenerate, i.e, the tangential derivative∂ω/∂y is nonzero. Thus the criterion given inSection 2indicates that
the flow structure stays stable for the moment and no transition in the flow’s topological structure is going to occur.
Moreover, the zoom plot inFig. 3(a) tells us that the whole vorticity field remains positive near the mid-portion
of the right boundary att = 1. Thus, only shear flow is present in the boundary layer before the separation, in this
region.

Classical boundary-layer theory is covered in[4,13,24,29]. Aside from the references already given at the
beginning ofSection 1, the mathematical analysis of the Prandtl equation is reviewed in[5]. Global weak solutions
for the Prandtl equation were shown to exist by Zhang and Xin in[35]. The blow-up of the Prandtl equation, as
established by E and Engquist in[6], bears no relationship to boundary-layer separation, as far as we can tell, since
the assumptions under which the Prandtl equation is derived cease to be valid when separation occurs. A detailed
numerical study of the zero-viscosity limit for the flow past a cylinder, including boundary-layer separation, appears
in [15].
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Fig. 2. Contour plot of the stream function at timet = 1: (a) over the whole square cavity [0,1]2; (b) zoom plot in the region [7/8,1] × [3/8,3/4]
near the mid-portion of the right boundary.

Fig. 3. Vorticity plot at timet = 1: (a) zoomed contour plot in the region [31/32,1] × [9/16,11/16]; (b) vorticity profile along the right boundary
x = 1.
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Fig. 4. Stream function plot at timet = 1.5: (a) over the whole square cavity; and (b) zoom plot in the same region as inFig. 2(b).

As mentioned before, the main objective in this article is to study the structural transition of the flow in the
boundary layer, analytically and numerically. The structural transition criteria discussed inSection 2do apply to
the right boundary, since a no-slip boundary condition is imposed there. Our numerical simulation shows that the
vorticity along the mid-portion of the right boundary remains positive for quite a while after the initial timet = 0.
During this time interval, the boundary-layer structure is regular and its regularity persists until boundary-layer
separation occurs. This numerical evidence suggests that boundary-layer separation occurs before the blow-up
predicted in[6].

4.3.1. The first structural bifurcation
At time t = 1.5,Fig. 4presents stream function plots andFig. 5shows the vorticity field near the right boundary,

and its profile along the boundary. The differences in the flow structure betweent = 1 andt = 1.5 can be clearly
seen by comparingFigs. 2 and 3, on the one hand, andFigs. 4 and 5, on the other.

At t = 1, Fig. 2(b) shows that there is no recirculation near the mid-portion of the right boundary. Accordingly,
Fig. 3(b) indicates that the vorticity profile along the right boundary is positive in the mid portion: no degenerate
singular point for the vorticity forms and the flow structure is stable at this time. At timet = 1.5, recirculation is
obviously apparent in the zoom contour plot ofFig. 4(b). Fig. 5(b) shows that there are two nondegenerate singular
points for vorticity (Y0

1 = 0.4590,Y0
2 = 0.5370) on the right boundary near its middle. Moreover, a 2-D area with

negative vorticity is illustrated inFig. 5(a), whose boundary is composed of the boundary section between (1, Y0
1 )

and (1, Y0
2 ) onΓr and a smooth curve inside the interior of the cavity that connects the two singular points.

We conclude that a structural transition occurs betweent = 1 andt = 1.5. Detailed inspection of the numerical
results shows that the first singular point for vorticity on the right boundary appears atT ∗

1 = 1.0788 andY∗
1 = 0.6107.

The vorticity profile along the boundary at that moment is plotted inFig. 6(a), where the degenerate singular point
appears aty = Y∗

1 ; the time history of the vorticity at the boundary point (1, Y∗
1 ) is given inFig. 6(b).

By Theorem 2.8, the velocity vector field is structurally unstable at that moment. It is clear fromFig. 6 that
the vorticity reaches zero at (1, Y∗

1 ; T ∗
1 ) as a local minimum in space and decreases in time, i.e,ω(1, Y∗

1 ; T ∗
1 ) = 0,
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Fig. 5. Vorticity plot at timet = 1.5. (a) Zoomed contour plot in the region [15/16,1] × [7/16,11/16]; the solid and dotted lines represent the
contours for the positive and negative levels, respectively. (b) Vorticity profile along the right boundary.

∂ω(1, Y∗
1 ; T ∗

1 )/∂y = 0, ∂2ω(1, Y∗
1 ; T ∗

1 )/∂2y > 0, ∂ω(1, Y∗
1 ; T ∗

1 )/∂t < 0, so that the condition (3.5) is satisfied. This
condition is equivalent to Assumption (H) for structural transition, by Proposition 3.1, givenk = 2 in the technical
condition (2.5). The detailed bifurcation process is outlined in the proof of Theorem 2.8, with respect to the local
structure of the velocity field in a neighborhood which contains the boundary pointP∗

1 = (1,Y∗
1 ) [11]; see alsoFig. 1

here.
When t < T ∗

1 , there is no singular point for vorticity in the mid-portion of the right boundary, and the local
structure of the stream function near that boundary section is equivalent toFig. 1(a), as seen inFig. 2(b) att = 1.

Whent = T ∗
1 , there is one degenerate singular point for vorticity, which is a local minimum onΓr and decreases

in time, as shown inFig. 6(a) and (b). The local structure of the stream function near the mid-portion of the right
boundary is now equivalent toFig. 1(b).

When t > T ∗
1 , there are two isolated singular points for vorticity onΓr, and their orbits are connected. For

example, att = 1.5, it appears inFig. 5(b) that the locations of the two isolated singular points areY0
1 = 0.4590,

Y0
2 = 0.537. The zoom plot inFig. 4(b) shows that the local structure of the stream function near those two points

is equivalent toFig. 1(c). The zoom plot of the tangential velocityv in Fig. 7shows that the near-boundary flow is
really reversed betweenY0

1 andY0
2 .

Theorems 2.8 and 3.2 assure the occurrence of structural transition of the flow at the timet = T ∗
1 . The phenomenon

of boundary-layer separation is a physical explanation of such bifurcation in the case of 2-D viscous incompressible
flows. Furthermore, it is shown inFig. 8thatω stays positive in a small 2-D neighborhood of the bifurcation point
(1, Y∗

1 ) and it has a negative normal derivative at that point. Consequently, the pressure pushes the flow upward, i.e,
opposite to the direction of the basic circulation. This numerical result matches our argument in Section 3 and the
effects on the flow at a somewhat later time can also be seen in the velocity plot ofFig. 7.
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Fig. 6. Vorticity behavior on the boundary. (a) The vorticity profile along the boundary att = T ∗
1 = 1.0788; and (b) the evolution of the vorticity

at the first bifurcation pointP∗
1 = (1, Y∗

1 ), Y∗
1 = 0.6107.

In addition, we conclude from the equality (3.16) in Remark 3.2 that the normal derivative of the pressure vanishes
at the first bifurcation point (1, Y∗

1 ) and the first bifurcation timet = T ∗
1 ; indeed, the vorticity field stays sufficiently

smooth near the right boundary, as seen inFigs. 6(a) and 7(a). As a result, the normal gradient of the pressure
remains small near the bifurcation point (1, Y∗

1 ), and thus, for some time after the first bifurcation, the main effect

Fig. 7. Zoom plot of the vertical velocity near the right boundary att = 1.5. Solid lines for downward velocity, dotted lines for upward velocity.
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Fig. 8. Vorticity plot at the first critical timet = T ∗
1 . (a) Zoom plot in the region [63/64,1] × [19/32,5/8]; same convention as inFig. 5(a). (b)

Vorticity profile along the horizontal cuty = Y∗
1 = 0.6107 near the first bifurcation point.

of the pressure force nearby is to accelerate the fluid in the direction opposite to the basic circulation. For a certain
time, the boundary layer is still confined to a thin layer near the wall.

4.3.2. Second bifurcation
As time goes on, the recirculation vortex expands and moves downward along the right boundary, i.e., in the

same direction as the basic circulation. This can be seen inFig. 9, which gives the stream function field att = 1.75.
As this first recirculation vortex is swept along the wall by the basic circulation, the process of flow reversal near

the wall, as described in Section 4.3.1, is repeated, including the details of the transition in the flow pattern.Fig. 10
presents the stream function plots whent = 2, after the second bifurcation time.

The difference in flow structure betweent = 1.75 andt = 2 can be verified by the evolution of the vortic-
ity profile along the right boundary, plotted inFig. 11. Our numerical results indicate that the second critical
time is T ∗

2 = 1.8086, and the position of the singular point for the vorticity at that time isY∗
2 = 0.5182; see

Fig. 12.
Similar to the first bifurcation, the zoom plot for the vorticity near the second bifurcation point att = T ∗

2 , as
presented inFig. 13(a), shows that the vorticity field stays positive in a small 2-D neighborhood of the structural
bifurcation pointP∗

2 = (1, Y∗
2 ). In fact, the shear flow structure is still preserved in a narrow strip at that moment. A

narrow upward jet runs parallel to the right wall but stays in the interior, away from the boundary layer at the critical
moment. Consequently, a negative normal derivative for the vorticity at the pointP∗

2 can be seen inFig. 13(b). This
validates, once more, the upward push of the pressure near a structural bifurcation point.

As pointed out in Remark 3.2, the first equality in (3.16) states that there is no normal pressure force at the
bifurcation point. This statement is true for the first bifurcation time, but not the second bifurcation time. The
vorticity profile has a cusp at the critical point (1, Y∗

2 ), rather than a smooth minimum; seeFig. 12(a). In addition,
the tangential derivative of the vorticity along the right wall,x = 1, changes sign acrossy = Y∗

2 ; this indicates
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Fig. 9. Stream function plot at timet = 1.75: (a) over the whole cavity; (b) zoom in the region [7/8,1] × [3/8,3/4].

that a pair of vortices with opposite signs forms at the same time. Such a vortex pair formation is common during
boundary-layer separation. Another peak in the vorticity profile along the wall appears near the critical point, as
shown inFig. 12(a). The large tangential derivative of the vorticity along the boundary is associated with a strong
normal pressure gradient, which pushes the vortex formed att = T ∗

1 to shed.

Fig. 10. Stream function plot at timet = 2: (a) over the whole cavity; (b) zoom in the same region as in Fig. 9(b).
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Fig. 11. Vorticity profile along the right wall: (a)t = 1.75; and (b)t = 2.

The second bifurcation time appears thus to be a crucial moment for boundary-layer separation of incompressible
flow, as it marks the critical moment for the onset of vortex shedding. After this moment, the vorticity starts to roll
up, as can be clearly seen inFig. 14(a)–(c).

Meanwhile, the “first” vortex detached from the wall moves deeper into the cavity, due to the interaction between
the boundary layer and the flow in the interior. From this point on, the evolution of the first detached eddy depends
more and more on its interaction with the interior flow.

Fig. 12. Vorticity behavior on the boundary: (a) vorticity profile along the boundary at the second critical timet = T ∗
2 = 1.8086; and (b) the

evolution of the vorticity at the second bifurcation pointP∗
2 = (1, Y∗

2 ), Y∗
2 = 0.5182.
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Fig. 13. Vorticity plot at the second critical timet = T ∗
2 : (a) zoom plot in the region [63/64,1] × [1/2,17/32]; and (b) vorticity along the

horizontal cuty = Y∗
2 = 0.5182.

Fig. 14. Zoom plots of vorticity near the right wall at: (a)t = 1.75; (b)t = T ∗
2 = 1.8086; and (c)t = 2.
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4.3.3. Multiple eddies and interactions with the interior flow
Throughout the time history of the vorticity profile along the right boundary, degenerate singular points appear

again and again. Thus more and more vortices form along the boundary, detach from it, and move into the interior
afterward. The process of structural transition and formation of a recirculation zone each time is the same.

Another interesting phenomenon is the structural bifurcation caused by an eddy that moves into the interior
region. By the singularity classification theory for interior points (see[10,19], recapitulated here as Theorem 2.6), a
bifurcation in the interior is likely to happen if a degenerate singular point of the velocity vector field appears there.
This issue will be addressed in detail in a future article. A sequence of such topological transitions is illustrated in
the sequence of zoom plots of the stream function near the right wall at the later timest = 2, 2.375, 2.75, 3, 3.5,
and 4 inFig. 15(a)–(f).

Fig. 15. Zoom plots of the stream function field near the right wall of the cavity at a sequence of times after the second bifurcation: (a)t = 2.0;
(b) 2.375; (c) 2.75; (d) 3.0; (e) 3.5; and (f) 4.0.
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