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Abstract. A second order numerical method for the primitive equations
(PEs) of large-scale oceanic flow formulated in mean vorticity is proposed and
analyzed, and the full convergence in L2 is established. In the reformulation of
the PEs, the prognostic equation for the horizontal velocity is replaced by evo-
lutionary equations for the mean vorticity field and the vertical derivative of
the horizontal velocity. The total velocity field (both horizontal and vertical)
is statically determined by differential equations at each fixed horizontal point.
The standard centered difference approximation is applied to the prognostic
equations and the determination of numerical values for the total velocity field
is implemented by FFT-based solvers. Stability of such solvers are established
and the convergence analysis for the whole scheme is provided in detail.

1. Introduction. The primary purpose of this article is to give a detailed con-
vergence analysis of a second order numerical method for the three-dimensional
primitive equations (PEs) of large scale oceanic flow formulated in mean vorticity,
using regular numerical grid.

The primitive equations (PEs) stand for one of the most fundamental governing
equations for atmospheric and oceanic flow. A detailed derivation can be found
at J. Pedlosky [19], J. L. Lions, R. Temam and S. Wang [12, 13, 16], etc. This
system is derived from the 3-D incompressible NSEs under Boussinesq assumption
that density variation is neglected except in the buoyancy term, combined with the
asymptotic scaling such that the aspect ratio of the vertical to the horizontal length
scale is small. The most distinguished feature of the PEs is that the hydrostatic
balance replaces the momentum equation for the vertical velocity. As a result, the
fast wave with respect to gravity effect is filtered out.

It is observed that the pressure gradient, the hydrostatic balance, are coupled
together with the incompressibility of the 3-D velocity field u. In addition, the
vertical velocity has to be determined by an integration formula in terms of the
divergence of the horizontal velocity field, since there is no momentum equation
for the vertical velocity. As a result, the degree of nonlinearity of the primitive
equations is even higher than that of the usual 3-D Navier-Stokes equations, due
to lack of regularity for the vertical velocity field. Such nonlinearity is one of the
main difficulties of the 3-D PEs, in both the PDE level and numerical analysis.
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The PDE analysis for the PEs can be found in earlier literatures [9, 10, 12, 13],
etc. In those works the system is proven to be well-posed. Regarding the numerical
issues, some computational methods based on velocity-pressure formulation have
been proposed and analyzed in recent articles; see [22, 23], etc.

On the other hand, the development of a corresponding vorticity formulation for
3-D geophysical flow has not been as well studied. In the context of the 3-D PEs, the
starting point of the vorticity formulation is the following: the averaged horizontal
velocity field with respect to the vertical direction is divergence-free, namely (2.4)
below. This allows the concept of a mean vorticity and mean stream function to be
introduced so that the kinematic relationship between the two takes the form of a
2-D Poisson equation. In addition, by taking the vertical derivative to the original
momentum equation and applying the hydrostatic balance, one can convert the
pressure gradient into a density gradient, resulting in an evolution equation for vz.
Thus, the entire PE system can be reformulated in terms of an evolution equation
for the mean vorticity together with regular evolution equations for the density and
vz. The total velocity in horizontal direction is then determined via a combination
of its vertical derivative and its average from the top and bottom, which are updated
using the dynamic evolution equations. The vertical velocity is then recovered from
a second order ODE with homogeneous boundary conditions at the top and bottom
at each fixed horizontal point. The above equations form an equivalent formulation
of the PEs, namely the mean vorticity formulation. This formulation was reported
in [27]. The derivation of the reformulation is reviewed in Section 2.

In Section 3, a second order centered-difference method based on the PEs for-
mulated in mean vorticity is proposed and discussed in detail. The prognostic
variables, including the mean vorticity field, the profile vz and the density field, are
updated by finite difference schemes applied to the dynamic equations. In turn, the
total velocity field, both horizontal and vertical, are recovered by the mean velocity
field and the dynamic variables vz = (ξ, ζ), using FFT-based solvers. The mean
vorticity field on the lateral boundary are determined by the mean stream function
field through a local formula. It can be seen that the regular numerical grid can
be used for all physical variables, thus avoiding a more complicated staggered grid,
such as 3-D MAC grid utilized in [22]. This is one of the main advantages of the
mean vorticity formulation.

The basic idea of the convergence analysis for the proposed numerical scheme
for the PEs in this alternate formulation is similar to that in [28]. There the 2-D
NSEs formulated in terms of the vorticity are investigated. However, additional
techniques are required due to special features of the reformulated PEs. The most
distinguished feature of the numerical method is that the velocity field is not directly
updated by an evolution equation. In Section 4, the accuracy analysis of the solvers
for the velocity field is given. It is proven that the total velocity field u = (v, w)
generated by the scheme has the second order accuracy in W 1,∞ norm.

In addition, lack of regularity for the vertical velocity in the PEs requires a more
subtle consistency analysis. That is the main reason why the regularity requirement
for the exact solution in Theorem 3.1 is higher than that in [28], where the usual 2-D
NSEs are discussed. The details of the consistency analysis is given in Section 5. In
the leading order expansion, the exact profile of the mean stream function and (ξ, ζ)
are given, with the mean velocity and mean vorticity field determined by the finite
differences of the mean stream function, and the approximate velocity profiles are
constructed via the numerical procedure given in Section 3. Moreover, an O(h2)
correction is added to the exact density profile to satisfy the discrete boundary
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condition to higher order. Due to the W 1,∞ accuracy of the constructed velocity
field, it is shown that the approximate solutions satisfy the numerical scheme of
the PEs in the alternate formulation up to O(h2) error, including the boundary.
Furthermore, higher order expansion is used so that the approximated solutions
satisfy the numerical scheme up to O(h4) order. That makes possible the recovery
of the L∞ a-priori assumption, for both the horizontal and vertical velocity fields
in the full nonlinear PE system, through the use of inverse inequalities in a 3-D
setting.

Stability and error estimates are provided in Section 6, which show full second
order convergence of the numerical scheme in L2 norm. The analysis is based on
the energy estimates for the error functions of the mean velocity, the profile (ξ, ζ)
and the density. Standard summation by parts is applied on the regular numerical
grid, with a careful treatment of the boundary conditions for the different physical
variables. The inverse inequality is used to recover the L∞ a-priori assumption for
the numerical velocities.

2. Review of the mean vorticity formulation for the primitive equations.
The non-dimensional primitive equations for the atmosphere and ocean can be
written in terms of the following system under proper scaling:





vt + (v ·∇)v + w
∂v

∂z
+

1
Ro

(
fk × v +∇p

)
=

( 1
Re1

4+
1

Re2
∂2

z

)
v ,

∂p

∂z
= −ρ ,

∇·v + ∂zw = 0 ,

ρt + (v ·∇)ρ + w
∂ρ

∂z
=

( 1
Rt1

4+
1

Rt2
∂2

z

)
ρ ,

(2.1)

supplemented with the initial data

v(x, y, 0) = v0(x, y) , ρ(x, y, 0) = ρ0(x, y) . (2.2)

In the system (2.1), u = (v, w) = (u, v, w) is the 3-D velocity vector field,
v = (u, v) the horizontal velocity, ρ the density field, p the pressure, Ro the Rossby
number. The term fk × v corresponds to the Coriolis force in its β−plane ap-
proximation with f = f0 + βy. The parameters Re1, Re2 represent the Reynolds
numbers in horizontal and vertical directions respectively, which reflect different
length scales and may also reflect the effects of eddy diffusion. Similarly, 1

Rt1
and

1
Rt2

stand for the horizontal and vertical heat conductivity coefficients. The opera-
tors ∇, ∇⊥, ∇·, 4 stand for the gradient, perpendicular gradient, divergence and
Laplacian in horizontal plane, respectively. For simplicity of presentation below we
denote ν1 = 1

Re1
, ν2 = 1

Re1
, κ1 = 1

Rt1
, κ2 = 1

Rt1
.

The computational domain is taken as M = M0 × [−H0, 0], where M0 is the
surface part of the ocean. The boundary condition for (2.1) is given by

w = 0 , ν2
∂v

∂z
= τ0 , κ2

∂ρ

∂z
= ρf , at z = 0 ,

w = 0 , ν2
∂v

∂z
= 0 , κ2

∂ρ

∂z
= 0 , at z = −H0 ,

(2.3a)

v = 0 , and
∂ρ

∂n
= 0 , on ∂M0 × [−H0, 0] , (2.3b)
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in which the term τ0 represents the wind stress force, and ρf the heat flux at the
surface of the ocean. The detailed description, derivation and analysis of the PEs
in the above formulation were established by J. L. Lions, R. Temam and S. Wang
in [12, 13, 14, 16, 15, 17], etc. In this paper, the numerical method is based on the
above boundary conditions.

2.1. Introduction of mean vorticity, mean stream function and mean ve-
locity. Motivated by the fact that

∫ 0

−H0

(∇·v) (x, y, ·) dz = 0 , ∀(x, y) ∈M0 , (2.4)

which comes from the integration of the continuity equation and the boundary
condition for w at z = 0,−H0, we arrive at the conclusion that the mean velocity
field v = (u, v) is divergence-free in (x, y) plane

(∇ · v) (x, y) = 0 , ∀(x, y) ∈M0 . (2.5)

The incompressibility of v in the horizontal plane results in an introduction of the
mean stream function ψ, which is a 2-D field, such that

v = ∇⊥ψ = (−∂yψ, ∂xψ) . (2.6)

The Dirichlet boundary condition v |∂M0= 0 (because of the boundary condition
for v on the lateral boundary section in (2.3b)) amounts to saying

ψ = 0 ,
∂ψ

∂n
= 0 , on ∂M0 . (2.7)

Accordingly, the mean vorticity is defined as

ω = ∇× v = −∂yu + ∂xv . (2.8)

Therefore, the kinematic relationship between the mean stream function and the
mean vorticity can be expressed as the following 2-D Poisson equation

4ψ = ω . (2.9)

Note that there are two boundary conditions for ψ, including both Dirichlet and
Neumann, as in (2.7). This issue will be discussed below.

2.2. The reformulation of the PEs. We have the following system of the PEs
formulated in mean vorticity.
Mean vorticity equation





ωt + (∇⊥ ·∇·)
(
v ⊗ v

)
+

β

Ro
v = ν14ω +

1
H0

∇⊥ ·τ0 ,

4ψ = ω ,

ψ = 0 ,
∂ψ

∂n
= 0 , on ∂M0 ,

v = ∇⊥ψ = (−∂yψ, ∂xψ) ,

(2.10a)

Evolutionary equation for vz = (ξ, ζ)
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



vzt +
( uξx + vξy + wξz − vyξ + uyζ

uζx + vζy + wζz − uxζ + vxξ

)
+

f

Ro
k × vz − 1

Ro
∇ρ

=
(
ν14+ ν2∂

2
z

)
vz ,

vz |z=0=
1
ν2

τ0 , vz |z=−H0= 0 ,

vz = 0 , on ∂M0 × [−H0, 0] ,

(2.10b)

Recovery of the horizontal velocity

∂zu = ξ , ∂zv = ζ ,
1

H0

∫ 0

−H0

v dz = v . (2.10c)

Recovery of the vertical velocity

{
∂2

zw = −∇ · vz = −ξx − ζy ,

w = 0 , at z = 0 ,−H0 .
(2.10d)

Density transport equation





ρt + (v ·∇)ρ + w
∂ρ

∂z
=

(
κ14+ κ2∂

2
z

)
ρ ,

∂ρ

∂z
|z=0=

ρf

κ2
,

∂ρ

∂z
|z=−H0= 0 ,

∂ρ

∂n
|∂M0×[−H0,0]= 0 .

(2.10e)

The detailed derivation of the above reformulation can be found in [27]. The
mean vorticity equation (2.10a) is obtained by taking the curl operator ∇⊥· to the
average of the momentum equation in (2.1). The average of the velocity tensor
product v ⊗ v is defined as

v ⊗ v =
(

uu uv
uv vv

)
, (2.11)

and the nonlinear convection term in (2.10a) can be rewritten as

(∇⊥ ·∇·)
(
v ⊗ v

)
=

( −∂xy −∂2
y

∂2
x ∂xy

)
:
(

uu uv
uv vv

)

= ∂xy

(
−uu + vv

)
+

(
∂2

x − ∂2
y

)
uv .

(2.12)

It should be noted that (2.10a) is not a closed system for the mean profiles ω, ψ,
v, since the nonlinear convection term v ⊗ v is not equal to v ⊗ v.

Taking the vertical derivative of the momentum equation leads to system (2.10b)
for vz = (ξ, ζ), with Dirichlet boundary condition on all boundary sections.

With the combined data of v and vz at hand, which can be obtained by solving
(2.10a), (2.10b), respectively, the horizontal velocity field can be determined by
(2.10c), a system of ordinary differential equations.

In addition, by taking the vertical derivative of the continuity equation ∇ · v +
∂zw = 0, we arrive at (2.10d), a system of second order ODE for the vertical velocity
with the vanishing Dirichlet boundary condition. Both (2.10c) and (2.10d) can be
solved at any fixed horizontal point (x, y).
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The density transport equation (2.10e) is the same as that in (2.1)-(2.3). This
finishes the derivation of the reformulation (2.10).

3. The numerical scheme on the regular grid. For simplicity of presentation
we consider the case of M0 = [0, 1]2, H0 = 1. The regular uniform grid {xi =
i/N, yj = j/N, zk = k/N − 1, i, j, k = 0, 1, · · · , N}, with mesh size 4x = 4y =
4z = h = 1

N , is used. Let D̃x, D̃y D̃z represent the standard second-order centered-
difference approximation to ∂x, ∂y and ∂z, D2

x, D2
y, D2

z be second-order centered-
difference approximations to ∂2

x, ∂2
y , ∂2

z , 4h = D2
x + D2

y the standard five-point
Laplacian. In addition, the vertical average of any variable f being evaluated on
regular grid points (xi, yj , zk) is defined by trapezoid rule

f i,j =
1

H0

Nz−1∑

k=0

(1
2
4z (fi,j,k + fi,j,k+1)

)
. (3.1)

3.1. The numerical scheme. The application of second order centered-difference
approximations to the reformulated PEs (2.10) leads to the following system. For
simplicity of presentation below we set τ0 = 0.





∂tω + D̃xD̃y(vv − uu) + (D2
x −D2

y)(uv) +
β

Ro
v = ν14hω ,

4hψ = ω , ψ |Γ= 0 ,

u = −D̃yψ , v = D̃xψ ,

ωi,0 =
1
h2

(4ψi,1 −
1
2
ψi,2) ,

(3.2a)





∂tξ + uD̃xξ + vD̃yξ + wD̃zξ − (D̃yv)ξ + (D̃yu)ζ − f

Ro
ζ − 1

Ro
D̃xρ

= (ν14h + ν2D
2
z)ξ ,

∂tζ + uD̃xζ + vD̃yζ + wD̃zζ − (D̃xu)ζ + (D̃xv)ξ +
f

Ro
ξ − 1

Ro
D̃yρ

= (ν14h + ν2D
2
z)ζ ,

ξ |z=−H0= 0 , ζ |z=−H0= 0 , ξ |z=0= 0 , ζ |z=0= 0 ,

ξ = 0 , ζ = 0 , on ∂M0 × [−H0, 0] ,

(3.2b)





D̃zu = ξ , D̃zv = ζ , at (i, j, k) , 1 ≤ k ≤ N − 1 ,

ui,j =
1

H0

Nz−1∑

k=0

(1
2
4z (ui,j,k + ui,j,k+1)

)
= ui,j ,

vi,j =
1

H0

Nz−1∑

k=0

(1
2
4z (vi,j,k + vi,j,k+1)

)
= vi,j ,

(D̃zv)i,j,0 = (D̃zv)i,j,N = 0 , i.e., vi,j,−1 = vi,j,1 , vi,j,N+1 = vi,j,N−1 ,

(3.2c){
D2

zw = −D̃xξ − D̃yζ , at (i, j, k) , 1 ≤ k ≤ Nz − 1 ,

wi,j,0 = wi,j,N = 0 ,
(3.2d)
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



∂tρ + uD̃xρ + vD̃yρ + wD̃zρ =
(
κ14h + κ2D

2
z

)
ρ ,

D̃zρ |z=0=
ρf

κ2
, D̃zρ |z=−H0= 0 ,

∂ρ

∂n
= 0 , on ∂M0 × [−H0, 0] .

(3.2e)

The dynamic equation for the mean vorticity is updated by (3.2a) at interior grid
points (xi, yj), i, j = 1, ...N −1. The profile vz = (ξ, ζ) is updated by (3.2b) at 3-D
interior grid points (xi, yj , zk), i, j, k = 1, ...N − 1. Note that Dirichlet boundary
conditions for vz are imposed on the six boundary sections. The discretization for
the density equation can be implemented as in (3.2e) at 3-D numerical grid points
(xi, yj , zk), i, j, k = 0, ...N , due to the Neumann boundary condition imposed for
density field.

3.2. Local boundary condition for the mean vorticity. The difficulty of the
treatment of the mean vorticity equation is similar to that of the standard 2-D
NSEs formulated in vorticity-stream function. There are two boundary conditions
for ψ, including both Dirichlet and Neumann, as shown in (2.10a); while there
is no explicit boundary condition for the vorticity, which is needed in the scheme
(3.2a). A similar procedure is adopted to overcome this difficulty. First, the interior
value of mean vorticity is updated by using (3.2a) with all the terms, including the
nonlinear term, viscosity term and Coriolis term, treated explicitly. Subsequently,
the mean stream function is solved by the implementation of the Dirichlet boundary
condition ψ = 0 on ∂M0 { 4hψ = ω ,

ψ |∂M0= 0 ,
(3.3)

where only Sine transformation is needed. It can be seen that the Neumann bound-
ary condition, ∂ψ

∂n = 0, cannot be enforced directly. Yet, it could be converted
into the boundary condition for mean vorticity ω. Motivated by the fact that
ψ |∂M0= 0, we have the approximation for the mean vorticity on the boundary
(say on Γx, j = 0)

ωi,0 = D2
yψi,0 =

1
h2

(ψi,1 + ψi,−1) =
2ψi,1

h2
− 2

h

ψi,1 − ψi,−1

2h
, (3.4)

where (i,−1) refers to a “ghost” grid point out of the computational domain. Taking

the approximation identity
ψi,1 − ψi,−1

2h
= 0, which implies that ψi−1 = ψi,1, as

a second order normal boundary condition for (∂yψ)i,0 = 0, we arrive at Thom’s
formula

ωi,0 =
2ψi,1

h2
. (3.5)

A similar derivation can be found in [26].
The vorticity boundary condition can also be determined by other approximation

of ψi,−1. For example, using a third order one-sided approximation for the normal

boundary condition ∂ψ
∂n = 0 gives

(∂yψ)i,0 =
−ψi,−1 + 3ψi,1 − 1

2ψi,2

3h
= 0 , i.e. , ψi,−1 = 3ψi,1 −

1
2
ψi,2 . (3.6)
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The substitution of (3.6) into the difference formula ωi,0 =
1
h2

(ψi,1 + ψi,−1) as in

(3.4) results in Wilkes-Pearson’s formula

ωi,0 =
1
h2

(
4ψi,1 −

1
2
ψi,2

)
. (3.7)

A crucial point worthy of mention is that Thom’s formula is only first order
accurate for ω on the boundary, while Wilkes’ formula gives second order accuracy,
by formal Taylor expansion. More sophisticated consistency analysis assures that
both formulas combined with second order centered difference scheme is indeed
second order accurate. See the relevant analysis of the 2-D NSEs in [8, 28]. This
article will give a detailed analysis of such boundary condition in the context of
3-D PEs.

3.3. Recovery for the horizontal velocity field. The remaining work focuses
on the discrete recovery of the horizontal and vertical velocity field, based on the
differential equations (2.10c, d), which play a role of bridge between the total ve-
locity field and the dynamic variables ω, ξ, ζ. Such a discretization is given by
the numerical scheme (3.2c), which forms a linear system to solve for ui,j,k, vi,j,k,
0 ≤ k ≤ N .

Note that for either velocity component, there are N + 1 unknowns: ui,j,k or
vi,j,k, k = 0, 1, 2, ...N at each fixed horizontal point (i, j), yet there are only N
equations: N − 1 in the first equation and 1 in the second one. Meanwhile, the last
equation in (3.2c) only provides a choice for the numerical value for v at “ghost”
computational points. We will give a methodology to overcome this difficulty below,
and the second order accuracy (up to its finite difference) will also be shown.

System (3.2c) can be solved by using FFT. The Neumann type boundary condi-
tion (in a discrete level) for v at k = 0, N suggests making Cosine transformation
in z direction for each fixed grid (i, j), i.e.,

ui,j,k =
1√
2Nz

[
ûi,j,0 +

Nz−1∑

l=1

(2ûi,j,l)cos
( lkπ

Nz

)
+ (−1)kûi,j,N

]
,

vi,j,k =
1√
2Nz

[
v̂i,j,0 +

Nz−1∑

l=1

(2v̂i,j,l)cos
( lkπ

Nz

)
+ (−1)kv̂i,j,N

]
.

(3.8)

Clearly the the horizontal velocity field satisfies the boundary condition in (3.2c).
Then the remaining work focuses on the determination of the Fourier modes v̂i,j,l,
l = 0, 1, ...Nz, at each fixed grid point (i, j) by utilizing the difference equation and
the constraint in (3.2c) for the mean velocity field. The application of the centered
difference operator D̃z to each basis function in the Fourier expansion gives

D̃zv̂i,j,0 = 0 , D̃zcos
(
lkπh

)
= fl · sin

(
lkπh

)
, D̃z

(
(−1)k

)
= 0 , (3.9a)

in which the coefficient fl turns out to be

fl = −
sin

(
lπh

)

4z
. (3.9b)



NUMERICAL METHOD FOR THE PRIMITIVE EQUATIONS 1151

The insertion of (3.9) into (3.8) results in

(D̃zu)i,j,k =
2√
2Nz

Nz−1∑

l=1

flûi,j,lsin
( lkπ

Nz

)
, (D̃zv)i,j,k =

2√
2Nz

Nz−1∑

l=1

flv̂i,j,lsin
( lkπ

Nz

)
.

(3.10)
Meanwhile, the homogeneous Dirichlet boundary condition for ξ, ζ at k = 0, N
implies their Sine transformation in Fourier space

ξi,j,k =
Nz−1∑

l=1

2ξ̂i,j,l√
2Nz

sin
( lkπ

Nz

)
, ζi,j,k =

Nz−1∑

l=1

2ζ̂i,j,l√
2Nz

sin
( lkπ

Nz

)
. (3.11)

The comparison of (3.10) with (3.11) shows that the difference equation (3.8) is
exactly satisfied if we set

ûi,j,l =
ξ̂i,j,l

fl
, v̂i,j,l =

ζ̂i,j,l

fl
, for 1 ≤ l ≤ Nz − 1 , (3.12)

with fl given by (3.9b).
To obtain the 0-th Fourier mode coefficient for v at each fixed grid point (i, j),

we note that the substitution of (3.8) into the constraint (3.2c) leads to

1
H0

Nz4z · 1√
2Nz

ûi,j,0 = ui,j ,
1

H0
Nz4z · 1√

2Nz

v̂i,j,0 = vi,j , (3.13)

due to the property that the basis functions cos
(
klπh

)
have vanishing discrete

average in the vertical direction, for l = 1, 2, ...Nz, provided that Nz is even. A
direct indication of (3.13) gives

ûi,j,0 =
√

2Nzui,j , v̂i,j,0 =
√

2Nzvi,j . (3.14)

In addition, it is well-known that the Fourier mode coefficient v̂i,j,l decays expo-
nentially as l increases to Nz under suitable regularity assumption for the velocity
field. As a result, the coefficient v̂i,j,N can be set to be 0, i.e.,

ûi,j,N = v̂i,j,N = 0 . (3.15)

Therefore, the combination of (3.8), (3.11), (3.12), (3.14) and (3.15) gives the
procedure to solve for (3.2c).

3.4. Recovery for the vertical velocity field. The vertical velocity w can be
solved by the centered-difference approximation to the second order O.D.E. (2.10d),
namely (3.2d). At each fixed horizontal grid point (i, j), there are N − 1 equations
and N − 1 unknowns: wi,j,k at interior grid points 1 ≤ k ≤ Nz − 1. Moreover,
the complete set of the eigenvalues corresponding to the operator D2

z (under the
homogeneous Dirichlet boundary condition for w) is given by

λl = − 4
4z2 sin2

( lπ

2Nz

)
, for 1 ≤ l ≤ Nz − 1 , (3.16)

which are non-zero. Hence (3.2d) is a non-singular linear system at each fixed
horizontal grid point. Such system can be solved by using FFT in vertical direction.
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3.5. Main theorem and some notation. The notation of L2 norms in a discrete
level needs to be introduced before the statement of the main convergence theorem
in this paper.

Notation 3.1 For any pair of variables f , g which are evaluated at the 3-D mesh
points, the following discrete L2-inner product are given

〈f , g〉0 = h3
N−1∑

k=1

N−1∑

j=1

N−1∑

i=1

fi,j,k gi,j,k , (3.17a)

〈f , g〉3 = h2
(N−1∑

j=1

N−1∑

i=1

〈f , g〉i,j +
1
2

N−1∑

i=1

〈f , g〉i,0 +
1
2

N−1∑

i=1

〈f , g〉i,N

+
1
2

N−1∑

j=1

〈f , g〉0,j +
1
2

N−1∑

j=1

〈f , g〉N,j

+
1
4
(〈f , g〉0,0 + 〈f , g〉0,N + 〈f , g〉N,0 + 〈f , g〉N,N )

)
,

(3.17b)

in which

〈f , g〉i,j = 4z
(1

2
(fi,j,0gi,j,0 + fi,j,Nz

gi,j,Nz
) +

Nz−1∑

k=1

fi,j,kgi,j,k

)
. (3.17c)

Their L2 norms in 3-D can be defined accordingly.

Notation 3.2 For any pair of variables f , g which are evaluated at the 2-D mesh
points (i, j), the following discrete L2-inner product are given

〈f , g〉2 = h2
N−1∑

j=1

N−1∑

i=1

fi,j gi,j , (3.18)

and the corresponding L2 norm in 2-D can be similarly defined.
The following is the main theorem in this paper.

Theorem 3.1. Let ue = (ve, we), ρe be the exact solution of the PEs (2.1), (2.2)
satisfying

‖ue‖L∞(0,T ;C7,α(M)) < +∞ , ‖ρe‖L∞(0,T ;C7,α(M)) < +∞ , (3.19)

for any 0 < α < 1, and let (vh, wh, ρh) be the numerical solution formulated in
(3.2). Then we have

‖ve − vh‖L∞(0,T ;L2) + ‖ρe − ρh‖L∞(0,T ;L2) ≤ Ch2 , (3.20a)

where the constant C depends only on the regularity of the exact solution

C = C
(
‖ue‖L∞(0,T ;C7,α(M)) , ‖ρe‖L∞(0,T ;C7,α(M))

)
, (3.20b)

for any 0 < α < 1.
The PDE analysis of the PEs can be found in some recent articles. In [12, 13]

by J. L. Lions, R. Temam and S. Wang, global existence of weak solutions (in
L∞(0, t1; L2(M)) ∩ L2(0, t1;H1(M))) and local existence of strong solutions (in
L∞(0, t1; H1(M))∩L2(0, t1; H2(M))) were established. In addition, a unique global
strong solution was proven to exist under a small depth assumption (i.e., H0 ≤ ε0,
where ε0 is a critical value depending on the physical parameters, such as ν, κ, f0, β,
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etc.) in [10] by C. Hu, R. Temam and M. Ziane. The regularity assumption (3.19)
for the exact solution is valid by local estimates if the initial data is smooth and the
domain M is regular enough. See some relevant discussions in [1, 2, 7, 9, 13], etc.
Yet, it should be noted that the exact solution does not generally satisfy (3.19) in a
cubic domain, which is a shortcoming of all convergence proofs for finite difference
methods. Nevertheless, in many cases, such as periodic oceanic flow (in horizontal
direction) or geophysical flow in which the lateral boundary layer is not dominate,
the solution does possess the required regularity.

The assumption (3.19) is required for the convergence analysis, in particular
for the estimates involving high order expansions which arise in the consistency
analysis. Although such an assumption is not optimal, the convergence theorem
provides theoretical evidence for the performance of the proposed numerical scheme.

The basic methodology of the convergence analysis is similar to that in [28], in
which the 2-D NSEs formulated in term of the vorticity were investigated. The
Strang convergence theorem [25] states that if a solution of a nonlinear hyperbolic
system is sufficiently smooth and the linearization of the corresponding numerical
scheme is L2 stable then the scheme for the nonlinear problem is strongly con-
vergent. Such an idea can be generalized to analyze the nonlinear system of fluid
equations, such as the NSEs or the PEs. More precisely, we can achieve the con-
vergence result by the following procedure: first, construct approximate profiles
based on the exact solution so that these profiles satisfy the numerical scheme up
to a local truncation error; then provide an estimate for the error functions, which
comes from the L2 stability of the linearized scheme.

Additional techniques are needed to analyze (3.2), due to special features of the
reformulated PEs. Since the velocity field is not directly updated by an evolution
equation, an estimate of the solvers for the velocity field is necessary to the con-
vergence analysis. It is proven in Section 4 that the total velocity field u = (v, w)
generated by (3.2c), (3.2d) has the second order accuracy in W 1,∞ norm. Also, lack
of regularity for the vertical velocity in the PEs results in a more subtle consistency
analysis in Section 5 which is the main reason why the regularity requirement (3.19)
for the exact solution is higher than that in [28], where ue ∈ L∞(0, T ;C5 ,α) was
imposed. Subsequently, stability and error estimates are given in Section 6, which
show the full second order convergence of the numerical scheme.

4. Analysis of the solvers to determine the velocity field. One prominent
feature of the PEs formulated in mean vorticity is that the velocity field is not
directly updated by evolution equations. Instead, the mean vorticity field and the
profile ∂zv = (ξ, ζ) are dynamic variables, as can be seen in (2.10a), (2.10b). In
turn, the horizontal and vertical velocity field are determined by the system of
ODEs (2.10c), (2.10d). The solvers to recover horizontal and vertical velocities
stand for the discrete realization of such recovery procedure. In this section we give
an accuracy analysis of the procedures. In more details, we are going to show that
the total velocity field u = (v, w) generated by the two procedures does have the
second order accuracy if the exact values of (ξ, ζ) and v are given.

4.1. Analysis of the solver for the vertical velocity. At each grid point
(i, j, k), 1 ≤ k ≤ Nz − 1, the exact solution (ve, we) satisfies

∂2
zwe = −∂x(∂zue)− ∂y(∂zve) = −∂xξe − ∂yζe . (4.1)

Meanwhile, local Taylor expansion for the exact solution reads
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D2
zwe = ∂2

zwe + O(h2)‖we‖C4 ,

−D̃xξe − D̃yζe = −∂xξe − ∂yζe + O(h2)‖∂zve‖C3 ,
(4.2)

at (xi, yj , zk). Then we arrive at

D2
zwe = −D̃xξe − D̃yζe + O(h2)

(
‖we‖C4 + ‖∂zve‖C2

)

= −D̃xξe − D̃yζe + O(h2)‖ve‖C5 ,
(4.3)

in which the last equality is due to the fact that

‖we‖C4 ≤ C‖∇ · ve‖C4 ≤ C‖ve‖C5 . (4.4)

Analogous to (3.2d), the following system of difference equations satisfied by the
exact solution can be derived{

D2
zwe = −D̃xξe − D̃yζe + h2fw , at (i, j, k) , 1 ≤ k ≤ Nz − 1 ,

(we)i,j,0 = (we)i,j,N = 0 ,
(4.5)

in which fw ≤ C‖ve‖C5 and the vanishing boundary condition for the exact vertical
velocity field is used.

Subtracting (3.2d) from (4.5) and denoting the error function as

w̃ = we − w , ξ̃ = ξe − ξ , ζ̃ = ζe − ζ , at (i, j, k) , (4.6)

we obtain the error system
{

D2
zw̃ = −D̃xξ̃ − D̃y ζ̃ + h2fw , at (i, j, k) , 1 ≤ k ≤ Nz − 1 ,

w̃i,j,0 = w̃i,j,N = 0 .
(4.7)

Due to the homogeneous Dirichlet boundary condition for w̃ at k = 0, N , we apply
the maximum principle to (4.7) and get

‖w̃‖L∞(i,j) ≤ C‖D2
zw̃‖L∞(i,j)

≤ C
(
‖D̃xξ̃‖L∞(i,j) + ‖D̃y ζ̃‖L∞(i,j)

)
+ Ch2‖fw‖L∞(i,j) ,

(4.8)

in which ‖·‖L∞(i,j) represents the discrete L∞ norm at the given grid point (i, j).
As a result, if the numerical values of ξ and ζ are given as the same as the exact
solution, i.e.,

ξi,j,k = (ξe)i,j,k , ζi,j,k = (ζe)i,j,k , (4.9)

the second order accuracy in L∞ norm for the solver (3.2d) is preserved

‖wh − we‖L∞(i,j) ≤ Ch2‖ve‖C5 . (4.10)

In addition, we need to consider the discrete gradient (in horizontal direction)
of w̃. Similar results to (4.10) can be derived (the detail is omitted)

‖∇h(wh − we)‖L∞(i,j) ≤ C‖∇hD2
zw̃‖L∞(i,j) ≤ Ch2‖ve‖C6 . (4.11)

Note that the estimates (4.10), (4.11) are valid for each fixed grid point (i, j).
Then we arrive at

‖wh − we‖W 1,∞(M0) ≤ Ch2‖ve‖C6 . (4.12)

in which ‖ · ‖W m,∞(M0) represents the maximum value at of the given function up
to m-th order finite-difference, over the 2-D domain M0 in the horizontal direction.
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4.2. Analysis of the solver for the horizontal velocity. To compare the
horizontal velocity field determined by (3.2c) and the exact velocity, we denote
Ue

i,j,k = ue(xi, yj , zk), V e
i,j,k = ve(xi, yj , zk), for 0 ≤ k ≤ Nz, and define the “ghost”

computational point values for V e = (Ue, V e) by applying the no-flux boundary
condition in a discrete level in the same way as in the last equation of (3.2c):

(D̃zV
e)i,j,0 = (D̃zV

e)i,j,N = 0 ,

i.e., V e
i,j,−1 = V e

i,j,1 , V e
i,j,N+1 = V e

i,j,N−1 .
(4.13)

Note that V e share the same values with ve at interior numerical grids (i, j, k),
0 ≤ k ≤ Nz. Taylor expansion of ve in vertical direction gives

D̃zU
e = D̃zue = ∂zue + O(h2)‖∂zue‖C3 = ξe + O(h2)‖ve‖C4 ,

D̃zV
e = D̃zve = ∂zve + O(h2)‖∂zve‖C3 = ζe + O(h2)‖ve‖C4 ,

(4.14)

at (i, j, k) with 1 ≤ k ≤ N − 1. In addition, the trapezoid rule (3.1) is of second
order accurate, thus we have

1
H0

Nz−1∑

k=0

(1
2
4z (V e

i,j,k + U e
i,j,k+1)

)
= (ve)i,j + O(h2)‖ve‖C2 . (4.15)

Subtracting (3.2c) from (4.13)-(4.15) and denoting the error functions

ṽ = (ũ, ṽ) = (ue−u, ve−v) , ṽ = (ũ, ṽ) = (ue−u, ve−v) , at (i, j, k) , (4.16)

we arrive at the following system




D̃zũ = ξ̃ + h2fuz , D̃z ṽ = ζ̃ + h2fvz , at (i, j, k) , 1 ≤ k ≤ N − 1 ,

ũi,j = ũi,j + h2f bu , ṽi,j = ṽi,j + h2f bv ,

ṽi,j,−1 = ṽi,j,1 , ṽi,j,N+1 = ṽi,j,N−1 ,

(4.17)
with the local truncation error terms

|fuz|, |fvz| ≤ C‖ve‖C4 , |f bu|, |f bv| ≤ C‖ve‖C2 . (4.18)

As a result of its boundary condition given by (4.17), the Cosine transformation
in z direction can be made for ṽ at each fixed horizontal (i, j)

ũi,j,k =
1√
2Nz

[
ˆ̃ui,j,0 +

Nz−1∑

l=1

(2ˆ̃ui,j,l)cos
( lkπ

Nz

)
+ (−1)k ˆ̃ui,j,N

]
,

ṽi,j,k =
1√
2Nz

[
ˆ̃vi,j,0 +

Nz−1∑

l=1

(2ˆ̃vi,j,l)cos
( lkπ

Nz

)
+ (−1)k ˆ̃vi,j,N

]
.

(4.19)

The Parseval equality shows that

1
2
(ũi,j,0)2 +

N−1∑

k=1

(ũi,j,k)2 +
1
2
(ũi,j,N )2 =

1
2

(
ˆ̃ui,j,0

)2

+
N−1∑

l=1

(
ˆ̃ui,j,l

)2

+
1
2

(
ˆ̃ui,j,N

)2

,

1
2
(ṽi,j,0)2 +

N−1∑

k=1

(ṽi,j,k)2 +
1
2
(ṽi,j,N )2 =

1
2

(
ˆ̃vi,j,0

)2

+
N−1∑

l=1

(
ˆ̃vi,j,l

)2

+
1
2

(
ˆ̃vi,j,N

)2

.

(4.20)
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By the choice of the numerical values for ûi,j,N , v̂i,j,N in the procedure (3.15),
we have

ˆ̃ui,j,N = Ûe
i,j,N , ˆ̃vi,j,N = V̂ e

i,j,N , (4.21)

in which Ûe
i,j,N , V̂ e

i,j,N stand for the N -th mode Fourier mode (in Cosine trans-
formation) coefficients for Ue, V e, respectively, at the fixed horizontal grid (i, j).
Under some suitable regularity requirement for V e, which have the same numerical
values with ve, we can assume

|Ûe
i,j,N | , |V̂ e

i,j,N | ≤ Ch4 . (4.22)

To estimate the terms ûi,j,0, v̂i,j,0, we note that the application of trapezoid rule
to ũi,j,k, ṽi,j,k which is expanded in Fourier series (4.19) leads to

1
H0

Nz−1∑

k=0

(1
2
4z (ũi,j,k + ũi,j,k+1)

)
=

1√
2Nz

ˆ̃ui,j,0 ,

1
H0

Nz−1∑

k=0

(1
2
4z (ṽi,j,k + ṽi,j,k+1)

)
=

1√
2Nz

ˆ̃vi,j,0 ,

(4.23)

due to the property that the basis functions cos
(
klπh

)
have vertically vanishing

discrete average for l = 1, 2, ...Nz, provided that Nz is even. The combination of
(4.23) and (4.17) gives us

(ˆ̃ui,j,0)2 = 2Nz(ũi,j)2 = 2Nz

(
ũi,j + h2f bu

)2

,

(ˆ̃vi,j,0)2 = 2Nz(ṽi,j)2 = 2Nz

(
ṽi,j + h2f bv

)2

.
(4.24)

To deal with the terms ûi,j,l, v̂i,j,l for 1 ≤ l ≤ N − 1, we take the centered-
difference D̃z operator to ṽ represented in Fourier expansion (4.19), and arrive
at

(D̃zũ)i,j,k =
2√
2Nz

Nz−1∑

l=1

fl
ˆ̃ui,j,lsin

( lkπ

Nz

)
,

(D̃z ṽ)i,j,k =
2√
2Nz

Nz−1∑

l=1

fl
ˆ̃vi,j,lsin

( lkπ

Nz

)
,

(4.25)

for 1 ≤ k ≤ N − 1, by using the same arguments in (3.10) and the coefficients fl

given in (3.9b). Again, the Parseval equality gives
N−1∑

k=1

(D̃zũ)2i,j,k =
N−1∑

l=1

f2
l ·

(
ˆ̃ui,j,l

)2

,

N−1∑

k=1

(D̃z ṽ)2i,j,k =
N−1∑

l=1

f2
l ·

(
ˆ̃vi,j,l

)2

. (4.26)

Moreover, it is straightforward to verify that

1
f2

l

≤ 2 h2

l2 π2 h2
≤ 2

π2
, for 1 ≤ l ≤ Nz − 1 . (4.27)

The combination of (4.27) and (4.26) shows that
N−1∑

l=1

(
ˆ̃ui,j,l

)2

≤ 2
π2

N−1∑

k=1

(D̃zũ)2i,j,k ,

N−1∑

l=1

(
ˆ̃vi,j,l

)2

≤ 2
π2

N−1∑

k=1

(D̃z ṽ)2i,j,k . (4.28)
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Moreover, the application of the first two equations in (4.17) indicates
N−1∑

l=1

(
ˆ̃ui,j,l

)2

≤ 2
π2

N−1∑

k=1

(
ξ̃ + h2fuz

)2

i,j,k
,

N−1∑

l=1

(
ˆ̃vi,j,l

)2

≤ 2
π2

N−1∑

k=1

(
ζ̃ + h2fvz

)2

i,j,k
.

(4.29)

The combination of (4.20), (4.22), (4.24) and (4.29) results in the following L2

estimate (at a fixed grid point (i, j)) of the error function for the horizontal velocity

‖ṽ‖2L2(i,j) ≤ C
(
‖ξ̃‖2L2(i,j) + ‖ζ̃‖2L2(i,j) + (ũi,j)2 + (ṽi,j)2

)

+Ch4
(
‖fuz‖2L2(i,j) + ‖fvz‖2L2(i,j) + ‖f bu‖2L2(i,j) + ‖f bv‖2L2(i,j)

)
,

(4.30)
in which ‖·‖L2(i,j) represents the 1-D discrete L2 norm at the given grid point (i, j).
Therefore, if the numerical values of ξ, ζ, u, v are given as the same as the exact
solution, the second order accuracy for system (3.2c) can be derived

‖vh − ve‖L2(i,j) ≤ Ch2‖ve‖C4 . (4.31)

In addition, we notice that

D̃z(v−ve) = D̃zv−D̃zve = (ξ, ζ)−(ξe, ζe)+O(h2)‖ve‖C3 = O(h2)‖ve‖C3 . (4.32)

As a result,
‖D̃z(vh − ve)‖L2(i,j) ≤ Ch2‖ve‖C3 . (4.33)

The combination of (4.31) and (4.33) shows that

‖vh − ve‖L∞(i,j) ≤ C
(
‖ṽ‖L2(i,j) + ‖D̃zṽ‖L2(i,j)

)
≤ Ch2‖ve‖C4 , (4.34)

where discrete Sobolev inequality is used.
Similar to (4.11), the discrete gradient (in horizontal direction) of ṽ can be

estimated as

‖∇h(vh − ve)‖L2(i,j) + ‖D̃z∇h(vh − ve)‖L2(i,j) ≤ Ch2‖ve‖C5 . (4.35)

Consequently, we get

‖∇h(vh−ve)‖L∞(i,j) ≤ C
(
‖∇hṽ‖L2(i,j) +‖D̃z∇hṽ‖L2(i,j)

)
≤ Ch2‖ve‖C5 . (4.36)

The combination of (4.36) and (4.34) results in

‖vh − ve‖W 1,∞(M0) ≤ Ch2‖ve‖C5 , (4.37)

since both estimates are valid for each fixed grid point (i, j).
Similar estimate can be applied to the second order difference operator of the

horizontal velocity. We finally arrive at

‖vh − ve‖W 2,∞(M0) ≤ Ch2‖ve‖C6 . (4.38)

Such a result will be used in the consistency analysis below.

5. Construction of approximate solutions. In this section we perform consis-
tency analysis of the numerical difference scheme. The goal is to construct approxi-
mate velocity and density profiles and show that they satisfy the numerical scheme
(3.2) up to an O(h2) error.
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5.1. Leading order consistency analysis. As mentioned in the introduction,
the flow motion governed by the PEs formulated in mean vorticity is determined
by the combination of the mean velocity field and the vertical derivative of the
horizontal velocity field. Accordingly, the approximate velocity field is constructed
by using a similar methodology. We extend the exact mean stream function ψe

smoothly to [−δ, 1 + δ]2 and let Ψ
0

i,j = ψe(xi, yj) for −1 ≤ i, j ≤ N + 1. The

approximate profiles U
0
, V

0
, Ω

0
are constructed through the finite difference of Ψ

0

to maintain the consistency, especially near the boundary,

U
0

i,j = −D̃yΨ
0
, V

0

i,j = D̃xΨ
0
, Ωi,j = 4hΨ

0
, for 0 ≤ i, j ≤ N . (5.1)

The profile for the vertical derivative of the horizontal velocity (ξ0, ζ0) is taken
as the exact solution (ξe, ζe). The approximate profile for total velocity field in
horizontal direction U0, V 0 is given by the solution of the following discrete system
at each fixed horizontal grid point (i, j):





D̃zU
0 = ξe , D̃zV

0 = ζe , at (i, j, k) , 1 ≤ k ≤ N − 1 ,

U
0

i,j =
1

H0

Nz−1∑

k=0

(1
2
4z (U0

i,j,k + U0
i,j,k+1)

)
= U

0

i,j ,

V
0

i,j =
1

H0

Nz−1∑

k=0

(1
2
4z (V 0

i,j,k + V 0
i,j,k+1)

)
= V

0

i,j ,

(D̃zV
0)i,j,0 = (D̃zV

0)i,j,N = 0 ,

i.e., V 0
i,j,−1 = V 0

i,j,1 , V 0
i,j,N+1 = V 0

i,j,N−1 ,

(5.2)

which is analogous to (3.2c). The solver for the above system is outlined in sec-
tion 3.3. The approximate vertical velocity W 0 is given by the following discrete
equations analogous to (3.2d):

{
D2

zW 0 = −D̃xξe − D̃yζe , at (i, j, k) , 1 ≤ k ≤ Nz − 1 ,

W 0
i,j,0 = W 0

i,j,N = 0 .
(5.3)

For the density field, we choose the leading order approximation as

Θ0 = ρe + h2Θ∗ , (5.4)

in which ρe denotes the exact density function. The reason for the addition of
an O(h2) correction terms h2Θ∗ in the expansion (5.4) is due to the higher order
consistency of the approximate profile Θ with the boundary condition given in the
numerical scheme (3.2e). The correction function Θ∗ turns out to be the solution
of the Poisson equation

4Θ∗ = C1 , (5.5a)

with the Neumann boundary condition

∂zΘ∗(x, y,−H0) = −1
6

∂3
zρe(x, y,−H0) , ∂zΘ∗(x, y, 0) = −1

6
∂3

zρe(x, y, 0) ,

∂xΘ∗(0, y, z) = −1
6

∂3
xρe(0, y, z) , ∂xΘ1(1, y, z) = −1

6
∂3

xρe(1, y, z) ,

∂yΘ∗(x, 0, z) = −1
6

∂3
yρe(x, 0, z) , ∂yΘ1(x, 1, z) = −1

6
∂3

yρe(x, 1, z) .

(5.5b)
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The number C1 (a function in time t) is chosen as
∫

M
C1 dx dz =

∫

∂M

∂Θ∗

∂n
dn to

maintain the consistency that follows from the Neumann boundary condition, i.e.,

C1 =
1
|M|

(1
6

∫

M0

∂3
zρe(x, y,−H0)− ∂3

zρe(x, y, 0) dx

+
1
6

∫ 0

−H0

∫ 1

0

∂3
xρe(0, y, z) dy dz − 1

6

∫ 0

−H0

∫ 1

0

∂3
xρe(1, y, z) dy dz

+
1
6

∫ 0

−H0

∫ 1

0

∂3
yρe(x, 0, z)− ∂3

yρe(x, 1, z) dx dz
)

.

(5.6)

The approximate solutions V 0, W 0, Ω
0
, Ψ

0
, Θ0 are proven to satisfy the follow-

ing estimates




∂tΩ
0

+ D̃xD̃y(V 0V 0 − U0U0) + (D2
x −D2

y)U0V 0

+
β

Ro
V 0 = ν14hΩ

0
+ h2f0

ω ,

4hΨ
0

= Ω
0
, Ψ

0 |∂M0= 0 ,

U
0

= −D̃yΨ
0
, V

0
= D̃xΨ

0
,

Ω
0

i,0 =
1
h2

(4Ψ
0

i,1 −
1
2
Ψ

0

i,2) + O(h2)‖ve‖C3 ,

(5.7a)





∂tξe + U0D̃xξe + V 0D̃yξe + W 0D̃zξe − (D̃yV 0)ξe + (D̃yU0)ζe

− f

Ro
ζe − 1

Ro
D̃xΘ0 = (ν14h + ν2D

2
z)ξe + h2f0

ξ ,

∂tζe + U0D̃xζe + V 0D̃yζe + W 0D̃zζe − (D̃xU0)ζe + (D̃xV 0)ξe

+
f

Ro
ξe − 1

Ro
D̃yΘ0 = (ν14h + ν2D

2
z)ζe + h2f0

ζ ,

(ξe)i,j,0 = 0 , (ζe)i,j,0 = 0 , (ξe)i,j,N = 0 , (ζe)i,j,N = 0 ,

(ξe)i,0,k = 0 , (ζe)i,0,k = 0 , (ξe)0,j,k = 0 , (ζe)0,j,k = 0 ,

(5.7b)





D̃zU
0 = ξe , D̃zV

0 = ζe , at (i, j, k) , 1 ≤ k ≤ N − 1 ,

U
0

i,j = U
0

i,j , V
0

i,j = V
0

i,j ,

(D̃zV
0)i,j,0 = (D̃zV

0)i,j,N = 0 ,

(5.7c)

{
D2

zW 0 = −D̃xξe − D̃yζe , at (i, j, k) , 1 ≤ k ≤ Nz − 1 ,

W 0
i,j,0 = W 0

i,j,N = 0 ,
(5.7d)





∂tΘ0 + U0D̃xΘ0 + V 0D̃yΘ0 + W 0D̃zΘ0 =
(
κ14h + κ2D

2
z

)
Θ0 + h2f0

ρ ,

Θ0
i,j,−1 = Θ0

i,j,1 + h5eρb , Θ0
−1,j,k = Θ0

1,j,k + h5eρl ,

Θ0
i,−1,k = Θ0

i,1,k + h5eρd ,

(5.7e)
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with the local error terms

|f0
ω| ≤ C(‖ve‖C6 + ‖ve‖2C6) , |f0

ρ| ≤ C
(
‖ue‖C5‖ρe‖C5 + ‖ρe‖C4,α

)
,

|f0
ξ |, |f0

ζ | ≤ C
(
‖ve‖C6(‖ve‖+ 1) + ‖ρe‖C5

)
, |eρb| , |eρl| , |eρd| ≤ C‖ρe‖C5 .

(5.8)

5.2. Local truncation error analysis for the leading order expansion V 0,
W 0, Θ0. We first look at the mean profile V

0
, Ω

0
. A direct Taylor expansion for

ψe up to the boundary shows that at grid points (xi, yj), 0 ≤ i, j ≤ N ,

U
0

= ue − h2

6
∂3

yψe −
h4

120
∂5

yψe + O(h5)‖ψe‖C6 ,

V
0

= ve +
h2

6
∂3

xψe +
h4

120
∂5

xψe + O(h5)‖ψe‖C6 ,

Ω
0

= ωe +
h2

12
(∂4

x + ∂4
y)ψe + O(h4)‖ψe‖C6 .

(5.9)

As a result, we have

‖U0 − ue‖W 2,∞(M0) + ‖V 0 − ve‖W 2,∞(M0) + ‖Ω0 − ωe‖W 2,∞(M0) ≤ Ch2‖ψe‖C6 .
(5.10)

According to the analysis in section 4.2, the second order accuracy is valid be-
tween the constructed solution and the exact solution for the horizontal velocity,
provided that the exact mean velocity field and exact profile (ξe, ζe) is used in the
numerical procedure (3.2c). See the result in (4.38). Moreover, it is straightforward
to prove that a second order approximation is preserved if the exact mean velocity
used in the numerical solver is replaced by the approximation V

0
, i.e.,

‖V 0 − ve‖W 2,∞(M0) ≤ Ch2‖ve‖C6 + ‖V 0 − ve‖W 2,∞(M0) . (5.11)

The combination of (5.11) and (5.10) leads to

‖V 0 − ve‖W 2,∞(M0) ≤ Ch2‖ve‖C6 . (5.12)

For the vertical velocity, the analysis in section 4.1 gives us

‖W 0 − we‖L∞(M) + ‖∇h(W 0 − we)‖L∞(M) ≤ Ch2‖ve‖C6 , (5.13)

since the exact profile of (ξe, ζe) was used in the numerical solver for W 0 in (5.3).
See (4.12).

For the density field, it is obvious that an application of the Schauder estimate
to the Poisson equation (5.5) results in

‖Θ∗‖Cm,α ≤ C‖ρe‖Cm+2,α , for m ≥ 2 . (5.14)

Consequently, we have

‖Θ∗‖W 2,∞(M) ≤ C‖Θ∗‖C2,α ≤ C‖ρe‖C4,α , (5.15)

whose insertion into the expansion (5.4) results in

‖Θ0 − ρe‖W 2,∞(M) ≤ Ch2‖ρe‖C4,α . (5.16)
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5.2.1. Truncation error for the mean vorticity equation. The estimate (5.10) indi-
cates that

4hΩ
0

= 4hωe + O(h2)‖ψe‖C6 . (5.17)

Meanwhile, the Taylor expansion of ωe reads

4hωe = 4ωe + O(h2)‖ωe‖C4 = 4ωe + O(h2)‖ψe‖C6 . (5.18)

The combination of (5.17) and (5.18) leads to the estimate of the diffusion term

4hΩ
0

= 4ωe + O(h2)‖ψe‖C6 , (5.19)

at grid points (xi, yj), 1 ≤ i, j ≤ N − 1.
The nonlinear convection terms can be dealt with in a similar fashion. The

estimate (5.12) implies that

D̃xD̃y(V 0V 0) = D̃xD̃y(veve) + O(h2)‖ve‖2C6 , (5.20a)

which in term shows

D̃xD̃y(V 0V 0) = D̃xD̃y(veve) + O(h2)‖ve‖2C6 . (5.20b)

Meanwhile, the Taylor expansion for ve reads

D̃xD̃y(veve) = ∂x∂y(veve) + O(h2)‖ve‖2C6 . (5.21)

The combination of (5.21) and (5.20b) gives

D̃xD̃y(V 0V 0) = ∂x∂y(veve) + O(h2)‖ve‖2C6 . (5.22)

Using the same argument, we obtain

D̃xD̃y(U0U0) = ∂x∂y(ueue) + O(h2)‖ve‖2C6 ,

(D2
x −D2

y)(U0V 0) = (∂2
x − ∂2

y)(ueve) + O(h2)‖ve‖2C6 .
(5.23)

The difference between the time marching term ∂tΩ
0

and the exact value ∂tωe

can be controlled by O(h2) of ‖∂tψe‖C4 :

∂tΩ
0 − ∂tωe = 4h∂tψe −4∂tψe = (4h −4)∂tψe = O(h2)‖∂tψe‖C4 . (5.24)

Moreover, applying the Schauder estimate to the following Poisson equation
{ 4(∂tψe) = ∂tωe , in M0 ,

∂tψe = 0 , on ∂M0 ,
(5.25)

shows that

‖∂tψe‖C4,α ≤ C‖∂tωe‖C2,α ≤ C(‖ψe‖C6,α + ‖ve‖2C4,α) ≤ C(‖ve‖C5,α + ‖ve‖2C4,α) .
(5.26)

Note that the mean vorticity equation was applied in the second step. Consequently,
the following estimate holds

∂tΩ
0 − ∂tωe = O(h2)(‖ve‖C5,α + ‖ve‖2C4,α) . (5.27)

Combining (5.10), (5.19), (5.22), (5.23) and (5.27), and applying the original
PDE of the exact mean vorticity equation, we obtain the first equation in (5.7a),
which shows the second order consistency for the mean vorticity equation.

In addition, regarding the boundary condition for the mean vorticity, we need
to show that Ω

0
satisfies Wilkes’ formula applied to Ψ

0
up to an O(h2) error.
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For simplicity of presentation, only one boundary section Γx ∈ ∂M0, j = 0, is
considered. The other three boundary sections can be dealt with in the same way.
One-sided Taylor expansion for Ψ

0
in the y-th direction near y = 0 gives

1
h2

(4Ψ
0

i,1−
1
2
Ψ

0

i,2) = ∂2
yψe(xi, 0)+O(h2)‖ψe‖C4 = ωe(xi, 0)+O(h2)‖ve‖C3 . (5.28)

Meanwhile, (5.9) shows that the difference between Ω
0

i,0 and ωe(xi, 0) on Γx is also
of order O(h2)‖ψe‖C4 . Then we get the boundary estimate for the mean vorticity
in (5.7a).

5.2.2. Truncation error for the evolution equations of (ξ, ζ). Using similar argu-
ments, we have the following estimates

U0D̃xξe − ue∂xξe , V 0D̃yξe − ve∂yξe = O(h2)‖ve‖C5‖ve‖C4 ,

W 0D̃zξe − we∂zξe = O(h2)‖ve‖C6‖ve‖C4 ,

(D̃yV 0)ξe − (∂yve)ξe = O(h2)‖ve‖C6‖ve‖C1 ,

(D̃yU0)ζe − (∂yue)ζe = O(h2)‖ve‖C6‖ve‖C1 , D̃xΘ0 − ∂xρe = O(h2)‖ρe‖C3 ,

(5.29)

U0D̃xζe − ue∂xζe , V 0D̃yζe − ve∂yζe = O(h2)‖ve‖C5‖ve‖C4 ,

W 0D̃zζe − we∂zζe = O(h2)‖ve‖C6‖ve‖C4 ,

(D̃xU0)ζe − (∂xue)ζe = O(h2)‖ve‖C6‖ve‖C1 ,

(D̃xV 0)ξe − (∂xve)ξe = O(h2)‖ve‖C6‖ve‖C1 , D̃yΘ0 − ∂yρe = O(h2)‖ρe‖C5 ,

(5.30)

(ν14h + ν2D
2
z)ξe − (ν14+ ν2∂

2
z )ξe = O(h2)‖ve‖C5 ,

(ν14h + ν2D
2
z)ζe − (ν14+ ν2∂

2
z )ζe = O(h2)‖ve‖C5 ,

(5.31)

Consequently, the exact profile (ξe, ζe) combined with the constructed velocity V 0,
W 0 and the density Θ0 satisfies the numerical difference scheme with an O(h2)
error, as shown in (5.7b), and the homogeneous Dirichlet boundary condition for
(ξe, ζe) is exactly satisfied.

5.2.3. Truncation error for the density transport equation. Applying the estimates
for the constructed velocity and density field as shown in (5.10), (5.11) and (5.14),
we can deal with the terms of the density transport equation in a similar way

∂tΘ0 − ∂tρe = O(h2)‖∂tρe‖C2,α = O(h2)
(
‖ue‖C2,α‖ρe‖C3,α + ‖ρe‖C4,α

)
,

(5.33)

U0D̃xΘ0 − ue∂xρe , V 0D̃yΘ0 − ve∂yρe = O(h2)‖ve‖C5‖ρe‖C5 ,

W 0D̃zΘ0 − we∂zρe = O(h2)‖ve‖C6‖ve‖C5 ,

(κ14h + κ2D
2
z)Θ0 − (ν14+ ν2∂

2
z )ρe = O(h2)‖ρe‖C4,α .

(5.34)

The combination of (5.33) and (5.34) gives (5.7e).
Moreover, the approximated density Θ0 satisfies the discrete boundary condition

in (3.29e) up to an O(h5) order, due to the choice of the boundary condition for
Θ∗ in (5.5b). Local Taylor expansion for the exact density field ρe around the
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boundary gives

(ρe)i,j,−1 = (ρe)i,j,1 − 4z3

3
∂3

zρe(xi, yj ,−H0) + O(h5)‖ρe‖C5 ,

(ρe)−1,j,k = (ρe)1,j,k − 4x3

3
∂3

xρe(0, yj , zk) + O(h5)‖ρe‖C5 ,

(ρe)i,−1,k = (ρe)i,1,k − 4y3

3
∂3

yρe(xi, 0, zk) + O(h5)‖ρe‖C5 ,

(5.35)

by using the no-flux boundary condition for ρe on all the six boundary sections.
Performing Taylor expansion of Θ∗ gives

Θ∗i,j,−1 = Θ∗i,j,1 +
4z

3
∂3

zρe(xi, yj ,−H0) + O(h3)‖ρe‖C5,α ,

Θ∗−1,j,k = Θ∗1,j,k +
4x

3
∂3

xρe(0, yj , zk) + O(h3)‖ρe‖C5,α ,

Θ∗i,−1,k = Θ∗i,1,k +
4y

3
∂3

yρe(xi, 0, zk) + O(h3)‖ρe‖C5,α ,

(5.36)

where the boundary condition (5.5b) and the Schauder estimate ‖Θ∗‖C3 ≤ C‖ρe‖C5,α

given by (5.12) are used. The combination of (5.35) and (5.36) results in

Θ0
i,j,−1 = Θ0

i,j,1 + O(h5)‖ρe‖C5,α , Θ0
−1,j,k = Θ0

1,j,k + O(h5)‖ρe‖C5,α ,

Θ0
i,−1,k = Θ0

i,1,k + O(h5)‖ρe‖C5,α .
(5.37)

Similar results can be obtained at the other boundary section z = 0, x = 1, y = 1.
This finishes the consistency analysis for the leading order approximate profile.

5.3. Higher order expansion of the numerical scheme. However, the consis-
tency analysis (5.7) is not enough to recover the L∞ a-priori assumption for the
numerical value of the vertical velocity field in the full nonlinear system of the PEs.
We make the following expansion for the approximate solution corresponding to
the numerical scheme (3.2)

Ψ = Ψ
0

+ h2Ψ
1
, Ω = Ω

0
+ h2Ω

1
, V = V 0 + h2V 1 , W = W 0 + h2W 1 ,

Θ = Θ0 + h2Θ1 , S = ξe + h2ξ1 , Φ = ζe + h2ζ1 .

(5.38)
The expanded profile satisfy the numerical scheme on the regular grid up to order
O(h4):





∂tΩ + D̃xD̃y(V V − UU) + (D2
x −D2

y)UV +
β

Ro
V = ν14hΩ + h4fω ,

4hΨ = Ω , Ψ |∂M0= 0 ,

U = −D̃yΨ , V = D̃xΨ ,

Ωi,0 =
1
h2

(4Ψi,1 − 1
2
Ψi,2) + h3(eω)i ,

(5.39a)
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



∂tS + UD̃xS + V D̃yS + WD̃zS − (D̃yV )S + (D̃yU)Φ

− f

Ro
Φ− 1

Ro
D̃xΘ = (ν14h + ν2D

2
z)S + h4f ξ ,

∂tΦ + UD̃xΦ + V D̃yΦ + WD̃zΦ− (D̃xU)Φ + (D̃xV )S
+

f

Ro
S − 1

Ro
D̃yΘ = (ν14h + ν2D

2
z)Φ + h4f ζ ,

Si,j,0 = 0 , Φi,j,0 = 0 , Si,j,N = 0 , Φi,j,N = 0 ,

Si,0,k = 0 , Φi,0,k = 0 , S0,j,k = 0 , Φ0,j,k = 0 ,

(5.39b)





D̃zU = S , D̃zV = Φ , at (i, j, k) , 1 ≤ k ≤ N − 1 ,

U i,j = U i,j , V i,j = V i,j ,

(D̃zV )i,j,0 = (D̃zV )i,j,N = 0 ,

(5.39c)

{
D2

zW = −D̃xS − D̃yΦ , at (i, j, k) , 1 ≤ k ≤ Nz − 1 ,

Wi,j,0 = Wi,j,N = 0 ,
(5.39d)





∂tΘ + UD̃xΘ + V D̃yΘ + WD̃zΘ =
(
κ14h + κ2D

2
z

)
Θ + h4fρ ,

Θi,j,−1 = Θi,j,1 + h5eρb , Θ−1,j,k = Θ1,j,k + h5eρl ,

Θi,−1,k = Θi,1,k + h5eρd ,

(5.39e)

in which the local truncation error and the boundary error terms are bounded in
the L∞ norm

|fω| , |f ξ| , |f ζ | , |fρ| , |eω| , |eρb| , |eρl| , |eρd| ≤ C∗ , (5.40)

with the constant C∗ depending on the exact solution. The consistency analysis is
completed.

Remark 1. As stated earlier, the purpose of the higher order expansion (5.38) is
to obtain the L∞ estimate of the error function via its L2 norm in higher order
accuracy by utilizing an inverse inequality in spatial discretization. Such an expan-
sion is always possible under suitable regularity assumption of the exact solution.
A detailed analysis shows that

|ve − V |+ |we −W |+ |ρe −Θ| ≤ Ch2 , (5.41)

with C was introduced in Theorem 3.1. This estimate will be used later.

6. Proof of the convergence theorem. We denote the following error functions

ṽ = (ũ, ṽ) = V − v = (U − u, V − v) , w̃ = W − w , ω̃ = Ω− ω ,

ψ̃ = Ψ− ψ , ξ̃ = S − ξ , ζ̃ = Φ− ζ , ρ̃ = Θ− ρ .
(6.1)

Subtracting (3.2) from (5.39) gives the following system for the error functions:
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



∂tω̃ + D̃xD̃y(V ṽ + vṽ − Uũ + uũ) + (D2
x −D2

y)V ũ + uṽ +
β

Ro
ṽ

= ν14hω̃ + h4fω ,

4hψ̃ = ω̃ , ψ̃ |∂M0= 0 ,

ũ = −D̃yψ̃ , ṽ = D̃xψ̃ ,

ω̃i,0 =
1
h2

(4ψ̃i,1 −
1
2
ψ̃i,2) + h3(eω)i ,

(6.2a)





∂tξ̃ + ũD̃xS + uD̃xξ̃ + ṽD̃yS + vD̃y ξ̃ + w̃D̃zS + wD̃z ξ̃ − ξ̃D̃yV − ξD̃y ṽ

+ζ̃D̃yΦ + ζD̃yũ− f

Ro
ζ̃ − 1

Ro
D̃xρ̃ = (ν14h + ν2D

2
z)ξ̃ + h4f ξ ,

∂tζ̃ + ũD̃xΦ + uD̃xζ̃ + ṽD̃yΦ + vD̃y ζ̃ + w̃D̃zΦ + wD̃z ζ̃ − ζ̃D̃xU − ζD̃xũ

−ξ̃D̃xV − ξD̃xṽ +
f

Ro
ξ̃ − 1

Ro
D̃yρ̃ = (ν14h + ν2D

2
z)ζ̃ + h4f ζ ,

ξ̃i,j,0 = 0 , ζ̃i,j,0 = 0 , ξ̃i,j,N = 0 , ζ̃i,j,N = 0 ,

ξ̃i,0,k = 0 , ζ̃i,0,k = 0 , ξ̃0,j,k = 0 , ζ̃0,j,k = 0 ,

(6.2b)



D̃zũ = ξ̃ , D̃z ṽ = ζ̃ , at (i, j, k) , 1 ≤ k ≤ N − 1 ,

ũi,j = ũi,j , ṽi,j = ṽi,j ,

(D̃zṽ)i,j,0 = (D̃zṽ)i,j,N = 0 ,

(6.2c)

{
D2

zw̃ = −D̃xξ̃ − D̃y ζ̃ , at (i, j, k) , 1 ≤ k ≤ Nz − 1 ,

w̃i,j,0 = w̃i,j,N = 0 ,
(6.2d)





∂tρ̃ + ũD̃xΘ + uD̃xρ̃ + ṽD̃yΘ + vD̃yρ̃ + w̃D̃zΘ + wD̃z ρ̃

=
(
κ14h + κ2D

2
z

)
ρ̃ + h4fρ ,

ρ̃i,j,−1 = ρ̃i,j,1 + h5eρb , ρ̃−1,j,k = ρ̃1,j,k + h5eρl ,

ρ̃i,−1,k = ρ̃i,1,k + h5eρd .

(6.2e)

The convergence of the numerical scheme is based on the energy estimate of
the above system. The following preliminary results will be needed in the detailed
analysis for the error functions. The verification is straightforward and the proof
is skipped.

‖f‖∞ ≤ C

h
3
2
‖f‖L2 , (6.3a)

‖ũ‖0 ≤ C1(‖ũ‖2 + ‖ξ̃‖0) , ‖ṽ‖0 ≤ C1(‖ṽ‖2 + ‖ζ̃‖0) , (6.3b)

‖w̃‖0 ≤ C2(‖D̃xξ̃‖0 + ‖D̃y ζ̃‖0) . (6.3c)

Note that C1, C2 depends only on the geometric size of M and H0.
In the analysis of the error function presented in the following sections, we assume

a-priori that
‖ṽ‖L∞ + ‖ξ̃‖L∞ + ‖ζ̃‖L∞ ≤ h

5
4 . (6.4)
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Such a-priori assumption will be verified later by the inverse inequality given in
(6.3a). Furthermore, the system of the difference equations (6.2c), (6.2d) shows
that

‖ṽ‖L∞ ≤ C(‖ṽ‖L∞ + ‖ξ̃‖L∞ + ‖ζ̃‖L∞) , ‖w̃‖L∞ ≤ C(‖D̃xξ̃‖L∞ + ‖D̃y ζ̃‖L∞) .

(6.5)
Therefore, the a-priori assumption indicates the following L∞ bound for the error
functions of both the horizontal and vertical velocities

‖ṽ‖L∞ ≤ Ch
5
4 , ‖w̃‖L∞ ≤ Ch

1
4 . (6.6)

6.1. Estimate of the mean vorticity equation. Multiplying the error equation
for the mean vorticity in (6.2a) by −ψ̃ and summing over interior points (of the
2-D horizontal domain M0) (i, j) with i, j = 1, ...N − 1 gives

−〈ψ̃, ∂tω̃〉2 + ν1〈ψ̃,4hω̃〉2 = 〈ψ̃, D̃xD̃y(V ṽ + vṽ − Uũ + uũ)〉2
+〈ψ̃, (D2

x −D2
y)V ũ + uṽ〉2 − h4〈ψ̃, fω〉2 .

(6.7)

The time marching term and the diffusion term can handled by using the homo-
geneous Dirichlet boundary condition for ψ̃ in the discrete Poisson equation, along
with summation by parts on regular numerical grid

−〈ψ̃, ∂tω̃〉2 = −〈ψ̃, ∂t4hψ̃〉2 =
1
2

d

dt
‖∇hψ̃‖22 , (6.8)

〈ψ̃,4hω̃〉2 = 〈ψ̃, (D2
x +D2

y)ω̃〉2 = 〈D2
xψ̃, ω̃〉2 + 〈D2

yψ̃, ω̃〉2 +B = ‖ω̃‖22 +Bω ; (6.9a)

the boundary term Bω can be decomposed into Bω = B1 + B2 + B3 + B4 as follows

B1 =
N−1∑

i=1

ψ̃i,1ω̃i,0 , B2 =
N−1∑

i=1

ψ̃i,N−1ω̃i,N ,

B3 =
N−1∑

j=1

ψ̃1,jω̃0,j , B4 =
N−1∑

j=1

ψ̃N−1,jω̃N,j .

(6.9b)

An estimate to control the boundary term Bω is needed to ensure the numerical
stability. We only consider B1 for conciseness of presentation. Wilkes’ boundary
formula for the error function of the mean vorticity as formulated in (6.2a) can be
applied to recover B1

B1 =
N−1∑

i=1

ψ̃i,1ω̃i,0 =
1
h2

N−1∑

i=1

ψ̃i,1(4ψ̃i,1−
1
2
ψ̃i,2)+h3

N−1∑

i=1

ψ̃i,1(eω)i ≡ I1+I2 . (6.10)

The term I2 can be controlled by Cauchy inequality

I2 =
N−1∑

i=1

h3ψ̃i,1(eω)i ≥ −1
2

N−1∑

i=1

ψ̃
2

i,1

h2
− 1

2

N−1∑

i=1

h8(eω)2i ≥ −1
2

N−1∑

i=1

ψ̃
2

i,1

h2
− Ch7‖ue‖2C5 ,

(6.11)
where the last step comes from the estimate that |(eω)i| ≤ C‖ue‖C5 and the identity
h = 1

N . Meanwhile, a direct calculation can not control the term I1, since two
interior points ψi,1 and ψi,2 of mean stream function are involved in Wilkes’ formula.
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To overcome this difficulty, we use the property that ψ vanishes on the lateral
boundary and then rewrite the term appearing in the parentheses as

4ψ̃i,1 −
1
2
ψ̃i,2 = 3ψ̃i,1 −

1
2
h2(D2

yψ̃)i,1 . (6.12)

The purpose of this transformation is to control local terms by global terms as can
be seen later. Such methodology can be found in [28] for the treatment of the usual
2-D Navier-Stokes equations. Plugging (6.12) back into I1 indicates

I1 =
1
h2

N−1∑

i=1

ψ̃i,1

(
3ψ̃i,1 −

1
2
h2(D2

yψ̃)i,1

)
=

3
h2

N−1∑

i=1

ψ̃
2

i,1 −
1
2

N−1∑

i=1

ψ̃i,1(D
2
yψ̃)i,1 ,

(6.13)

and applying Cauchy inequality to the second term shows that

I1 ≥ 3
h2

N−1∑

i=1

ψ̃
2

i,1 −
1

8h2

N−1∑

i=1

ψ̃
2

i,1 −
1
2

N−1∑

i=1

∣∣∣∣(D2
yψ̃)i,1

∣∣∣∣
2

h2

≥ 2
h2

N−1∑

i=1

ψ̃
2

i,1 −
1
2

N−1∑

i=1

∣∣∣∣D2
yψ̃i,1

∣∣∣∣
2

h2 .

(6.14)

Consequently, we arrive at

B1 ≥ 1
h2

N−1∑

i=1

ψ̃
2

i,1 −
1
2

N−1∑

i=1

∣∣∣∣D2
yψ̃i,1

∣∣∣∣
2

h2 − 1
4
h6 , (6.15)

for sufficiently small h. The treatment of the other three boundary terms is essen-
tially the same. Now we recover Bω by global terms ‖D2

xψ̃‖22 and ‖D2
yψ̃‖22

Bω ≥ −1
2
‖D2

yψ̃‖22 −
1
2
‖D2

xψ̃‖22 − h6 . (6.16)

The two global terms in (6.16) can be controlled by the diffusion term ‖ω̃‖22. The
following lemma is necessary.

Lemma 6.1. For any ψ such that ψ |∂M0= 0, we have

‖D2
xψ‖22 + ‖D2

yψ‖22 ≤ ‖(D2
x + D2

y)ψ‖22 , ‖D̃xD̃yψ‖2 ≤ ‖(D2
x + D2

y)ψ‖2 . (6.17)

Proof. Since ψi,j vanishes on i, j = 0, N , the Sine transformation can be made for
{ψi,j} in both i-direction and j-direction, i.e.,

ψi,j =
N−1∑

k,`=1

( 2√
2N

)2

ψ̂k,` sin(kπxi) sin(`πyj) . (6.18)

Subsequently, the Parseval equality reads
N−1∑

i,j=1

(ψi,j)2 =
N−1∑

k,`=1

∣∣∣ψ̂k,`

∣∣∣
2

. (6.19)

With the introduction of eigenvalues

fk = − 4
h2

sin2(
kπh

2
) , g` = − 4

h2
sin2(

`πh

2
) , (6.20)
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we obtain the Fourier expansion of D2
xψ and D2

yψ

D2
xψi,j =

N−1∑

k,l=1

( 2√
2N

)2

fk ψ̂k,l sin(kπxi) sin(`πyj) ,

D2
yψi,j =

N−1∑

k,l=1

( 2√
2N

)2

g` ψ̂k,l sin(kπxi) sin(`πyj) ,

(6.21)

which in turn implies that
N−1∑

i,j=1

|(D2
x + D2

y)ψi,j |2 =
N−1∑

i,j=1

|4hψi,j |2 =
N−1∑

k,`=1

|g` + fk|2 |ψ̂k,`|2 . (6.22)

Since both fk and g` are non-positive, we have (fk + g`)2 ≥ f2
k + g2

` . As a result,
we arrive at

N−1∑

i,j=1

|(D2
x +D2

y)ψi,j |2 ≥
N−1∑

k,`=1

(f2
k + g2

` )|ψ̂k,`|2 =
N−1∑

i,j=1

(|D2
xψi,j |2 + |D2

yψi,j |2) . (6.23)

This is exactly the first inequality in (6.17).
The second inequality can be similarly proven. It is observed that

D̃xD̃yψi,j =
N−1∑

k,l=1

qk r`

( 2√
2N

)2

ψ̂k,l cos(kπxi) cos(`πyj) , (6.24)

with the corresponding eigenvalues

qk =
1
h

sin(kπh) , r` =
1
h

sin(`πh) . (6.25)

Applying Parseval equality for the discrete Cosine transformation, we have
N−1∑

i,j=1

|D̃xD̃yψi,j |2 ≤
N−1∑

i,j=1

|D̃xD̃yψi,j |2 +
1
4

∑

i=0,N

∑

j=0,N

|D̃xD̃yψi,j |2

+
1
2

N−1∑

i=1

∑

j=0,N

|D̃xD̃yψi,j |2 +
1
2

N−1∑

j=1

∑

i=0,N

|D̃xD̃yψi,j |2

=
N−1∑

k,`=1

|qk ·r`|2 |ψ̂k,`|2 .

(6.26)
Meanwhile, a careful calculation shows that

(qk ·r`)2 ≤ (fk + g`)2 , ∀ 1 ≤ k, l ≤ N − 1 . (6.27)

The combined estimates of (6.22), (6.26) and (6.27) results in

N−1∑

i,j=1

|(D2
x + D2

y)ψi,j |2 ≥
N−1∑

k,`=1

(qk ·r`)2|ψ̂k,`|2 ≥
N−1∑

i,j=1

|D̃xD̃yψi,j |2 , (6.28)

which is equivalent to the second inequality in (6.17). Lemma 6.1 is proven. ¤



NUMERICAL METHOD FOR THE PRIMITIVE EQUATIONS 1169

It is straightforward to observe that Lemma 6.1 is valid for ψ̃ since it vanishes
on the lateral boundary sections. Then we have

‖D2
xψ̃‖22 + ‖D2

yψ̃‖22 ≤ ‖(D2
x + D2

y)ψ̃‖22 = ‖ω̃‖22 . (6.29)

Substituting (6.29) into (6.16) and (6.9), we obtain the following estimate for the
diffusion term

〈ψ̃,4hω̃〉2 ≥ 1
2
‖ω̃‖22 − h6 . (6.30)

The nonlinear convection terms can also be controlled by applying Lemma 6.1.
We consider the term D̃xD̃y(V ṽ + vṽ). The rest three terms can be handled in the
same way. Summing by parts gives

〈ψ̃, D̃xD̃y(V ṽ + vṽ)〉2 = 〈D̃xD̃yψ̃, V ṽ + vṽ〉2 = 〈D̃xD̃yψ̃, V ṽ〉2 + 〈D̃xD̃yψ̃, vṽ〉2 ,
(6.31)

due to the vanishing boundary condition for both ψ̃ and the velocity field. Cauchy
inequality and the second inequality in (6.17) can be applied to both terms

∣∣∣∣〈D̃xD̃yψ̃, V ṽ〉2
∣∣∣∣ ≤

ν1

32
‖D̃xD̃yψ̃‖22 +

8
ν1
‖V ṽ‖22 ≤

ν1

32
‖ω̃‖22 +

8
ν1
‖V ‖L∞‖ṽ‖22 ,

∣∣∣∣〈D̃xD̃yψ̃, vṽ〉2
∣∣∣∣ ≤

ν1

32
‖D̃xD̃yψ̃‖22 +

8
ν1
‖vṽ‖22 ≤

ν1

32
‖ω̃‖22 +

8
ν1
‖v‖L∞‖ṽ‖22 .

(6.32)
By the a-priori bound (6.6) and estimate for the constructed V , we have

‖V ‖L∞ ≤ ‖ve‖C0 +
1
2

, ‖v‖L∞ ≤ ‖V ‖L∞ + ‖ṽ‖L∞ ≤ ‖ue‖C0 + 1 = C̃1 , (6.33)

provided that h is small enough. The combination of (6.31), (6.32) and (6.33)
results in ∣∣∣∣〈ψ̃, D̃xD̃y(V ṽ + vṽ)〉2

∣∣∣∣ ≤
ν1

16
‖ω̃‖22 +

16
ν1

C̃1‖ṽ‖22 , (6.34)

with C̃1 = ‖ue‖C0 +1. Similar results can be obtained for the three other boundary
terms
∣∣∣∣〈ψ̃, D̃xD̃y(Uũ + uũ)〉2

∣∣∣∣ ,

∣∣∣∣〈ψ̃, D2
xV ũ + uṽ〉2

∣∣∣∣ ,

∣∣∣∣〈ψ̃, D2
yV ũ + uṽ〉2

∣∣∣∣ ≤
ν1

16
‖ω̃‖22 +

16
ν1

C̃1‖ṽ‖22 .

(6.35)
The force term in (6.7) can be easily controlled

h4|〈ψ̃,fω〉2| ≤
1
2
‖ψ̃‖22 +

1
2
h8‖fω‖22 ≤ C‖∇hψ̃‖22 +

1
2
h8‖fω‖22 , (6.36)

in which the Poincare inequality for ψ̃ was used. Substituting (6.36), (6.35), (6.34),
(6.30) and (6.8) into (6.7), we get the energy estimate for the mean vorticity error
function

1
2

d

dt
‖∇hψ̃‖22 +

ν1

4
‖ω̃‖22 ≤

64
ν1

C̃1‖ṽ‖22 + h6 +
1
2
h8‖fω‖22 . (6.37)
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6.2. Estimate for the evolution equations of (ξ̃, ζ̃). Multiplying the first error
equation in (6.2b) by ξ̃ and summing over interior points (of the 3-D domain M)
(i, j, k) with i, j, k = 1, ...N − 1 give

1
2

d

dt
‖ξ̃‖20 − ν1〈ξ̃,4hξ̃〉0 − ν2〈ξ̃, D2

z ξ̃〉0 = h4〈ξ̃, f ξ〉0 − 〈ξ̃, ũD̃xS + uD̃xξ̃〉0
−〈ξ̃, ṽD̃yS + vD̃y ξ̃〉0 − 〈ξ̃, w̃D̃zS + wD̃z ξ̃〉0 + 〈ξ̃, ξ̃D̃yV + ξD̃y ṽ〉0
−〈ξ̃, ζ̃D̃yU + ζD̃yũ〉0 + 〈ξ̃, f

Ro
ζ̃〉0 +

1
Ro
〈ξ̃, D̃xρ̃〉0 .

(6.38)

The homogeneous Dirichlet boundary condition for ξ̃ indicates that

〈ξ̃,4hξ̃〉0 = −‖∇hξ̃‖20 , 〈ξ̃, D2
z ξ̃〉0 = −‖Dz ξ̃‖20 . (6.39)

The nonlinear convection term can be handled in a similar fashion as in section 6.1.
We obtain the following estimate. The details are left for interested readers.

1
2

d

dt
‖ζ̃‖20 +

5
8
ν1(‖Dxζ̃‖20 + ‖Dy ζ̃‖20) +

7
8
ν2‖Dz ζ̃‖20 ≤

(2C̃2
4

ν1
+ C̃2

)
‖ṽ‖20

+(C +
1
2
C̃3)‖ξ̃‖20 +

(4C̃2
1

ν1
+

4C̃2
2C2

2

ν1
+

2C̃2
1

ν2
+

C

κ1
+ C̃2 +

3
2
C̃3 + C

)
‖ζ̃‖20

+
1
8
ν1‖Dxξ̃‖20 +

1
8
κ1‖Dyρ̃‖20 +

1
2
h8‖f ζ‖20 ,

(6.40)
with the constants

C̃1 = ‖ue‖C0 + 1 ≥ ‖u‖L∞ , C̃2 = 2‖ue‖C2 + 1 ≥ ‖S‖W 1,∞ + ‖Φ‖W 1,∞ ,

C̃3 = ‖ue‖C1 + 1 ≥ ‖V ‖W 1,∞ , C̃4 = 2‖ue‖C1 + 1 ≥ ‖ξ‖L∞ + ‖ζ‖L∞ .

(6.41)
Similarly, multiplying the second error equation in (6.2b) by ζ̃ and summing over

interior points (i, j, k) with i, j, k = 1, ...N − 1 results in

1
2

d

dt
‖ζ̃‖20 +

5
8
ν1(‖Dxζ̃‖20 + ‖Dy ζ̃‖20) +

7
8
ν2‖Dz ζ̃‖20 ≤

(2C̃2
4

ν1
+ C̃2

)
‖ṽ‖20

+(C +
1
2
C̃3)‖ξ̃‖20 +

(4C̃2
1

ν1
+

4C̃2
2C2

2

ν1
+

2C̃2
1

ν2
+

C

κ1
+ C̃2 +

3
2
C̃3 + C

)
‖ζ̃‖20

+
1
8
ν1‖Dxξ̃‖20 +

1
8
κ1‖Dyρ̃‖20 +

1
2
h8‖f ζ‖20 .

(6.42)

6.3. Estimate for the density transport equation. Taking the 〈 , 〉3 inner
product of the density error equation in (6.2e) with ρ̃, we have

1
2

d

dt
‖ρ̃‖23 − κ1〈ρ̃,4hρ̃〉3 − κ2〈ρ̃, D2

z ρ̃〉3 = h4〈ρ̃, fρ〉3
−〈ρ̃, ũD̃xΘ + uD̃xρ̃〉3 − 〈ρ̃, ṽD̃yΘ + vD̃yρ̃〉3 − 〈ξ̃, w̃D̃zΘ + wD̃z ρ̃〉3 .

(6.43)

The following estimate for (6.43) can be similarly obtained. We omit the detail
for brevity.

1
2

d

dt
‖ρ̃‖23 +

7
8
κ1(‖Dxρ̃‖20 + ‖Dyρ̃‖20) +

7
8
κ2‖Dz ρ̃‖20 ≤

1
2
h8‖fρ‖23

+
(
C̃5 +

4C̃2
1

κ1
+

4C̃2
5C2

2

ν1
+

2C̃2
1

κ2

)
‖ρ̃‖23 + C̃5‖ṽ‖20 ,

(6.44)



NUMERICAL METHOD FOR THE PRIMITIVE EQUATIONS 1171

with C̃5 = ‖ρe‖C1 + 1 ≥ ‖Θ‖W 1,∞ .

6.4. Convergence result. We conclude from (6.37), (6.41), (6.42), (6.44) that
1
2

d

dt

(
‖∇hψ̃‖22 + ‖ξ̃‖20 + ‖ζ̃‖20 + ‖ρ̃‖23

)

≤
(4C̃2

1

ν1
+

4C̃2
2C2

2

ν1
+

2C̃2
1

ν2
+

C

κ1
+ C̃2 + 2C̃3 + C

)
(‖ξ̃‖20 + ‖ζ̃‖20)

+
(2C̃2

4

ν1
+ C̃2 + C̃5

)
‖ṽ‖20 +

(
C̃5 +

4C̃2
1

κ1
+

4C̃2
5C2

2

ν1
+

2C̃2
1

κ2

)
‖ρ̃‖23 +

64
ν1

C̃1‖ṽ‖22

+
1
2
h8(‖fω‖22 + ‖f ξ‖20 + ‖f ζ‖20 + ‖fρ‖23) + Ch6 .

(6.45)
The application of Gronwall’s inequality to (6.45) combined with the consistency
analysis (5.40) lead to

‖∇hψ̃‖22 + ‖ξ̃‖20 + ‖ζ̃‖20 + ‖ρ̃‖23 ≤ C · exp
(Ct

ν0

)
(C∗)2h8 + CTh6 , (6.46)

where C is given in Theorem 3.1 and C∗ depends only on the exact solution. Note
that we used the fact

‖ũ‖2 = ‖D̃yψ̃‖2 ≤ ‖Dyψ̃‖2 , ‖ṽ‖2 = ‖D̃xψ̃‖2 ≤ ‖Dxψ̃‖2 , (6.47)

in the derivation of (6.46). Furthermore, by the preliminary result (6.3b), we con-
clude that the estimate (6.46) is equivalent to

‖vh − V ‖L∞(0,T ;L2) + ‖ρh −Θ‖L∞(0,T ;L2) ≤ CC∗
(
exp

{
CT

ν0

}
+ T

)
h3 , (6.48)

whose combination with the estimate (5.41) gives the convergence result (3.20).
The inverse inequality in 3-D as given in (6.3a) shows that

‖ṽ‖L∞ ≤ C
h3

h
3
2
≤ Ch

3
2 , ‖ξ̃‖L∞ + ‖ζ̃‖L∞ ≤ C

h3

h
3
2
≤ Ch

3
2 , (6.49)

As a result, the a-priori assumption (6.4) is satisfied if h is small enough. Theorem
3.1 is proven. ¤
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