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Abstract. Magnetization dynamics in magnetic materials is modeled by the

Landau-Lifshitz-Gilbert (LLG) equation, which is a nonlinear system of partial

differential equations. In the LLG equation, the length of magnetization is con-
served and the system energy is dissipative. Implicit and semi-implicit schemes

have often been used in micromagnetics simulations due to their unconditional
numerical stability. In more details, implicit schemes preserve the properties of

the LLG equation, but solve a nonlinear system of equations per time step. In

contrast, semi-implicit schemes only solve a linear system of equations, while
additional operations are needed to preserve the length of magnetization. It

still remains unclear which one shall be used if both implicit and semi-implicit

schemes are available. In this work, using the implicit Crank-Nicolson (ICN)
scheme as a benchmark, we propose to make this implicit scheme semi-implicit.

Stability and convergence analysis, and numerical performance in terms of ac-
curacy and efficiency are systematically studied. Based on these results, we
conclude that a semi-implicit scheme is superior to its implicit analog both

theoretically and numerically, and we recommend the semi-implicit scheme in

micromagnetics simulations if both methods are available.

1. Introduction. In most solid materials, local magnetic orders posed by electrons
do not generate magnetization macroscopically, because of the symmetry. Ferro-
magnets, however, spontaneously break the symmetry, and yield a macroscopic
magnetization. Ferromagnets exhibit stable binary configurations, which makes
them novel materials for data storage. Recent experimental advances have demon-
strated the feasibility of effective and precise control of ferromagnetic structures
by applying external fields [25]. Phenomenologically, magnetization dynamics is
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modeled by the Landau-Lifshitz-Gilbert (LLG) equation [14, 18]. Over the past
decades, extensive numerical simulations have continued to overcome the difficul-
ties associated with the nonlinearity of the model and the non-convex constraint on
the magnetization (see [8, 17] for reviews and references therein).

For temporal discretization, there have been explicit schemes[2, 16], implicit
schemes[9, 3, 12, 16, 28], and semi-implicit schemes [4, 7, 10, 13, 19, 20, 26, 27]. Ex-
plicit schemes usually lead to a severe time step constraint for the numerical stability
reason, while implicit and semi-implicit schemes are verified to be unconditionally
stable, and thus are commonly used. Meanwhile, implicit and semi-implicit schemes
have their advantages and disadvantages, respectively. On the one hand, implicit
schemes often preserve the length of magnetization and inherit the energy dissipa-
tion property automatically, while the semi-implicit schemes do not preserve the
length of magnetization, which is compensated by a projection step. Moreover, the
property of energy dissipation is not theoretically preserved for the semi-implicit
schemes. These issues may affect the numerical accuracy in long time simulation.
On the other hand, semi-implicit schemes only require one linear system solver at
each time step, so that its efficiency is obvious. In contrast, a nonlinear system
has to be solved for the implicit schemes at each time step. In fact, a fixed-point
iteration method, such as standard simple linearization or Newton’s method, is em-
ployed to solve nonlinear systems of equations. Several iterations are needed at
each time step to achieve iteration convergence for the implicit schemes. Due to the
non-convex nature of the problem, the uniqueness of the numerical solution of the
implicit schemes could only be established when k = O(h2), with k being the tem-
poral step size and h being the spatial mesh size [12]. For the semi-implicit schemes,
the unique solvability analysis can be theoretically justified for any k, h > 0 [6]. It
is worth mentioning that no matter which scheme, the linear and linearized sys-
tem are non-symmetric; they are solved by Generalized Minimal Residual Method
(GMRES) in simulations.

A natural question arises when solving the LLG equation: which one shall be
preferred if both implicit and semi-implicit schemes are available? The answer to
this question remains unclear in the existing literature. In this paper, we take
the implicit Crank-Nicolson (ICN) scheme as an example, and try to make this
implicit scheme semi-implicit. These two schemes are second-order accurate in both
space and time. The numerical solution to a nonlinear system of equations in the
ICN scheme is unique under a severe time step constraint k = O(h2), while linear
systems of equations in the semi-implicit Crank-Nicolson (SICN) scheme preserve
the unconditional unique solvability. To ensure the convergence of the SICN scheme,
a much milder constraint, k = O(h), is needed. Moreover, the semi-implicit schemes
are much more advantageous in terms of numerical efficiency, since only a linear
system solver is needed at each time step. If both schemes work, the SICN scheme
can reduce the computational time without loss of accuracy and shall be preferred
in micromagnetics simulations.

The rest of the paper is organized as follows. In Section 2, we present the ICN
and SICN schemes, and discuss their properties in details, such as conservation of
magnetization length, energy dissipation, solvability, and convergence. In Section 3,
accuracy and efficiency tests are conducted for both schemes, and the limitations
of the nonlinear solver in the ICN scheme are demonstrated. Micromagnetics sim-
ulations, including different stable structures and a benchmark problem from the



ADVANTAGES OF A SEMI-IMPLICIT SCHEME FOR LLG EQUATION 5107

National Institute of Science and Technology (NIST), are performed with the SICN
scheme in Section 4. Finally, some conclusions are made in Section 5.

2. The second-order schemes.

2.1. Model. The LLG equation [14, 18] is a phenomenological model to describe
the magnetization dynamics in a ferromagnetic material, which in the dimensionless
form reads as

mt = −m× heff − αm× (m× heff), (1)

coupled with homogeneous Neumann boundary condition

∂m

∂ν

∣∣∣
∂Ω

= 0. (2)

Here Ω is a bounded domain occupied by the ferromagnetic material, the magne-
tization m : Ω ⊂ Rd → S2, d = 1, 2, 3 is a three dimensional vector field with a
point-wise constraint |m| = 1, and ν is the unit outward normal vector along ∂Ω.
On the right-hand side of (1), the first term is the gyromagnetic term, while the
second term stands for the damping term with a dimensionless parameter α > 0.

The effective field heff is defined as the negative variation of the Gibbs free energy

of the magnetic body with respect tom, i.e., heff = −δF [m]

δm
. The free energy F [m]

includes the exchange energy, the anisotropy energy, the magnetostatic energy, and
the Zeeman energy. For a uniaxial material with easy axis e1 = (1, 0, 0)T , the
following form is taken

F [m] =
µ0M

2
s

2

∫
Ω

(
ε|∇m|2 +Q(m2

2 +m2
3)− hs ·m− 2he ·m

)
dx.

Accordingly, the effective field heff consists of the exchange field, the anisotropy
field, the demagnetization or stray field hs[29], and the applied external field he,
i.e.,

heff = ε∆m−Q(m2e2 +m3e3) + hs + he. (3)

The dimensionless parameters are given by: ε = 2Cex/(µ0M
2
sL

2), Q = Ku/(µ0M
2
s ),

Cex is the exchange constant, Ku is the anisotropy constant, L is the diameter of
the ferromagnetic body, µ0 is the permeability of vacuum, and Ms stands for the
saturation magnetization. The two unit vectors turn out to be e2 = (0, 1, 0)T , e3 =
(0, 0, 1)T , and ∆ denotes the standard Laplacian operator. Typical values of the
physical parameters for Permalloy are included in Table 1.

Table 1. Typical values of the physical parameters for Permalloy
[1], which is an alloy of Nickel (80%) and Iron (20%) frequently
used in magnetic storage devices.

Physical Parameters for Permalloy

Ku 5.0× 102J/m3

Cex 1.3× 10−11J/m

Ms 8.0× 105A/m

µ0 4π × 10−7N/A2

α 0.1
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The stray field hs takes the form

hs = −∇
∫

Ω

∇N(x− y) ·m(y) dy, (4)

where N(x) = − 1
4π|x| is the Newtonian potential.

For the sake of simplicity, we define

f = −Q(m2e2 +m3e3) + hs + he,

and rewrite (1) as

mt = −m× (ε∆m+ f)− αm× (m× (ε∆m+ f)) . (5)

2.2. The Crank-Nicolson scheme. Denote the temporal stepsize by k, and tn =
nk, n ≤ bTk c with T the final time. Denote the spatial meshsize by h, the standard
second-order centered difference for Laplacian operator by ∆h. We use the finite
difference method to approximate the spatial derivatives in (5)

∆hmi,j,l =
mi+1,j,l − 2mi,j,l +mi−1,j,l

h2

+
mi,j+1,l − 2mi,j,l +mi,j−1,l

h2

+
mi,j,l+1 − 2mi,j,l +mi,j,l−1

h2
,

where mi,j,l stands for a numerical approximation for m at a cell-centered mesh
point

((
i− 1

2

)
h,
(
j − 1

2

)
h,
(
l − 1

2

)
h
)
. The discrete gradient operator ∇hm, with

m = (u, v, w)T , is introduced as

∇hmi,j,l =

ui+1,j,l−ui,j,l

h
vi+1,j,l−vi,j,l

h
wi+1,j,l−wi,j,l

h
ui,j+1,l−ui,j,l

h
vi,j+1,l−vi,j,l

h
wi,j+1,l−wi,j,l

h
ui,j,l+1−ui,j,l

h
vi,j,l+1−vi,j,l

h
wi,j,l+1−wi,j,l

h

 .
For the Neumann boundary condition (2), a second-order discretization yields

m0,j,l = m1,j,l, mNx,j,l = mNx+1,j,l, j = 1, · · · , Ny, l = 1, · · · , Nz,
mi,0,l = mi,1,l, mi,Ny,l = mi,Ny+1,l, i = 1, · · · , Nx, l = 1, · · · , Nz,
mi,j,0 = mi,j,1, mi,j,Nz = mi,j,Nz+1, i = 1, · · · , Nx, j = 1, · · · , Ny.

(6)

For brevity, we use mh to denote the grid function of m over the uniform grids.
Lph(Ω), 1 ≤ p ≤ ∞ are grid function spaces defined in Ω corresponding to Lp. For the
temporal discretization, we employ the Crank-Nicolson algorithm to approximate
the temporal derivative

∂

∂t
m
n+ 1

2

h ≈
mn+1
h −mn

h

k
,

which gives the following ICN scheme:

mn+1
h −mn

h

k
=−mn+ 1

2

h × (ε∆hm
n+ 1

2

h + f
n+ 1

2

h )

− αmn+ 1
2

h ×
(
m
n+ 1

2

h × (ε∆hm
n+ 1

2

h + f
n+ 1

2

h )
)
.

(7)

Here m
n+ 1

2

h =
mn+1
h +mn

h

2
, f

n+ 1
2

h =
fn+1
h + fnh

2
.

To ease the description, we simplify (7) as

mn+1
h −mn

h

k
= −mn+ 1

2

h ×∆hm
n+ 1

2

h − αmn+ 1
2

h × (m
n+ 1

2

h ×∆hm
n+ 1

2

h ). (8)
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We can solve the nonlinear systems of equations in (8) by the following three dif-
ferent strategies.

(a) Explicit iteration [12]

mn,`+1
h −mn

h

k
= −mn+ 1

2 ,`

h ×∆hm
n+ 1

2 ,`

h − αmn+ 1
2 ,`

h ×
(
m
n+ 1

2 ,`

h ×∆hm
n+ 1

2 ,`

h

)
,

where m
n+ 1

2 ,`

h =
mn,`
h +mn

h

2
. It will be proved later that lim`→+∞

mn,`
h +mn

h

2

exists for every n, and thus we can set mn+1
h = lim`→+∞m

n,`
h .

(b) Semi-implicit iteration

mn,`+1
h −mn

h

k
= −mn+ 1

2 ,`

h ×∆hm
n+ 1

2 ,`+1

h −αmn+ 1
2 ,`

h ×
(
m
n+ 1

2 ,`

h ×∆hm
n+ 1

2 ,`+1

h

)
.

A linear system of equations needs to be solved at each iteration and its unique

solvability can be similarly proved. We expect mn+1
h = lim`→+∞m

n,`
h under

mild conditions.
(c) Newton’s iteration

N (mn+1
h ) = φn, (9)

where

N (m) =m+ k
m+mn

h

2
×∆h

m+mn
h

2

+ αk
m+mn

h

2
×
(
m+mn

h

2
×∆h

m+mn
h

2

)
,

and

φn = mn
h.

The iteration algorithm (9) is obtained by expanding (8) and combining the
corresponding terms.

The details of Newton’s method are given in Algorithm 1 with

D(m)δm =δm− k∆h
m+mn

h

2
× δm

2
+ k

m+mn
h

2
×∆h

δm

2

− 2αk
m+mn

h

2
×
(

∆h
m+mn

h

2
× δm

2

)
+ αk∆h

m+mn
h

2
×
(
m+mn

h

2
× δm

2

)
+ αk

m+mn
h

2
×
(
m+mn

h

2
×∆h

δm

2

)
,

and

D(m) =I − k

4
∆h (m+mn

h)×+
k

4
(m+mn

h)×∆h

− αk

4
(m+mn

h)× [∆h (m+mn
h)×]

+
αk

8
∆h (m+mn

h)× [(m+mn
h)×]

+
αk

8
(m+mn

h)× [(m+mn
h)×∆h] .
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Algorithm 1: Newton’s Method

Input: mn
h

1 Initialization: m∗ ←mn
h;

2 |δm| = 1, iter = 0;

3 Calculate: φn;

4 while |δm| > tol and iter < MaxIter do
5 Calculate: N (m∗),D(m∗);

6 D(m∗)δm = φn −N (m∗);

7 m∗ ←m∗ + λδm (λ = 1 by default);

8 end

9 mn+1
h ←m∗. Output: mn+1

h

Strategy (a) will be used to show the uniqueness of a solution to the nonlinear
system of equations (8); see Theorem 2.5. Strategy (b) is a simple fixed-point
iteration and Strategy (c) (the Newton’s method) can be viewed as the special
fixed-point iteration. In particular, Strategy (c) has the best efficiency. Therefore,
we will apply Newton’s method in Section 3.

To proceed, we introduce some notations of grid functions.

Definition 2.1 (Discrete inner product). For grid functions fh and gh over the
uniform numerical grid, we define

〈fh, gh〉 = hd
∑
I∈Λd

fI · gI ,

with the index set Λd = {(i, j, l)|1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ l ≤ Nz} and the index
I = (i, j, l).

Definition 2.2. For the grid function fh, the average of summation is defined as

f̄h = hd
∑
I∈Λd

fI .

Definition 2.3. For the grid function fh with f̄h = 0 and the homogeneous Neu-
mann boundary condition, the discrete H−1

h and H1
h norms are introduced as

‖fh‖H−1
h

= 〈(−∆h)−1fh,fh〉1/2,

‖fh‖H1
h

= (‖fh‖22 + ‖∇hfh‖22)1/2.

Lemma 2.4 ([6, Lemma 1]). For grid functions fh and gh over the uniform nu-
merical grid, we have

‖∇h (fh × gh)‖22 ≤ C
(
‖fh‖2∞ ‖∇hgh‖

2
2 + ‖gh‖2∞ ‖∇hfh‖

2
2

)
,

〈(fh ×∆hgh)× fh, gh〉 = 〈fh × (gh × fh) ,∆hgh〉 ,

〈fh × (fh × gh) , gh〉 = −‖fh × gh‖22 .

In the following part, we focus on the investigation of the theoretical properties
for the ICN scheme.
• Length conservation of the ICN scheme

Taking a vector inner product on both sides of (8) with
mn+1
h +mn

h

2
= m

n+ 1
2

h ,

we obtain

mn+1
h −mn

h

k
·
mn+1
h +mn

h

2
=m

n+ 1
2

h ×∆hm
n+ 1

2

h ·mn+ 1
2

h
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− αmn+ 1
2

h × (m
n+ 1

2

h ×∆hm
n+ 1

2

h ) ·mn+ 1
2

h

=0.

Henceforth, the following identity is valid at a point-wise level:

|mn+1
h |2 = |mn

h|
2
.

Of course, it is straightforward to verify that this equality also holds true for (7).
• Energy dissipation of the ICN scheme

Here we consider the 1D scheme, which can be easily extended to the 3D case.
Let Eh(mn

h) be the discrete form of the energy
∫

Ω
|∇m|2dx, defined as

Eh (mn
h) =

1

h

Nx∑
i=1

∣∣mn
i+1 −mn

i

∣∣2 .
The difference of energy between the two successive steps turns out to be

Eh
(
mn+1
h

)
− Eh (mn

h) =
1

h

Nx∑
i=1

(∣∣mn+1
i+1 −m

n+1
i

∣∣2 − ∣∣mn
i+1 −mn

i

∣∣2)
=

1

h

Nx∑
i=1

(∣∣mn+1
i+1

∣∣2 − ∣∣mn
i+1

∣∣2 +
∣∣mn+1

i

∣∣2 − |mn
i |

2

−2mn+1
i ·mn+1

i+1 + 2mn
i ·mn

i+1

)
=− 2

h

Nx∑
i=1

(
mn+1
i ·mn+1

i+1 −m
n
i ·mn

i+1

)
.

(10)

Taking a discrete inner product on both sides of (8) with ∆h
mn+1

h +mn
h

2 = ∆hm
n+ 1

2

h ,
we obtain

〈
mn+1
h −mn

h

k
,∆h

mn+1
h +mn

h

2
〉

= 〈−mn+ 1
2

h ×∆hm
n+ 1

2

h − αmn+ 1
2

h × (m
n+ 1

2

h ×∆hm
n+ 1

2

h ),∆hm
n+ 1

2

h 〉.
(11)

A direct calculation gives

〈
mn+1
h −mn

h

k
,∆h

mn+1
h +mn

h

2
〉 =

h

2k

Nx∑
i=1

(mn+1
i −mn

i ) ·∆h(mn+1
i +mn

i )

=
1

hk

Nx∑
i=1

(mn+1
i ·mn+1

i+1 −m
n
i ·mn

i+1).

(12)

The last step comes from the fact that

mn+1
0 ·mn+1

1 −mn
0 ·mn

1 = mn+1
Nx
·mn+1

Nx+1 −m
n
Nx
·mn

Nx+1 = 0,

due to the discrete Neumann condition (6) and the conservation of magnetization
length. From Lemma 2.4, we have

〈−mn+ 1
2

h ×∆hm
n+ 1

2

h − αmn+ 1
2

h × (m
n+ 1

2

h ×∆hm
n+ 1

2

h ),∆hm
n+ 1

2

h 〉

= −α〈mn+ 1
2

h × (m
n+ 1

2

h ×∆hm
n+ 1

2

h ),∆hm
n+ 1

2

h 〉

= α‖mn+ 1
2

h ×∆hm
n+ 1

2

h ‖22.

(13)
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Therefore, (10) together with (11), (12) and (13) implies that

Eh
(
mn+1
h

)
− Eh (mn

h) =− 2αk‖mn+ 1
2

h ×∆hm
n+ 1

2

h ‖22.

In other words, the ICN scheme preserves the energy dissipation law for α > 0. The
analysis for the (7) is similar.
• Conditional solvability of the ICN scheme

Theorem 2.5 ([12, Theorem 1]). Assume that mn
h satisfies ‖mn

h‖∞ ≤ 1 + δ for
some nonnegative δ. We set

β < β∗ = min

{
η

|(1 + δ + η)2 + α(1 + δ + η)3|
,

1

2(1 + δ + η) + 3α(1 + δ + η)2

}
for some positive η. Besides, we introduce the following notation

ρ = β · (2(1 + δ + η) + 3α(1 + δ + η)2).

If k
h2 ≤ β, and mn,0

h satisfy

‖
mn,0
h +mn

h

2
‖∞ ≤ 1 + δ + η.

then we have

‖mn,`+1
h −mn,`

h ‖∞ ≤ ρ
`‖mn,1

h −mn,0
h ‖∞,

‖
mn,`
h +mn

h

2
‖∞ ≤ 1 + δ + η.

Furthermore, there exists a limit m∗ ∈ L∞h (Ω) such that

lim
`→+∞

‖mn,`
h −m

∗‖∞ = 0,

‖m∗‖∞ ≤ 1 + δ,

and

m∗ −mn
h

k

= −m
∗ +mn

h

2
×∆h

m∗ +mn
h

2
− αm

∗ +mn
h

2
×
(
m∗ +mn

h

2
×∆h

m∗ +mn
h

2

)
.

In this sense, we can define mn+1
h uniquely by m∗.

• Convergence of the ICN scheme

Theorem 2.6 (1D case, [12, Theorem 5]). For the sufficiently smooth solution
me(x, t) of (1)-(2) and the finite difference solution mn

i of (8), we define the error
on the discrete grids as eni = mn

i −me(ih, nk), i = 0, 1, · · · , Nx, n = 0, 1, · · · , bTk c.
We assume that me(x, 0) ∈ H4(Ω) with Ω = [0, L]. If

k ≤ 1/Ce

(
−1, α, ‖∂me(x, 0)

∂x
‖H3(Ω), ‖∇hm0

h‖22, 0, L2, T

)
,

and Ce is a function defined in [12, equation (86)], then we have

‖en‖H1
h

= O(h2 + k2), ∀ n ≥ 1.
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2.3. Semi-implicit Crank-Nicolson scheme. It is worth mentioning that at
each time step, a nonlinear system of equations needs to be solved in (7). More-
over, at each iteration, a linear system of equations with non-symmetric and variable
coefficients has to be solved in Strategy (b) and Strategy (c). To overcome this sub-
tle difficulty, we approximate the nonlinear terms in front of the Laplacian operator
by using available data from previous time steps (one-sided interpolation)[23], with
the same accuracy order as in the ICN scheme. Precisely, for (7), we have

mn+1
h −mn

h

k
=− m̂n+ 1

2

h ×
(
ε∆hm

n+ 1
2

h + f̂
n+ 1

2

h

)
− αm̂n+ 1

2

h ×
(
m̂
n+ 1

2

h × (ε∆hm
n+ 1

2

h + f̂
n+ 1

2

h )
)
,

where

m̂
n+ 1

2

h =
3mn

h −m
n−1
h

2
and f̂

n+ 1
2

h =
3fnh − f

n−1
h

2
.

Such a scheme does not preserve the length of magnetization. Therefore, we add a
projection step and obtain the following SICN scheme for (5):

mn+1,∗
h −mn

h

k
= −m̂n+ 1

2

h ×
(
ε∆hm

n+ 1
2 ,∗

h + f̂
n+ 1

2

h

)
− αm̂n+ 1

2

h ×
(
m̂
n+ 1

2

h × (ε∆hm
n+ 1

2 ,∗
h + f̂

n+ 1
2

h )
)
,

mn+1
h =

mn+1,∗
h

|mn+1,∗
h |

,

(14)

where mn+1,∗
h is the intermediate magnetization and m

n+ 1
2 ,∗

h =
mn+1,∗
h +mn

h

2
.

• Unconditionally unique solvability of the SICN scheme We could rewrite (14) as

(2I + kεm̂
n+ 1

2

h ×∆h + αkεm̂
n+ 1

2

h × (m̂
n+ 1

2

h ×∆h))mn+1,∗
h

= 2mn
h − (km̂

n+ 1
2

h ×∆h + αkm̂
n+ 1

2

h × (m̂
n+ 1

2

h ×∆h))(εmn
h + 2f̂n+ 1

2 ).

For ease of notation, we drop the temporal indices and rewrite the linear system
of (14) in a compact form as

(2I + kεm̂h ×∆h + αkεm̂h × (m̂h ×∆h))mh = ph, (15)

where

ph = 2mh − (km̂h ×∆h + αkm̂h × (m̂h ×∆h))(εmh + 2f̂h).

Theorem 2.7. Given ph and m̂h, the numerical scheme (15) admits a unique
solution.

Proof. For the unique solvability analysis for (15), we denote qh = −∆hmh. Note
that qh = 0 under the Neumann boundary condition for mh. In general, mh 6=
(−∆h)−1qh since mh 6= 0. Instead, we reformulate (15) as

mh =
1

2
(ph + kεm̂h × qh + αkεm̂h × (m̂h × qh)) ,

and take an average on both sides. Therefore, mh can be represented as follows:

mh = (−∆h)−1qh +C∗qh
with C∗qh

=
1

2

(
ph + kεm̂h × qh + αkεm̂h × (m̂h × qh)

)
.
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In turn, (15) is rewritten as

G(qh) := 2
(
(−∆h)−1qh + C∗qh

)
− ph − kεm̂h × qh − αkεm̂h × (m̂h × qh) = 0.

For any q1,h, q2,h with q1,h = q2,h = 0, we denote q̃h = q1,h − q2,h and derive
the following monotonicity estimate:

〈G (q1,h)−G (q2,h) , q1,h − q2,h〉 =2
(〈

(−∆h)
−1
q̃h, q̃h

〉
+
〈
C∗q1,h

− C∗q2,h
, q̃h

〉)
− kε 〈m̂h × q̃h, q̃h〉 − αkε 〈m̂h × (m̂h × q̃h) , q̃h〉

≥2
(〈

(−∆h)
−1
q̃h, q̃h

〉
+
〈
C∗q1,h

− C∗q2,h
, q̃h

〉)
=2
〈

(−∆h)
−1
q̃h, q̃h

〉
= 2 ‖q̃h‖2H−1

h
≥ 0.

Note that the following equality and inequality have been used in the second step:

〈m̂h × q̃h, q̃h〉 = 0, 〈m̂h × (m̂h × q̃h) , q̃h〉 ≤ 0.

The third step is based on the fact that
〈
C∗q1,h

− C∗q2,h
, q̃h

〉
= 0 since both C∗q1,h

and C∗q2,h
are constants and q1,h = q2,h = 0. Furthermore, for any q1,h, q2,h with

q1,h = q2,h = 0, we have

〈G (q1,h)−G (q2,h) , q1,h − q2,h〉 ≥ 2 ‖q̃h‖2H−1
h

> 0 if q1,h 6= q2,h,

and the equality only holds when q1,h = q2,h. Finally, an application of the
Browder-Minty lemma [5, 21] implies a unique solution of the SICN scheme. The
proof here mainly follows the same way as Theorem 2.1 in [6].

• Convergence analysis of the SICN scheme

Theorem 2.8. Let me(x, t) ∈ C3([0, T ];C0)∩L∞([0, T ];C4) be a smooth solution
of (1)-(2) with the initial data me(x, 0), and mh be the numerical solution of
the equation (8) with the initial data m0

h = me(xh, 0) for the numerical grid xh.
Define the error as en = mn

h −me(xh, t). Suppose that the initial error satisfies
‖e0‖H1

h
+ ‖e1‖H1

h
= O(k2 +h2), and k ≤ Ch. Then the following convergence result

holds true as h and k go to zero:

‖en‖H1
h
≤ C(k2 + h2), ∀ n ≥ 2,

in which the constant C > 0 is independent of k and h.

The proof of Theorem 2.8 basically follows the proof of [6, Theorem 2.3] and a
precise estimate between mn

h and the intermediate magnetization mn,∗
h . The idea is

pretty much the same while the entire procedure is tedious, so we omit the details
here. Note that the convergence analysis for both the ICN and SICN schemes
neglects the stray field in the effective field for technical simplification.

3. Numerical examples. In this section, we perform some numerical tests to
investigate the accuracy and efficiency for the model problem of the LLG equation.
For simplicity, we only consider the exchange field with ε = 1 in (3) for the 1D
and 3D cases. When solving nonlinear systems of equations in the ICN scheme, the
maximum number of iterations in the Newton’s method is set to be MaxIter = 300
with the tolerance to stop the iteration being tol = 1e − 12. The error is recorded
as the difference between the numerical and exact solutions ‖mh −me‖∞. Results
in the discrete L2 and H1 norms are similar, so we do not include all the details
here. For completeness, the number of iterations in the Newton’s method per time
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step is recorded for the ICN scheme as well. For all examples in this section, the
LLG equation is not free of source term and thus the total energy is not dissipative.
Consequently, we are not able to verify the energy dissipation property of numerical
schemes. In the next section, for micromagnetics simulations, we do observe the
energy dissipation of the numerical schemes.

In the 1D model, we choose me = (cos(x̄) sin(t), sin(x̄) sin(t), cos(t)) with x̄ =
x2(1− x)2 as the exact solution over Ω = [0, 1], which satisfies

mt = −m×mxx − αm× (m×mxx) + g. (16)

The forcing term turns out to be g = met +me ×mexx + αme × (me ×mexx),
and me satisfies the homogeneous Neumann boundary condition.

In the 3D model, we set the exact solution as

me = (cos(x̄ȳz̄) sin(t), sin(x̄ȳz̄) sin(t), cos(t)),

over Ω = [0, 1]3, which satisfies the homogeneous Neumann boundary condition and
the following equation is valid:

mt = −m×∆m− αm× (m×∆m) + g, (17)

with x̄ = x2(1 − x)2, ȳ = y2(1 − y)2, z̄ = z2(1 − z)2 and g = met +me ×∆me +
αme × (me ×∆me) .

3.1. Accuracy tests. In the 1D computation, we fix h = 1/2400 and record the
approximation errors in terms of the temporal step size k in Table 2. It is clear
that both the ICN and SICN schemes are second-order accurate in time. To get the
spatial accuracy, we fix k = 5e− 7 and record the approximation errors in terms of
the spatial mesh size h . It follows from Table 3 that both schemes are second-order
accurate in space. The conclusions could be obtained in the 3D computation; see
Table 4 with h = 0.025 and Table 5 with k = 1e− 3.

Table 2. Numerical errors of ICN and SICN schemes in terms of
k, with T = 1, h = 1/2400, and α = 0.00001 in the 1D computa-
tion.

k T/120 T/130 T/140 T/150 order
ICN scheme 3.3336e-06 2.8530e-06 2.4718e-06 2.1642e-06 1.9361
SICN scheme 2.9816e-06 2.5549e-06 2.2151e-06 1.9407e-06 1.9246

Iterations* 23 12 9 7 /
* Iterations refer to the maximum number of iterations in the Newton’s method over

all temporal steps. The number of iterations remains almost a constant from step to
step since the same initialization strategy is used. Linear systems at each iteration in
the ICN method and the linear system in the SICN method are solved by the direct
solver. The same notation is used in Table 3-7.

From Table 2 to Table 5, we find that the semi-implicit nature of the ICN scheme
reduces the number of iterations from 2 or more to 1, at each time step, with almost
the same numerical error. As a consequence, the SICN scheme reduces the CPU
time by at least 50%, in comparison with the ICN scheme for the same accuracy
requirement, as will be demonstrated in the next subsection.
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Table 3. Numerical errors of ICN and SICN schemes in terms of
h, with T = 5e − 2, k = 5e − 7, and α = 0.00001 in the 1D
computation.

h 1/50 1/60 1/70 1/80 order
ICN scheme 1.2036e-06 8.3629e-07 6.1427e-07 4.7025e-07 1.9997
SICN scheme 1.2033e-06 8.3592e-07 6.1387e-07 4.6984e-07 2.0010
Iterations 2 2 2 2 /

Table 4. Numerical errors of ICN and SICN schemes in terms of
k, with T = 1, h = 0.025, and α = 0.00001 in the 3D computation.

k T/6 T/8 T/10 T/12 order
ICN scheme 1.1133e-03 6.2644e-04 4.0121e-04 2.7886e-04 1.9973
SICN scheme 0.9353e-03 5.5618e-04 3.6801e-04 2.6136e-04 1.8389
Iterations 4 4 4 4 /

Table 5. Numerical errors of ICN and SICN schemes in terms of
h, with T = 0.1, k = 1e− 3, and α = 0.00001 in the 3D computa-
tion.

h 1/10 1/12 1/14 1/16 order
ICN scheme 5.8310e-07 4.1038e-07 3.0434e-07 2.3454e-07 1.9375
SICN scheme 5.8323e-07 4.1048e-07 3.0443e-07 2.3462e-07 1.9372
Iterations 3 3 3 3 /

3.2. Efficiency comparison. In Fig. 1, we plot the CPU time (in seconds) of the
ICN and SICN schemes with respect to the numerical error ‖mh −me‖∞ in the
1D and 3D computations, respectively. These results are consistent with the ones
presented in Table 2-5, which have demonstrated that the SICN scheme saves at
least 50% CPU time without an accuracy sacrifice.

3.3. Limitations of Newton’s method in the ICN scheme. The usage of
gradient information allows Newton’s method to converge quickly, while the con-
vergence depends on the initial guess, mesh size, and time step size. Generally
speaking, a larger time step size (relative to the mesh size) makes Newton’s method
more difficult to converge.

For the 1D computation, in which the exact profile satisfies (16), we test the con-
vergence of (damped) Newton’s method with different setups. Results are recorded
in Table 6. In Cases 1 and 2, Newton’s method does not converge with λ = 1
but converges to the exact solution with a smaller λ = 0.1. In Case 3, Newton’s
method converges with the initial guess mn

h. To test the convergence domain of
Newton’s method, a random unit vector field (uniform distribution on [−1, 1] with
a projection onto |m| = 1) is used as the initial guess in Case 4. Approximately
25% of the initial guesses have achieved the convergence.

For the 3D computation, in which the exact profile satisfies (17), we test the
convergence of Newton’s method with different setups. Results are recorded in
Table 7. In Case 5, Newton’s method converges with the initial guess mn

h. To test
the convergence domain of Newton’s method, a random unit vector field (uniform
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Figure 1. CPU time (in seconds) with respect to the numerical
error by varying k and h, respectively. Top row: the 1D case ;
Bottom row: the 3D case.

Table 6. Convergence of Newton’s method in the 1D model, with
T = 1, tol = 1e− 12, and MaxIter = 300.

Case 1 2 3 4
(h, k) (1/800, 1/10) (1/800, 1/10) (1/60, 1e− 3) (1/60, 1e− 3)

Initial guess mn
h mn

h mn
h random

λ 1 0.1 1 1
Convergence No Yes Yes 25% (by chance)

Iterations / 242 3 ∼ 9
Numerical error / 4.6992e-04 1.3559e-04 /

distribution on [−1, 1] with a projection onto |m| = 1) is used as the initial guess in
Case 6. Approximately 21% of the initial guesses have achieved the convergence.

The above results are obtained for large temporal step sizes, i.e., k = 1/10. In
the practical applications, we usually use smaller step sizes to balance the temporal
error and the spatial error. Therefore, the non-uniqueness of solutions in an implicit
scheme or the divergence of Newton’s method can be avoided; see Table 2-5.

4. Micromagnetics simulations. Micromagnetics simulations require the evalu-
ation of the stray field (4), which is often implemented by the fast Fourier transform
[26]. In an implicit scheme, several evaluations of the stray field are needed per time
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Table 7. Convergence of New-
ton’s method in the 3D model,
with T = 1, tol = 1e − 12, and
MaxIter = 30.

Case 5 6
(h, k) (1/10, 1/55) (1/10, 1/55)

Initial guess mn
h random

λ 1 1
Convergence Yes 21% (by chance)

Iterations 3 ∼ 10
Numerical error 2.8369e-05 /

step. Therefore, it is inefficient to use the ICN scheme in this scenario. In this sec-
tion, we use the SICN scheme to conduct micromagnetics simulations, including dif-
ferent stable structures and a benchmark problem from NIST. The non-symmetric
linear systems of equations in the SICN scheme for full LLG equation are solved by
GMRES from hypre [11].

4.1. Equilibrium states. We apply the SICN scheme, with a spatial resolution
64× 128× 1, on a 1× 2× 0.02 µm3 thin-film element, with material parameters of
Permalloy in Table 1 and the damping parameter α = 0.1. A fine temporal step size
1 picosecond (ps) is used to observe the evolution of magnetization distributions.
In the absence of an external field, multiple meta-stable states are often observed in
ferromagnets, both experimentally and numerically [22, 30, 24, 15]. Using the SICN
scheme, we obtain four equilibrium states with four different initial magnetization
distributions. They are Diamond state, Landau state, C-state, and S-state; see
Fig. 2. For four different initial magnetization distributions, the time evolutionary
curve of the system energy (2.1) is plotted in Fig. 3, computed by the SICN scheme.
A theoretical justification of the energy dissipation is not available, while such a
dissipation is clearly observed in the numerical simulation. Landau state is found
to be the most stable structure in this case.

4.2. Benchmark problem from NIST. To check the practical performance of
the SICN scheme in the realistic material, we simulate a standard problem proposed
by the Micromagnetic Modeling Activity Group (muMag) from NIST [1]. The
hysteresis loop is simulated in the following way. A positive external field of strength
H0 = µ0He in the unit of mT is applied. The magnetization is able to reach
a steady-state. Once this steady-state is approached, the applied external field
is reduced by a certain amount and the material sample is allowed to reach a
steady state again. Repeat the process until the hysteresis system attains a negative
external field of strength H0. This process is then implemented in reverse, increasing
the field in small steps until the initial applied external field is reached. Therefore,
we are now able to plot the average magnetization at the steady-state as a function
of the external field strength during the hysteresis loop. The stopping criterion for
a steady state is that the relative change of the total energy is less than 10−9. The
applied field is parallel to the x axis. According to the available code mo96a of the
first standard problem from NIST, we set 100× 50× 1 spatial resolution with mesh
size 20× 20× 20 nm3 and the canting angle +1◦ of applied field from the nominal
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Figure 2. Four equilibrium states simulated by the SICN scheme.
The arrow denotes the first two components of the magnetization
vector and the color denotes the angle between them. Top row:
Diamond state; Second row: Landau state; Third row: C-state;
Bottom row: S-state. Left column: Initial state; Right column:
Equilibrium state.

axis. The initial state is uniform and [−50 mT,+50 mT] is split into 200 steps for
both x-loop and y-loop. The material parameters and the temporal step size are
the same as those in section 4.1.

Hysteresis loops generated by the code mo96a are displayed in Fig. 4(a) and (b)
when the applied field is approximately parallel to the y-(long) axis and the x-(short)
axis, respectively. The average remanent magnetization in reduced units is given by
(−1.5120×10−1, 8.6964×10−1, 0) for the y-loop and (1.5257×10−1, 8.6870×10−1, 0)
for the x-loop. The coercive fields are 4.8871 mT in Fig. 4(a) and -2.5253 mT
in Fig. 4(b). Hysteresis loops generated by the SICN scheme are presented in
Fig. 4(c) and (d) when the applied field is approximately parallel to the long axis
and the short axis, respectively. The average remanent magnetization in reduced
units is given by (−1.5473× 10−1, 8.7251× 10−1, 1.9726× 10−5) for the y-loop and
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Figure 3. The time evolution of the system energy, computed by
the SICN scheme. Energy dissipation is clearly observed in the
numerical simulation.

(1.5525× 10−1, 8.7201× 10−1, 2.1583× 10−5) for the x-loop. The coercive fields are
6.0837(±0.4) mT in Fig. 4(c) and −2.6701(±0.4)mT in Fig. 4(d). Therefore, we
conclude that the results of the SICN scheme agree well with those of NIST both
qualitatively and quantitatively.
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Figure 4. Hysteresis loops when α = 0.1 with the mesh size
20×20×20 nm3. The applied field is approximately parallel (cant-
ing angle +1◦ ) to the y-axis (left column) and the x-axis (right
column). Top row: mo96a; Bottom row: SICN scheme.
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5. Conclusions. In this work, we conduct a comprehensive study of the ICN
scheme and the SICN scheme for the LLG equation. Theoretically, both schemes
are second-order accurate in space and time. The unique solvability of nonlinear
systems of equations in the ICN scheme requires a severe time step constraint,
k = O(h2), while the linear system of equations in the SICN scheme leads to an
unconditionally unique solvability. Meanwhile, a much milder condition k = O(h)
is needed to ensure the numerical convergence of the SICN scheme. Numerically,
it is discovered that more than one solution may exist for the nonlinear system of
equations in the ICN scheme. In terms of numerical performance, the SICN scheme
reduces the CPU time by at least 50%, in comparison to the ICN scheme for the
same accuracy requirement. Therefore, we strongly suggest that the semi-implicit
scheme shall be used in micromagnetics simulations if both schemes are available.
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