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a b s t r a c t

In this paper, an energy stable, second-order mixed finite element scheme is proposed
and analyzed for the thin film epitaxial growth model with slope selection. We em-
ploy second-order backward differentiation formula (BDF) scheme with a second-order
stabilized term, which guarantees the long time energy stability to approximate the
continuous model. In terms of the convergence analysis, the key difficulty to derive an
optimal rate spatial estimate is associated with the appearance of the gradient operator
in the nonlinear terms, which may lead to a loss of optimal accuracy order. To overcome
this well-known difficulty, we make use of some auxiliary techniques over triangular
elements, and obtain an optimal convergence rate O(hq+1

+ ∆t2), in comparison with
O(hq

+∆t2) rate from a standard projection estimate. Furthermore, we use an efficient
preconditioned steepest descent (PSD) solver for the numerical implementation. A few
numerical examples are presented to validate the stability and convergence.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the thin film epitaxial growth model with slope selection(SS), which is the L2 gradient flow
of the following energy functional:

E(φ) =

∫
Ω

(
1
4

(
|∇φ|

2
− 1

)2
+
ε2

2
(∆φ)2

)
dx, (1.1)

where Ω ⊂ R2 is a convex polygon, φ = φ(x, t) is a scaled height function of the thin film and ε is a given positive
constant. The first term in E(φ) describes the Ehrlich–Schwoebel (ES) effect (see [1–3]), which gives the preference for
the epitaxial films with slope satisfying |∇φ| ≈ 1, since this represents the minima of the first part. The second term
depicts a surface diffusion effect, which will give the rounded corners in the film; a smaller value of ε corresponds to a
sharper corner. It is widely believed that the energy E and the surface roughness R obey the scaling laws E−1

∼ R ∼ t1/3
(see [2,4]), and the saturation time scale is expected to be the order of ε−2 (see [5]). Only the 2D problems are studied
here since the thin film model is mainly applied to the surface growth in practice. In fact, the analysis in this paper can
be easily extended to the 3D case when needed.
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The SS equation is the L2 gradient flow associated with the energy E(φ), i.e., ∂tφ = −
δE
δφ

, so that the height function φ
satisfies{

∂tφ + ∇ ·
(
(1 − |∇φ|

2)∇φ
)
− ε2∆w = 0, in Ω × (0, T ],

w +∆φ = 0, in Ω × (0, T ],
(1.2)

with exterior normal derivatives ∂nφ = ∂nw = 0 on ∂Ω and the initial condition φ(x, 0) = φ0(x) satisfying (φ0, 1) ≜∫
Ω
φ0dx = 0. Due to the Neumann boundary condition, this PDE system is mass conservative, namely, (φ, 1) = (w, 1) = 0.
The corresponding weak form of system (1.2) turns out to be{

(∂tφ, ϕ) + ε2(∇w,∇ϕ) −
(
(1 − |∇φ|

2)∇φ,∇ϕ
)

= 0, in Ω × (0, T ],

(w, v) − (∇φ,∇v) = 0, in Ω × (0, T ].
(1.3)

There have been quite a few works focused on the numerical simulations for the SS equation in recent years. The
primary challenge is associated with a proper discretization of the nonlinear term, as well as the long time energy stability.
Two prevalent methods for this are the linear stabilization approach and the convex splitting approach. The former one
treated the nonlinear term explicitly and added some linear stabilizing terms to improve stability. For example, a hybrid
scheme was proposed in [6], which combines a high order backward differentiation for the time derivative and a high
order extrapolation for the explicit treatment of the nonlinear term. A linear stabilization parameter A has to be sufficiently
large to guarantee the energy dissipation law for this scheme. However, a theoretical justification of the lower bound for A
has not been available until a recent work [7], in which the assumption on the boundedness of the numerical solution has
been removed. This method has been widely adopted in a sequence of subsequent works [8–10] because of its simplicity.
The second method splits the energy into convex and concave parts, and the two different parts are treated implicitly
and explicitly, respectively. This method preserves an unconditional energy stability while the implicit treatment for the
nonlinear terms gives rise to implementation difficulties. Besides application to the SS model with energy functional (1.1),
the convex splitting method has been applied to solve the phase field crystal equation [5,11–16], the Cahn–Hilliard–
Brinkman system [17–22], and the thin-film epitaxy model without slope selection [23–26], etc. Other methods for the
SS equation, such as the operator splitting [27–29], the invariant energy quadratization [30,31] and the scalar auxiliary
variable (SAV) approach [32], have also been successfully applied to the SS model. As for the spatial discretization, the
spectral method is employed in [2,6], and the finite difference method has been analyzed in [33]. Semi-implicit time-
stepping methods were proposed in [34,35] to solve the thin film epitaxy model (1.2), where the unconditional energy
stability was established based on the convex splitting of the energy functional. In [36], a mixed finite element method
and a backward Euler semi-implicit scheme with convex–concave decomposition of the nonlinear term were proposed.
In addition, a combination of the mixed finite element method with Crank–Nicolson (CN) temporal discretization was
reported in [37], in which the energy decay property was preserved due to the implicit treatment of the nonlinear term.

In particular, the second-order temporal convergence rate, combined with an O(hq) spatial convergence rate, was
proved in [37]. Such a spatial accuracy comes from a standard projection estimate in the finite element space. On the
other hand, one order higher accuracy has been observed in extensive numerical experiments. In this work, we provide
a theoretical proof of the optimal convergence rate, O(hq+1

+∆t2), for the mixed finite element scheme combined with a
second order BDF temporal discretization. Similar results for the thin film epitaxial growth model without slope selection
(NSS) on regular rectangular mesh via the super-convergence theory have been presented in [38]. Moreover, this work
was extended to quasi-uniform triangulation in [39] recently. The basic intuition came from the super-closeness property
between the discrete solution and the Ritz projection of the continuous solution, see Lemma 2.2. While the application
for such a skill to nonlinear equations is not trivial, some new techniques need to be introduced and the nonlinear terms
should be handled carefully. In comparison, the nonlinearity in the NSS equation is relatively weak and the derivatives
are uniformly bounded, thus the nonlinear terms can be treated explicitly. However, the boundedness is absent in the SS
equation, for which the implicit treatment is required and there has been no improvement so far. In this article, the lack
of boundedness will be overcome with the help of the Ritz projection and the convexity of the nonlinear terms owing to
the implicit structure which plays an important role in the optimal convergence analysis.

Different from the NSS case considered in the recent work [39], in which the nonlinear terms are explicitly treated,
therefore nonlinear iteration is not needed and it can be easily solved, the numerical implementation for the SS equation
turns out to be highly challenging although the unique solvability and energy decay property have been proved for the
CN scheme [34,37]. Such a difficulty comes from a subtle fact that there is no energy functional corresponding to the
implicit terms appearing in the CN scheme. Because of such a non-symmetric feature of the nonlinear implicit terms,
one could hardly make use of the convexity of the 4-Laplacian part, which may lead to a poor numerical performance
in terms of computational efficiency. Regarding the nonlinear solver, a preconditioned steepest descent (PSD) algorithm,
proposed in [40] to deal with regularized nonlinear elliptic equations, was considered in [33]. The PSD solver could be
applied to many other nonlinear gradient models, in which the nonlinear terms correspond to a convex energy, such as
the Cahn–Hilliard (CH) equation [41,42], the functionalized Cahn–Hilliard (FCH) equation [43,44], etc. In this work, we also
apply the PSD solver for the numerical implementation. In particular, a geometric convergence analysis is available for
such a nonlinear iteration. In our knowledge, no theoretical analysis has been available for the nonlinear solver involved
in the CN scheme applied to the SS equation.
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The rest of the paper is organized as follows. In Section 2, we propose the semidiscrete mixed finite element scheme for
the system (1.3) and derive the corresponding error estimate. In Section 3, we apply a modified BDF2 algorithm to carry
out the time discretization and provide the associated error estimate. Besides, the stability of this scheme is demonstrated,
provided that the stabilized parameter A ≥

1
16 . The preconditioned steepest descent solver for the fully discrete scheme

is outlined and the corresponding numerical results are shown in Section 4. In Section 5, we conclude the paper with a
few remarks.

2. The semidiscrete scheme

In this section, we define the corresponding semidiscrete weak form to (1.2) and then derive the corresponding error
estimate.

Following the notations in [45], we denote by Wm,p(Ω) and Hm(Ω) the Sobolev spaces, by ∥·∥m,p and |·|m,p the standard
norm and semi-norm respectively. For simplicity, ∥·∥m,2 and |·|m,2 are written as ∥·∥m and |·|m, and the subscript is omitted
when m = 0. Also we use (·, ·) to represent the L2 inner product.

Given a positive constant q ≥ 1, we define

L20(Ω) = {u ∈ L2(Ω) | (u, 1) = 0},

X = {v ∈ H1(Ω) | (v, 1) = 0}.

For the spatial discretization, we use quasi-uniform partition Th on Ω with mesh grid size h. Upon this, the finite element
space Xh is defined as

Xh = {v ∈ X ∩ C0(Ω)
⏐⏐ v|K∈ Pq(K ), ∀K ∈ Th},

with Pq the polynomials of degree not greater than q. In the semidiscrete problem, we also need to introduce Bochner
space

L2(0, T ; Xh) =

{
v : (0, T ) → Xh, ∥v∥L2(0,T ;Xh) =

(∫ T

0
∥v(t)∥2

Xhdt
)1/2

< ∞

}
.

The weak solution can be defined as follows.

Problem 2.1. Find (φh, wh) ∈ L∞(0, T ; Xh) × L2(0, T ; Xh) and ∂tφh ∈ L2(0, T ; Xh), such that for any (ϕh, vh) ∈ (Xh, Xh)⎧⎨⎩ (
∂φh

∂t
, ϕh) + ε2(∇wh,∇ϕh) −

(
(1 − |∇φh|

2)∇φh,∇ϕh
)

= 0, ∀t ∈ (0, T ),

(wh, vh) − (∇φh,∇vh) = 0, ∀t ∈ (0, T ).
(2.1)

The unique solvability and energy stability for the semidiscrete system (2.1) have been proved in [37]. Specifically, the
unique solvability was obtained by the eigenfunction expansion and a standard theory for ordinary differential equations.
Besides, the energy identity is derived as:

d
dt

E(φh) + ∥∂tφh∥
2

= 0, a.e. t ∈ (0, T ).

In addition, an O(hq) convergence rate was proved in [37]. In this section, we consider an optimal order error estimate,
i.e., the same order of the interpolation approximation O(hq+1). Firstly, we define the Ritz projection Rh : X → Xh as

(∇Rhu,∇vh) = (∇u,∇vh), ∀vh ∈ Xh, (2.2)

and the L2 projection Ph : X → Xh:

(Phu, vh) = (u, vh), ∀vh ∈ Xh.

Moreover, the discrete Laplacian ∆h : Xh ∩ L20 → Xh ∩ L20 is introduced as in [46, p. 10]: for any ψh ∈ Xh ∩ L20, let ∆hψh be
the unique solution to

(∆hψh, χh) = −(∇ψh,∇χh), ∀χh ∈ Xh. (2.3)

One has ∆hRh = Ph∆ as shown in [46, p.11, (1.34)]. Recall the optimal W 1,p estimate for the Ritz projection [47, p.101,
Theorem A.2]:

Lemma 2.1. Assume thatΩ is a convex polygon and Th is a quasi-uniform regular triangulation. Let 0 ≤ s ≤ q and 1 ≤ p ≤ ∞

(when q = 1, then 2 ≤ p < ∞). There exists a constant C > 0, independent of h, such that the projection Rh satisfies the
following error estimate:

∥v − Rhv∥0,p + h|v − Rhv|1,p ≤ Ch1+s
∥v∥s+1,p, ∀v ∈ W s+1,p(Ω).
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Let φ and w be the exact solution pair to the original equations (1.2). Define

eφ ≜ ρφ + σφ, ew ≜ ρw + σw,

with ρφ = φ − Rhφ, σφ = Rhφ − φh, ρw = w − Rhw, σw = Rhw − wh.

Then we get the following error equations:

(∂tσφ, ϕh) + ε2(∇σw,∇ϕh) = −(∂tρφ, ϕh) + (∇σφ,∇ϕh)

+ (|∇φh|
2
∇φh − |∇φ|

2
∇φ,∇ϕh), (2.4)

(σw, vh) − (∇σφ,∇vh) = −(ρw, vh). (2.5)

To establish the error estimate, we need an additional auxiliary technique about the super-closeness property between
the discrete solution and the Ritz projection of the continuous solution. Its proof is referred to [39].

Lemma 2.2. Given a real-valued function a(x) ∈ W 1,∞(Ω) (or W 1,∞(Ω)2×2). Then ρφ and σφ satisfy

(∇ρφ, a(x)∇σφ) ≤ C1∥∆hσφ∥
2
+

Ch2(q+1)

C1
∥φ∥

2
q+1,

in which C1 is an arbitrary positive constant.

We denote by (φ,w) the exact solution pair to the original equation (1.3), then we say that the solution pair is of the
regularity class C if and only if

φ ∈ H1(0, T ;Hq+1) ∩ L2(0, T ;W q+1,6) ∩ L∞(0, T ;W 2,∞), (2.6)

w ∈ L2(0, T ;Hq+1), (2.7)

and the solution pair is of the regularity class C1 if and only if

φ ∈ L∞(0, T ;W 2,∞) ∩ L∞(0, T ;W q+1,6) ∩ H1(0, T ;Hq+1) ∩ W 2,∞(0, T ; L2)

∩ W 1,∞(0, T ;H2) ∩ H3(0, T ; L2) ∩ H2(0, T ;H1),

w ∈ L∞(0, T ;Hq+1) ∩ H1(0, T ;Hq+1). (2.8)

Next, we provide an optimal error estimate for the semidiscrete scheme.

Theorem 2.2. Let (φ,w) be the solution of (1.3) in the regularity class C. Then the finite element approximation (φh, wh) of
(2.1) with φh(x, 0) = Rhφ(x, 0) has the following error estimate

∥φ(x, T ) − φh(x, T )∥2
+

∫ T

0
∥w − wh∥

2dt ≤ Cε,Th2q+2, (2.9)

where Cε,T is a constant that only depends on ε and T .

Proof. Let ϕh = σφ in (2.4), vh = ε2∆hσφ in (2.5) and add up the two equations

1
2

d
dt

∥σφ∥
2
+ ε2∥∆hσφ∥

2
= ∥∇σφ∥

2
− (∂tρφ, σφ) − ε2(ρw,∆hσφ) + N1 + N2, (2.10)

where

N1 = (|∇φh|
2
∇φh − |∇Rhφ|

2
∇Rhφ,∇σφ),

N2 = (|∇Rhφ|
2
∇Rhφ − |∇φ|

2
∇φ,∇σφ).

Using the Young’s inequality for N1:

N1 =
(
|∇φh|

2
∇φh,∇Rhφ − ∇φh

)
−

(
|∇Rhφ|

2
∇Rhφ,∇Rhφ − ∇φh

)
= −∥∇φh∥

4
0,4 − ∥∇Rhφ∥

4
0,4 +

(
|∇φh|

2
∇φh,∇Rhφ

)
+

(
|∇Rhφ|

2
∇Rhφ,∇φh

)
≤ −

1
2
∥∇φh∥

4
0,4 −

1
2
∥∇Rhφ∥

4
0,4 +

(
|∇Rhφ|

2, |∇φh|
2)

≤ 0. (2.11)

To estimate N2, we first split it into two parts

N2 =
(
(∇Rhφ − ∇φ)|∇φ|

2,∇σφ
)
+

(
(|∇Rhφ|

2
− |∇φ|

2)∇Rhφ,∇σφ
)

:= Π1 +Π2. (2.12)
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Note that |∇φ|
2

∈ W 1,∞(Ω) for φ in the regularity class C. Applying Lemma 2.2, one gets

|Π1| ≤ C1∥∆hσφ∥
2
+

Ch2q+2

C1
∥φ∥

2
q+1. (2.13)

Subsequently, split Π2 into four parts:

Π2 =
(
(|∇Rhφ|

2
− |∇φ|

2)∇Rhφ,∇σφ
)

=
(
∇ρφ · (−∇ρφ + 2∇φ)(−∇ρφ + ∇φ),∇σφ

)
= (∇ρφ(∇ρφ)T∇ρφ,∇σφ) + 2(∇ρφ(∇φ)T∇ρφ,∇σφ)

+ (∇φ(∇ρφ)T∇ρφ,∇σφ) + 2(∇φ(∇φ)T∇ρφ,∇σφ)

:= (I) + (II) + (III) + (IV). (2.14)

Using Hölder’s inequality and Lemma 2.1, one obtains

|(I)| ≤ ∥∇ρφ∥
3
0,6∥∇σφ∥ ≤ C2∥∇σφ∥

2
+

C
C2

h6q
∥φ∥

6
q+1,6. (2.15)

Similar estimates could also be derived:

|(II)| ≤ C∥φ∥1,∞∥∇ρφ∥
2
0,4∥∇σφ∥ ≤ C2∥∇σφ∥

2
+

C
C2

h4q
∥φ∥

4
q+1,4,

|(III)| ≤ C∥φ∥1,∞∥∇ρφ∥
2
0,4∥∇σφ∥ ≤ C2∥∇σφ∥

2
+

C
C2

h4q
∥φ∥

4
q+1,4.

(2.16)

Since a simple calculation shows that ∇φ(∇φ)T ∈ W 1,∞(Ω)2×2, an application of Lemma 2.2 leads to

|(IV)| ≤ C1∥∆hσφ∥
2
+

C
C1

h2q+2
∥φ∥

2
q+1. (2.17)

A substitution of (2.11)–(2.17) into (2.10) yields

1
2

d
dt

∥σφ∥
2
+
ε2

2
∥∆hσφ∥

2
≤ Cε2h2q+2

∥w∥
2
q+1 + C3∥σφ∥

2
+

C
C3

h2q+2
∥φt∥

2
q+1

+ (1 + 3C2)∥∇σφ∥2
+ 2C1∥∆hσφ∥

2
+

C
C1

h2q+2
∥φ∥

2
q+1

+
C
C2

h6q
∥φ∥

6
q+1,6 +

C
C2

h4q
∥φ∥

4
q+1,4. (2.18)

Also notice that

∥∇σφ∥
2

= −(σφ,∆hσφ) ≤
ε2

4
∥∆hσφ∥

2
+

1
ε2

∥σφ∥
2. (2.19)

By taking C1 =
ε2

32 , C2 =
1
12 , an application of Gronwall inequality gives

∥σφ(x, T )∥2
+

∫ T

0

ε2

4
∥∆hσφ∥

2dt ≤ Cε

(
h2q+2

∫ T

0
(∥w∥

2
q+1 + ∥φt∥

2
q+1 + ∥φ∥

2
q+1)dt

+

∫ T

0
(h6q

∥φ∥
6
q+1,6 + h4q

∥φ∥
4
q+1,4)dt

)
. (2.20)

Note that φh(x, 0) = Rhφ(x, 0) has been used to eliminate the term σφ(x, 0), then we arrive at the estimate for eφ .
As for ew , by the second equation of (2.1) and the relationship between Ph and Rh, i.e., ∆hRh = Ph∆, one gets,

∥ew∥ = ∥(I − Ph)w + Ph∆φ −∆hφh∥ = ∥(I − Ph)w +∆hσφ∥

≤ ∥(I − Ph)w∥ + ∥∆hσφ∥.

The estimate for ew then follows from the approximation property of the L2-orthogonal projection and (2.20). This
completes the proof of Theorem 2.2. □

Remark 2.1. Unlike the results in [37], in which only an O(hq) convergence order was proved (due to the nonlinear
estimates), we obtain an O(hq+1) convergence order. The key point of this improved analysis is to establish a super-
closeness estimate between the discrete solution and the Ritz projection of the continuous solution. Similar techniques
have also been reported in recent works [39,48].

Remark 2.2. In the estimation (2.11) for nonlinear term N1, the convexity of the 4-Laplacian part is crucial and greatly
simplifies our analysis. The form of the nonlinear terms in the NSS equation was more complex and the boundedness
played the major role in the error estimation in [39].
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3. The fully discrete scheme

In this section, we use the BDF2 algorithm to carry out the temporal discretization over the time interval [0, T ]. Given
a positive integer N , let ∆t = T/N be the uniform time step size and denote by, tn = n∆t, 0 ≤ n ≤ N , the nodes. Then
a fully discrete error estimate is provided. In addition, the energy decay property of the fully discrete scheme is proved,
in terms of a modified energy functional, and an efficient iterative algorithm is presented to implement the numerical
scheme. The BDF2 method has already been successfully applied to the CH equation [49,50], as well as the variable time
step size version [51]. An application of a modified BDF2 algorithm to the SS equation was first reported in [33], with
finite difference spatial approximation.

The use of BDF2 approximation leads to the following fully discrete problem.

Problem 3.1. Given (φn
h , w

n
h) ∈ Xh × Xh, find (φn+1

h , wn+1
h ) ∈ Xh × Xh such that for arbitrary (ϕh, vh) ∈ Xh × Xh⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
3φn+1

h − 4φn
h + φn−1

h

2∆t
, ϕh

)
+ ε2(∇wn+1

h ,∇ϕh) + A∆t
(
∇(wn+1

h − wn
h),∇ϕh

)
+ (|∇φn+1

h |
2
∇φn+1

h ,∇ϕh) −
(
∇(2φn

h − φn−1
h ),∇ϕh

)
= 0,

(wn+1
h , vh) − (∇φn+1

h ,∇vh) = 0,

(3.1)

where A ≥
1
16 is a given constant. At the initial step t1, let φ0

h = Rhφ0, w0
h = Rh(−∆φ0), we set⎧⎪⎨⎪⎩

(
φ1
h − φ0

h

∆t
, ϕh

)
+ ε2(∇w1

h,∇ϕh) + (|∇φ1
h |

2
∇φ1

h ,∇ϕh) − (∇φ0
h ,∇ϕh) = 0,

(w1
h, vh) − (∇φ1

h ,∇vh) = 0.
(3.2)

In [37], a modified CN approximation was employed to the temporal discretization for (2.1). The existence of the
solution was proved by the Brouwer fixed-point theorem and its combination with the property of the continuous
dependence on the initial value led to the unique solvability analysis. The corresponding discrete energy identity became

E(φn+1
h ) − E(φn

h ) = −∆t

φn+1
h − φn

h

∆t


2

, ∀n ≥ 0.

Meanwhile, an O(hq
+ ∆t2) accurate order error estimate was proved in [37]. For the BDF2 scheme presented in this

section, we can easily obtain the unique solvability owing to the convex nature of the implicit terms, and the similar
analysis has already been given in [38,50]. Additionally, a modified energy stability can be obtained using a careful energy
analysis. More importantly, an optimal convergence rate O(hq+1

+∆t2) will be established via the super-closeness theory.

Lemma 3.1. The fully discrete scheme 3.1 has a unique solution.

3.1. Energy stability

First, we consider the energy stability for the initial step. We introduce a discrete energy which is consistent with the
continuous space energy as h → 0:

E(φn+1
h , wn+1

h ) =
1
4
∥∇φn+1

h ∥
4
0,4 −

1
2
∥∇φn+1

h ∥
2
+
ε2

2
∥wn+1

h ∥
2. (3.3)

Initial energy decay, E(φ1
h , w

1
h) ≤ E(φ0

h , w
0
h), could be proved, while such a property is not available for n ≥ 1. We define

a modified energy for the analysis:

Ẽ(φn+1
h , wn+1

h ) = E(φn+1
h , wn+1

h ) +
1

4∆t
∥φn+1

h − φn
h∥

2
+

1
2
∥∇(φn+1

h − φn
h )∥

2. (3.4)

Theorem 3.2. The discrete energy E(φn
h , w

n
h) decays at the initial step. And also, the modified energy Ẽ(φn

h , w
n
h) has the

following decay property:

Ẽ(φn+1
h , wn+1

h ) ≤ Ẽ(φn
h , w

n
h), ∀n ≥ 1, (3.5)

provided that A ≥
1
16 .
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Proof. Taking ϕh = φ1
h − φ0

h in the first equality of (3.2) yields

0 =
∥φ1

h − φ0
h∥

2

∆t
+ ε2

(
∇w1

h,∇(φ1
h − φ0

h )
)

−
(
∇φ0

h ,∇(φ1
h − φ0

h )
)
+

(
|∇φ1

h |
2
∇φ1

h ,∇(φ1
h − φ0

h )
)

≥
∥φ1

h − φ0
h∥

2

∆t
+
ε2

2
(∥w1

h∥
2
− ∥w0

h∥
2) +

∥∇φ0
h∥

2
− ∥∇φ1

h∥
2

2
+

∥∇φ1
h∥

4
0,4 − ∥∇φ0

h∥
4
0,4

4
, (3.6)

which leads to

E(φ1
h , w

1
h) − E(φ0

h , w
0
h) ≤ −

∥φ1
h − φ0

h∥
2

∆t
≤ 0. (3.7)

As for n ≥ 1, taking ϕh = φn+1
h − φn

h in the first equation of (3.1):

0 =

(
3φn+1

h − 4φn
h + φn−1

h

2∆t
, φn+1

h − φn
h

)
+ ε2

(
∇wn+1

h ,∇(φn+1
h − φn

h )
)

+ A∆t
(
∇(wn+1

h − wn
h),∇(φn+1

h − φn
h )

)
+

(
|∇φn+1

h |
2
∇φn+1

h ,∇(φn+1
h − φn

h )
)

−
(
∇(2φn

h − φn−1
h ),∇(φn+1

h − φn
h )

)
:= I1 + I2 + I3 + I4 + I5. (3.8)

An application of the Cauchy–Schwarz inequality gives a direct estimate for I1:

I1 ≥
1
∆t

(5
4
∥φn+1

h − φn
h∥

2
−

1
4
∥φn

h − φn−1
n ∥

2). (3.9)

Likewise, I4 and I5 have the following lower bounds:

I4 = ∥∇φn+1
h ∥

4
0,4 − (|∇φn+1

h |
2
∇φn+1

h ,∇φn
h ) ≥

1
4

(
∥∇φn+1

h ∥
4
0,4 − ∥∇φn

h∥
4
0,4

)
, (3.10)

I5 = (−∇φn
h ,∇φ

n+1
h − ∇φn

h ) − (∇φn
h − ∇φn−1

h ,∇φn+1
h − ∇φn

h )

=
1
2
∥∇φn+1

h − ∇φn
h∥

2
+

1
2
∥∇φn

h∥
2
−

1
2
∥∇φn+1

h ∥
2

−
(
∇(φn

h − φn−1
h ),∇(φn+1

h − φn
h )

)
≥ −

1
2
(∥∇φn+1

h ∥
2
− ∥∇φn

h∥
2) −

1
2
∥∇(φn

h − φn−1
h )∥2. (3.11)

For I2, we employ the second part of (3.1) as well as the Cauchy–Schwarz inequality

I2 ≥
ε2

2

(
∥wn+1

h ∥
2
− ∥wn

h∥
2). (3.12)

In addition, making use of (2.3), the artificial term can be handled in the same manner

I3 +
1
∆t

∥φn+1
h − φn

h∥
2

= A∆t∥∆h(φn+1
h − φn

h )∥
2
+

1
∆t

∥φn+1
h − φn

h∥
2

≥ 2
√
A∥∇(φn+1

h − φn
h )∥

2. (3.13)

Therefore, a combination of (3.8)–(3.13) results in

E(φn+1
h , wn+1

h ) − E(φn
h , w

n
h) +

1
4
∥φn+1

h − φn
h∥

2
−

1
4
∥φn

h − φn−1
h ∥

2

+
1
2
∥∇(φn+1

h − φn
h )∥

2
−

1
2
∥∇(φn

h − φn−1
h )∥2

≤ (
1
2

− 2
√
A)∥∇(φn+1

h − φn
h )∥

2
≤ 0, (3.14)

provided that A ≥
1
16 . This completes the proof of Theorem 3.2, upon the definition of Ẽ. □

Remark 3.1. In [52], a stabilization of the form −A∆(φn+1
− 2φn

+ φn−1) was considered and analyzed for the 2D
CH equation with the nonlinear term explicitly treated by an extrapolation, for which the unconditional energy stability
independent of the time step size ∆t was proved therein and the stabilization parameter A depends on the interface
width ε. The anonymous reviewer indicates that a similar idea could also be applied for the SS equation in the 2D case.
Such a technique will lead to a total linear system and a more stringent condition depending on the interface parameter
for the stabilized coefficient may be required, which could be considered in the future.



8 S. Wang, W. Chen, H. Pan et al. / Journal of Computational and Applied Mathematics 377 (2020) 112855

Based on the energy stability, we are able to derive the L∞(0, T ;H2) stability of the numerical solution.

Lemma 3.2. If (φn+1
h , wn+1

h ) is the solution of Problem 3.1, then we have the following bound:

E(φn+1
h , wn+1

h ) ≤ C0, ε2∥∆hφ
n+1
h ∥

2
≤ 2(C0 + |Ω|), ∀n ≥ 0, (3.15)

in which C0 is independent of step size ∆t, h and final time T .

Proof. Theorem 3.2 implies that Ẽ(φn+1
h , wn+1

h ) ≤ Ẽ(φn
h , w

n
h), inductively

E(φn+1
h , wn+1

h ) ≤ Ẽ(φn+1
h , wn+1

h )

≤ E(φ0
h , w

0
h) +

1
4∆t

∥φ1
h − φ0

h∥
2
+

1
2
∥∇(φ1

h − φ0
h )∥

2

≤ E(φ0
h , w

0
h) +

1
4∆t

∥φ1
h − φ0

h∥
2
+ ∥∇φ1

h∥
2
+ ∥∇φ0

h∥
2. (3.16)

On the other hand, a simple calculation shows that

1
8
u4

−
1
2
u2

≥ −
1
2
,

which in turn leads to
1
8
∥∇φh∥

4
0,4 −

1
2
∥∇φh∥

2
≥ −

1
2
|Ω|.

In combination with the definition of discrete energy (3.3), one gets

E(φ0
h , w

0
h) ≥ E(φ1

h , w
1
h) ≥

1
8
∥∇φ1

h∥
4
0,4 +

ε2

2
∥w1

h∥
2
−

1
2
|Ω|

≥
1
2
∥∇φ1

h∥
2
+
ε2

2
∥w1

h∥
2
− |Ω|, (3.17)

which gives a bound of ∥∇φ1
h∥

2. And from (3.6) we know that ∥φ1
h − φ0

h∥
2/∆t can be bounded by a constant from above.

Going back to Eq. (3.16), one gets E(φn+1
h , wn+1

h ) ≤ C0. Meanwhile, a similar inequality as (3.17) could be derived:

E(φn+1
h , wn+1

h ) ≥
1
8
∥∇φn+1

h ∥
4
0,4 +

ε2

2
∥wn+1

h ∥
2
−

1
2
|Ω|

≥
1
2
∥∇φn+1

h ∥
2
+
ε2

2
∥wn+1

h ∥
2
− |Ω|

≥
ε2

2
∥∆hφ

n+1
h ∥

2
− |Ω|, (3.18)

in which (2.3) and (3.1) have been used in the last step. This completes the proof of Lemma 3.2. □

3.2. The optimal error estimate

In this subsection we deal with the optimal error estimate of the fully discrete system in Problem 3.1. The correspond-
ing error equations for n ≥ 1 become

(δn+1
∆t σφ, ϕh) + ε2(∇σ n+1

w ,∇ϕh) + A∆t
(
∇(σ n+1

w − σ n
w),∇ϕh

)
=

(
∇(2σ n

φ − σ n−1
φ ),∇ϕh

)
− (δn+1

∆t ρφ, ϕh) + (Rn+1
1 , ϕh) + A∆t(Rn+1

2 ,∇ϕh)

+ (Rn+1
3 ,∇ϕh) + (N n+1

1 ,∇ϕh) + (N n+1
2 ,∇ϕh), (3.19)

(σ n+1
w , vh) − (∇σ n+1

φ ,∇vh) = −(ρn+1
w , vh), (3.20)

where

δn+1
∆t u =

3un+1
− 4un

+ un−1

2∆t
, Rn+1

1 = δn+1
∆t φ − φn+1

t ,

Rn+1
2 = ∇(wn+1

− wn), Rn+1
3 = ∇(φn+1

− 2φn
+ φn−1),

N n+1
1 = |∇φn+1

h |
2
∇φn+1

h − |∇Rhφ
n+1

|
2
∇Rhφ

n+1,

N n+1
2 = |∇Rhφ

n+1
|
2
∇Rhφ

n+1
− |∇φn+1

|
2
∇φn+1.
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And for n = 0, one has(σ 1
φ − σ 0

φ

∆t
, ϕh

)
+ ε2(∇σ 1

w,∇ϕh) − (∇σ 0
φ ,∇ϕh) + (∇φ1

− ∇φ0,∇ϕh)

= −
(ρ1

φ − ρ0
φ

∆t
, ϕh

)
+

(φ1
− φ0

∆t
− φ1

t , ϕh
)
+ (N 1

1 ,∇ϕh) + (N 1
2 ,∇ϕh), (3.21)

(σ 1
w, vh) − (∇σ 1

φ ,∇vh) = −(ρ1
w, vh), (3.22)

with

N 1
1 = |∇φ1

h |
2
∇φ1

h − |∇Rhφ
1
|
2
∇Rhφ

1, N 1
2 = |∇Rhφ

1
|
2
∇Rhφ

1
− |∇φ1

|
2
∇φ1.

First we consider the case for n ≥ 1. Taking ϕh = σ n+1
φ in (3.19), vh = ε2∆hσ

n+1
φ in (3.20) and adding up the two equations

lead to

(δn+1
∆t σφ, σ

n+1
φ ) + ε2∥∆hσ

n+1
φ ∥

2
+ A∆t

(
∇(σ n+1

w − σ n
w),∇σ

n+1
φ

)
=

(
∇(2σ n

φ − σ n−1
φ ),∇σ n+1

φ

)
− (δn+1

∆t ρφ, σ
n+1
φ ) + (Rn+1

1 , σ n+1
φ )

+ A∆t(Rn+1
2 ,∇σ n+1

φ ) + (Rn+1
3 ,∇σ n+1

φ )

− ε2(ρn+1
w ,∆hσ

n+1
φ ) + (N n+1

1 + N n+1
2 ,∇σ n+1

φ ). (3.23)

It is now easy to show that (N n+1
1 ,∇σ n+1

φ ) is less than zero on the basis of (2.11) . Besides, the estimate (2.12) implies
that

|(N n+1
2 ,∇σ n+1

φ )| ≤ 2C1∥∆hσ
n+1
φ ∥

2
+ 3C2∥∇σ

n+1
φ ∥

2
+

C
C2

h6q
∥φ(tn+1)∥6

q+1,6

+
C
C2

h4q
∥φ(tn+1)∥4

q+1,4 +
C
C1

h2q+2
∥φ(tn+1)∥2

q+1. (3.24)

From (2.3), (3.1) and (3.20), one gets

A∆t
(
∇(σ n+1

w − σ n
w),∇σ

n+1
φ

)
= −A∆t(σ n+1

w − σ n
w,∆hσ

n+1
φ )

= −A∆t
(
∇(σ n+1

φ − σ n
φ ),∇∆hσ

n+1
φ

)
+ A∆t(ρn+1

w − ρn
w,∆hσ

n+1
φ )

≥
A∆t
2

(
∥∆hσ

n+1
φ ∥

2
− ∥∆hσ

n
φ∥

2)
− C1∥∆hσ

n+1
φ ∥

2
−

C∆t3

C1
h2q+2

∫ tn+1

tn
∥wt∥

2
q+1dt. (3.25)

Subsequently, we estimate the remaining terms on the right hand side of (3.23). Applying (2.3) and the Cauchy–Schwarz
inequality yields(

∇(2σ n
φ − σ n−1

φ ),∇σ n+1
φ

)
≤
ε2

4
∥∆hσ

n+1
φ ∥

2
+

C
ε2

(∥σ n
φ∥

2
+ ∥σ n−1

φ ∥
2). (3.26)

To analyze the second to the fifth terms, we resort to the Cauchy–Schwarz inequality and the Taylor expansion:

−(δn+1
∆t ρφ, σ

n+1
φ ) ≤

C3

2
∥σ n+1

φ ∥
2
+

Ch2q+2

C3∆t

∫ tn+1

tn−1

∥φt∥
2
q+1dt, (3.27)

(Rn+1
1 , σ n+1

φ ) ≤
C3

2
∥σ n+1

φ ∥
2
+

C∆t3

C3

∫ tn+1

tn−1

∥φttt∥
2dt, (3.28)

A∆t(Rn+1
2 ,∇σ n+1

φ ) ≤ C2∥∇σ
n+1
φ ∥

2
+

C∆t3

C2

∫ tn+1

tn
∥∇wt∥

2dt, (3.29)

(Rn+1
3 ,∇σ n+1

φ ) ≤ C2∥∇σ
n+1
φ ∥

2
+

C∆t3

C2

∫ tn+1

tn−1

∥∇φtt∥
2dt, (3.30)

−ε2(ρn+1
w ,∆hσ

n+1
φ ) ≤

ε2

4
∥∆hσ

n+1
φ ∥

2
+ Cε2h2q+2

∥w(tn+1)∥2
q+1. (3.31)

Recall the G−norm introduced in [53]. Denote pk+1
= [σ k

φ , σ
k+1
φ ]

T , and define ∥pk+1
∥
2
G ≜ (pk+1,Gpk+1) where G =( 1

2 −1
−1 5

2

)
is a symmetric positive definite matrix. Simple calculation gives

(δn+1
∆t σφ, σ

n+1
φ ) =

1
2∆t

(
∥pn+1

∥
2
G − ∥pn

∥
2
G
)
+

1
4∆t

∥σ n+1
φ − 2σ n

φ + σ n−1
φ ∥

2. (3.32)
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Upon this, in combination with the above estimates for (3.23), one has

1
2∆t

(∥pn+1
∥
2
G − ∥pn

∥
2
G) +

ε2

2
∥∆hσ

n+1
φ ∥

2
+

A∆t
2

(∥∆hσ
n+1
φ ∥

2
− ∥∆hσ

n
φ∥

2)

≤ 3C1∥∆hσ
n+1
φ ∥

2
+ 5C2∥∇σ

n+1
φ ∥

2
+ C3∥σ

n+1
φ ∥

2

+
C
C2

h6q
∥φ(tn+1)∥6

q+1,6 +
C
C2

h4q
∥φ(tn+1)∥4

q+1,4 +
C
C1

h2q+2
∥φ(tn+1)∥2

q+1

+
C∆t3

C1
h2q+2

∫ tn+1

tn
∥wt∥

2
q+1dt +

Ch2q+2

C3∆t

∫ tn+1

tn−1

∥φt∥
2
q+1dt

+
C∆t3

C3

∫ tn+1

tn−1

∥φttt∥
2dt +

C∆t3

C2

∫ tn+1

tn
∥∇wt∥

2dt

+
C∆t3

C2

∫ tn+1

tn−1

∥∇φtt∥
2dt + Cε2h2q+2

∥w(tn+1)∥2
q+1 +

C
ε2

(∥σ n
φ∥

2
+ ∥σ n−1

φ ∥
2), (3.33)

where C1, C2, C3 can be arbitrary positive constants.
Next we turn to the case n = 0. Similarly, taking ϕh = σ 1

φ , vh = ε2∆hσ
1
φ in (3.21)–(3.22) and adding the equations up,

one gets (σ 1
φ − σ 0

φ

∆t
, σ 1

φ

)
+ ε2∥∆hσ

1
φ∥

2

≤ 2Ĉ1∥∆hσ
1
φ∥

2
+ 3Ĉ2∥∇σ

1
φ∥

2
+ 2Ĉ3∥σ

1
φ∥

2
+

C
ε2

∥σ 0
φ∥

2

+
C

Ĉ2
h6q

∥φ(t1)∥6
q+1,6 +

C

Ĉ2
h4q

∥φ(t1)∥4
q+1,4 +

C

Ĉ1
h2q+2

∥φ(t1)∥2
q+1

+
Ch2q+2

Ĉ3∆t

∫ t1

t0

∥φt∥
2
q+1dt +

C∆t2

Ĉ3
∥φtt∥

2
L∞(0,T ;L2)

+
C∆t2

Ĉ3
∥∆φt∥

2
L∞(0,T ;L2) + Cε2h2q+2

∥w∥
2
L∞(0,T ;Hq+1). (3.34)

Let Ĉ3 =
1

12∆t , and take Ĉ2 =

√
Ĉ3ε2

3 , then 3Ĉ2∥∇σ
1
φ∥

2
≤ Ĉ3∥σ

1
φ∥

2
+

ε2

4 ∥∆hσ
1
φ∥

2. Moreover, take Ĉ1 =
ε2

8 , we have

∥σ 1
φ∥

2

4∆t
+
ε2

2
∥∆hσ

1
φ∥

2
≤

(
1

2∆t
+

C
ε2

)
∥σ 0

φ∥
2
+ C

(
h6q

ε
∥φ∥

6
L∞(0,T ;Wq+1,6)

+
h4q

ε
∥φ∥

4
L∞(0,T ;Wq+1,4) +

h2q+2

ε2
∥φ∥

2
L∞(0,T ;Hq+1)

)
+ Ch2q+2

∫ t1

t0

∥φt∥
2
q+1dt

+ Cε2h2q+2
∥w∥

2
L∞(0,T ;Hq+1) + C∆t3

(
∥φtt∥

2
L∞(0,T ;L2) + ∥∆φt∥

2
L∞(0,T ;L2)

)
. (3.35)

Thus we complete the estimate for n = 0. For the same reason, let C3 be a positive constant, take C1 =
ε2

24 , C2 =

√
C3ε2

5 ,
then 5C2∥∇σ

n+1
φ ∥

2
≤ C3∥σ

n+1
φ ∥

2
+

ε2

4 ∥∆hσ
n+1
φ ∥

2. Multiplying equation (3.33) by 2∆t , summing up for n and noticing that
∥pn+1

∥
2
G ≥

1
2∥σ

n+1
φ ∥

2 and ∥p1
∥
2
G =

5
2∥σ

1
φ∥

2, one obtains

1 − 8∆tC3

2
∥σ n+1

φ ∥
2
+
ε2∆t
4

n∑
m=1

∥∆hσ
m+1
φ ∥

2

≤ C
(
h6q

ε
∥φ∥

6
L∞(0,T ;Wq+1,6) +

h4q

ε
∥φ∥

4
L∞(0,T ;Wq+1,4) +

h2q+2

ε2
∥φ∥

2
L∞(0,T ;Hq+1)

)
+ C∆t4h2q+2

∫ tn+1

t1

∥wt∥
2
q+1dt + Ch2q+2

∫ tn+1

0
∥φt∥

2
q+1dt

+ Cε2h2q+2
∥w∥

2
L∞(0,T ;Hq+1) + C∆t4

∫ tn+1

0
∥φttt∥

2dt +
C∆t4

ε

∫ tn+1

t1

∥∇wt∥
2dt

+
C∆t4

ε

∫ tn+1

0
∥∇φtt∥

2dt +

(
4C3 +

C
ε2

)
∆t

n∑
m=1

∥σm
φ ∥

2
+

5
2
∥σ 1

φ∥
2. (3.36)
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Combining (3.36) with (3.35) yields

1 − 8∆tC3

2
∥σ n+1

φ ∥
2
+
ε2∆t
4

n∑
m=1

∥∆hσ
m+1
φ ∥

2

≤ Cε,T
(
h6q

+ h4q
+ h2q+2

+∆t4
)
+ Cε∆t

n∑
m=1

∥σm
φ ∥

2. (3.37)

Finally, let C3 ≤
1
16 , then the choice of ∆t < 1 ensures that 1−8∆tC3

2 > 1
4 , thus an application of the discrete Gronwall

inequality gives

∥σ n+1
φ ∥

2
+ ε2∆t

n∑
m=1

∥∆hσ
m+1
φ ∥

2
≤ Cε,T (h2q+2

+∆t4). (3.38)

Theorem 3.3. Let (φn, wn) and (φn
h , w

n
h) be the solution of (1.3) in the regularity class C1 and Problem 3.1 at time tn

respectively, then we have the following error estimate

∥φn
− φn

h∥ +

(
ε2∆t

n∑
m=1

∥wm
− wm

h ∥
2
) 1

2

≤ Cε,T (hq+1
+∆t2), (3.39)

for any 1 ≤ n ≤ N, where Cε,T is a constant that only depends on ε and T .

Proof. Using the same arguments as in the last part of Theorem 2.2 and combining with estimate (3.38) make (3.39). □

Remark 3.2. In (3.32), the G-norm was adopted just like in [38,39,50] which is elegant and simple in the case of the
uniform time step size, while it cannot be available for variable time steps. Recently in [51], the variable steps method was
successfully applied to the CH equation, and the convergence analysis was firstly completed by a combination of energy
estimates with a novel generalized discrete Gronwall type inequality. For the SS equation, it could be also applicable, and
will be considered in our future work.

3.3. Precondition steepest decent solver

In this subsection, we describe a preconditioned steepest descent (PSD) algorithm for the fully discrete mixed finite
element scheme, namely Problem 3.1, based on the theoretical framework in [40]. The fully discrete scheme (3.1) at time
n + 1 can be expressed as

N (φn+1, ψn+1) = f , (3.40)

with

N (φ,ψ) =

⎧⎨⎩
3φ − 4φn

+ φn−1

2∆t
− ∇ · (|∇φ|

2
∇φ) − (A∆t + ε2)∆hψ + A∆t∆hψ

n

ψ +∆hφ

, (3.41)

f =

{
−∆h(2φn

− φn−1)
0

. (3.42)

Note that Eq. (3.40) can be regarded as a minimizer of energy

J(φ) =

∫
Ω

3
2∆t

(φ −
4
3
φn

+
1
3
φn−1)2 +

1
4
|∇φ|

4
+

A∆t + ε2

2
|∆hφ|

2dx (3.43)

+

∫
Ω

A∆t∆hφ
n∆hφdx +

∫
Ω

∆h(2φn
− φn−1)φdx.

The main idea of the PSD solver is to use a linearized version of the nonlinear operator as a preconditioner, or in other
words, as a metric for choosing the search direction [33]. A linearized version of the nonlinear operator N can be

L(d, w) :=

(
3

2∆t d − (A∆t + ε2)∆hw

w +∆hd

)
, (3.44)
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which is used to find an appropriate search direction. Given the current iterate φn+1,k, the search direction can be
computed by solving the equation L(dk, wk) = f − N (φn+1,k, ψn+1,k), namely⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
3

2∆t
dk, v

)
+ (A∆t + ε2)(∇wk,∇v) =

(
∇(2φn

− φn−1),∇v
)

−

(
3φn+1,k

− 4φn
+ φn−1

2∆t
, v

)
− (A∆t + ε2)(∇ψn+1,k,∇v)

+ A∆t(∇ψn,∇v) − (|∇φn+1,k
|
2
∇φn+1,k,∇v),

(wk, s) − (∇dk,∇s) = 0.

(3.45)

With the current iterate and search direction on hand, the next iteration is updated as

φn+1,k+1
= φn+1,k

+ αkdk, (3.46)

where αk ∈ R satisfies(
N (φn+1,k+1, ψn+1,k+1) − f , dk

)
= 0.

The theoretical analysis in [40] suggests that the iteration sequence φn+1,k converges geometrically to the exact numerical
solution φn+1, and the convergence rate is dependent on time step size ∆t , independent of mesh grid size h.

Theorem 3.4. Let φn+1,k be the sequence generated by (3.46) and φn+1 the numerical solution of Problem 3.1 at time n+ 1.
Then there exists a constant C∗ > 0 such that

ek := J(φn+1,k) − J(φn+1) ≤

(
1 −

1
2C∗

)k

e0, (3.47)

with C∗
= 1 + C4(A∆t + ε2)−

3
4 ( 2∆t

3 )
1
4 , C4 is a constant that only depends on Ω .

Remark 3.3. A geometric convergence rate is assured by Theorem 3.4. We observe that C∗ depends on the values of ∆t
and ε, in other words, the PSD iteration convergence will accelerate as ∆t decreases, and it will slow down as ε decreases.

The contraction estimate (3.47) is valid for the error of energy (3.43). Such a contraction estimate is not directly
available for the error of the original phase variable qk := φn+1,k

− φn+1. However, we are still able to derive a geometric
convergent estimate for qk. The functional inequality is available

J(φn+1,k) − J(φn+1) = δφ J(φn+1)(qk) +
1
2
δφφ J(θ )(qk, qk) =

1
2
δφφ Jh(θ )(qk, qk)

≥
3

2∆t
∥qk∥2

+
A∆t + ε2

2
∥∆hqk∥2, (3.48)

where δφ J(φ), δφφ J(φ) are the first and second Gâteaux derivatives of J(φ), θ is in the line segment from φn+1,k to φn+1

and δφ J(φn+1) = 0 is applied in the second equality. As a direct consequence, we get

3
2∆t

∥qk∥2
+

A∆t + ε2

2
∥∆hqk∥2

≤ ek ≤ e0(C∗)k ≤ rn+1(C∗)k, (3.49)

where

rn+1 =
1

6∆t
∥φn

− φn−1
∥
2
+

1
4
(∥∇φn

∥
4
0,4 − ∥∇φn+1

∥
4
0,4)

+
A∆t + ε2

2
(∥∆hφ

n
∥
2
− ∥∆hφ

n+1
∥
2) + A∆t

(
∆hφ

n,∆h(φn
− φn+1)

)
+

(
∆h(2φn

− φn−1), φn
− φn+1).

The expression of rn+1 is derived by setting φn+1,0
= φn. Then the geometric convergence analysis for the numerical error

qk, in both L2 and H2 norms immediately follows from (3.49). We also notice that rn+1 = O(1).

Remark 3.4. The PSD algorithm for the fully discrete scheme (3.1) is slightly different from that proposed in [40]. Firstly,
it is a mixed finite element version, secondly, for the choice of linearized operator L, we just throw the nonlinear term
∇ ·(|∇φ|

2
∇φ) away rather than regarding |∇φ|

2 as a constant, and the stability can be preserved by the existing stabilized
term A∆t∆h(w − wn).
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Table 4.1
Global L2 error at time T = 1, convergence rate and average iterations for the PSD solver with P1
element approximation. The parameters are given in the text, and the refinement path is taken to be
∆t = h/2, thus the L2 error is expected to be O(∆t2) + O(h2) = O(h2) which is confirmed in the test.
h ∆t = h/2 ∥φ(·, T ) − φe(·, T )∥ Order PSD iter

1/16 1/32 4.63333e−3 – 9
1/32 1/64 1.15934e−3 1.99875 7
1/64 1/128 2.90091e−4 1.99872 6
1/128 1/256 7.26815e−5 1.99685 5
1/256 1/512 1.83010e−5 1.98967 4

Table 4.2
L2 error at time T = 1, convergence order for spatial approximation and average iterations for the PSD
solver with P2 element approximation. The parameters are given in the text, and the refinement path
is taken to be ∆t = h2 , thus the L2 error is expected to be O(∆t2)+O(h3) = O(h3) which is confirmed
in the test.
h ∆t = h2

∥φ(·, T ) − φe(·, T )∥ Order PSD iter

1/16 1/162 5.00777e−5 – 7
1/32 1/322 6.24880e−6 3.00252 5
1/64 1/642 7.82013e−7 2.99831 4
1/128 1/1282 9.81548e−8 2.99406 3

Table 4.3
L2 error at time T = 1, convergence order for temporal approximation and average iterations for the PSD
solver with P2 element approximation. The parameters are given in the text, and the refinement path
is taken to be ∆t = h, thus the L2 error is expected to be O(∆t2) + O(h3) = O(h2) which is confirmed
in the test.
h ∆t = h ∥φ(·, T ) − φe(·, T )∥ Order PSD iter

1/16 1/16 5.09479e−5 – 14
1/32 1/32 7.80922e−6 2.70577 11
1/64 1/64 1.61276e−6 2.27564 9
1/128 1/128 3.69961e−7 2.12409 7

4. Numerical results

4.1. Convergence test

In this subsection, we test the convergence of the proposed numerical scheme. The computational domain is set as
Ω = [0, 1]2, the final time is taken as T = 1, the artificial regularization parameter is given by A =

1
16 , and the surface

diffusion coefficient is chosen as ε2 = 0.05. In order to test the convergence rate, we have to add an artificial term on
the right hand side to make the exact solution

φe(x, y, t) = cos(πx) cos(πy) sin(t). (4.1)

For the spatial discretization, both the P1 and P2 elements are used with uniform meshes. To verify the optimal
convergence order, we set the time step size ∆t = h/2 for the P1 element case, thus at the final time T = 1, we expect
an global error O(∆t2)+O(h2) = O(h2) as h → 0. As for the P2 element, we firstly set ∆t = h to check the second order
approximation for the temporal discretization and then let ∆t = h2 to observe the spatial convergence order.

At each time level, we need a PSD solver to implement the numerical scheme. The corresponding results are displayed
in Tables 4.1–4.3, from which we observe that the PSD iteration terminates in several steps. In addition, the convergence
order is consistent with our theoretical analysis.

4.2. Complexity of the PSD iteration

In this subsection, we test the complexity of the PSD solver with the same parameters as in the previous subsection,
except by taking the final time as T = 0.32. The dependence of PSD iteration on spatial mesh size h, time step size ∆t
and the value of ε are demonstrated in Table 4.4, from which we observe that the number of the PSD iteration increases
obviously with an increasing value of ∆t and a decreasing value of ε. These behaviors have confirmed the theoretical
results (3.47), in terms of the dependence of the PSD iteration on the parameter ∆t and ε. Besides, the choice of h does
not affect the number of iteration, and this is consistent with the theoretical analysis.
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Table 4.4
The dependence of the PSD iteration on different parameters h, ε and ∆t .
Average PSD Iter h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256

∆t = 0.01
ε2 = 0.05 3.94 3.94 3.97 3.97 3.97

Average PSD Iter ε2 = 0.005 ε2 = 0.01 ε2 = 0.03 ε2 = 0.05 ε2 = 0.1

∆t = 0.01
h = 1/128 5.25 4.75 4.13 3.97 3.75

Average PSD Iter ∆t = 0.1 ∆t = 0.05 ∆t = 0.01 ∆t = 0.005 ∆t = 0.001

ε2 = 0.05
h = 1/128 7.81 5.63 3.97 3.61 2.96

Fig. 4.1. Time snapshots of the evolution for the thin film epitaxial growth model with slope selection at t = 1, 50, 500, 3000. The parameters are
Ω = [0, 12.8]2, h = 12.8/128, t ∈ [0, 3000], ε2 = 0.05, ∆t = 0.004 for t ∈ [0, 200], ∆t = 0.04 for t ∈ [200, 1000], ∆t = 0.08 for t ∈ [1000, 2000],
∆t = 0.15 for t ∈ [2000, 3000] and A =

1
16 .

4.3. Long time numerical simulation

In this subsection we test the energy decay property for the fully discrete scheme (3.1). Besides, the roughness of the
height function is also investigated. The expression for the roughness of the height function is

R(φ) =

√
1

|Ω|

∫
Ω

(
φ(x, t) − φ(t)

)2dx, with φ(t) =
1

|Ω|

∫
Ω

φ(x, t)dx. (4.2)
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Fig. 4.2. The left panel: the plot of energy evolution. The right panel: the log–log plot of energy in time period [1,500]; The blue line represents
the data obtained by numerical simulation while the dashed red line is a least square approximation. The fitted line has the form atb with
a = 39.03, b = −0.33.

Fig. 4.3. The left panel: the plot of roughness evolution. The right panel: the log–log plot of roughness in time period [1,500]; The blue line
represents the data obtained by numerical simulation while the dashed red line is a least square approximation. The fitted line has the form atb
with a = 0.2444, b = 0.3074.

Here we set the parameters as Ω = [0, 12.8]2, t ∈ [0, 3000], ε2 = 0.05, ∆t = 0.004 for t ∈ [0, 200], ∆t = 0.04 for t ∈

[200, 1000], ∆t = 0.08 for t ∈ [1000, 2000], ∆t = 0.15 for t ∈ [2000, 3000] and A =
1
16 . The initial data for the

simulation is randomly distributed in (−0.05, 0.05). The snapshot figures of the phase variable at a sequence of time
instants, t = 1, t = 50, t = 500 and t = 3000, are displayed in Fig. 4.1.

The evolution of energy and roughness is displayed in Figs. 4.2 and 4.3, respectively, and the numerical results have
confirmed the approximate t−1/3 energy decay rate and t1/3 roughness growth rate (vs time) estimates [4].

5. Concluding remarks

In this paper, we have proposed and analyzed a mixed finite element method with modified second-order backward
differentiation formula for solving the thin film epitaxy with slope selection equation. The energy stability has been
established, and an optimal convergence rate O(hq+1

+ ∆t2) has been proved. In addition, an efficient preconditioned
steepest descent iterative algorithm has been used to solve the fully discrete system. The corresponding numerical tests
have been undertaken to verify the theoretical analysis.
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