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Abstract  —  A long-stencil fourth order finite difference 
method over a Yee-grid is developed to solve Maxwell’s 
equations. The different variables are located at staggered mesh 
points, and a symmetric image formula is introduced near the 
boundary.  The introduction of these symmetric ghost grid points 
assures the stability of the boundary extrapolation, and in turn a 
complete set of purely imaginary eigenvalues are given for the 
fourth-order discrete curl operators for both electric and 
magnetic fields.  Subsequently, the four-stage Jameson method 
integrator constrained by a pre-determined time step is utilized 
to produce a stable full fourth order accuracy in both time and 
space.  The accuracy of the developed numerical scheme has been 
validated by comparing its results to the closed form solutions for 
a rectangular cavity. 

Index Terms — Runge-Kutta, Yee-grid, finite difference time 
domain, Jameson’s method.  

I. INTRODUCTION 

The classical Finite Difference Time Domain (FDTD) 
approach introduced by Yee has been widely used in the 
solution of problems in electromagnetics [1]. The scheme 
proved to be second order accurate in space and time. 
However, as always in the case of a second order method, the 
Yee scheme begins to accumulate phase errors as time grows 
large, especially for electrically large domains or for late-time 
analysis. Because of this, several attempts have been made to 
extend this scheme to have a fourth order accuracy [2]. Fourth 
order methods allow a larger time step and courser spatial 
mesh to be used while maintaining the same accuracy 
(effectively increasing the simulation speed), or can increase 
the accuracy for a given mesh spacing and time step. 

However, any scheme employing fourth order finite 
differences in space faces the problem of computing spatial 
derivatives near the physical boundaries. Several solutions 
have been proposed, such as a fourth order closure proposed 
in P. Petropoulous and A. Yefet [3]. An alternate approach to 
overcome the boundary difficulties is to introduce a compact 
difference operator for the spatial derivatives over the Yee 
stencil, as discussed in detail in J. Young [4]. Unfortunately, 
these methods either tend to suffer from instability near the 
boundary or require an implicit updating scheme.  

The fourth order leapfrog or the classical fourth order 
Runge-Kutta method (RK4) is typically used for the fourth 
order time integration. The fourth order leap frog scheme 
leads to a corrective derivative that is very complicated to 
implement. The classical RK4 integrator, meanwhile, requires 

the storage of many temporary, intermediate field values, 
which increases the memory storage requirements drastically 
over the second order method.  See J. Fang [2] and J. Young 
[4] for a more detailed discussion. 

Recently, a fully explicit fourth order scheme over the Yee 
mesh grid has been proposed [5], which does not suffer from 
such instability near the boundary. Like Yee’s original 
scheme, components of electric and magnetic fields are 
located at different (staggered) mesh points. Such a staggered 
grid makes the computed E and H vectors divergence-free at 
the discrete level.  

II. ANALYSIS SUMMARY 

To make the scheme fourth order accurate, the original 
FDTD method must be modified to incorporate fourth order 
spatial derivatives for the numerical computation of the curl. 
This implies that the derivatives must rely not just on the 
neighboring two points, but on the neighboring four points, 
using the appropriate four-point stencil over the MAC grid. 
This stencil can be expressed using the following formula [5]: 
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Here, g is the appropriate field component, u can be any of 
the spatial variables x, y, or z, while h is the grid spacing in 
the appropriate direction: either ∆x, ∆y, or ∆z. A simple 
Taylor expansion reveals that the error in this approximation 
is proportional to 4h . 

While the above formula is well defined for interior mesh 
points, there remains the difficulty of applying it near physical 
boundaries, where one or more of the terms in the formula 
may lie outside the mesh. Instead of modifying the derivative 
formula for boundary points, the present scheme utilizes 
“ghost” points added around boundaries in such a manner as 
to enforce the boundary conditions and preserve the 
divergence free characteristic of the fields at a discrete level. 
An example of such a “symmetric image” formula used in this 
method is shown in the next section for the case of a metallic 
wall. This provides a completely explicit formula, and also 
allows for a rigorous demonstration of the stability of the 
method near the boundary [5]. 

In addition to modifying the computation of the spatial 
derivatives, the present method also employs a fourth order 
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integration method, the Jameson method. The application of 
the Jameson method to the computation of electromagnetic 
fields was first done very recently [5], and is shown below: 
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Here, the function f is the numerical curl operator, and ny is 
a vector containing the components of E and H at time step n. 
Such an integrator, proposed by A. Jameson in [6, 7] for use in 
the numerical simulations of gas dynamics, was only second 
order accurate for nonlinear gas dynamics equations. 
However, due to the linearity of the Maxwell equations, the 
Jameson method achieves fourth order accuracy for 
electromagnetics problems. The stability domain of the 
Jameson method applied to Maxwell’s equations can be 
shown to be identical to that of the RK4 integrator, so no loss 
of stability occurs by using Jameson’s method. The stability 
domain of the integrator in the complex plane is shown in 
Figure 1. 

 
 

Fig. 1.  Stability domain of the Jameson method fourth order time 
integration technique. The solid line on the imaginary axis represents 
that of the second order leap frog integrator. 

 
As long as all eigenvalues of the discrete curl operator lie 

within the stability domain, the scheme will be stable. While 
the second order leapfrog integrator has a stability domain 

from –i to +i on the imaginary axis, the Jameson method 
integrator has a much larger stability domain enclosing a 
region in the complex plane.  

It can be shown that for the case of the Maxwell equations, 
the Jameson method yields identical numerical results to the 
classical RK4 integrator [5]. However, the Jameson method is 
less costly to implement in one important respect.  This is due 
to the fact that for the RK4 integrator, intermediate variables 
need to be saved at each intermediate stage for use in the final 
stage. For the Jameson method, only the result from the 
previous stage is needed in computing the next stage. The 
result is that less total memory is needed in the integration 
process compared to RK4. 

Although the stability domain of the time integrator is 

improved over the classical FDTD scheme by 22 , the 
eigenvalues of the fourth order discrete curl operator are larger 
by a factor of 7/6 [5]. Thus, the overall numeric scheme will 

have a CFL number of 12 2 / 7 times that of the classical 
FDTD scheme. Therefore, the overall stability constraint for 
this scheme is 
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An example of the implementation of this method over a 
simple rectangular domain is presented in the following 
section. 

III. NUMERICAL EXAMPLE 

To demonstrate this method, a simple rectangular cavity is 
taken under consideration. The walls are assumed to be perfect 
conductors. Such a cavity can support an infinite number of 
eigenmodes, all of which are known from basic 
electromagnetic theory.  This makes the rectangular cavity an 
attractive benchmark problem. Each mode has a 
corresponding resonant frequency, which is also known from 
theory to be  

 222
,, 2

1 nmlcf nml ++=  . (4) 

where l, m, and n are non-negative integers and at least two 
are nonzero. 

The extrapolation formulas near the boundary are very 
simple to implement. (Here, the treatment of the boundary 
conditions is demonstrated for a perfectly conducting 
rectangular domain, but the principles can be extended to 
accommodate other types of boundary conditions). The 
tangential electric field and normal magnetic field boundary 
points are computed using a Dirichlet boundary condition, 
while the normal electric field and tangential magnetic field 
boundary points are computed under a Neumann boundary 
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condition. For example, at a z=constant boundary, the “ghost” 
grid points should be 
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2/3,2/1,2/3,2/1, hOHH jixjix += +−+ . 

 
By differentiating the original wave equation, this 

extrapolation technique is shown to be fourth order 
accurate[5].  

Three schemes were selected for comparison with this 
benchmark problem. The first is the original FDTD, which is 
second order in time and space (or 2X2). The second is a 
scheme employing a second order leapfrog integrator in time 
and a fourth order finite difference stencil in space (2X4). The 
third is the newly proposed 4X4 scheme.  

The dimensions of the cavity were chosen to be 1m by 1m 
by 1m. The initial condition was chosen to force the initial 
magnetic field to be zero, and the initial electric field to be a 
sum over many cavity eigenmodes, giving the appearance of a 
“random” initial condition. The amplitude of the l, m, n 
eigenmode in the initial condition was given by  
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where l, m, and n all range from 1 to 20, for a total of 8000 

modes. However, due to the decaying amplitude for large m, 
n, and l, only a few of these modes will be significant in the 
spectral distribution. 

This choice of initial condition guarantees that E and H are 
divergence free and satisfy the boundary conditions at the 
cavity walls.  

IV. RESULTS 

Running the 4X4 scheme and taking an FFT of the electric 
field component Ey at a sample observation point, the 
spectrum of Figure 2 was obtained.  

 

�
Fig. 2.  Spectrum of Ey at a sample observation point. A multimode 
initial condition was purposely chosen. 

 
For the trial simulation, the TE333 mode, where l = 3, m = 

3, and n = 3, was chosen to be measured. This mode is a good 
test of the fourth order scheme because it has rapidly varying 
fields in the x, y, and z directions. The theoretical resonant 
frequency for this mode is 778.88 MHz. 

The accuracy of the simulations was measured by taking a 
dot product of the cavity fields with the known modal 
distribution of the 3,3,3 mode at each time step, in an effort to 
select only the mode of interest. An FFT is then performed 
with an appropriate window function, in this case a raised 
cosine. Then, the frequency of the peak in the Fourier power 
spectrum is compared to the known resonant frequency. 

A number of simulations were performed for each scheme, 
with different numbers of grid points N, hence varying x∆  

(with the assumption x∆  = y∆  = z∆ ). 
x
t

∆
∆

 was fixed by the 

most restrictive CFL condition (the 2 X 4 case). The final time 
was also fixed.  

The error of the 2 X 2, 2 X 4, and 4 X 4 schemes, regarding 
the frequency of the mode l = 3, m = 3, n = 3 mode, is shown 
in Figure 3. 

Frequency�(GHz)�
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Fig. 3.  Error comparison between the 2X2, 2X4, and proposed 4X4 
method for the TE333 mode. The dot line represents the 2X2 scheme; 
the square line, the 2X4 scheme, and the triangle line, the 4X4 
scheme. 
 
 

It is obvious that the proposed fourth order method provides 
much more accurate simulation results than those of the 2 X 2 
and 2 X 4 methods. It is also interesting to note that there is 
relatively little difference between the 2X2 method and the 
2X4 method. This indicates that moving to a fourth order 
stencil in space is not significantly advantageous if a second 
order time integration is still employed. Only in the case of a 
fully fourth order scheme in space and time can a significant 
advantage be noticed. 

Such an accuracy can even be observed for a relatively 
course mesh. For a 20 X 20 X 20 grid, for example, an error of 
632 kHz is observed. By comparison, a 50 X 50 X 50 grid in 
CST, a commercial electromagnetic simulation software, gives 
an error of 1.15 MHz. 

V. CONCLUSION 

The resulting scheme is shown to preserve fourth order 
accuracy in space and time for the linear Maxwell equations. 
Moreover, the symmetric image formula yields a completely 
explicit and stable updating scheme. Due to the Jameson 
method integration, the method also saves memory over 
schemes which employ a more conventional RK4 integrator. 
At the same time, it offers a larger stability domain than the 
second order scheme. The overall fourth order scheme has a 

maximum CFL number of 12 2 / 7 times that of the original 
FDTD algorithm, which is a drastic improvement. This 
implies that a larger time step can be used in the simulation 
without sacrificing stability. This property makes the present 
method attractive for electrically large domains or late-time 
analysis. 
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