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The nonlinear stability and convergence analyses are presented for a second order operator 
splitting scheme applied to the “good” Boussinesq equation, coupled with the Fourier 
pseudo-spectral approximation in space. Due to the wave equation nature of the model, 
we have to rewrite it as a system of two equations, for the original variable u and 
v = ut , respectively. In turn, the second order operator splitting method could be efficiently 
designed. A careful Taylor expansion indicates the second order truncation error of such 
a splitting approximation, and a linearized stability analysis for the numerical error 
function yields the desired convergence estimate in the energy norm. In more details, the 
convergence in the energy norm leads to an ℓ∞(0, T ∗; H2) convergence for the numerical 
solution u and ℓ∞(0, T ∗; ℓ2) convergence for v = ut . And also, the presented convergence 
is unconditional for the time step in terms of the spatial grid size, in comparison with a 
severe time step restriction, "t ≤ Ch2, required in many existing works.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this article we study a commonly used soliton-producing nonlinear wave equation, the so-called “good” Boussinesq 
(GB) equation:

utt = −uxxxx + uxx + (up)xx, with an integer p ≥ 2. (1.1)

In comparison with the well-known Korteweg–de Vries (KdV) equation, the wave equation form of (1.1) introduces the 
second order temporal derivative. The GB equation and its various extensions have been extensively analyzed in the existing 
literature, such as a closed form solution for the two soliton interaction in [46], a highly complicated mechanism for the 
solitary waves interaction in [47], and the nonlinear stability and convergence of some simple finite difference schemes 
in [49]. Many other analytical and numerical works related to GB equations could also be found, for example, in [1,8,7,14,
15,25,16,37,48,50,58].

For simplicity, a periodic boundary condition over a 1-D domain # = (0, L) is considered in this article. This L-periodicity 
assumption is reasonable, since the solution to (1.1) decays exponentially outside [0, L] over a finite time interval (0, T ). 
Because of the assumed periodic boundary condition, the Fourier collocation (pseudo-spectral) formulation turns out to be 
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a natural choice to obtain the optimal spatial accuracy. The development of spectral and pseudo-spectral schemes has had a 
long history. At the theoretical side, the stability analysis for linear time-dependent problems has been available in [26,45], 
etc, based on eigenvalue estimates. For the nonlinear problems, the readers are referred to the pioneering works by Maday 
and Quarteroni [40–42] for steady-state spectral solutions. Many more numerical analysis works for nonlinear equations 
have been reported since then, such as [12,29,44,55,56] for one-dimensional conservation laws, [21,22] for semi-discrete 
viscous Burgers’ and Navier–Stokes equations, [19,28,30] for the Galerkin spectral method to the Navier–Stokes equations, 
[9,27] for the fully discrete method applied to viscous Burgers’ equation, [43,52] for the Korteweg–de Vries equation, and 
[17,18] for the Benjamin–Ono equation or related non-local models, etc.

For the GB equation (1.1), we like to review a related work of the nonlinear stability and convergence analysis for 
the pseudo-spectral schemes. In [16], a second order temporal discretization was proposed and analyzed, and a full order 
convergence was proved in a weak energy norm: an L2 norm of u combined with an H−2 norm of v = ut . This energy norm 
is much weaker than the one reported in [38], where the linear part was analyzed: an H2 norm of u combined with an L2

norm of v = ut . Such a theoretical weakness turns out to be a technical issue, due to the lack of a useful tool to control the 
discrete L2 norm of the nonlinear error term, associated with (up)xx , in the pseudo-spectral space. Moreover, due to certain 
technical difficulties, a severe time step restriction: "t ≤ Ch2 (with C a fixed constant), had to be imposed in the earlier 
analysis work [16].

In this article, we propose and analyze a second order operator splitting scheme applied to the GB equation (1.1). There 
have been many existing works of operator splitting numerical approximation to nonlinear PDEs, such as [3,39,53,57] for 
the nonlinear Schrödinger equation, [2] for the incompressible magnetohydrodynamics system, [4,5] for the delay equa-
tion, [23] for the nonlinear evolution equation, [24] for the Vlasov-type equation, [33] for a generalized Leland’s mode, 
[34] for Allen–Cahn equation, [36] for the molecular beamer epitaxy (MBE) equation, [62] for nonlinear solvation problem, 
etc. On the other hand, a theoretical analysis for the nonlinear operator scheme turns out to be very challenging, due to 
its multi-stage nature. Among the above-mentioned references, the second order and higher order convergence analyses 
for the nonlinear Schrödinger equation, given by [39,57], respectively, are worthy of discussion. In these two theoretical 
works, the authors made use of the special form of the nonlinear term appearing in the Gross–Pitaevskii model, so that 
an unconditional stability estimate is available, and the desired convergence result could be derived in an appropriate way. 
A similar idea was applied in Shen [53] to obtain the second order (in time) convergence for the Gross–Pitaevskii equation, 
in conjunction with Hermite collocation spectral accuracy in space. And also, a second order convergence analysis [36] for 
the operator splitting applied to the MBE equation is very interesting.

Meanwhile, it is observed that, all these existing operator splitting numerical schemes were applied to equations involved 
with only the first order temporal derivative. For a nonlinear wave equation in which a second order temporal derivative ap-
pears, such as the GB equation (1.1), there has been no theoretical analysis for the operator splitting approach. To overcome 
this difficulty, we have to rewrite this equation into the following system:

ut = v, (1.2)

vt = −uxxxx + uxx + (up)xx. (1.3)

By setting u = (u, v)T , the above first order system is reformulated as

ut = Lu + F (u), with Lu =
(

v
−uxxxx + uxx

)
, F (u) =

(
0

(up)xx

)
. (1.4)

Based on this equivalent reformulation, we are able to derive the second order Strang splitting in three stages. It is remark-
able that the both the linear wave equation and nonlinear stages could be exactly updated. In particular, the exact solver 
for the nonlinear stage becomes available due to the fact that the nonlinear term turns out to be a constant, which comes 
from the splitting form of (1.2)–(1.3). In addition, a detailed Taylor expansion indicates a full second order accurate tempo-
ral truncation error, combined with the spectral accuracy in space. And also, we introduce a discrete energy norm similar 
to [38], and a careful linearized stability analysis for the numerical error function yields the desired convergence result in 
the energy norm: an H2 convergence of u combined with an L2 convergence of v = ut , with the full order convergence rate 
in both time and space.

In particular, we directly analyze the numerical error associated with the nonlinear error term D2
N (up), with the help 

of aliasing error control technique in the pseudo-spectral space developed in [27]. In the nonlinear error estimate, we 
set an a-priori H2 assumption of the numerical error at the previous time steps, and a careful analysis indicates an H2

convergence result at the next time step, based on the L∞ and H2 bound of the numerical solution. In turn, these bounds 
could be obtained at the next time step, because of the H2 error estimate and the corresponding Sobolev embedding. 
Therefore, the inverse inequality in the stability analysis is not needed and any scaling law between "t and h is avoided, 
compared with the "t ≤ Ch2 constraint reported in [16].

This paper is outlined as follows. In Section 2 we review the Fourier pseudo-spectral formulation, and an aliasing error 
control lemma (proved in [27]). In Section 3 we present the second order (in time) operator splitting scheme for the 
GB equation (1.1), with the Fourier pseudo-spectral approximation in space. The detailed consistency analysis is studied 
in Section 4, and the stability and convergence analysis is reported in Section 5. The numerical results are presented in 
Section 6. Finally, some concluding remarks are made in Section 7.
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2. Review of Fourier spectral and pseudo-spectral approximations

For any f (x) ∈ L2(#), # = (0, L), its Fourier series are formulated as

f (x) =
∞∑

l=−∞
f̂ le

2π ilx/L, with f̂ l =
∫

#

f (x)e−2π ilx/Ldx. (2.5)

In turn, the projection of f (x) onto BN , the space of trigonometric polynomials in x of degree up to N , becomes

PN f (x) =
N∑

l=−N

f̂le
2π ilx/L . (2.6)

In the practical computations, a pseudo-spectral approximation at a given set of points is more preferred, due to the com-
putational efficiency. To obtain such a pseudo-spectral approximation, an interpolation operator IN has to be introduced. 
Given a uniform numerical grid with (2N + 1) points and a discrete vector function f where f j = f (x j), 0 ≤ j ≤ 2N , the 
(2N + 1) pseudo-spectral coefficients ( f̂ N

c )l could be computed based on the interpolation condition f (xi) = (IN f ) (xi), over 
the 2N + 1 equidistant points [6,11,31]:

( f̂ N
c )l = h

2N∑

j=0

f je−2π ilx j/L, with f j = f (x j), h = L
2N+1 , ∀ − N ≤ l ≤ N. (2.7)

In turn, the Fourier interpolation of the periodic function f is defined as

(IN f ) (x) =
N∑

l=−N

( f̂ N
c )le

2π ilx/L . (2.8)

It is well-known that an efficient algorithm using the fast Fourier transform (FFT) is available to compute the collocation 
coefficients given by (2.7). In general, the pseudo-spectral coefficients may not be equal to the actual Fourier coefficients, 
due to the appearance of the aliasing error. In other words, PN f (x) ̸= IN f (x), and PN f (xi) ̸= IN f (xi), except in the case 
that f ∈ BN ; see [54] for more details.

Based on the interpolation formula (2.8), one can easily take derivative by simply multiplying the appropriate Fourier 
coefficients ( f̂ N

c )l by 2lπ i/L. Moreover, the higher order derivatives could be computed in the same way, so that differenti-
ation in physical space is accomplished via multiplication in Fourier space. As long as f and all its derivatives (up to m-th 
order) are continuous and periodic on #, the convergence of the derivatives of the projection and interpolation is given by

∥∂k f (x) − ∂kPN f (x)∥ ≤ C∥ f (m)∥hm−k, for 0 ≤ k ≤ m,

∥∂k f (x) − ∂kIN f (x)∥ ≤ C∥ f ∥Hm hm−k, for 0 ≤ k ≤ m, m >
d
2
, (2.9)

in which ∥ ·∥ denotes the L2 norm. The more detailed discussions of approximation theory could be found in [10] by Canuto 
and Quarteroni.

For any periodic function f , we denote its collocation approximation as

f (x j) = (IN f )i =
N∑

l=−N

( f̂ N
c )le

2π ilx j , ∀0 ≤ j ≤ 2N. (2.10)

In turn, the discrete differentiation operator DN could be defined on the vector of grid values f = f (x j), 0 ≤ j ≤ 2N . In 
more details, the collocation coefficients ( ˆf N

c )l are computed via FFT, as given by (2.7), and one could multiply them by 
the corresponding eigenvalues (given by 2lπ i) and perform the inverse FFT. Of course the differentiation operator DN could 
be viewed as a matrix, so that the pseudo-spectral differentiation process becomes a matrix–vector multiplication. The 
same process is performed for the second and fourth derivatives ∂2

x , ∂4
x , with the collocation coefficients multiplied by 

(−4π2l2/L2) and (16π4l4/L4), respectively. In turn, the differentiation matrix can be applied for multiple times, i.e. the 
vector f is multiplied by D2

N and D4
N , respectively.

Since the pseudo-spectral differentiation is taken at a point-wise level, a discrete L2 norm and inner product need to 
be introduced to facilitate the analysis. Given any periodic grid functions f and g (over the numerical grid), the discrete L2

inner product and norm are defined as

∥f∥2 =
√

⟨f, f⟩, with ⟨f,g⟩ = 1
2N + 1

2N∑

i=0

figi . (2.11)
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The following summation by parts formulas are valid (see [13,27]):

⟨f,DN g⟩ = −⟨DN f,g⟩ ,
〈
f,D2

N g
〉
= −⟨DN f,DN g⟩ ,

〈
f,D4

N g
〉
=

〈
D2

N f,D2
N g

〉
. (2.12)

In addition, an aliasing error control estimate in Fourier pseudo-spectral approximation, established in [27], is necessary 
for the nonlinear analysis. For any function ϕ(x) in the space BpN , its collocation coefficients q̂N

l are computed based on 
the 2N + 1 equidistant points. In turn, INϕ(x) is given by the continuous expansion based on these coefficients:

INϕ(x) =
N∑

l=−N

q̂N
l e2π ilx/L . (2.13)

Note that the interpolation operator IN maps a periodic function into another periodic function: the computation for-
mula (2.7) for the discrete Fourier coefficients is based on the periodic grid function f, the interpolation value of the 
continuous function f , while formula (2.8) maps f to a periodic function in BN . Since ϕ(x) ∈ BpN , we conclude that 
INϕ(x) ̸= PNϕ(x) due to the aliasing error.

This following estimate is able to bound the aliasing error for the nonlinear term, which will play a critical role in the 
numerical analysis; the detailed proof can be found in [27].

Lemma 2.1. For any ϕ ∈ BpN (with p an integer) in dimension d, we have

∥INϕ∥Hk ≤
(√

p
)d ∥ϕ∥Hk . (2.14)

3. The second order operator splitting scheme

Following the second order Strang splitting formula un+1 = e
1
2 "t F e"tLe

1
2 "t F un , we formulate the splitting scheme for 

the GB equation (1.4) as: given (un, vn), the numerical solution (un+1, vn+1) is obtained through the following three stages.

Stage 1: nonlinear part: linear advance for v , with 1
2 !t advance

∂t u1 = 0, over (tn, tn+1/2), (3.15)

∂t v1 = D2
N((u1)

p), over (tn, tn+1/2), (3.16)

u1(tn) = un, v1(tn) = vn. (3.17)

The key point for this stage is that, D2
N ((u1)

p) becomes a constant (in time) term in (3.16), due to the splitting form (1.4). 
In more details, we denote un,(1) = u1(tn+1/2), vn,(1) = v1(tn+1/2), and the numerical solutions are explicitly given by

un,(1) = un, vn,(1) = vn + 1
2
"t D2

N
(
(un)p)

. (3.18)

Stage 2: linear wave equation, with !t advance

∂t u2 = v2, over (tn, tn+1), (3.19)

∂t v2 = −D4
N u2 + D2

N u2, over (tn, tn+1), (3.20)

u2(tn) = un,(1), v2(tn) = vn,(1). (3.21)

We denote un∗ = u2(tn+1), vn∗ = v2(tn+1). Clearly u2 satisfies the linear wave equation

∂2
t u2 = −D4

N u2 + D2
N u2, over (tn, tn+1), (3.22)

u2(tn) = un,(1), ∂t u2(tn) = vn,(1), (3.23)

and this wave equation could be exactly solved via FFT over the 1-D domain # = (0, L).

Stage 3: nonlinear part: linear advance for v , with 1
2 !t advance

∂t u3 = 0, over (tn, tn+1/2), (3.24)

∂t v3 = D2
N((u3)

p), over (tn, tn+1/2), (3.25)

u3(tn) = un∗, v3(tn) = vn∗. (3.26)
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We denote un+1 = u3(tn+1/2), vn+1 = v3(tn+1/2). Similar to the first stage, the numerical solutions are explicitly given by

un+1 = un∗, vn+1 = vn∗ + 1
2
"t D2

N
(
(un∗)p)

. (3.27)

We recall that the exact solution ue to the GB equation (1.1) is mass conservative, provided that v0(x) = ut(x, t = 0) ≡ 0:
∫

#

ue(·, t)dx ≡
∫

#

ue(·,0)dx := C̄0, with ∀t > 0. (3.28)

Meanwhile, such a property is also valid for the proposed operator splitting scheme, at a discrete level; see the following 
lemma.

Lemma 3.1. The numerical scheme (3.15)–(3.26) is mass conservative at the discrete level, provided that v0 ≡ 0:

uk := h
N−1∑

i=0

uk
i ≡ u0 = β0, ∀k ≥ 0. (3.29)

Proof. The solution formula (3.18) implies the mass conservation in the first stage:

un,(1) = un, vn,(1) = vn = 0, since D2
N ((un)p) = 0. (3.30)

In addition, a discrete summation of the linear wave equation (3.22) gives

∂2
t u2 = 0, since D4

N u2 = 0, D2
N u2 = 0. (3.31)

Its combination with the initial condition:

∂t u2(tn) = v2(tn) = vn,(1) = 0, (3.32)

yields the mass conservation of the second stage:

un∗ = u2(tn+1) = u2(tn) = un,(1), vn∗ = v2(tn+1) = v2(tn) = vn,(1) = 0. (3.33)

Similar to the first stage, the solution formula (3.27) indicates the following mass conservation:

un+1 = un∗, vn+1 = vn∗ = 0, since D2
N ((un∗)p) = 0. (3.34)

Finally, a combination of (3.30), (3.33) and (3.34) leads to

un+1 = un, vn+1 = vn = 0, (3.35)

which in turn implies the mass conservation identity (3.29). ✷

Remark 3.2. For many nonlinear wave equations, there are certain invariant quantities, which are constant physical quanti-
ties in time. For example, for the generalized classical Korteweg–de Vries (GKDV) equation

ut + (up)x + εuxxx = 0, with an integer p ≥ 2. (3.36)

There are two invariant quantities, namely the mass and the kinematics energy invariants:

I1,K D V =
∫

#

u(x)dx, I2,K D V =
∫

#

u2(x)dx. (3.37)

In a recent work [32], local discontinuous Galerkin (LDG) methods were applied to the GKDV equation (3.36) and analyzed 
in details. In particular, the conservative property for the two invariant quantities was proved for the semi-discrete LDG 
method (keeping time continuous), and a posteriori error estimate was provided. Also see the related works [35,59–61] for 
the LDG methods applied to the KDV-type equations.

The GB equation (1.1) could be viewed as a traveling wave solution of (3.36) in a special form [51]. There are also two 
invariant quantities for this model, namely the mass and the functional energy invariants:

I1,G B =
∫

#

u(x)dx, I2,G B = 1
2
∥ut∥2

H−1 +
∫

#

(
1

p + 1
up+1 + 1

2
u2 + 1

2
u2

x

)
dx. (3.38)
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Our proposed numerical scheme (3.15)–(3.26) preserves the mass invariant, as shown by Lemma 3.1. Regarding the second 
invariant quantity I2,G B , the semi-discrete version of (3.15)–(3.26) (i.e., by skipping the temporal discretization) also pre-
serves this invariant. For the fully discrete scheme (3.15)–(3.26), such a conservation could not be justified at a theoretical 
level, due to the explicit treatment of the nonlinear term.

On the other hand, the convergence analysis (as given by Theorem 3.3) implies that, although an exact conservation of 
the functional energy invariant I2,G B is not available, we are able to obtain an approximate conservation for the fully discrete 
scheme. The reason comes from the fact that, the exact solution preserves such a conservation, while an O ("t2 + hm)
convergence is valid for the proposed numerical scheme, local in time, with H2 norm for u and L2 norm for v = ut . 
A careful calculation indicates such an approximate conservation.

For the linear wave equation (3.22)–(3.23) in the second stage, we have the following identity, by taking an L2 inner 
product with v2 = ∂t u2:

1
2

d
dt

∥v2(t)∥2
2 + 1

2
d
dt

(
∥D N u2(t)∥2

2 + ∥D2
N u2(t)∥2

2

)
= 0, ∀tn ≤ t ≤ tn+1, (3.39)

with the summation by parts formulas (2.12) repeatedly applied. As a result, the following energy conservation is available, 
since un∗ = u2(tn+1), vn∗ = v2(tn+1):

∥∥(un∗, vn∗)
∥∥2

E =
∥∥∥(un,(1), vn,(1))

∥∥∥
2

E
, with ∥(u, v)∥2

E = ∥D N u∥2
2 +

∥∥∥D2
N u

∥∥∥
2

2
+ ∥v∥2

2 . (3.40)

Note that the numerical solution (u, v) of (3.15)–(3.26) is a vector function evaluated at discrete grid points. Before 
the convergence statement of the numerical scheme, its continuous extension in space is introduced, defined by uk

"t,h = uk
N , 

vk
"t,h = vk

N , in which uk
N , vk

N ∈ BN , ∀k, are the continuous version of the discrete grid functions uk , vk , with the interpolation 
formula given by (2.10).

The main theoretical result of this article is given by the following theorem.

Theorem 3.3. For any final time T ∗ > 0, assume the exact solution ue to the GB equation (1.1) is smooth enough. Denote u"t,h, v"t,h as 
the continuous (in space) extension of the fully discrete numerical solution given by scheme (3.15)–(3.26). As "t, h → 0, the following 
convergence result is valid:

∥∥u"t,h − ue
∥∥

ℓ∞(0,T ∗;H2)
+

∥∥v"t,h − ve
∥∥

ℓ∞(0,T ∗;L2)
≤ C

(
"t2 + hm

)
, (3.41)

provided that the time step "t and the space grid size h are bounded by given constants which are only dependent on the exact solution. 
Note that the convergence constant in (3.41) also depends on the exact solution as well as T ∗.

4. Consistency analysis

We denote U k = ue(tk), V k = ve(tk) = ∂t ue(tk), for any k ≥ 0. A detailed Taylor expansion for ue (up to the third order) 
at time step tn gives

Un+1 = ue(tn+1) = ue(tn) + "t∂t ue(tn) + "t2

2
∂2

t ue(tn) + "t3

6
∂3

t ue(tn) + O ("t4)

= Un + "tV n + "t2

2

(
−Un

xxxx + Un
xx + ((Un)p)xx

)
+ "t3

6

(
−V n

xxxx + V n
xx + NLn

3
)
+ O ("t4),

with NLn
3 =

(
p(Un)p−1 V n

)

xx
, (4.1)

in which the original GB equation (1.1) was applied. Similarly, the Taylor expansion for ve at time step tn gives

V n+1 = ve(tn+1) = ve(tn) + "t∂t ve(tn) + "t2

2
∂2

t ve(tn) + O ("t3)

= ve(tn) + "t∂2
t ue(tn) + "t2

2
∂3

t ue(tn) + O ("t3)

= V n + "t
(
−Un

xxxx + Un
xx + ((Un)p)xx

)
+ "t2

2

(
−V n

xxxx + V n
xx + NLn

3
)
+ O ("t3). (4.2)

On the other hand, we denote the following intermediate, approximate solution, in the first stage, analogous to (3.18), at 
the numerical grid points:

Un,(1) = Un, V n,(1) = V n + 1
2
"t D2

N
(
(Un)p)

. (4.3)
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Subsequently, Un∗ , V n∗ is defined as the solution of the linear wave equation (3.19)–(3.21) at time instant tn+1, with 
initial data Un,(1) , V n,(1) , respectively. In more detail, U2, V 2 are the solutions of the following O.D.E. system

∂t U2 = V 2, over (tn, tn+1), (4.4)

∂t V 2 = −D4
N U2 + D2

N U2, over (tn, tn+1), (4.5)

U2(tn) = Un,(1), V 2(tn) = V n,(1), (4.6)

and Un∗ = U2(tn+1), V n∗ = V 2(tn+1). Similar Taylor expansions for U2 and V 2 (in time) imply that

Un∗ = U2(tn+1) = U2(tn) + "t∂t U2(tn) + "t2

2
∂2

t U2(tn) + O ("t3)

= Un + "tV n,(1) + "t2

2

(
−D4

N Un + D2
N Un

)
+ O ("t3)

= Un + "tV n + "t2

2

(
−D4

N Un + D2
N Un + D2

N
(
(Un)p))

+ O ("t3), (4.7)

V n∗ = V 2(tn+1) = V 2(tn) + "t∂t V 2(tn) + "t2

2
∂2

t V 2(tn) + O ("t3)

= V n,(1) + "t
(
−D4

N Un + D2
N Un

)
+ "t2

2

(
−D4

N V n,(1) + D2
N V n,(1)

)
+ O ("t3)

= V n + "t
(

−D4
N Un + D2

N Un + 1
2

D2
N((Un)p)

)

+ "t2

2

(
−D4

N V n + D2
N V n

)
+ O ("t3), (4.8)

in which the numerical approximation (4.3) has been repeatedly applied in the derivation.
Next, we denote the approximate solution (Un,(3), V n,(3)) as

Un,(3) = Un∗, V n,(3) = V n∗ + 1
2
"t D2

N
(
(Un∗)p)

, (4.9)

analogous to the numerical scheme (3.27) in the third stage. A careful comparison between Un,(3) and Un+1 shows that

Un+1 − Un,(3) = Un+1 − Un∗ = O ("t3 + "thm), (4.10)

in which the Taylor expansions (4.1) and (4.7) were recalled, and the pseudo-spectral approximation estimate (2.9) was 
used. For the comparison between V n,(3) and V n+1, we observe that

(Un∗)p =
(
Un + "tV n)p + O ("t2) = (Un)p + p"t(Un)p−1 V n + O ("t2). (4.11)

This in turn implies that

V n,(3) = V n∗ + 1
2
"t D2

N
(
(Un∗)p)

= V n + "t
(

−D4
N Un + D2

N Un + 1
2

D2
N((Un)p)

)
+ "t2

2

(
−D4

N V n + D2
N V n

)

+ 1
2
"t D2

N(Un)p) + "t2

2
D2

N

(
p(Un)p−1 V n

)
+ O ("t3) (4.12)

= V n + "t
(
−D4

N Un + D2
N Un + D2

N((Un)p)
)

+ "t2

2

(
−D4

N V n + D2
N V n + D2

N

(
p(Un)p−1 V n

))
+ O ("t3).

Therefore, the following approximation is available

V n+1 − V n,(3) = O ("t3 + "thm), (4.13)

based on a comparison between (4.2) and (4.12), combined with the pseudo-spectral approximation estimate (2.9).



186 C. Zhang et al. / Applied Numerical Mathematics 119 (2017) 179–193

Note that the consistency estimates (4.10) and (4.13) could be rewritten as

Un+1 − Un∗

"t
= τn

1 , (4.14)

V n+1 − V n∗

"t
= 1

2
D2

N((Un∗)p) + τn
2 , (4.15)

in which 
∥∥τn

1

∥∥
H2

h
, ∥τ2∥2 ≤ C0("t2 + hm), with the ∥ · ∥H2

h
norm introduced as

∥ f ∥2
H2

h
= ∥ f ∥2

2 + ∥D N f ∥2
2 + ∥D2

N f ∥2
2. (4.16)

5. Stability and convergence analysis

The point-wise numerical error grid functions are given by

ũk = Uk − uk, ṽk = V k − vk, ũk∗ = Uk∗ − uk∗, ṽk∗ = V k∗ − vk∗, (5.17)

ũk,(1) = Uk,(1) − uk,(1), ṽk,(1) = V k,(1) − vk,(1). (5.18)

In addition, the following auxiliary error functions are defined

ũ1 = U1 − u1, ṽ1 = V 1 − v1, ũ2 = U2 − u2, ṽ2 = V 2 − v2. (5.19)

To facilitate the presentation below, we denote (ũn
N , ̃vn

N ) ∈ BN as the continuous version of the numerical solution ũn

and ṽn , respectively, with the interpolation formula given by (2.8). Similar continuous extensions could be made to obtain 
ũn∗

N , ṽn∗
N , ũn,(1)

N , ṽn,(1)
N , (ũi)N , (ṽ i)N ∈ BN .

The following preliminary estimate will be used in later analysis. Again, we assume the initial value v0(x) =
ut(x, t = 0) ≡ 0. The general case can be analyzed in the same manner, with more details involved.

Lemma 5.1. At any time step tk, k ≥ 0, we have

∥ũk
N∥H2 ≤ C

(
∥D2

N ũk∥2 + hm
)

. (5.20)

Proof. Since Ui , 0 ≤ i ≤ 2N , is the interpolation of the exact solution, the following estimate is valid:

Uk =
∫

#

IN U (·, tk)dx =
∫

#

U 0 dx + O (hm) = C̄0 + O (hm), (5.21)

in which the interpolation approximation estimate (2.9) was applied in the second step, and the mass conservation (3.28)
for the exact solution U was recalled in the last step. On the other hand, at the initial time step, a similar interpolation 
approximation estimate indicates that

∫

#

U 0 dx =
∫

#

IN U 0 dx + O (hm) = U 0 + O (hm) = u0 + O (hm) = β0 + O (hm). (5.22)

In turn, a combination of (5.21) and (5.22) yields

Uk =
∫

#

Uk
N dx = β0 + O (hm), ∀k ≥ 0. (5.23)

In comparison with (3.29), the discrete mass conservative property for the numerical scheme, we arrive at an O (hm) order 
average for the numerical error function at each time step:

ũk = Uk − uk = Uk − uk = O (hm), ∀k ≥ 0. (5.24)

This is equivalent to
∫

#

ũk
N dx = ũk = O (hm), ∀k ≥ 0, (5.25)

with the first step based on the fact that ũk
N ∈ BN . As an application of elliptic regularity, we arrive at
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∥ũk
N∥H2 ≤ C

⎛

⎝
∥∥∥∂2

x ũk
N

∥∥∥ +
∫

#

ũk
N dx

⎞

⎠ ≤ C
(∥∥∥D2

N ũk
∥∥∥

2
+ hm

)
, (5.26)

in which the fact that ũk
N ∈ BN was used in the last step. This finishes the proof of Lemma 5.1. ✷

Next, we proceed into the detailed proof of Theorem 3.3, the main result of this paper.
Subtracting (3.18), (3.19)–(3.21), (3.27) from (4.3), (4.4)–(4.6), (4.14)–(4.15) yields the following system

ũn,(1) − ũn

"t
= 0, (5.27)

ṽn,(1) − ṽn

"t
= 1

2
D2

N
(
((Un)p) − ((un)p)

)
, (5.28)

∂t ũ2 = ṽ2, over (tn, tn+1), (5.29)

∂t ṽ2 = −D4
N ũ2 + D2

N ũ2, over (tn, tn+1), (5.30)

ũ2(tn) = ũn,(1), ṽ2(tn) = ṽn,(1), ũ2(tn+1) = ũn∗, ṽ2(tn+1) = ṽn∗, (5.31)

ũn+1 − ũn∗

"t
= τn

1 , (5.32)

ṽn+1 − ṽn∗

"t
= 1

2
D2

N
(
((Un∗)p) − ((un∗)p)

)
+ τn

2 . (5.33)

We note a discrete W 2,∞ bound for the exact solution

∥U N∥L∞(0,T ∗;W 2,∞) ≤ C∗, i.e.
∥∥Un

N

∥∥
L∞ ≤ C∗,

∥∥(U N)n
x

∥∥
L∞ ≤ C∗,

∥∥(U N)n
xx

∥∥
L∞ ≤ C∗, (5.34)

for any n ≥ 0, in which U N is the continuous version of the interpolation for the exact solution. This estimate comes from 
the regularity of the exact solution.

An a-priori assumption up to time step tn . We also assume a-priori that the numerical error function (for (u, v)) has an 
H2 bound at time step tn:

∥∥(ũn
N , ṽn

N)
∥∥2

E =
∥∥(ũN)n

x

∥∥2 +
∥∥(ũN)n

xx

∥∥2 +
∥∥ṽn

N

∥∥2 ≤ 1, (5.35)

so that the H2 and W 1,∞ bounds for the numerical solution un are available
∥∥un

N

∥∥
H2 =

∥∥Un
N − ũn

N

∥∥
H2 ≤

∥∥Un
N

∥∥
H2 +

∥∥ũn
N

∥∥
H2 ≤ C∗ + 1 := C̃0,

∥∥un
N

∥∥
W 1,∞ ≤ C

∥∥un
N

∥∥
H2 ≤ CC̃0 := C̃1, (5.36)

with a 1-D Sobolev embedding applied at the final step. This assumption will be recovered later.
For the numerical error evolutionary equation (5.27), its discrete inner product with 2D4

N ũn,(1) and −2D2
N ũn,(1) gives

∥∥∥D2
N ũn,(1)

∥∥∥
2

2
−

∥∥∥D2
N ũn

∥∥∥
2

2
+

∥∥∥D2
N(ũn,(1) − ũn)

∥∥∥
2

2
= 0, (5.37)

∥∥∥D N ũn,(1)
∥∥∥

2

2
−

∥∥D N ũn
∥∥2

2 +
∥∥∥D N(ũn,(1) − ũn)

∥∥∥
2

2
= 0. (5.38)

For the numerical error evolutionary equation (5.28), its discrete inner product with 2ṽn,(1) yields
∥∥∥ṽn,(1)

∥∥∥
2

2
−

∥∥ṽn
∥∥2

2 +
∥∥∥ṽn,(1) − ṽn

∥∥∥
2

2
= "t

〈
D2

N((Un)p − (un)p), ṽn,(1)
〉
. (5.39)

For the nonlinear error term, we begin with an application of the aliasing error estimate (2.14) in Lemma 2.1:

∥D2
N((Un)p − (un)p)∥2 ≤ √

p
∥∥((Un

N)p)xx − ((un
N)p)xx

∥∥ , (5.40)

due to the fact that (Un)p − (un)p is the interpolation of (Un
N)p − (un

N )p , and (Un
N )p , (un

N )p ∈ BpN . To analyze a continuous 
norm on the right hand side of (5.40), we make the following observation:

∥∥((Un
N)p)xx − ((un

N)p)xx
∥∥ ≤ C

(∥∥Un
N

∥∥p−1
H2 +

∥∥un
N

∥∥p−1
H2

)
·
∥∥ũn

N

∥∥
H2

≤ C̃2
∥∥ũn

N

∥∥
H2 , with C̃2 = C

(
(C∗)p−1 + C̃ p−1

0

)
, (5.41)

since
∥∥Un

N

∥∥
H2 ≤ CC∗,

∥∥un
N

∥∥
H2 ≤ C̃0, (5.42)
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with repeated applications of 1-D Sobolev embedding. Then we obtain the following estimate
〈
D2

N((Un)p − (un)p), ṽn,(1)
〉
≤ √

pC̃2
∥∥ũn

N

∥∥
H2 ·

∥∥∥ṽn,(1)
∥∥∥

2

≤ 1
2

C̃3

(∥∥ũn
N

∥∥2
H2 +

∥∥∥ṽn,(1)
∥∥∥

2

2

)
, with C̃3 = √

pC̃2. (5.43)

Therefore, a combination of (5.37), (5.38), (5.39) and (5.43) leads to
∥∥∥(ũn,(1), ṽn,(1))

∥∥∥
2

E
−

∥∥(ũn, ṽn)
∥∥2

E ≤ C̃3

2
"t

(∥∥ũn
N

∥∥2
H2 +

∥∥∥ṽn,(1)
∥∥∥

2

2

)

≤ C̃3

2
"t

(∥∥∥(ũn,(1), ṽn,(1))
∥∥∥

2

E
+

∥∥(ũn, ṽn)
∥∥2

E + h2m
)

, (5.44)

in which the last step was based on the fact that 
∥∥D2

N ũn
N

∥∥2
and 

∥∥ṽn,(1)
∥∥2

2 could be absorbed into 
∥∥(ũn, ṽn)

∥∥2
E , 

∥∥(ũn,(1), ṽn,(1))
∥∥2

E , respectively, and the preliminary estimate (5.20) was also applied. Moreover, it is observed that (5.44)
could be further refined as

∥∥∥(ũn,(1), ṽn,(1))
∥∥∥

2

E
−

∥∥(ũn, ṽn)
∥∥2

E ≤ C̃4"t(
∥∥(ũn, ṽn)

∥∥2
E + h2m), with C̃4 dependent on C̃3. (5.45)

For the numerical error evolutionary equation (5.29)–(5.31) in the second stage, an energy estimate for the linear wave 
equation implies that

∥∥(ũn∗, ṽn∗)
∥∥2

E =
∥∥D N ũn∗∥∥2

2 +
∥∥∥D2

N ũn∗
∥∥∥

2

2
+

∥∥ṽn∗∥∥2
2

=
∥∥∥(ũn,(1), ṽn,(1))

∥∥∥
2

E
=

∥∥∥D N ũn,(1)
∥∥∥

2

2
+

∥∥∥D2
N ũn,(1)

∥∥∥
2

2
+

∥∥∥ṽn,(1)
∥∥∥

2

2
. (5.46)

Next, we analyze the numerical error equation (5.32)–(5.33). Taking a discrete inner product with (5.32) by 2D4
N ũn+1, 

−2D2
N ũn+1, results in
∥∥∥D2

N ũn+1
∥∥∥

2

2
−

∥∥∥D2
N ũn∗

∥∥∥
2

2
+

∥∥∥D2
N(ũn+1 − ũn∗)

∥∥∥
2

2
≤ "t

∥∥∥D2
Nτn

1

∥∥∥
2

2
+ "t

∥∥∥D2
N ũn+1

∥∥∥
2

2
, (5.47)

∥∥∥D N ũn+1
∥∥∥

2

2
−

∥∥D N ũn∗∥∥2
2 +

∥∥∥D N(ũn+1 − ũn∗)
∥∥∥

2

2
≤ "t

∥∥D Nτn
1

∥∥2
2 + "t

∥∥∥D N ũn+1
∥∥∥

2

2
. (5.48)

Taking an inner product with (5.33) by the error function 2ṽn+1 gives
∥∥∥ṽn+1

∥∥∥
2

2
−

∥∥ṽn∗∥∥2
2 +

∥∥∥ṽn+1 − ṽn∗
∥∥∥

2

2

= "t
〈
D2

N((Un∗)p − (un∗)p), ṽn+1
〉
+ 2"t

〈
τn

2 , ṽn+1
〉
, (5.49)

with 2
〈
τn

2 , ṽn+1
〉
≤

∥∥τn
2

∥∥2
2 +

∥∥∥ṽn+1
∥∥∥

2

2
. (5.50)

To bound the nonlinear error term, we have a similar estimate as (5.40):

∥D2
N((Un∗)p − (un∗)p)∥2 ≤ √

p
∥∥((Un∗

N )p)xx − ((un∗
N )p)xx

∥∥ . (5.51)

In addition, repeated applications of 1-D Sobolev embedding leads to
∥∥((Un∗

N )p)xx − ((un∗
N )p)xx

∥∥ ≤ C
(∥∥Un∗

N

∥∥p−1
H2 +

∥∥un∗
N

∥∥p−1
H2

)
·
∥∥ũn∗

N

∥∥
H2 . (5.52)

For Un∗
N , the following estimate is valid:

∥∥∥∥∥∥
Un∗

N − 1
L

∫

#

Un∗
N dx

∥∥∥∥∥∥

2

H2

≤
∥∥(Un∗, V n∗)

∥∥2
E =

∥∥(Un, V n)
∥∥2

E ≤ C(C∗)2, (5.53)

in which the energy conservation between (Un∗, V n∗) and (Un, V n) was applied in the second step. Meanwhile, we have ∫
# Un∗

N dx =
∫
# Un

N dx = β0 + O (hm), by (5.23). This in turn implies that
∥∥Un∗

N

∥∥
H2 ≤ C

(
C∗ + |β0| + hm)

. (5.54)
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For un∗
N , the following estimate could be derived, in a similar fashion as (5.36):
∥∥un∗

N

∥∥
H2 =

∥∥Un∗
N − ũn∗

N

∥∥
H2 ≤

∥∥Un∗
N

∥∥
H2 +

∥∥ũn∗
N

∥∥
H2 ≤

∥∥Un∗
N

∥∥
H2 +

∥∥ũn∗∥∥
E + Chm

≤
∥∥Un∗

N

∥∥
H2 +

∥∥ũn
∥∥

E + Chm ≤ C
(
C∗ + |β0| + 1

)
, (5.55)

in which the energy conservation 
∥∥ũn∗∥∥

E =
∥∥ũn

∥∥
E was applied in the fourth step. Then we arrive at

∥∥((Un∗
N )p)xx − ((un∗

N )p)xx
∥∥ ≤ C̃5

∥∥ũn∗
N

∥∥
H2 , with C̃5 = C

(
(C∗)p−1 + |β0|p−1 + 1

)
, (5.56)

which in turn leads to the following estimate

〈
D2

N((Un∗)p − (un∗)p), ṽn+1
〉
≤ √

pC̃5
∥∥ũn∗

N

∥∥
H2 ·

∥∥∥ṽn+1
∥∥∥

2
≤ C̃6

2

(∥∥ũn∗
N

∥∥2
H2 +

∥∥∥ṽn+1
∥∥∥

2

2

)
, (5.57)

with C̃6 = √
pC̃5. Going back to (5.49), (5.50), we arrive at

∥∥∥ṽn+1
∥∥∥

2

2
−

∥∥ṽn∗∥∥2
2 ≤ C̃6

2
"t

∥∥ũn∗
N

∥∥2
H2 + "t

(
C̃6

2
+ 1

)∥∥∥ṽn+1
∥∥∥

2

2
+ "t

∥∥τn
2

∥∥2
2 . (5.58)

Moreover, its combination with (5.47) and (5.48) yields
∥∥∥(ũn+1, ṽn+1)

∥∥∥
2

E
−

∥∥(ũn∗, ṽn∗)
∥∥2

E

≤ "t

(∥∥∥D2
N ũn+1

∥∥∥
2

2
+

∥∥∥D N ũn+1
∥∥∥

2

2
+ C̃6

2

∥∥ũn∗
N

∥∥2
H2 + (

C̃6

2
+ 1)

∥∥∥ṽn+1
∥∥∥

2

2

)

+ "t
(∥∥τn

1

∥∥2
H2

h
+

∥∥τn
2

∥∥2
2

)
. (5.59)

As a consequence, a combination of (5.45), (5.46) and (5.59) results in
∥∥∥(ũn+1, ṽn+1)

∥∥∥
2

E
−

∥∥(ũn, ṽn)
∥∥2

E

≤ C̃4"t
∥∥(ũn, ṽn)

∥∥2
E + "t

(∥∥∥D2
N ũn+1

∥∥∥
2

2
+

∥∥∥D N ũn+1
∥∥∥

2

2
+ C̃6

2

∥∥ũn∗
N

∥∥2
H2 + (

C̃6

2
+ 1)

∥∥∥ṽn+1
∥∥∥

2

2

)

+ "t
(∥∥τn

1

∥∥2
H2 +

∥∥τn
2

∥∥2
2 + h2m

)

≤ C̃4"t
∥∥(ũn, ṽn)

∥∥2
E + (

C̃6

2
+ 1)"t

∥∥∥(ũn+1, ṽn+1)
∥∥∥

2

E
+ C̃6

2

∥∥ũn∗
N

∥∥2
H2

+ "t
(∥∥τn

1

∥∥2
H2

h
+

∥∥τn
2

∥∥2
2 + h2m

)

≤ C̃7"t
∥∥(ũn, ṽn)

∥∥2
E + (

C̃6

2
+ 1)"t

∥∥∥(ũn+1, ṽn+1)
∥∥∥

2

E
+ "t

(∥∥τn
1

∥∥2
H2

h
+

∥∥τn
2

∥∥2
2 + h2m

)
, (5.60)

with the preliminary estimates (5.20), (5.45), (5.46) repeatedly recalled. Meanwhile, since the ∥ · ∥E norm of the numerical 
error function at time step tn+1 has been involved on the right hand side of (5.60), an upper bound for the time step size 
is needed to pass through the analysis. Under the constraint

(
C̃6

2
+ 1)"t ≤ 1

2
, so that

1

1 − ( C̃6
2 + 1)"t

≤ 1 + 2(
C̃6

2
+ 1)"t = 1 + (C̃6 + 2)"t, (5.61)

we have
∥∥∥(ũn+1, ṽn+1)

∥∥∥
2

E
≤ e(C̃7+C̃6+2)"t

∥∥(ũn, ṽn)
∥∥2

E

+ "t
(

1 + (C̃6 + 2)"t
)(∥∥τn

1

∥∥2
H2

h
+

∥∥τn
2

∥∥2
2 + h2m

)
, (5.62)

in which the following inequalities are recalled:

1 + C̃7"t ≤ eC̃7"t, 1 + (C̃6 + 2)"t ≤ e(C̃6+2)"t . (5.63)

It is observed that the upper bound for "t given by (5.61), i.e., "t ≤ 1
C̃6+2

, is not a severe constraint, since C̃6 = O (1). In 
turn, an application of the discrete Gronwall inequality indicates that
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∥∥∥(ũn+1, ṽn+1)
∥∥∥

E
≤ C̃8("t2 + hm), (5.64)

with C̃8 dependent on C̃6, C̃7 and T ∗ , independent of "t and h. Note that the local truncation error estimate, 
∥∥τn

1

∥∥
H2 , 

∥τ2∥2 ≤ C0("t2 + hm), has been used. In turn, an application of the preliminary inequality (5.20) (given by Lemma 5.1) 
results in the desired convergence estimate (3.41).

Recovery of the a-priori bound (5.35). With the help of the error estimate (5.64), ℓ∞(0, T ; H2) for variable u and 
ℓ∞(0, T ; L2) for variable v , we see that the a-priori bound (5.35) is also valid for the numerical error function (ũ, ̃v) at 
time step tn+1, provided that

"t ≤
(

2C̃8

)−1/2
, h ≤

(
2C̃8

)−1/m
, with C̃8 dependent on T ∗.

This completes the second order convergence analysis, ℓ∞(0, T ∗; H2) for u, and ℓ∞(0, T ∗; L2) for v .

Remark 5.2. A severe stability condition "t ≤ Ch2 reported in the earlier work [16] is more associated with a theoretical 
analysis difficulty than an essential constraint in practical computations. In fact, for the following linear scheme, which 
corresponds to the linear part and the fourth order diffusion of the numerical method studied in [16]:

un+1 − 2un + un−1

"t2 = −1
4

D4
N

(
un+1 + 2un + un−1

)
, (5.65)

a careful estimate shows its unconditional stability, by taking inner product by un+1 − un−1. Also see the related analysis by 
Dupont [20].

However, due to certain technical difficulties, for its combination with the nonlinear term, the stability and convergence 
could only be justified under a severe constraint "t = O (h2). This technical difficulty may be able to be overcome, and the 
authors will consider this analysis in the future.

Remark 5.3. In a more recent work [13], an alternative second order temporal approximation was proposed and analyzed, 
with an intermediate variable to approximate v = ut introduced in the numerical scheme. The convergence analysis in the 
stronger energy norm was established without the time step restriction "t ≤ Ch2, using similar techniques presented in 
this article.

6. Numerical results

In this section we present a numerical experiment for the second order operator splitting scheme (3.15)–(3.26). Similar 
to [13,16], we take p = 2, and the exact solitary wave solution of the GB equation is given by

ue(x, t) = −Asech2
(

P
2

(x − c0t)
)

, (6.1)

with 0 < P ≤ 1. The amplitude A, the wave speed c0 and the real parameter P have to satisfy

A = 3P 2

2
, c0 =

(
1 − P 2

)1/2
. (6.2)

The Fourier pseudo-spectral approximation on an interval (−L, L), with L large enough, is a natural choice, since the 
exact profile (6.1) decays exponentially as |x| → ∞. We set the computational domain as # = (−80, 80), and a moderate 
amplitude A = 0.5 is taken.

A comparison between the numerical solution and the exact solution of u at a final time T = 4 is displayed in Fig. 1; 
the time step is taken as "t = 2 × 10−4, and the spatial resolution is given by N = 128. A very good match is clearly 
demonstrated in this figure.

6.1. Spectral convergence in space

To investigate the accuracy in space, we fix "t = 10−4 and compute solutions with grid sizes N = 32 to N = 160 in 
increments of 8. For this fixed time step size, the temporal numerical error becomes negligible. The following numerical 
errors at the final time T = 4

∥v − ve∥2 , and
∥∥∥D2

N(u − ue)
∥∥∥

2
, (6.3)

are presented in Fig. 2. The spatial spectral accuracy is apparently observed for both u and v = ut . And also, a saturation of 
spectral accuracy appears with an increasing N , since the numerical error is dominated by the temporal one for N ≥ 128.
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Fig. 1. A comparison between the numerical solution and the exact solution. The solid line represents the plot for the exact profile (6.1) at T = 4.0, while 
the star line stands for that of the numerical solution, computed by the second order operator splitting scheme (3.15)–(3.26). The time step size is chosen 
as "t = 2 × 10−4, and the spatial resolution is given by N = 128.

Fig. 2. Discrete L2 numerical errors for v = ut and H2 numerical errors for u at T = 4.0, plotted versus N , the number of spatial grid point, for the second 
order operator splitting scheme (3.15)–(3.26). The time step size is fixed as "t = 10−4. An apparent spatial spectral accuracy is observed for both variables.

Fig. 3. Discrete L2 numerical errors for v = ut and H2 numerical errors for u at T = 4.0, plotted versus "t , the time step size, for the second order operator 
splitting scheme (3.15)–(3.26). The spatial resolution is fixed as N = 128. The data lie roughly on curves C"t2 , for appropriate choices of C , confirming the 
full second-order temporal accuracy.

6.2. Second order convergence in time

To study the temporal accuracy, we fix the spatial resolution as N = 128 so that the spatial discretization error is 
negligible and the numerical error is dominated by the temporal ones. We compute solutions with a sequence of time step 
sizes, "t = "t0/2K , with "t0 = 6.4 × 10−3 and 0 ≤ K ≤ 6. The discrete L2 and H2 norms of the numerical errors, for both 
v = ut and u, are reported in Fig. 3. A clear second order accuracy is observed for both variables.

7. Concluding remarks

In this article, we analyze a second order operator splitting scheme for the GB equation (1.1), with Fourier pseudo-
spectral approximation in space. A rewritten form of a system of two equations, for the original variable u and v = ut , 
respectively, is used to facilitate the numerical design. Subsequently, the nonlinear stability and convergence analysis are 
provided in detail. A careful Taylor expansion for both the exact solution and the constructed approximate solution results 
in the second order truncation error in time, and the standard approximation estimate in pseudo-spectral space implies 
the spectral accuracy in space. In addition, with the help of an a-priori H2 assumption for the numerical solution at the 
previous time step and an aliasing error control technique, we perform a linearized stability analysis for the numerical error 
function and obtain the convergence estimate in the energy norm: an ℓ∞(0, T ∗; H2) convergence for u and ℓ∞(0, T ∗; ℓ2)
convergence for v = ut . And also, the presented convergence is unconditional for the time step in terms of the spatial grid 
size, in comparison with a severe time step restriction, "t ≤ Ch2, required in many existing works. A simple numerical 
experiment also verifies the unconditional convergence, second order accuracy in time, and spectral accuracy in space.
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