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Abstract

We study the detailed process of bifurcation in the flow’s topological structure for a two-dimensional (2-D) incompressible
flow subject to no-slip boundary conditions and its connection with boundary-layer separation. The boundary-layer separation
theory of M. Ghil, T. Ma and S. Wang, based on the structural-bifurcation concept, is translated into vorticity form. The vorticity
formulation of the theory shows that structural bifurcation occurs whenever a degenerate singular point for the vorticity appears
on the boundary; this singular point is characterized by nonzero tangential second-order derivative and nonzero time derivative
of the vorticity. Furthermore, we prove the presence of an adverse pressure gradient at the critical point, due to reversal in the
direction of the pressure force with respect to the basic shear flow at this point. A numerical example of 2-D driven-cavity flow,
governed by the Navier Stokes equations, is presented; boundary-layer separation occurs, the bifurcation criterion is satisfied,
and an adverse pressure gradient is shown to be present.
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1. Introduction and outline of main results

The primary aim of this article is to investigate, theoraliigc as well as numerically, the topological aspects of
boundary-layer separation in two-dimensional (2-D) incompressible flows. It is well-known that a boundary layer
appears in any viscous incompressible flow, due to the slow-down of the flow by a no-slip bo[ir8jafyshear
flow is present in the transition area between the wall and the free fluid. The width of this shear layer, before the
separation occurs, is proportional yd/Re, whereReis the Reynolds numbg§29]. However, this shear layer can
detach and separate from the boundary, generating vorticity and a recirculation area, which leads to the break-dowr
of the monotone velocity profile in the boundary layer. Characterizing this separation is a long-standing problem in
fluid mechanics, going back to the pioneering work of Praja].

The Prandtl equation is an asymptotic approximation of the Navier—Stokes equations within a thin layer near the
boundary, which is only valid when no separation occurs. The mathematical analysis of the Prandtl equation up to
date is reviewed in a recent book by Oleinik and Samok®#}. The book mainly deals with the regularity of the
Prandtl equation when the pressure gradient along the boundary does not vanish. The blow-up of the Prandtl equatiol
in finite time was established [6]; this result, however, is not related to boundary-layer separation, which would
render the equation invalid altogether. Some related work on this subject can also be fuhd3r27,28,33,34]

It is observed experimentally that the point where the vorticity vanishes is a candidate for separation of the
boundary layer. No known theorem, which can be applied to determine the separation point a priori, seems to have
been available until the recent work of Ghil, Ma and W4h@,11,19] These authors developed a new theory to
determine structural bifurcation of 2-D nondivergent vector fields u(x, r) near a so-called singular poiag on
the boundaryM of a compact manifol®, by analyzing the orbits af nearxg and a critical transition timg. This
d-singularity condition forxg is related to the Prandtl condition for boundary-layer separation. It was shown that a
2-D incompressible velocity field becomes structurally unstable, i.e., it changes its topological-equivalence class,
if a 8-singular pointeg on M is degenerate. Such a poitcorresponds precisely to a degenerate critical point for
the scalar vorticity. This theory agrees with experimental observations, as well as with numerical simulations and
physical reasoning.

The normal derivative of the velocity fielék /9n has to satisfy the following sufficient criteria for structural
bifurcation to occur: (1) a degenerate singular paindf du/on appears on the boundary at the critical moment
to; (2) one of the higher-order tangential derivativesofdn is nonzero; and (3) its time derivative is nonzero.

The structural transition in the flow pattern predicted by these conditions gives rise to boundary-layer separation in
the case thadu/dn has a honzero second-order derivative in the second condition, and the index of the shear field
ind(du/on, xo) vanishes at the critical moment.

This result was obtained if10] for the very general case in whiakl(x, r) is a nondivergent vector field in
2-D, V -u = 0, but the dependence on the paraméisrunspecified, except for the requirement that it be once
continuously differentiable. The analysiq 0] was carried out for no-penetration, free-slip boundary conditions. A
structural stability theorem for the same type of vector field, but with homogeneous Dirichlet boundary conditions,
was proven by Ma and Wari#j9]. The structural bifurcation result quoted above was obtained for Dirichlet boundary
conditions in[11]. Itis the latter result that corresponds to boundary-layer separation and will be used in the present
paper.

The theory developed if10,11,19]is recapitulated irsection 2 In Section 3 the above conditions in velocity
form are translated into vorticity form. Naturally, the previous conclusion for the bifurcation is still valid under the
same set of the conditions, put into this vorticity form. This is the first part of our analytical result here, which is
stated as Theorem 3.2. An application of the maximum principle for subharmonic functions yields the presence of
an adverse pressure gradient in the tangential direction along the boundary near the isolated singular point and th:
critical transition time. This is the second part of Theorem 3.2.

More precisely, we consider 2-D viscous incompressible flows described by the Navier—Stokes equations. An
incompressible solution of these equations can be viewed as a one-parameter family of divergence-free vector field:
with time t as the parameter. We show $ection 3that an adverse pressure gradient is present near the critical
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point P* and the critical momerif* of boundary-layer separation, which corresponsidandrg in the analysis of

Section 2 Under the above conditions, the vorticity reaches a local extremum in space and, according to whether
this extremum is a maximum or a minimum, it decreases or increases in time. Applying the vorticity transport
equation near the boundary poiAt and using no-slip boundary conditions for the velocity field shows that the
vorticity field is subharmonic or superharmonic in a small neighborhoaetoSince the critical poinP* is also a

spatially local extremum for the vorticity, we conclude from the Hopf Lemma that the vorticity gradient is directed
outward or inward there. Thus the presence of an adverse pressure gradient follows directly from the fact that the
tangential derivative of the pressure is exactly the normal derivative of the vorticity, which can be seen by applying
the original Navier—Stokes equations near the boundary. The combination of these results provides an explanation
for the mechanism of boundary-layer separation, in a rigorous mathematical context.

A numerical example of driven-cavity flow is presente®irtion 4o illustrate the structural bifurcation of 2-D
incompressible flow associated with boundary-layer separation. No-slip boundary conditions are imposed on the
left, right and bottom boundary sections, while a parabolic velocity profile is imposed on the top boundary, with
the velocity vector parallel to this boundary section and pointing to the right. The cavity flow is computed as the
solution of the 2-D incompressible Navier—Stokes equations with the prescribed Dirichlet boundary conditions. An
Essentially Compact Fourth-Order Scheme (E[8431,32]is applied to solve the equations on a high-resolution
grid of (N + 1) x (N + 1) points, with increasing values of = 1024, 1536 and 2048. The Reynolds number is
taken to beRe = 10° and the flow behavior with respect to boundary-layer separation near the mid-point of the
right boundary is investigated in detail.

A thin boundary layer forms due to the combination of the no-slip boundary condition and the basic circulation in
the cavity. The vorticity field stays positive initially throughout the boundary layer. As time goes on, if a degenerate
singular point for the vorticity, with positive second-erdangential derivative and negative time derivative, appe
on the right boundary, structural transition is assured to happen and the boundary layer separates.

The numerical solution shows the detailed process of the flow’s structural bifurcation and boundary-layer sepa-
ration, including the accurate location of the degenerate singular points for the vorticity, the first and second critical
time, and the fine details of the flow in the recirculation area. The zoom plot of the vorticity near the bifurcation point
exhibits a negative normal derivative, which indicates a reverse pressure gradient at that point. This numerical result
matches the analytical argumentSection 3Zoom plots of the vortex shedding after the structural bifurcation are
also presentedsection 4concludes with a discussion of the way that the separated and rolled-up boundary layer
interacts with the flow in the interior of the rectangular cavity.

The theory presented here is restricted to 2-D cases. The analysis for the kinematic theory, as well as the
connections to dynamics in three-dimensional (3-D) cases are still wide open. It is clear that the classical notion of
structural stability does not appear to be applicable, and the full classification of 3-D divergence-free vector fields
is not within immediate reach: it is quite difficult to classify bifurcations and transitions of 3-D flow structures in
general. Large-scale, planetary flows, atmospheric and oceanic, however, are characterized by fast rotation (small
Rossby number) and strong stratification (small vertical-to-horizontal aspect ratio), at least in the midlatitudes; see
Ghil and Childresg9] and Pedlosky25]. It is expected that progress can be made for such geophysiea fl
modeled by the 3-D baroclinic quasi-geostrophic equations. Likewise, generalizations of the present theory might
be possible for 3-D axis-symmetric flows, which possess a so-called Stokes stream f[irjction

2. Recapitulation of structural bifurcation in 2-D flows

In this section, we recall the key concepts and results of the structural bifurcation theory developed recently
by Ghil, Ma and Wand10,11,19] This theory provides a full classification of the topological structure of 2-
D nondivergent vector fields on a compact manifold with boundary, subject to either no-penetration or Dirichlet
boundary conditions, along with the conditions for transition from one topological class to another. As a by-product,
this theory gives a rigorous characterization of boundary-layer separation of 2-D incompressible fluid flows.
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For simplicity, we treat here the Euclidean case, but a piece of a sfhiralso covered by the general theory of
[10,11,19] So, letM c R? be aclosed and bounded domain with a sufficiently smooth bouddary C"1(r > 2),
andTM be the tangent bundle M. Let C;,(TM) be the space of all” vector fields orM with the no-penetration
boundary conditionD"(TM) the subspace af, (TM) that is divergence-free, amf(TM) the subspace ab" (TM)
that satisfies homogeneous Dirichlet boundary conditions:

C,(TM) = {u € C"(TM)  |unlyp = O},
D'(TM) = {u € C"(TM) |unlyy, = 0, divu = 0},
By(TM) = {u € D'(TM) |uyy; = O}.

Here,u, = u - n andu, = u - r, wheren andr are the unit normal and tangent vectorsod, respectively. It is
easy to see that

o(TM) c D'(TM) C C,(TM) C C'(TM).
We start with some basic concepts. et= D"(TM) or By(TM) in the following definitions.

Definition2.1. Two vectorfields:, v € D"(TM) are called topologically equivalent if there exists ahomeomorphism
of o : M — M, which takes the orbits af to orbits ofv and preserves their orientation.

Definition 2.2. Letu € CY([0, T], X). The vector fieldig = u(-, 10) (0 < 1o < T) is called a bifurcation point of
u at the parameter value= 1 if, for anyr~ < g andzg < r* with ~ andt™ sufficiently close tap, the vector field
u(-; ) is not topologically equivalent ta(-; t*). In this case, we say tha{x, ) has a bifurcation a in its global
structure.

Definition 2.3. Letu e C([0, T], X). We say thau(x, r) has a bifurcation in its local structure in a neighborhood
U C M of xg at the parameter value= 1(0 < 1o < T) if, forany r~ < g andzy < t* with r~ and:™ sufficiently
close torg, the vector fields(-; t~) andu(-; ) are not topologically equivalent locally i c M.

The difference between bifurcation in local vs. global structure is further clarified in Figl11Lpf

Definition 2.4. A vector fieldv € X is called structurally stable iX if there exists a neighborhodfl ¢ X of v
such that for any € O, u andv are topologically equivalent.

We recall next some basic facts and definitions on divergence-free vector fieldsc LBt (TM).

(1) A point p € M is called asingular pointof v if v(p) = 0; a singular poinp of v is callednon-degenerate if
the Jacobian matriPv(p) is invertible;v is calledregular if all singular points ofv are non-degenerate.

(2) Aninterior non-degenerate singular poinwafan be either a center or a saddle, and a non-degenerate boundary
singularity must be a saddle.

(3) Saddles ob must be connected to saddles. An interior sagidte M is calledself-connected p is connected
only to itself, i.e.p occurs in a graph whose topological form is that of the number 8.

(4) The vector field is structurally stable near each of its non-degenerate singular points.

Whenu € By(TM), r > 2, a different singularity concept was introduced for poarithe boundary if19]. We
recall it as follows.
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(1) A point p € aM is called ad-regular pointof u if du.(p)/on # O; otherwise,p € dM is called ad-singular
pointof u.
(2) A a-singular pointp € dM of u is callednon-degeneraté

0*u-(p) 0%u.(p)

det| dton on2
0*un(p) 9*un(p)

oton on?

A non-degenerat@-singular point oz is also called &-saddle poinbf u.
(3) Avectoru € By(TM) (r > 2) is calledD-regular ifu is regular in the interiops°, and alld-singular points of
u ondM are non-degenerate.

The following theorem of T. Ma and S. Wang[itQ] provides necessary and sufficient conditions for structural
stability of a divergence-free vector field.

Theorem 2.5 (Ma and Wand19]). Letu € By(TM)(r > 2). Thenu is structurally stable inBy(TM) if and only if

(1) uis D-regular,
(2) all interior saddle points o are self-connectednd
(3) eachd-saddle point of: onaM is connected to a-saddle point on the same connected componedw/of

Moreover, the set of all structurally stable vector fields is open and denBg(ifV).

Next, we recall the definition of indices of singular points of a vector fizh]. Let p € M be an isolated singular
point of v € C/,(TM); then

ind(v, p) = deg, p),

where degq, p) is the Brouwer degree afatp.

Let p € 9M be an isolated singular point of and/ c R? be an extension d¥l, i.e. M C M such thatp € M
is an interior point of¥. In a neighborhood of in M, v can be extended by reflectioniisuch thap is an interior
singular point ofv, thanks to the no-penetration conditionn|,,, = 0. Then we define the index ofat p € IM by

ind(v, p) = 3ind(®, p).

Let p € M be an isolated singular point efe C"(TM). An orbit y of v is said to be a stable orbit (resp. an
unstable orbit) connected [ if the limit setw(x) = p (resp.«(x) = p) for anyx € y; herew(x) anda(x) are the
forward and backward limit sets af respectively.

We now recall a singularity classification theorem for 2-D nondivergent vector fields, which will be useful in our
discussion of structural bifurcation.

Theorem 2.6(Singularity Classification Theorefh0]). Let M be a 2-D compact manifold with or without boundary
andp € M be an isolated singular pointaf € D"(TM),r > 1. Then pis connected only to a finite number of orbits
and the stable and unstable orbits connected to p alternate when tracing a closed curve around p. Furthermore

(1) if p em®, then p is connected Bn (n > 0) orbits, n of which are stableand the other n unstablevhile the
index ofu atp is

ind(u, p) =1—n,;
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(2) if p € oM, then p is connected by+ 2 (n > 0) orbits, two of which are on the boundafy, and the index of
pis

ind(u, p) = —%n.

For simplicity, we assume here that the boundasy contains a flat parf” ¢ oM and consider structural
bifurcation near &@-singular pointxg € I". In such a case, a coordinate system {») can be chosen such that
xo0 = (xo, 0) andI” be given by

I' = {(x1,0) | |x1 — xo| < 8},

for somes > 0.
Next letu, v € CY([0, 7], By(TM)) be Taylor expanded as:

u(x, ) = u®(x) + (r — to)ut(x) + O(|t — to}),
v(x, 1) = v0(x) + (¢ — to)v(x) + O(lr — 10]),

WO =l 1), w) = 5D (2.1)

0 1 =
ou ou
0 1
vx)=—— vix)=—.
()=~ () =—
Before we state the main result, we make the following assumption.
Assumption (H). There exists an isolateésingular pointeg € 9M of v° and an integek > 2 such thaw?, v! €
C**1 near the poinkg, and

19(x0) =0 (Prandtl condition) (2.2)

ind(@°, xo) # —1  (firstnecessary condition) (2.3)

vi(x0) #£ 0 (second necessary condition) (2.4)
k(.0

w # 0 (technical condition) (2.5)
T

Under Assumption (H), the flow structuremhearxg andz is fully classified if10,11]and structural bifurcation
is shown to occur atg, ast crossesy.

Theorem 2.7 ([11]). Letu € C1([0, 77, By (TM)) (r > 2) satisfyAssumption (H)Then there exists a neighborhood
Io C dM of xo and aneg > 0 such that all3-singular points ofu(x,  + ¢) in I'° are non-degenerate for any
0 < ¢ < ¢g. Moreovert

(1) ifthe indexind(v°, xo) is an integer, then one af(x, 7o + ¢) has twod-singular points on'p, and the other one
has noa-singular point onl'p; and
(2) if the indexind(v°, xo) is not an integer, then each afx, ro + ¢) has only oné-singular point on/%.

Theorem 2.8 (Structural bifurcation theorefd1]). Letu € C*([0, 71, By(TM))(r > 2) satisfyAssumption (H).
Then

(1) u(x, ¢) has a bifurcation in its local structure &k, f0); and
(2) if xo € 3M is a unique singular point which has the same indexrav®, xo) on M, thenu(x,r) has a
bifurcation in its global structure at = 1.
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I :”@

@ %0 (b) "0 © "0

Fig. 1. Structural bifurcation for ina?, xg) = 0.

In the case where indf, xg) = 0, the above structural bifurcation theorem correspont®tmdary-layer sep-
aration in 2-D incompressible flows, as outlinedSaction 1 Here,u® is given byFig. 1(b). For a sufficiently
smalle > 0O, u(x, to — ¢) given byFig. 1(a) has no singular points negg. On the other handy(x, 1o + ¢€) given
by Fig. 1(c) has two singular points neag on the boundary and one center negin the interior, all of which are
non-degenerate.

The analysis is delicate and was done first for the case with boundary conditions of no nornfaDiloand
then for the case with homogeneous Dirichlet boundary condifith4 9]

3. Adverse pressure gradient at the separation point

In this section, we show the existence of an adverse pressure gradient in the neighborhood of the bifurcation point
(xo0, 10) by utilizing the relation between the vorticity and pressure in the solutions of the Navier—Stokes equations
and applying the Hopf LemmiL.2] for subharmonic functions. We use the 2-D Navier—Stokes equations in the
incompressible form

1
du + (u-V)u+Vp = Au, (3.1)
V-u=0,
with the no-slip boundary conditions:
u=0, onoM. (3.2)

In the system (3.1)—(3.2) = (u, v) is the velocityp the pressure, anidethe Reynolds number. For simplicity we
letv = 1/Re. The solutions of this system can be viewed as one-parameter families of divergence-free vector fields
with the timet as the parameter. Hence, the analysis review&eaation Zan be applied to such a solution. For such
a family of divergence-free vector fieldgr), structural bifurcation, i.e., change in topological equivalence class,
occurs atT* if the normal derivative of the velocity field,, = du/on has a degenerate singular pofit € oM
such thaiu,, /3t is nonzero. Note thaf*, u,,, and P* € dM correspond tag, the vector fieldb® andxg € M in
Section 2 respectively.

The connection between the structural bifurcation analysis and the solution of the incompressible Navier—Stokes
Egs. (3.1) and (3)ds made through the introduction of the vorticity= V x u = —d,u + d,v. Applying the curl
operatorV x to the momentunkqg. (3. gives a transport equation for the scalar fietd

o+ (u - V)o = vAw. (3.3)

Numerical simulations, like the one given $ection 4below, as well as laboratory experiments, show that the
formation of recirculating cells starts at the moment when the vorticity reaches its zero point on the boundary as a
local maximum (minimum) point in space and decreases (increases) in time. That point is known as the separation
point and we denote it aB* € dM at the moment = T*. For simplicity of presentation and in agreement with
the numerical example i®ection 4 we assume that a section of the vertical line- 1, which is denoted by
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I, is included indM and thatP* lies on the boundary sectiof®. The unit normal and tangential vectors on
' aren = (1,0), r = (0, 1), respectively; this determines the normal and tangential derivativesddhe= 9,
9/0t = 0.

In the}boundary layer, pure shear flow occurs along the boundary sétibefore the critical timg™. Without
loss of generality and for the sake of consistency with the numerical exam@leciion 4 it is assumed that this
shear flow is downward, i.e., toward negatigalues. Mathematically speaking, this amounts to assuming that
there exists a neighborhodty, of P* such that the boundary f; includes a portion of © and

w>0 in Ui, when r<T* (3.4)

This condition implies that the vorticity reaches zera®it,(T*) as a local minimum in space and decreases afterward
in time. In this case, the formation of a recirculating flow region is given by the following conditions

2
(P Ty =0, 2 1y=0 2P 1-0 2wty <o0 (3.5)
ot 972 ot

In fact, we have the following proposition connecting (3.5) to Assumption (H); the proof of this proposition will

be given at the end of the present section.

Proposition 3.1.

(1) Assumption (Hwith k = 2 for the velocity field: is equivalent to the following conditions on the vorticity
2
WP Ty =0, 2 r=0. L ryz0. 2T 20 (3.6)
at 072 ot

(2) If (3.4)holds truei.e., only downward shear flow is present aroufififor + < 7*, Assumption (H)s equivalent
to (3.5).

The main result of this section is the following theorem, showing the existence of an adverse pressure gradient
at the separation point.

Theorem 3.2. Let (u, p) be the solution of the 2-D Navier—Stokes equati@$) with boundary condition§3.2).
Assume that there exist a boundary paitite aM and a critical timeT™* such that(3.4)and(3.5) hold true Then

(1) structural bifurcation occurs in the local structuremfat the boundary poinP* as t crosse§™*, and boundary-
layer separation evolves exactly as showifrig. 1, and
(2) an adverse pressure gradient in the tangent direction is presepit dte.,

op _9p

= <0, at (P, T%). (3.7
at  dy

Proof of Theorem 3.2. The first part is a direct consequence of Proposition 3.1 here and of TheorenS2&imn 2
For the second part, we see that the vorticity transiqrt(3.3 at the boundary poinP* gives

1
Aw= =+ (u-V)w)=v 1w <0, at(P*, T". (3.8)
\%

The second equality in (3.8) is based on the no-slip boundary condition for the velocity field, and the inequality
comes from the criteriobw(P*, T*)/9t < 0in (3.5). Thus, we arrive at the conclusion that the vorticity field stays
strictly subharmonic in a neighborhodt of P*, atT*,

Aw(-, -, T*) <0, inUy; (3.9
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like U1, U has a portion of © as part of its boundary. Moreover, the assumption (3.4) shows that the vorticity field
w remains non-negative i1 at the bifurcation time

w(-,-, T*) >0, inU;. (3.10)
By denotingU* = U1 N U2, we have, by (3.9) and (3.10),
Aw < 0, in U*,
(3.11)
® >0, onaU*.
The application of the strong maximum principle for subharmonic functions in tHé*sgives
w>0, inU®Q (3.12)
Subsequently, the Hopf Lemma implies that
3—‘“(13*, T*) < 0. (3.13)
on
On the other hand,
T-Au = 8—“’, onr?, (3.14)
on

due to the definition of vorticityy = —d,u 4 d,v and the incompressibility conditian, + v, = 0. Consequently,
taking the inner product of the momentum equation in (3.1), applied on the bouRBanth the tangential vector
field T gives

dgp _Op o

== =v—, on I° (3.15)
at  dy on

since the ternu; and the nonlinear term disappear 68 because of the no-slip boundary condition for the velocity
field. The insertion of (3.13) into (3.15) results in (3.7), thus completing the proof of Theorem 3.2. d

Remark 3.3. The contribution of the pressure force to the flow acceleration for the vertical velocity fielg i

We thus conclude from (3.7) that the pressure pushes the flow upward at the bifurcatio®’paihent = 7%,

opposite to the shear flow direction. This force gives rise to the boundary-layer separatioarat7* and to the
recirculating flow neaP* afterward. Although the appearance of an adverse pressure gradient is well known to be
the main mechanism for boundary-layer layer separation, the mathematically rigorous argument above is new and
will be carefully verified in the numerical experiment presente8éction 4

Remark 3.4. If the vorticity field stays smooth enough near the boundary segim@rthen

9 = —va—w =0, at(P*,T%); (3.16)

on at
the first equality in (3.16) comes from a similar argument asin (3.15), while the second one is based on the assumption
that P* is a degenerate singular point for the vorticity as stated in (3.5). Accordingly, the normal gradient of the
pressure stays small near the bifurcation point, which is still consistent with the assumptions of boundary-layer
theory[13,24,29] This assertion is verified in the case of the first bifurcation tireeT* for the numerical example
in Section 4 as can be seen in the vorticity plot along the right boundgiy. €) there. At that time, the separated
boundary layer is still confined to a thin layer near the wall.

The phenomenon changes dramatically at the second and later separation times. A cusp occurs in the vorticity

profile at the critical point for = T7;;'; seeFig. 12 The large vorticity gradient along the boundary indicates there
is a strong normal pressure gradient that pushes the vortex to shed.
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Remark 3.5. The critical timeT™* refers to the structural bifurcation whose criteria were discussed in detail in
Section 2 This is not identical to the critical time with respect to the appearance of an adverse pressure gradient.
At the bifurcation pointP* € M and the corresponding moment 7*, the pressure pushes the flow opposite

to the basic shear flow in the immediate vicinity Bf. In fact, the adverse pressure gradient appears at some
instantr < T7*, and will take effect after a while, causing the recirculation. The pressure gradient can be in the same
direction as the shear flow or opposite to it from time to time. The moment, however, when the pressure gradient
switches sign is not the critical time that we are discussing. The rigorous derivation of the presence of an adverse
pressure gradient at the bifurcation point just gives a reasonable explanation for the mechanism of boundary-layel
separation.

Remark 3.6. Assumption (3.4) in Theorem 3.2, which states that pure shear flow was present near the critical
point before the occurrence of the bifurcation, corresponds to the index of the vectoufiéidat P* being 0, i.e.,
ind(0u/on, P*) = 0.

Remark 3.7. When the shear flow is unidirectionally upward né&& rather than downward, Assumption (H) with
k = 2 is equivalent to the following conditions:
d 3 3
(P, T=0, 2P, 19=0 2P, 1Y<0 2P, T >0 (3.17)
ot o2 ot
In other words, by Proposition 3.1, Assumption (H) is equivalent to either (3.5) or (3.17), depending on whether
the flow is upward or downward before the critical time.

Remark 3.8. The assumption that the boundary sectihcan be represented as a segment of the vertical line
x = 1 was only made for simplicity of presentation. All the analyses in this section can be extended to the case of
a horizontal or curved boundary.

Proposition 3.1 states that the criteria for the start of recirculating flow, as given in (3.5), are exactly the same
as the structural bifurcation criteria statedSaction 2i.e., a degenerate singular point for the normal derivative of
the velocity vector fielde,,, with positive second-order derivative along the boundeny negative time derivative,
appears at a boundary poiAt e I'°. The proof is given below.

Proof of Proposition 3.1.
Step 1. Note that
0 _ au

W)= - = = (ur. ) = (0.w). on ro. (3.18)

The first component, vanishes identically because of the incompressibility conditios v, = 0 and the no-slip
boundary condition = 0 on "%, while the second component is exactly the vorticity field since

®=—Uy+Vx =0y, ON re, (3.19)

due to the no-penetration boundary conditioes 0 on I'°. According to (3.18), the singular point fof is the
same as the zero point feron the boundary sectiofi®. As a result, the Prandtl condition (2.2) in Assumption (H)
is equivalent to the first condition in (3.6), i.e., the vanishing of the vortioigt (P*, T*).

Step 2. Furthermore, the vorticity field has the same tangential derivativgs@any order, i.e., for any integer
k=1,23,...,

8]§a) = 8’;(—uy +vy) = —Bl;uy + 8§‘, Vy = —8];+1u + 8’; Uy = 8]§vx, on I°, (3.20)

due to the the no-penetration boundary conditiorufdfote that the terna, is exactly the tangential component of
the normal derivative of the velocity field, i.e,, = v0. Thus, the third condition in (3.6)2w(P*, T*)/d?t # 0, is
equivalent to the technical condition (2.5) in Assumption (H) wkitha 2.
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Step 3. The necessary condition (2.3) in Assumption (H) is exactly equivalent to the condition that the Jacobian
matrix D of u,, at the critical point £o, 7o) is degenerate, i.e.,

8 XX X
det(Da—Z) = det(u ! y) =0, atxge I (3.21)

Vxx Uxy

On the other handy,, is identically zero on"® sinceu, is, as shown in (3.18). Hence, (3.21) is the same
as

3
det(Da—u) - det(”” ”"y> — Uty = —(y)2 = 0, atxg € I°; (3.22)
n

Uxx Uxy

the last step in (3.22) is based on the identity that= —v,,, due to the incompressibility of = (, v). The only
possible solution for (3.22) is given hy, = 0, which implies that

0rw = wy = —Uyy +VUxy =0y, =0, atxpg e ro. (3.23)

Therefore, we proved that the necessary condition (2.3)p%na6) # —1/2 in Assumption (H), is equivalent to
the second condition in (3.6).

Step 4. Next we show the equivalence between the second necessary conditiart (@3} 0 in Assumption
(H), and the fourth condition in (3.6dw(P*, T*)/dt # 0. We recall from the Taylor expansion (2.1) that= d;v°.
The insertion of the evaluation (3.18) gives

3
! = 3(0, ) = (0, a—‘:), on r°, (3.24)

which leads to the equivalence between (2.4) and the last condition in (3.6).
The first part of Proposition 3.1 is thus proven. The verification of the second part is essentially the same and we
omit the details here. O

4. Numerical example of driven-cavity flow

In this section, we give a numerical verification of the necessary and sulfficient criteria for structural bifurcation
in 2-D incompressible flow by presenting an example of smoothly started, driven-cavity flow at Reynolds number
Re = 10°.

4.1. Formulation of the problem

We consider the flow in a nondimensional square caMity- [0, 1] x [0, 1], which is driven by slip velocity with
a parabolic profile on the top boundary. The flow is governed by the 2-D incompressible Navier—Stokes equations
(3.1). The boundaryM in (3.2) is now composed of four sections: the left, right and bottom boundary sections are
denoted byl and the top section is denoted By The following Dirichlet boundary conditions for the velocity
field are imposed

u=0, only,

4.1
u:uszlﬁxz(l—x)z, v=_0, onIlz; (4.1)

us denotes the slip velocity along the top boundary that drives the flow inside the cavity. In other words, no-slip
boundary conditions are imposed fhand a purely tangential velocity is prescribed on the top bounffary
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The initial velocity profile is taken as
u(x, y,0) = —16x%(1 — x)%(2y — 3y?),  v(x, y, 0) = 32(x — 3x? 4+ 2:3) (32 — »?), (4.2)

so that the flow is started smoothly.

4.1.1. Vorticity formulation
Equations (3.1) can be written in the vorticity—stream function formulation

dw + (1 - V)o = vAw,
AY = w, (4.3)
u = —8yt//, V= ax]//,

wherew is the vorticity, as in (3.3), and the stream function. The boundary conditions for velocity can be expressed
as boundary conditions for the stream function. The no-penetration boundary comditos O is equivalent to
ay/ot |r= 0 and thus, without loss of generality, to the homogeneous Dirichlet boundary conditiog 0. The
no-slip boundary conditiom - T = 0, which is imposed oy, is equivalent to a Neumann boundary condition
for the stream functiody/on |,= 0, while the boundary condition on the top bounddtycan be written as
d/dy = —us = —16x*(1 — x)°. We thus have the following boundary conditions for the stream function:

v =0, on oM,

, [ (4.4)
W =0, 5 In= —us = ~16(1 )%

4.2. Numerical method

The closed system (4.3), (4.4) is solved using the EC4 scheme developed by E 48 dnd analyzed by
C. Wang and J.-G. Liy31,32] A regular grid{x; =i/N,y; = j/N,i, j=0,1,..., N}, with mesh sizeAx =
Ay = h = 1/N is used to cover the computational domiinLet D, andf)y represent the standard second-order
centered-difference approximationdp andd,, D? and D§ be second-order centered-difference approximations
to 92 ando?, andA, = D2 + D3 the standard five-point Laplacian. The term “compact” in the name of the EC4
scheme refers to the stencil needed to evaluate the derivatives being as small as possible.

4.2.1. Description of EC4 scheme
The starting point of the scheme is the fact that the Laplacian opetatamn be estimated with fourth-order
accuracy by

Ay + (W?/6)DEDS

4
YT 1+ (h2/12)A, o). (4.5)

Multiplying the momentum equation by the difference operater(k2/12)A; gives

L+ 7% An)okw + (L+ {5h2AR)V - (uw) = v(Ay + §h*D2D?)w, (4.6)
while the same operation applied to the kinematic equatign= w results in

(An + §h*D2D2)y = (1+ $5h*Ap)o. (4.7)

The homogeneous Dirichlet boundary conditibih-= 0 can be used to solve the discrete Poisson-like equation
(4.7) very efficiently, using a sine transform. The Neumann boundary condition for the stream function can be
converted into a boundary condition for the vorticity in solving (4.6); it will be given in detail later.
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The nonlinear convection term in (4.6) is estimated as
1+ Hh2AR) (@ - Vo) = D1+ 3h2D?)(uw) + Dy(1+ §h2D?)(vw)
— £h?A(uDyw + vDyw) + O(h*). (4.8)

The first two terms on the right-hand side of (4.8) are compact. Although the third term is not compact, it does not
cause any trouble in practical computatiol?,» + vD,w can be taken as 0 af} because of the no-slip boundary
condition, and the corresponding term on the top boundacan be treated in a similar fashion as

(uDyw + vDyw)i ny = us - (Dyw)i n, (4.9)

whereus is the slip velocity o', as given in (4.1).
By introducing an intermediate variahle

o= 1+ Hh%Ap)o, (4.10)
and combining (4.6)—(4.10), the whole momentum equation can be approximated by
o + Dy(14 §h*D?)(uw) + Dy(1+ §h2D?)(vw) — $5h*Ap(uDyw + vDyw) = v(Ap + §h?D2D?)w.
(4.11)

The velocityu = VT = (—0y¥, 9x¥) can be obtained by the fourth-order approximatiod,tanda,
u=—Dy(1— 3h2D2)y, v=D,(1- :h?D?)y, (4.12)

which is hot compact.
The vorticity w is determined fromw via (4.10). To solve the Poisson-like equation (4.10) requires a boundary
condition forw, which is discussed in the following subsection.

4.2.2. Boundary condition for vorticity

The boundary values for the vorticity are very important in order to capture the exact location of its singular
point, as well as the critical momefit and the bifurcation poinP* of Section 3and thus help illustrate the detailed
process of vortex shedding. Physically the vorticity baanyadcondition enforces the no-slip boundary condition for
the velocity. More precisely, one converts the Neumann boundary condition for the stream functien jinlby
the kinematic relatiom\y» = w. On the right boundary section where= 1,i = N, either Briley’s formulg2,8]

1
~ 18n2
or a new fourth-order formula for the vorticifg2],

WN, j (108 N—1,; — 2Ty N—2,j + 4YN—3 j), (4.13)

1
ONj =13 <8WN—1,J' —3YN_2j+ S¥n-3j— %IPN—M) , (4.14)

can be applied to solve (4.10).

Both Briley’s formula (4.13) and the new formula (4.14) are derived by combining the Dirichlet boundary
conditionyr |,—1= 0 and the Neumann boundary conditify dx |,—1= 0 for the stream function. It was proven in
[31,32]that the above one-sided vorticity boundary conditions are consistent with the centered differences applied at
interior points. In addition, both formulas preserve stability and result in fourth-order accuracy for the 2-D Navier—
Stokes equations. For computational convenience, we use Briley’s formula in the calculation. On the top boundary,
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where the slip velocity:s given in (4.1) drives the flow in the cavity, the corresponding Briley’s formula turns out
to be[2,31,32]

1 11
wiN = @(108‘/&1\/4 —2TYiN—2 + i N_3) — ﬁus(xi)- (4.15)

The stability analysis of the final scheme and the relevant convergence theorems guarantee the accuracy of th
profiles reported in this section.

4.2.3. Temporal discretization

To solve the time-dependent system of spatially discretized equations obtained by the above finite-difference
method, we use a fourth-order Runge—Kutta method in time. It was arg{igdlivat the stability concern associated
with the cell Reynolds number constraint can be avoided in higher-order Runge-Kutta methods. One advantage of
the EC4 scheme is that at each time step or, more precisely, at each stage in Runge-Kutta time stepping, only twc
Poisson solvers, (4.7) and (4.10), are required to achieve fourth-order accuracy. In addition, the vorticity boundary
condition is explicitly enforced.

The combination of these features makes the whole scheme quite efficient, accurate and robust. All the figures
in Section 4.3 below are plotted At= 1536, where the numerical results have clearly stabilized.

4.3. Structural bifurcation

The velocityus along I drives the flow clockwise in the cavity. We call this clockwise rotation the basic
circulation. As a result of this circulation, the flow moves downward near the mid-portion of the right boundary.
We concentrate on this area, which is away from the corners, to illustrate the flow’s behavior with respect to the
issue of structural bifurcation caused by boundary-layer separation. In other words, the recirculation areas near the
corners are not taken into consideration, since they are caused by corner singularity rather than by boundary-laye
separation. The contour plot of the stream function at tim€l in Fig. 2shows the structure of the basic circulation.

Near the mid-portion of the right boundary, the tangential velodynegative, as a result of the basic circulation.

The combination of the no-slip boundary condition and the basic circulation results in the presence of a thin boundary
layer, due to the sharp, initially monotone transition of the velocity from zero tangential velocity on the boundary
to a negative value of in the interior. The width of this layer is proportional to &( 1/2) [13,24] Accordingly,

the vorticityw = —0d,u + 9, v is positive in the boundary layer, at least initially. The vorticity near and on the right
boundary at = 1 is plotted inFig. 3.

As shown inFig. 3(b), the vorticity has positive values along much of the right boundary, say, from 0.5t0y0.9 in
The negative vorticity along the top and bottom portions esifinom the recirculation in the two corner areas, which
is not considered here. The two singular points for the vorticity on the right boundaiy-20.4365,y, = 0.9531,
are non-degenerate, i.e, the tangential derivatiye®y is nonzero. Thus the criterion givendection Andicates that
the flow structure stays stable for the moment and no transition in the flow’s topological structure is going to occur.
Moreover, the zoom plot ifrig. 3a) tells us that the whole vorticity field remains positive near the mid-portion
of the right boundary at= 1. Thus, only shear flow is present in the boundary layer before the separation, in this
region.

Classical boundary-layer theory is covered[4113,24,29] Aside from the references already given at the
beginning ofSection 1the mathematical analysis of the Prandtl equation is reviewgyd.iGlobal weak solutions
for the Prandtl equation were shown to exist by Zhang and Xi3%. The blow-up of the Prandtl equation, as
established by E and Engquist[B], bears no relationship to boundary-layer separation, as far as we can tell, since
the assumptions under which the Prandtl equation is derived cease to be valid when separation occurs. A detaile
numerical study of the zero-viscosity limit for the flow past a cylinder, including boundary-layer separation, appears
in [15].
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Fig. 2. Contour plot of the stream function attime: 1: (a) over the whole square cavity, [0%; (b) zoom plotin the region [/8, 1] x [3/8, 3/4]
near the mid-portion of the right boundary.
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Fig. 3. Vorticity plotattime = 1: (a) zoomed contour plotin the region [P, 1] x [9/16, 11/16]; (b) vorticity profile along the right boundary
x =1
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(a) Whole cavity (b) Zoom plot
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Fig. 4. Stream function plot at time= 1.5: (a) over the whole square cavity; and (b) zoom plot in the same regiorFag. ig(b).

As mentioned before, the main objective in this article is to study the structural transition of the flow in the
boundary layer, analytically and numerically. The structural transition criteria discus§sstiion 2do apply to
the right boundary, since a no-slip boundary condition is imposed there. Our numerical simulation shows that the
vorticity along the mid-portion of the right boundary remains positive for quite a while after the initiak tim@.
During this time interval, the boundary-layer structure is regular and its regularity persists until boundary-layer
separation occurs. This numerical evidence suggests that boundary-layer separation occurs before the blow-uj
predicted in6].

4.3.1. The first structural bifurcation

Attimer = 1.5, Fig. 4 presents stream function plots arid. 5shows the vorticity field near the right boundary,
and its profile along the boundary. The differences in the flow structure betwednandr = 1.5 can be clearly
seen by comparingigs. 2 and 3on the one hand, arfelgs. 4 and 5on the other.

At r = 1, Fig. 2b) shows that there is no recirculation near the mid-portion of the right boundary. Accordingly,
Fig. 3(b) indicates that the vorticity profile along the right boundary is positive in the mid portion: no degenerate
singular point for the vorticity forms and the flow structure is stable at this time. At#isd.5, recirculation is
obviously apparent in the zoom contour plofad. 4(b). Fig. §b) shows that there are two nondegenerate singular
points for vorticity (Yf = 0.4590,Yg = 0.5370) on the right boundary near its middle. Moreover, a 2-[@ ari¢h
negative vorticity is illustrated ifrig. 5a), whose boundary is composed of the boundary section betweﬁfl)(l
and (1, Yg) on Iy and a smooth curve inside the interior of the cavity that connects the two singular points.

We conclude that a structural transition occurs betweerl andr = 1.5. Detailed inspection of the numerical
results shows that the first singular point for vorticity on the right boundary appéegrsatl.0788 and’; = 0.6107.

The vorticity profile along the boundary at that moment is plottelign 6(a), where the degenerate singular point
appears ap = Y7, the time history of the vorticity at the boundary point {Z) is given inFig. &(b).

By Theorem 2.8, the velocity vector field is structurally unstable at that moment. It is clearfFigrd that
the vorticity reaches zero at,(¥;; 77') as a local minimum in space and decreases in timep(®,Y7; 7}) = 0,
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Fig. 5. Vorticity plot at timer = 1.5. (a) Zoomed contour plot in the region [, 1] x [7/16, 11/16]; the solid and dotted lines represent the
contours for the positive and negative levels, respegtiyb) Vorticity profile along the right boundary.

dw(l, Y{;, T{)/dy =0, Pw(l, Y, Tl*)/azy > 0, dw(1, Y, T{)/0t < 0, so that the condition (3.5) is satisfied. This
condition is equivalent to Assumption (H) for structural transition, by Proposition 3.1, giveg in the technical
condition (2.5). The detailed bifurcation process is outlined in the proof of Theorem 2.8, with respect to the local
structure of the velocity field in a neighborhood which contains the boundary ppm(1, Y7) [11]; see alsd-ig. 1
here.

Whent < Tf, there is no singular point for vorticity in the mid-portion of the right boundary, and the local
structure of the stream function near that boundary section is equivalEit. ti(a), as seen ifig. 2(b) atr = 1.

Whent = T, there is one degenerate singular point for vorticity, which is a local minimuif} and decreases
in time, as shown irfrig. 6(a) and (b). The local structure of the stream function near the mid-portion of the right
boundary is now equivalent teig. 1(b).

Whent > Tf, there are two isolated singular points for vorticity 6p and their orbits are connected. For
example, at = 1.5, it appears irFig. 5b) that the locations of the two isolated singular points)éif& 0.4590,
Yg = 0.537. The zoom plot ifrig. 4b) shows that the local structure of the stream function near those two points
is equivalent td=ig. 1(c). The zoom plot of the tangential velocityn Fig. 7 shows that the near-boundary flow is
really reversed betweer andy?.

Theorems 2.8 and 3.2 assure the occurrence of structural transition of the flow at thetififeThe phenomenon
of boundary-layer separation is a physical explanation i gifurcation in the case of 2-D viscous incompressible
flows. Furthermore, it is shown iRig. 8thatw stays positive in a small 2-D neighborhood of the bifurcation point
(1, Y7) and it has a negative normal derivative at that point. Consequently, the pressure pushes the flow upward, i.e,
opposite to the direction of the basic circulation. This numerical result matches our argument in Section 3 and the
effects on the flow at a somewhat later time can also be seen in the velocity pigt Gf
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Fig. 6. Vorticity behavior on the boundary. (a) The vorticity profile along the boundaryat;” = 1.0788; and (b) the evolution of the vorticity
at the first bifurcation poinP; = (1, Y7), Y{ = 0.6107.

In addition, we conclude from the equality (3.16) in Remark 3.2 that the normal derivative of the pressure vanishes
at the first bifurcation point (1ry) and the first bifurcation time= T7;; indeed, the vorticity field stays sufficiently
smooth near the right boundary, as seeffigs. 6(a) and 7(a)As a result, the normal gradient of the pressure
remains small near the bifurcation point {&), and thus, for some time after the first bifurcation, the main effect
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Fig. 7. Zoom plot of the vertical velocity near the right boundary2t1.5. Solid lines for downward velocity, dotted lines for upward velocity.
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Fig. 8. Vorticity plot at the first critical time = T;". (a) Zoom plot in the region [6®4, 1] x [19/32, 5/8]; same convention as Fig. 5a). (b)
Vorticity profile along the horizontal cut= Y7 = 0.6107 near the first bifurcation point.

of the pressure force nearby is to accelerate the fluid in the direction opposite to the basic circulation. For a certain
time, the boundary layer is still confined to a thin layer near the wall.

4.3.2. Second bifurcation

As time goes on, the recirculation vortex expands and moves downward along the right boundary, i.e., in the
same direction as the basic circulation. This can be seEigird, which gives the stream function fieldrat 1.75.

As this first recirculation vortex is swept along the wall by the basic circulation, the process of flow reversal near
the wall, as described in Section 4.3.1, is repeated, including the details of the transition in the flow patté.
presents the stream function plots whea 2, after the second bifurcation time.

The difference in flow structure between= 1.75 and: = 2 can be verified by the evolution of the vortic-
ity profile along the right boundary, plotted Fig. 11 Our numerical results indicate that the second critical
time is T; = 1.8086, and the position of the singular point for the vorticity at that timé’is= 0.5182; see
Fig. 12

Similar to the first bifurcation, the zoom plot for the vorticity near the second bifurcation pointdt;, as
presented irFig. 13a), shows that the vorticity field stays positive in a small 2-D neighborhood of the structural
bifurcation pointP; = (1, Y3). In fact, the shear flow structure is still preserved in a narrow strip at that moment. A
narrow upward jet runs parallel to the right wall but stays in the interior, away from the boundary layer at the critical
moment. Consequently, a negative normal derivative for the vorticity at the ppicain be seen ikig. 13b). This
validates, once more, the upward push of the pressure near a structural bifurcation point.

As pointed out in Remark 3.2, the first equality in (3.16) states that there is no normal pressure force at the
bifurcation point. This statement is true for the first bifurcation time, but not the second bifurcation time. The
vorticity profile has a cusp at the critical point (1), rather than a smooth minimum; séig. 12a). In addition,
the tangential derivative of the vorticity along the right wall= 1, changes sign across= Y7, this indicates
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Fig. 9. Stream function plot at time= 1.75: (a) over the whole cavity; (b) zoom in the regiori§71] x [3/8, 3/4].

that a pair of vortices with opposite signs forms at the same time. Such a vortex pair formation is common during
boundary-layer separation. Another peak in the vorticity profile along the wall appears near the critical point, as
shown inFig. 12a). The large tangential derivative of the vorticity along the boundary is associated with a strong
normal pressure gradient, which pushes the vortex formee-af;" to shed.
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Fig. 10. Stream function plot at tinre= 2: (a) over the whole cavity; (b) zoom in the same region asgn %b).
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Fig. 11. Vorticity profile along the right wall: (a)= 1.75; and (b} = 2.

The second bifurcation time appears thus to be a crucial moment for boundary-layer separation of incompressible
flow, as it marks the critical moment for the onset of vortex shedding. After this moment, the vorticity starts to roll
up, as can be clearly seenkiy. 14a)—(c).

Meanwhile, the “first” vortex detached from the wall moves deeper into the cavity, due to the interaction between
the boundary layer and the flow in the interior. From this point on, the evolution of the first detached eddy depends
more and more on its interaction with the interior flow.
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Fig. 12. Vorticity behavior on the boundary: (a) vorticity profile along the boundary at the second critical-tirfig = 1.8086; and (b) the
evolution of the vorticity at the second bifurcation pokit = (1, Y3), Y = 0.5182.
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Fig. 13. Vorticity plot at the second critical time= 755 (a) zoom plot in the region [§84, 1] x [1/2,17/32]; and (b) vorticity along the
horizontal cuty = Y5 = 0.5182.
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4.3.3. Multiple eddies and interactions with the interior flow
Throughout the time history of the vorticity profile along the right boundary, degenerate singular points appear
again and again. Thus more and more vortices form along thedaoy, detach from it, and move into the interior
afterward. The process of structural transition and formation of a recirculation zone each time is the same.
Another interesting phenomenon is the structural bifurcation caused by an eddy that moves into the interior
region. By the singularity classification theory for interior points (4€g19], recapitulated here as Theorem 2.6), a
bifurcation in the interior is likely to happen if a degenerate singular point of the velocity vector field appears there.
This issue will be addressed in detail in a future article. A sequence of such topological transitions is illustrated in
the sequence of zoom plots of the stream function near the right wall at the later tim2s2.375, 2.75, 3, 3.5,
and 4 inFig. 15a)—(f).
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Fig. 15. Zoom plots of the stream function field near the right wall of the cavity at a sequence of times after the second bifurgatich0(a)
(b) 2.375; (c) 2.75; (d) 3.0; (e) 3.5; and (f) 4.0.
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