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Abstract. In this paper we present a second order accurate (in time) energy stable nu-
merical scheme for the Cahn-Hilliard (CH) equation, with a mixed finite element ap-
proximation in space. Instead of the standard second order Crank-Nicolson method-
ology, we apply the implicit backward differentiation formula (BDF) concept to derive
second order temporal accuracy, but modified so that the concave diffusion term is
treated explicitly. This explicit treatment for the concave part of the chemical potential
ensures the unique solvability of the scheme without sacrificing energy stability. An
additional term Aτ∆(uk+1−uk) is added, which represents a second order Douglas-
Dupont-type regularization, and a careful calculation shows that energy stability is

guaranteed, provided the mild condition A≥ 1
16 is enforced. In turn, a uniform in time

H1 bound of the numerical solution becomes available. As a result, we are able to
establish an ℓ∞(0,T;L2) convergence analysis for the proposed fully discrete scheme,
with full O(τ2+h2) accuracy. This convergence turns out to be unconditional; no scal-
ing law is needed between the time step size τ and the spatial grid size h. A few
numerical experiments are presented to conclude the article.
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1 Introduction

The Allen-Cahn (AC) [1] (non-conserved dynamics) and Cahn-Hilliard (CH) [7] (con-
served dynamics) equations, which model spinodal decomposition in a binary alloy, are
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perhaps the most well-known of the gradient flow-type PDEs. In deriving the CH equa-
tion, we consider a bounded domain Ω⊂R

d (with d=2 or d=3). For any u∈H1(Ω), the
CH energy functional is given by

E(u)=
∫

Ω

(

1

4
u4−

1

2
u2+

ε2

2
|∇u|2

)

dx, (1.1)

where ε is a positive constant that dictates the interface width. (See [7] for a detailed
derivation.) The CH equation is precisely the H−1 (conserved) gradient flow of the en-
ergy functional (1.1):



















ut=∆w, in Ω×(0,T),

w :=δφE=u3−u−ε2∆u, in Ω×(0,T),

∂nu=∂nw=0, on ∂Ω×(0,T),

u(·,0)=u0, in Ω,

(1.2)

where T > 0 is the final time, which may be infinite; ∂nu := n·∇u; and n the unit nor-
mal vector on the boundary. Due to the gradient structure of (1.2), the following energy
dissipation law holds:

d

dt
E(u(t))=−

∫

Ω
|∇w|2dx. (1.3)

In integral form, the energy decay may be expressed as

E(u(t1))+
∫ t1

t0

∫

Ω
|∇w(t)|2dxdt=E(u(t0)). (1.4)

Furthermore, the equation is mass conservative,
∫

Ω
∂tudx=0, which follows from the con-

servative structure of the equation together with the homogeneous Neumann boundary
conditions for w. This property can be re-expressed as (u(·,t),1)=(u0,1), for all t≥0.

The Cahn-Hilliard equation is one of the most important models in mathematical
physics. It is often paired with equations that describe important physical behavior
of a given physical system, typically through nonlinear coupling terms. Examples of
such coupled models include the Cahn-Hilliard-Navier-Stokes (CHNS) equation for two-
phase, immiscible flow; the Cahn-Larché model of binary solid state diffusion for elastic
misfit; the Cahn-Hilliard-Hele-Shaw (CHHS) equation for spinodal decomposition of a
binary fluid in a Hele-Shaw cell; et cetera. The numerical and PDE analyses for the CH
equation are quite challenging, since the equation is a fourth-order, nonlinear parabolic-
type PDE. There have been many existing numerical works, in particular for first order
accurate (in time) schemes.

Meanwhile, second order accurate (in time) numerical schemes have also attracted a
great deal of attention in recent years, due to the great advantage over their first order
counterparts in terms of numerical efficiency and accuracy. However, the analysis for
the second order schemes is significantly more difficult than that for the first order ones,
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because of the more complicated form for the nonlinear terms; see the related discussions
in [2, 21, 24], et cetera.

The energy stability of a numerical scheme has been a very important issue, since it
plays an essential role in the accuracy of long time numerical simulation. The standard
convex splitting scheme, popularized by Eyre’s work [17], is a well-known approach to
achieve numerical energy stability. This framework treats the convex part of the chemical
potential implicitly and the concave part explicitly, resulting in a scheme that is uniquely
solvable and energy stable, unconditionally with respect to the time and space step sizes.
Splitting has been applied to a wide class of gradient flows in recent years, and both first
and second order accurate (in time) algorithms have been developed. See the related
works for the phase field crystal (PFC) equation and the modified phase field crystal
(MPFC) equation [3,4,28,35,37]; epitaxial thin film growth models [8,10,32,34]; non-local
Cahn-Hilliard-type models [22,23]; the CHHS and related models [9,13,20,36]; et cetera.
One drawback of the first order convex splitting approach, however, is that the extra
dissipation added to ensure unconditional stability also introduces a significant amount
of numerical error [12]. For this reason, second-order energy stable methods have been
highly desirable.

Recently, for the CH equation (1.2), a second order energy stable scheme has been
analyzed in [25], based on a modified version of the Crank-Nicolson temporal approxi-
mation; see the related discussions in Remarks 2.1 and 4.3. This numerical scheme enjoys
many advantages over the second order temporal approximations reported in the exist-
ing literature [5, 16, 24, 38], in particular in terms of the unconditional energy stability,
unconditionally unique solvability, and rigorous convergence properties. See also the
recent finite element work [15] for related analysis; and see the extension of the ideas
in [15, 25] to the Cahn-Hilliard-Navier-Stokes model in the recent papers [14, 27].

In this paper, we propose and analyze an alternate second order energy stable scheme
for the CH equation (1.2), based on the 2nd order BDF temporal approximation frame-
work, instead of that based on the Crank-Nicolson one. The BDF scheme treats and ap-
proximates every term at the time step tn+1 (instead of the time instant tn+1/2). In more
detail, a 2nd order BDF 3-point stencil is applied in the temporal derivative approxima-
tion, and the nonlinear term and the surface diffusion terms are updated implicitly, due
to their strong convexities. Meanwhile, a second order accurate, explicit extrapolation
formula has to be applied in the approximation of the concave diffusion term, in order to
make the numerical scheme uniquely solvable.

However, the energy stability is not assured for this explicit extrapolation, by a direct
calculation. To salvage the energy stability of the numerical scheme, we add a second
order Douglas-Dupont regularization, in the form of Aτ∆(uk+1−uk). A more careful
analysis then guarantees the energy stability for this proposed numerical scheme under
a mild requirement A≥ 1

16 . For the present scheme, we highlight the fact that the nonlin-
ear solver required for the BDF scheme is expected to require less computational effort
than that for the Crank-Nicolson version, due to the simpler form and stronger convexity
properties of the nonlinear term.
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A mixed finite element approximation is taken in space, based on a mixed weak for-
mulation of the CH equation (1.2). In this approach, the numerical solutions for both the
phase variable u and the chemical potential variable w belong to the same finite element
space Sh, which is a piecewise polynomial subspace of H1. Combined with the second
order energy stable BDF temporal approximation, the resulting numerical scheme pre-
serves the properties of unique solvability and unconditional energy stability. In turn,
a uniform-in-time H1 bound can be derived for the numerical phase variable uh. With
a help of this uniform-in-time H1 bound, we are able to establish the convergence anal-
ysis, with a combination of consistency and stability estimates for the numerical error
functions. The error estimate, in the ℓ∞(0,T;L2)∩ℓ2(0,T;H2

h) norm, has the full order
O(τ2+h2) accuracy. Furthermore, this convergence is unconditional; no scaling law is
needed between τ and h to ensure its validity.

This article is organized as follows. In Section 2 we outline the fully discrete scheme.
The unique solvability is proven in Section 3 and the energy stability analysis is estab-
lished in Section 4. In Section 5 we present the ℓ∞(0,T;L2)∩ℓ2(0,T;H2

h) convergence anal-
ysis for the scheme. Some numerical results are presented in Section 6. Finally, conclud-
ing remarks are given in Section 7.

2 The fully discrete numerical scheme

We use standard notation for the norms on their respective function spaces. In particular,
we denote the standard norms for the Sobolev spaces Wm,p(Ω) by ‖·‖m,p. We replace
‖·‖0,p by ‖·‖p, ‖·‖0,2 =‖·‖2 by ‖·‖, and ‖·‖q,2 by ‖·‖Hq .

The mixed weak formulation of Cahn-Hilliard equation (1.2) is to find u,w ∈
L2(0,T;H1(Ω)), with ut∈L2(0,T;H−1(Ω)), satisfying

{

(ut,v)+(∇w,∇v)=0, ∀ v∈H1(Ω),

(w,ψ)=(u3−u,ψ)+ε2(∇u,∇ψ), ∀ ψ∈H1(Ω),
(2.1)

for almost every t ∈ [0,T], where H−1(Ω) is the dual space of H1(Ω)∩L2
0(Ω), where

L2
0(Ω) :=

{

u∈L2(Ω)
∣

∣ (u,1)=0
}

, and (·,·) represents the L2 inner product or the dual-
ity pairing, as appropriate.

Let Th={K} be a quasi-uniform triangulation on Ω. For q∈Z
+, define the piecewise

polynomial space Sh :={v∈C0(Ω) |v|K ∈Pq(K),∀ K∈Th}⊂H1(Ω).

We propose the following fully discrete numerical scheme: for n≥1, given un−1
h ,un

h ∈

Sh, find un+1
h ,wn+1

h ∈Sh, such that























(

3un+1
h −4un

h+un−1
h

2τ
,vh

)

+(∇wn+1
h ,∇vh)=0, ∀ vh ∈Sh,

(wn+1
h ,ψh)= ε2(∇un+1

h ,∇ψh)+((un+1
h )3−2un

h+un−1
h ,ψh)

+Aτ(∇(un+1
h −un

h),∇ψh), ∀ ψh ∈Sh,

(2.2)
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where un
h stands for the numerical solution at time tn. As a general rule, the second order

Gear method (BDF approximation) is expected to yield a large region of absolute stability.
The explicit Adams-Bashforth extrapolation formula (with a second order approximation
to the variable at time step tn+1) is applied to stabilize the concave term, as we will show.
The artificial term Aτ∆(un+1

h −un
h) – a second order-accurate Douglas-Dupont-type regu-

larization – is added to establish the unconditional energy stability of the scheme, provided
A is sufficiently large, while preserving the second order temporal accuracy and unique
solvability of the scheme. We will show that, there is only a very mild stability require-
ment on the artificial parameter A, namely, A≥ 1

16 .
The scheme requires an initialization step. To this end, we introduce the Ritz projec-

tion operator Rh : H1(Ω)→Sh, satisfying

(∇(Rh ϕ−ϕ),∇χ)=0, ∀χ∈Sh, (Rh ϕ−ϕ,1)=0. (2.3)

The initial data are chosen so that u0
h =Rhu0. Then, we use a standard first-order energy

stable method to obtain u1
h,w1

h ∈ Sh. Precisely, the initialization step is as follows: given
u0

h∈Sh, find u1
h,w1

h∈Sh, such that











(

u1
h−u0

h

τ
,vh

)

+(∇w1
h,∇vh)=0, ∀ vh ∈Sh,

(w1
h,ψh)= ε2(∇u1

h,∇ψh)+((u1
h)

3−u0
h,ψh), ∀ ψh ∈Sh.

(2.4)

We must solve a nonlinear algebraic system at every time step in the computation.
However, many nonlinear solvers, such as the Newton’s iteration or nonlinear conju-
gate gradient algorithm, and the nonlinear multigrid give robust performance, since the
implicit part turns out to be the gradient of a certain strictly convex functional.

Remark 2.1. The Crank-Nicolson version of the second order convex splitting scheme for
the CH equation (1.2) takes the (spatially-continuous) form:

un+1−un

τ
= ∆wn+1/2,

wn+1/2= χ(un+1,un)−

(

3

2
un−

1

2
un−1

)

−ε2∆

(

3

4
un+1+

1

4
un−1

)

,

χ(un+1,un) :=
1

4
(un+1+un)

(

(un+1)2+(un)2
)

.

(2.5)

See the detailed derivations and analyses in [11, 15, 25], involving finite difference, finite
element and Fourier pseudo-spectral discretizations, respectively. In this numerical ap-
proach, every term in the chemical potential is approximated at the time instant tn+1/2:
A modified implicit second order approximation is employed for the highest-order dif-
fusion term in order to preserve a stronger stability than the standard Crank-Nicolson
treatment; a second order explicit extrapolation is employed for the concave term; and, a
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modified Crank-Nicolson approximation (a secant approximation) is used on the nonlin-
ear term.

We see that both the Crank-Nicolson version (2.5) and the BDF one (2.2) require a
nonlinear solver, while the nonlinear term in (2.5) takes a more complicated form than
(2.2), which comes from different time instant approximations. Moreover, a stronger con-
vexity of the nonlinear term in the BDF one (2.2) improves the numerical efficiency in the
nonlinear iteration. In turn, the nonlinear iteration solver in the proposed scheme (2.2)
is expected to incur less computational cost than that for (2.5). More detailed compari-
son between these two different second order energy stable approaches will be given in
Remarks 4.3, 4.4.

3 Unique solvability

To facilitate the analysis below, we define the discrete Laplacian operator and the dis-
crete H−1 norm. We will make use of the notation L2

0(Ω) :=
{

u∈L2(Ω)
∣

∣ (u,1)=0
}

, and,

generically, if V⊆ L2(Ω), V̊ := L2
0∩V.

Definition 3.1. The discrete Laplacian operator ∆h :Sh→ S̊h is defined as follows: for any
vh ∈Sh, ∆hvh ∈ S̊h denotes the unique solution to the problem

(∆hvh,χ)=−(∇vh,∇χ), ∀ χ∈Sh.

It is straightforward to show that by restricting the domain, ∆h : S̊h → S̊h is invertible,
and for any vh ∈ S̊h, we have

(∇(−∆h)
−1vh),∇χ)=(vh,χ), ∀ χ∈Sh.

Lemma 3.1. Let u∈H2
N(Ω) :=

{

u∈H2(Ω)
∣

∣ ∂nu=0 on ∂Ω
}

. Then

‖∆h(Rhu)‖≤‖∆u‖. (3.1)

Proof. Let vh ∈Sh be arbitrary. Then

−(∆u,vh)=(∇u,∇vh)=(∇(Rhu),∇vh)=−(∆h(Rhu),vh). (3.2)

Thus, setting vh =−∆h(Rhu), we have, by the Cauchy-Schwarz inequality,

‖∆h(Rhu)‖2=(∆u,∆h(Rhu))≤‖∆u‖·‖∆h(Rhu)‖. (3.3)

In turn, the result follows on dividing by ‖∆h(Rhu)‖.

Definition 3.2. The discrete H−1 norm, ‖·‖−1,h, is defined as follows:

‖vh‖−1,h :=
√

(vh,(−∆h)−1vh), ∀vh ∈ S̊h.
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Now, suppose ψh ∈ S̊h and take the test function as vh = (−∆h)
−1ψh in our mixed

scheme (2.2), we obtain

(

3un+1
h −4un

h+un−1
h

2τ
,(−∆h)

−1ψh

)

+ε2(∇un+1
h ,∇ψh)

+((un+1
h )3−2un

h+un−1
h ,ψh)+Aτ(∇(un+1

h −un
h),∇ψh)=0. (3.4)

By rearranging the above equation, we get, for every ψh ∈ S̊h,

((un+1
h )3−(Aτ+ε2)∆hun+1

h +
3

2τ
(−∆h)

−1(un+1
h −ū),ψh)= f [un

h ,un−1
h ](ψh), (3.5)

where f [un
h ,un−1

h ] is a bounded linear functional involving the previous time iterates and

ū is the time-invariant mass average of uk
h. We make the transformation qh=uk+1

h −ū∈ S̊h.

Then qh∈ S̊h satisfies

((qh+ū)3−(Aτ+ε2)∆hqh+
3

2τ
(−∆h)

−1qh,ψh)= f [un
h ,un−1

h ](ψh), (3.6)

iff uk+1
h ∈ S̊h satisfies (3.5). Define

G(qh) :=
1

4
‖qh+ū‖4

4+
1

2
(Aτ+ε2)‖∇qh‖

2+
3

4τ
‖qh‖

2
−1,h− f [un

h ,un−1
h ](qh).

Since G(·) is a strictly convex functional over the admissible set S̊h, it has a unique mini-
mizer. The unique minimizer, qh ∈ S̊h, satisfies the Euler-Lagrange equation, which coin-
cides with the variational problem (3.6). By equivalence, the solution to (3.4) exists and
is unique. The unique solvability of the initialization scheme (2.4) is similar. See, for
example, [13].

4 Energy stability and a uniform-in-time H1 stability

The following energy stability estimate is available.

Theorem 4.1. For n≥1, define

E(un+1
h ,un

h) :=E(un+1
h )+

1

4τ
‖un+1

h −un
h‖

2
−1,h+

1

2
‖un+1

h −un
h‖

2, (4.1)

and suppose A≥ 1
16 . Then the numerical scheme (2.2) has the energy-decay property

E(un+1
h ,un

h)+τ

(

1−
1

16A

)

∥

∥

∥

∥

∥

un+1
h −un

h

τ

∥

∥

∥

∥

∥

2

−1,h

≤E(un
h ,un−1

h ). (4.2)
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Proof. In (2.2), taking vh=(−∆h)
−1(un+1

h −un
h) and ψh=un+1

h −un
h , the two terms including

wh cancel out each other by the definition of ∆h. Therefore,

0=
1

2τ
(3un+1

h −4un
h+un−1

h ,−∆−1
h (un+1

h −un
h))+ε2(∇un+1

h ,∇(un+1
h −un

h))

+((un+1
h )3,un+1

h −un
h)−(2un

h−un−1
h ,un+1

h −un
h)+Aτ‖∇(un+1

h −un
h)‖

2

:= J1+ J2+ J3+ J4+ J5.

We establish now establish estimates for J1,··· , J5. The time difference term becomes

J1=
1

2τ
(3un+1

h −4un
h+un−1

h ,−∆−1
h (un+1

h −un
h))

= τ





5

4

∥

∥

∥

∥

∥

un+1
h −un

h

τ

∥

∥

∥

∥

∥

2

−1,h

−
1

4

∥

∥

∥

∥

∥

un
h−un−1

h

τ

∥

∥

∥

∥

∥

2

−1,h





+
τ3

4

∥

∥

∥

∥

∥

un+1
h −2un

h+un−1
h

τ2

∥

∥

∥

∥

∥

2

−1,h

. (4.3)

The highest-order diffusion term turns out to be

J2= ε2(∇un+1
h ,∇(un+1

h −un
h))

=
ε2

2

(

‖∇un+1
h ‖2−‖∇un

h‖
2
)

+
ε2

2

∥

∥

∥
∇(un+1

h −un
h)
∥

∥

∥

2
. (4.4)

For the nonlinear term, we have

J3 =((un+1
h )3,un+1

h −un
h)=

1

4

(

‖un+1
h ‖4

L4 −‖un
h‖

4
L4

)

+
1

4

∥

∥

∥
(un+1

h )2−(un
h)

2
∥

∥

∥

2

+
1

2

∥

∥

∥un+1
h (un+1

h −un
h)
∥

∥

∥

2
. (4.5)

For the concave diffusive term, we have

J4= −(2un
h−un−1

h ,un+1
h −un

h)=−(un
h ,un+1

h −un
h)−(un

h−un−1
h ,un+1

h −un
h)

= −
1

2

(

‖un+1
h ‖2−‖un

h‖
2
)

+
1

2
‖un+1

h −un
h‖

2

+(un+1
h −2un

h+un−1
h ,un+1

h −un
h)−

∥

∥

∥
un+1

h −un
h

∥

∥

∥

2

= −
1

2
‖un+1

h ‖2+
1

2

∥

∥

∥
un+1

h −un
h

∥

∥

∥

2
−

(

−
1

2
‖un

h‖
2+

1

2

∥

∥

∥
un

h−un−1
h

∥

∥

∥

2
)

+
1

2

∥

∥

∥un+1
h −2un

h+un−1
h

∥

∥

∥

2
−

1

2

∥

∥

∥un+1
h −un

h

∥

∥

∥

2
. (4.6)

Finally, for the stabilizing term, we have

J5=Aτ‖∇(un+1
h −un

h)‖
2.
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Using the Cauchy-Schwarz inequality, for any α>0,

1

2
‖un+1

h −un
h‖

2≤
1

2

∥

∥

∥
∇un+1

h −∇un
h

∥

∥

∥
·‖un+1

h −un
h‖−1,h

≤
τ

4α

∥

∥

∥
∇un+1

h −∇un
h

∥

∥

∥

2
+

ατ

4

∥

∥

∥

∥

∥

un+1
h −un

h

τ

∥

∥

∥

∥

∥

2

−1,h

. (4.7)

Putting everything together, we have

E(un+1
h ,un

h)+τ
(

1−
α

4

)

∥

∥

∥

∥

∥

un+1
h −un

h

τ

∥

∥

∥

∥

∥

2

−1,h

+τ

(

A−
1

4α

)

‖∇(un+1
h −un

h)‖
2≤E(un

h ,un−1
h ),

where the numerical energy function E(un+1
h ,un

h) is defined in (4.1). The result follows on

setting α= 1
4A .

We have the following well-known stability for the initialization scheme.

Theorem 4.2. The initialization scheme (2.4) has the energy-decay property

E(u1
h)+τ

∥

∥

∥

∥

∥

u1
h−u0

h

τ

∥

∥

∥

∥

∥

2

−1,h

≤E(u0
h). (4.8)

Since
∥

∥

∥

u1
h−u0

h
τ

∥

∥

∥

−1,h
=
∥

∥∇w1
h

∥

∥, this is equivalent to

E(u1
h)+τ

∥

∥

∥∇w1
h

∥

∥

∥

2
≤E(u0

h). (4.9)

Remark 4.1. A requirement for the artificial coefficient, A≥ 1
16 , ensures a modified energy

stability at a theoretical level. On the other hand, this requirement may be more associ-
ated with theoretical justification than practical necessity. Several numerical experiments
have shown that the non-increasing energy property is still observed even with a value
of A<

1
16 ; see the detailed numerical simulation results reported in Section 6.

Remark 4.2. Due to the forms of the energy (1.1) and the dynamical equation (1.2), the
lower bound requirement for A is ε-independent: A ≥ 1

16 . Meanwhile, if the tempo-
ral scale is multiplied by an ε−1 factor, so that the energy functional becomes E(u) =
ε−1( 1

4‖u‖4
L4 −

1
2‖u‖2)+ ε

2‖∇u‖2, as analyzed in [19, 33], a careful calculation indicates an

ε-dependent requirement: A≥ 1
16 ε−2, to ensure a modified energy stability in a similar

form as (4.2).
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Remark 4.3. The Crank-Nicolson scheme (2.5), reported in [11, 15, 25], has also been
proven to be uniquely solvable and unconditionally energy stable, combined with ei-
ther the finite difference or mixed finite element spatial approximation. In particular, it
is observed that no additional regularization term is needed for this scheme, in contrast
with the proposed BDF scheme (2.2). The reason for this difference comes from the subtle
fact that the explicit treatment for the concave term in (2.5), namely 3

2 un− 1
2 un−1 (a second

order approximation to u at tn+1/2), leads to the following stability estimate:

(−
3

2
un+

1

2
un−1,un+1−un)≥ −

1

2
(‖un+1‖2−‖un‖2)

+
1

4
(‖un+1−un‖2−‖un−un−1‖2). (4.10)

In contrast, equality (4.6) (for the BDF scheme) contains a negative term in the energy esti-
mate: − 1

2‖un
h−un−1

h ‖2. Consequently, an artificial term associated with Douglas-Dupont
regularization is needed to balance this negative part, in order to establish the energy
stability at a theoretical level.

Remark 4.4. We have performed a numerical test to justify the expected improvement in
numerical efficiency of the proposed BDF scheme (2.2), with respect to the energy stable
Crank-Nicolson scheme (2.5), as argued in Remark 2.1. An exact numerical solution is
set over a domain Ω=(0,1)2, with the physical parameter ε=0.05, the spatial resolution
h = 1

512 , and time step size τ = 0.01. The preconditioned steepest descent (PSD) algo-
rithm, proposed and analyzed in a more recent article [18], is applied to implement both
numerical schemes, with the same initial guess in the nonlinear iterations.

This numerical comparison is performed on an Apple iMac computer, with an In-
tel Core i6, 2.9 GHz processor, and 32 GB of 1600 MHz DDR3 memory. Our numerical
experiments show that, it took 11 iterations for the BDF scheme (2.2) to obtain an error
tolerance of 10−12 (in the maximum norm), with 0.4042 seconds CPU time, while the
Crank-Nicolson version (2.5) requires 14 iterations to obtain the same level of error toler-
ance, with 0.5263 seconds CPU time. As a result, we conclude that, since the nonlinear
term in (2.2) has a stronger convexity than the one in (2.5), a 20 to 25 percent improvement
of the computational efficiency is generally expected.

In addition to the proposed BDF scheme in this article and the Crank-Nicolson ver-
sion [11, 14, 15, 25], there are a few related works with second-order in time approxima-
tions for the CH equation that we like to mention. A combination of an implicit midpoint
rule and spatial discretization by the Fourier-Galerkin spectral method was introduced
in a recent article [5]; the stability estimates proved may be viewed as conditional, there
is a stability condition for τ in terms of the model parameters, although this restriction
does not depend on h.

A semi-discrete second-order scheme for a family of Cahn-Hilliard-type equations
was proposed in [38], with applications to diffuse interface tumor growth models. An
unconditional energy stability was proved, by taking advantage of a (quadratic) cut-off
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of the double-well energy and artificial stabilization terms. And also, their scheme turns
out to be linear, which is another advantage. However, a convergence analysis is not
available in their work.

A careful examination of several second-order in time numerical schemes for the CH
equation is presented in [24]. An alternate variable is used in the numerical design, de-
noted as a second order approximation to v=u2−1. A linearized, second order accurate
scheme is derived as the outcome of this idea, and an unconditional energy stability is
established in a modified version. However, such an energy stability is applied to a pair
of numerical variables (u,v), and an H1 stability for the original physical variable u has
not been justified. As a result, the convergence analysis is not available for this numerical
approach. Similar methodology has been reported in the invariant energy quadratization
(IEQ) approach [26, 39–41].

By combining all these observations, we note many advantages of the proposed BDF
scheme and the Crank-Nicolson version over the second order temporal approximations
reported in the existing literature, in particular in terms of the unconditional energy sta-
bility, unconditionally unique solvability and convergence analysis.

Remark 4.5. As an alternative to the nonlinear approaches, there has been a recent work
of a linear BDF-type scheme in [30]:

3un+1−4un+un−1

2τ
=∆
(

2(un)3−(un−1)3−(2un−un−1)−ε2∆un+1
)

−Aτ(−∆)α(un+1−un), with α=0 or 1. (4.11)

The most important difference with our proposed BDF scheme (2.2) is the purely ex-
plicit treatment for the nonlinear part of chemical potential, which in turn avoids a
nonlinear solver. However, with this explicit update for the nonlinear term, a theoret-
ical justification of the energy stability for (4.11) requires a coefficient A of the order
A =O(ε−36|logε|16) for α = 0, and A =O(ε−26|logε|12) for α = 1. Also see the related
analysis for the first order linear scheme [31]. In comparison, our proposed algorithm
(2.2) only requires A≥ 1

16 for the energy stability.

Since the nonlinear part of the chemical potential (un+1)3 appears as a convex term
in (2.2), either the nonlinear multigrid or Newton’s iteration could be efficiently applied,
and extensive numerical experiments have indicated a comparable computation cost as
that for (4.11).

As a result of the stability estimate (4.2) for the numerical energy function (4.1), we
are able to obtain an uniform-in-time H1 estimate of the numerical solution:

Theorem 4.3. Suppose that the initial data are sufficiently regular that

E(u0
h)+

1

3

∥

∥u0
h

∥

∥

2
≤

C0

3
,
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for some C0 that is independent of h, and A≥ 1
16 . Define κA :=1− 1

16A and w̃n+1
h :=∆−1

h

( un+1
h −un

h
τ

)

,
for n≥ 0. Then, there are constants C1,C2,C3 > 0, which depend on C0, Ω, and ε, but are inde-
pendent of h and τ, such that for any m≥1

‖um
h ‖

2
H1 ≤ C1, (4.12)

τ ·κA

m

∑
n=1

∥

∥

∥

∥

∥

un
h−un−1

h

τ

∥

∥

∥

∥

∥

2

−1,h

=τ ·κA

m

∑
n=1

‖∇w̃n
h‖

2≤ C2, (4.13)

τ ·κA

m

∑
n=1

‖∇wn
h‖

2≤ C3. (4.14)

Proof. Since, for any u∈L4(Ω), 1
4 ‖u‖4

L4− 1
2 ‖u‖2≥ 1

2 ‖u‖2−|Ω|, it follows that

1

2
‖un

h‖
2+

ε2

2
‖∇un

h‖
2≤E(un

h)+|Ω|,

for any n ≥ 0. From the stability of the initialization step (4.8) and using the triangle
inequality, we have

E(u1
h,u0

h)= E(u1
h)+

1

4τ
‖u1

h−u0
h‖

2
−1,h+

1

2
‖u1

h−u0
h‖

2

≤ E(u1
h)+

1

τ
‖u1

h−u0
h‖

2
−1,h+

1

2
‖u1

h−u0
h‖

2

≤ E(u0
h)+

∥

∥

∥
u1

h

∥

∥

∥

2
+
∥

∥u0
h

∥

∥

2

≤ E(u0
h)+2E(u1

h)+2|Ω|+
∥

∥u0
h

∥

∥

2

≤ 3E(u0
h)+

∥

∥u0
h

∥

∥

2
+2|Ω|≤C0+2|Ω|. (4.15)

By definition,

∥

∥

∥

∥

un+1
h −un

h
τ

∥

∥

∥

∥

−1,h

=
∥

∥

∥∇w̃n+1
h

∥

∥

∥, and the energy stability reads

E(un+1
h ,un

h)+τ ·κA

∥

∥

∥∇w̃n+1
h

∥

∥

∥

2
≤E(un

h ,un−1
h ), n≥1.

Therefore, for any m≥2,

E(um
h )≤E(um

h ,um−1
h )+τ ·κA

m

∑
n=2

‖∇w̃n
h‖

2≤E(u1
h,u0

h)≤C0+2|Ω|. (4.16)

It follows that, for any m≥0

‖um
h ‖

2
H1 ≤

2(C0+3|Ω|)

ε2
=: C1,
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assuming that ε≤1. Next, using the stability (4.9) and the fact that ∇w̃1
h=∇w1

h, we have,
for any m≥1,

τ ·κA

m

∑
n=1

∥

∥

∥

∥

∥

un
h−un−1

h

τ

∥

∥

∥

∥

∥

2

−1,h

=τ ·κA

m

∑
n=1

‖∇w̃n
h‖

2≤
4C0

3
+2|Ω|=: C2.

Finally, for some time varying mass parameter αn ∈R,

wn
h =αn+

{

3
2 w̃n

h−
1
2 w̃n−1

h , n≥2,

w̃1
h, n=1,

which implies that
∥

∥∇wn
h

∥

∥≤2
∥

∥∇w̃n
h

∥

∥. We can conclude that

τ ·κA

m

∑
n=1

‖∇wn
h‖

2≤4C2=: C3,

and the proof is complete.

5 Convergence analysis and error estimate

We denote the exact solution as un =u(x,tn) at t= tn . As usual, a regularity assumption
has to be made in the error analysis, and we denote all the upper bounds for the exact
solution as C0. The following estimates hold for Ritz projection [6]:

‖Rh ϕ‖1,p≤C‖ϕ‖1,p, ∀1< p≤∞, (5.1)

‖ϕ−Rh ϕ‖p+h‖ϕ−Rh ϕ‖1,p≤Chq+1‖ϕ‖q+1,p, ∀1< p≤∞. (5.2)

Suppose that u∈L∞(0,T;W1,p). Combining (5.1) and the Sobolev imbedding theorem:
W1,p(Ω) →֒ L∞(Ω), for 2< p≤∞ (d= 2), 3< p≤∞ (d= 3), there are constants C4,C5 > 0
such that

‖un‖∞ ≤C‖un‖1,p≤C4,

‖Rhun‖∞ ≤C‖Rhun‖1,p≤C‖un‖1,p≤C5.

The following discrete Gronwall inequality is needed in the error analysis.

Lemma 5.1. For a fixed T = τ ·N, where N is a positive integer, and τ > 0, assume that
{an}N

n=1,{bn}N
n=1 and {cn}N−1

n=1 are all non-negative sequences, with τ∑
N−1
n=1 cn≤C6, where C6>0

is independent of τ and N, but possibly dependent on T. If for all τ > 0, there is some C7 > 0,
which is independent of τ and N, such that

aN+τ
N

∑
n=1

bn ≤C7+τ
N−1

∑
n=1

ancn,
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then

aN+τ
N

∑
n=1

bn ≤ (C7+τa0c0)exp

(

τ
N−1

∑
n=1

cn

)

≤ (C7+τa0c0)exp(C6).

Before proceeding into the convergence analysis, we introduce a new norm. Let Ω be

an arbitrary bounded domain and p= [u,v]T ∈
[

L2(Ω)
]2

. We define the G-norm to be a
weighted inner product

‖p‖2
G
=(p,Gp), G=

[

1
2 −1

−1 5
2

]

.

Since G is symmetric positive definite, the norm is well-defined. Moreover,

G=

[

1
2 −1

−1 5
2

]

=

[

1
2 −1

−1 2

]

+

[

0 0

0 1
2

]

=:G1+G2.

By the positive semi-definiteness of G1, we immediately have

‖p‖2
G
=(p,(G1+G2)p)≥ (p,G2p)=

1

2
‖v‖2. (5.3)

In addition, for any vi ∈L2(Ω),i=0,1,2, the following equality is valid:

(

3

2
v2−2v1+

1

2
v0,v2

)

=
1

2
(‖p2‖

2
G
−‖p1‖

2
G
)+

‖v2−2v1+v0‖2

4
, (5.4)

with p1=[v0,v1]
T,p2=[v1,v2]T.

By (u,w) we denote the exact solution to the original CH equation (1.2). We say that
the solution pair of regularity of class C if and only if

u∈ W3,∞(0,T;L2)∩W1,∞(0,T;Hq+1), (5.5)

w∈ L2(0,T;Hq+1). (5.6)

The following theorem is the main result of this section.

Theorem 5.1. Suppose that the exact solution pair (u,w) is in the regularity class C, for the fixed
final time T>0. Let un=u(tn) and un

h be the solution at time t=tn to the fully discrete numerical
scheme (2.2), for 1≤n≤N, with N ·τ=T. Then we have the error estimate

‖un−un
h‖+

(

τε2
n

∑
k=1

‖∆h(Rhuk−uk
h)‖

2

)1/2

≤C8(h
q+1+τ2), (5.7)

for some constant C8>0 that is independent of τ and h.
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Proof. First we define error functions: en
u := un−un

h , en
w := wn−wn

h . Then the following
equations for the error functions hold: for any vh,ψh∈Sh,

(

δτen+1
u ,vh

)

+(∇en+1
w ,∇vh)=−

(

Rn+1
1 ,vh

)

, (5.8)

ε2(∇en+1
u ,∇ψh)−(en+1

w ,ψh)+τ(∇Tn+1
2 ,∇ψh)=(Tn+1

1 −Tn+1
3 ,ψh)

+(Rn+1
2 −Rn+1

3 ,ψh), (5.9)

where

δτvn+1 :=

{

3vn+1−4vn+vn−1

2τ , n≥1,

v1−v0

τ , n=0,
(5.10)

Rn+1
1 := un+1

t −δτun+1, (5.11)

Rn+1
2 := un+1−

{

2un−un−1, n≥1,

u0, n=0,
(5.12)

Rn+1
3 :=

{

Aτ∆(un+1−un), n≥1,

0, n=0,
(5.13)

Tn+1
1 :=

{

2en
u−en−1

u , n≥1,

e0
u, n=0,

(5.14)

Tn+1
2 :=

{

A(en+1
u −en

u), n≥1,

0, n=0,
(5.15)

Tn+1
3 := (un+1)3−(un+1

h )3. (5.16)

By the Cauchy-Schwarz inequality, we have the following estimate

‖Rn+1
1 ‖2≤

{

32τ3
∫ tn+1

tn−1
‖∂tttu‖2dt, n≥1,

τ
3

∫ t1

0 ‖∂ttu‖
2 dt, n=0

≤

{

32τ3
∫ tn+1

tn−1
‖∂tttu‖2dt, n≥1,

τ2

3 ‖u‖W2,∞(0,T;L2) , n=0

≤

{

32τ3
∫ tn+1

tn−1
‖∂tttu‖2dt, n≥1,

C9τ2, n=0.
(5.17)

An analogous estimate is available for the second remainder term: for the case n≥1, we
have

‖Rn+1
2 ‖2≤32τ3

∫ tn+1

tn−1

‖∂ttu‖
2dt.
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We will not directly need an estimate of
∥

∥R1
2

∥

∥, but we will address the control of R1
2

shortly. For the third remainder term, we obtain the estimate

‖Rn+1
3 ‖2≤

{

A2τ3
∫ tn+1

tn
‖∂t∆u‖2dt, n≥1,

0, n=0.

Suppose vh ∈Sh is arbitrary. Using the definitions of Ritz projection and the discrete
Laplacian, ∆h, we have

(∇en+1
w ,∇vh)=(∇wn+1−∇Rhwn+1,∇vh)+(∇Rhwn+1−∇wn+1

h ,∇vh)

=(∇(Rhwn+1−wn+1
h ),∇vh)

=(Rhwn+1−wn+1
h ,−∆hvh)

=(wn+1−wn+1
h +Rhwn+1−wn+1,−∆hvh)

=(en+1
w ,−∆hvh)−(wn+1−Rhwn+1,−∆hvh).

Combining the last equation with the error equations (5.9) and (5.8), and taking ψh =
−∆hvh, yields

(

δτen+1
u ,vh

)

+τ(∇Tn+1
2 ,∇(−∆h)vh)+ε2(∇en+1

u ,∇(−∆h)vh)

=−(Rn+1
1 ,vh)+(Tn+1

1 −Tn+1
3 ,−∆hvh)

+(Rn+1
2 −Rn+1

3 ,−∆hvh)+(wn+1−Rhwn+1,−∆hvh).

Denote ρn+1:=un+1−Rhun+1 and σn+1
h :=Rhun+1−un+1

h , then we get en+1
u =ρn+1+σn+1

h .
By the definition (2.3) of Ritz projection, it holds that (∇ρn+1,∇χ) = 0, for all χ ∈ Sh.
Therefore, with vh =σn+1

h , the error equation can be written as follows:
(

δτσn+1
h ,σn+1

h

)

+ǫ2‖∆hσn+1
h ‖2+τ(∇Tn+1

2,h ,∇(−∆h)σ
n+1
h )

= −(Rn+1
1 ,σn+1

h )−(Tn+1
3 ,−∆hσn+1

h )+(Tn+1
1,a ,−∆hσn+1

h )

+(Tn+1
1,h ,−∆hσn+1

h )+(Rn+1
2 ,−∆hσn+1

h )−(Rn+1
3 ,−∆hσn+1

h )

+(wn+1−Rhwn+1,−∆hσn+1
h )−(δτρn+1,σn+1

h )

= : J1+ J2+ J3+ J4+ J5+ J6+ J7+ J8=: J, (5.18)

where

Tn+1
1,a :=

{

2ρn−ρn−1, n≥1,

ρ0, n=0,
(5.19)

Tn+1
1,h :=

{

2σn
h −σn−1

h , n≥1,

σ0
h ≡0, n=0,

(5.20)

Tn+1
2,h :=

{

A(σn+1
h −σn

h ), n≥1,

0, n=0.
(5.21)
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Observe that σ0
h ≡0, because of our choice of initial data.

Now look at the left-hand side of (5.18). From (5.4), we have

(

δτσn+1
h ,σn+1

h

)

=

{

1
2τ (‖pn+1‖2

G
−‖pn‖2

G
)+ 1

4τ‖σn+1
h −2σn

h +σn−1
h ‖2, n≥1,

1
2τ (‖σ1

h‖
2−‖σ0

h‖
2)+ 1

2τ‖σ1
h −σ0

h‖
2, n=0,

(5.22)

where pk+1=[σk
h ,σk+1

h ]T. Using the definition of ∆h, it follows that

τ(∇Tn+1
2,h ,∇(−∆h)σ

n+1
h )=Aτ(−∆hσn+1

h +∆hσn
h ,−∆hσn+1

h )

≥
1

2
Aτ(‖∆hσn+1

h ‖2−‖∆hσn
h ‖

2).

As a result, the left-hand side of (5.18) is bounded from below: for n≥1,

1

2τ

(

‖pn+1‖2
G
−‖pn‖2

G

)

+
1

2
Aτ
(

‖∆hσn+1
h ‖2−‖∆hσn

h ‖
2
)

+ǫ2‖∆hσn+1
h ‖2≤ J,

and, for n=0,
1

2τ
‖σ1

h‖
2+ǫ2‖∆hσ1

h‖
2≤ J.

Now we study the seven terms on the right-hand side of (5.18).

J1= (−Rn+1
1 ,σn+1

h )≤‖Rn+1
1 ‖·‖σn+1

h ‖

≤

{

32τ3
∫ tn+1

tn−1
‖∂tttu‖2dt+ 1

4‖σn+1
h ‖2, n≥1,

2C9τ3+ 1
8τ‖σ1

h‖
2, n=0.

For J8, we have

J8=−
(

δτρn+1,σn+1
h

)

≤
∥

∥

∥
δτρn+1

∥

∥

∥

2
+

1

4
‖σn+1

h ‖2.

In addition, (5.2) indicates that

∥

∥

∥δτρn+1
∥

∥

∥

2
=
∥

∥

∥(I−Rh)δτun+1
∥

∥

∥

2

≤







9Ch2(q+1)

2τ

∫ tn+1

tn−1
‖∂tu‖2

Hq+1dt, n≥1,

Ch2(q+1)

τ

∫ t1

0 ‖∂tu‖
2
Hq+1 dt, n=0,

which, in turn, shows that, for all 0≤n≤N−1,

J8≤







9Ch2(q+1)

2τ

∫ tn+1

tn−1
‖∂tu‖2

Hq+1dt+ 1
4‖σn+1

h ‖2, n≥1,

Ch2(q+1)

τ

∫ t1

0 ‖∂tu‖2
Hq+1dt+ 1

4‖σ1
h‖

2, n=0.
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For J5, we estimate the n=0 and n≥1 cases separately. For n≥1,

J5 = (Rn+1
2 ,−∆hσn+1

h )≤
4

ε2
32τ3

∫ tn+1

tn−1

‖∂ttu‖
2dt+

ε2

16
‖∆hσn+1

h ‖2. (5.23)

To facilitate the special analysis for the initialization step, we need a more careful ap-
proach. For n=0, we proceed as follows: using the definition of the Ritz projection, the
discrete Laplacian, and the stability (3.1),

J5 = (R1
2,−∆hσ1

h )=(ρ1−ρ0,−∆hσ1
h )+(Rh(u

1−u0),−∆hσ1
h )

= (ρ1−ρ0,−∆hσ1
h )−(∆h(Rh(u

1−u0)),σ1
h )

≤
∥

∥

∥
ρ1−ρ0

∥

∥

∥
·
∥

∥

∥
∆hσ1

h

∥

∥

∥
+
∥

∥

∥
∆h(Rh(u

1−u0))
∥

∥

∥
·
∥

∥

∥
σ1

h

∥

∥

∥

≤
∥

∥

∥ρ1−ρ0
∥

∥

∥·
∥

∥

∥∆hσ1
h

∥

∥

∥+
∥

∥

∥∆(u1−u0)
∥

∥

∥·
∥

∥

∥σ1
h

∥

∥

∥

≤
2

ε2

Ch2(q+1)

τ

∫ t1

0
‖∂tu‖

2
Hq+1dt+

ε2

8
‖∆hσ1

h‖
2

+2C10τ3+
1

8τ
‖σ1

h‖
2. (5.24)

Here we have made use of the estimate

∥

∥

∥
∆(u1−u0)

∥

∥

∥

2
≤τ

∫ t1

0
‖∂t∆u‖2 dt≤τ2‖u‖W1,∞(0,T;H2)≤C10τ2.

For J6, we have

J6≤ ‖Rn+1
3 ‖·‖∆hσn+1

h ‖2

≤

{

4
ε2 A2τ3

∫ tn+1

tn
‖∂t∆u‖2dt+ ε2

16‖∆hσn+1
h ‖2, n≥1,

0, n=0.
(5.25)

For J7 and J3, we have, using the standard finite element approximations,

J7 =((I−Rh)w
n+1,−∆hσn+1

h )≤
2Ch2(q+1)

ε2
‖wn+1‖2

Hq+1+
ε2

8
‖∆hσn+1

h ‖2, (5.26)

and

J3= (Tn+1
1,a ,−∆hσn+1

h )

≤
2

ε2
‖Tn+1

1,a ‖2+
ε2

8
‖∆hσn+1

h ‖2

≤
ε2

8
‖∆hσn+1

h ‖2+
4Ch2(q+1)

ε2

{

4‖un‖2
Hq+1+‖un−1‖2

Hq+1 , n≥1,

‖u0‖2
Hq+1 , n=0.

(5.27)
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For J4,

J4= (Tn+1
1,h ,−∆hσn+1

h )

≤
2

ε2
‖Tn+1

1,h ‖2+
ε2

8
‖∆hσn+1

h ‖2

≤
ε2

8
‖∆hσn+1

h ‖2+
4

ε2

{

4‖σn
h ‖

2+‖σn−1
h ‖2, n≥1,

0, n=0.
(5.28)

The analysis of the nonlinear term is given by (5.32) in Proposition 5.1:

J2≤
2C11h2(q+1)

ε2
‖un+1‖2

Hq+1+
54

ε6
C4

12‖σn+1
h ‖2+

ε2

4
‖∆hσn+1

h ‖2.

Substituting these terms into (5.18), and multiplying by 2τ on both sides, we have, for
n≥1,

‖pn+1‖2
G−‖pn‖2

G+Aτ2(‖∆hσn+1
h ‖2−‖∆hσn

h ‖
2)+

τε2

2
‖∆hσn+1

h ‖2

≤

(

1+
108

ε6
C4

12

)

τ‖σn+1
h ‖2+

32τ

ε2
‖σn

h ‖
2+

8τ

ε2
‖σn−1

h ‖2

+9Ch2(q+1)
∫ tn+1

tn−1

‖∂tu‖
2
Hq+1dt+

4Ch2(q+1)

ε2
τ‖wn+1‖2

Hq+1

+
4

ε2
C11τh2(q+1)‖un+1‖2

Hq+1+
32C

ε2
τh2(q+1)‖un‖2

Hq+1

+
8C

ε2
τh2(q+1)‖un−1‖2

Hq+1+64τ4
∫ tn+1

tn−1

‖∂tttu‖
2dt

+
8

ε2
τ4

(

32
∫ tn+1

tn−1

‖∂ttu‖
2dt+A2

∫ tn+1

tn

‖∂t∆u‖2dt

)

. (5.29)

For n=0, we have a similar form:

‖σ1
h‖

2+2τε2‖∆hσ1
h‖

2

≤

(

τ

2
+

1

2
+

108τ

ε6
C4

12

)

‖σ1
h‖

2+
3τε2

2
‖∆hσ1

h‖
2+2Ch2(q+1)

∫ t1

0
‖∂tu‖

2
Hq+1 dt

+
4Ch2(q+1)

ε2
τ‖w1‖2

Hq+1+
4

ε2
C11τh2(q+1)‖u1‖2

Hq+1

+
8C

ε2
τh2(q+1)‖u0‖2

Hq+1+
4

ε2
Ch2(q+1)

∫ t1

0
‖∂tu‖

2
Hq+1dt+4τ4C9+4τ4C10. (5.30)

With the help of Proposition 5.2, we get

‖σn+1
h ‖+

(

τε2
n+1

∑
k=1

‖∆hσk
h‖

2

)1/2

≤CT,ε(h
q+1+τ2), (5.31)
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with CT,ε independent of τ and h. In addition, it is easy to see from (5.2) that

‖ρk‖≤Chq+1‖uk‖Hq+1 , 1≤ k≤n+1.

Together with the triangle inequality ‖en+1
u ‖≤ ‖ρn+1‖+‖σn+1

h ‖, we finally arrive at the
conclusion of the theorem.

The following two propositions are used in the convergence analysis; their proofs are
given in the Appendix.

Proposition 5.1. For the nonlinear error inner product term J2, as given by (5.18), we
have

J2 ≤
2C11h2(q+1)

ε2
‖un+1‖2

Hq+1+
54

ε6
C4

12‖σn+1
h ‖2+

ε2

4
‖∆hσn+1

h ‖2. (5.32)

Proposition 5.2. By the error evolution inequalities (5.29), (5.30), the following conver-
gence estimate is valid:

‖σn+1
h ‖+

(

τε2
n+1

∑
k=1

‖∆hσk
h‖

2

)1/2

≤CT,ε(h
q+1+τ2), (5.33)

with CT,ε independent of τ and h, under a technical assumption

0<τ≤
1

4

(

1+
108

ε6
C4

12

)−1

:=τ1. (5.34)

Remark 5.1. We note that the ℓ∞(0,T;L2)∩ℓ2(0,T;H2
h) convergence (5.7) is unconditional

in the following sense: there is no restriction for τ in terms of h to guarantee convergence.
In fact, the energy stability estimate (given by Theorem 4.1) plays an essential role in the
derivation of this unconditional convergence analysis. Specifically, the uniform-in-time
H1 estimate (4.12), a direct consequence of (4.2), leads to an ℓ∞(0,T;L6) bound of the nu-
merical solution. As a result, the nonlinear coefficients are bounded in the estimate (A.2),
and we only need to handle the L6 and discrete H2 norms of the projection error func-
tion. This could be accomplished via repeated applications of 3-D Sobolev inequalities.
Finally, an unconditional convergence estimate becomes available.

Remark 5.2. It is observed that, the time step requirement (5.34), which states that τ≤Cε6,
may be very restrictive. On the other hand, this requirement is only associated with a
theoretical justification of the ℓ∞(0,T;L2) convergence analysis, and such a restriction is
not needed in the practical computations. In fact, if we pursue an ℓ∞(0,T;H−1) error
estimate, no time step requirement is needed, due to the following inequality:

((Rhun+1)3−(un+1
h )3,σn+1

h )

=((Rhun+1)2+Rhun+1un+1
h +(un+1

h )2,(σn+1
h )2)≥0, (5.35)
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so that the nonlinear error inner product becomes trivial; also see the related discussion
in [19]. In addition, for the two-dimensional CH flow, this restriction could be reduced
to τ≤Cε2+δ, even for the ℓ∞(0,T;L2) error estimate, since the H1 bound of the numerical
solution ensures an embedding into the Lq norm, for any q>2.

In more detail, due to an implicit treatment of the nonlinear term in the proposed
numerical scheme, the time step requirement (5.34) is needed to pass through the discrete
Gronwall inequality. Instead, for the epitaxial thin film growth without slope selection,
such a restriction could be reduced to τ≤Cε2, due to the crucial fact that the higher order
derivative of the nonlinear term has an automatic L∞ bound; see the detailed convergence
analyses in recent articles [10, 29].

6 Numerical results

6.1 Accuracy check and convergence test

In this subsection we apply the fully discrete second order BDF scheme (2.2) to perform a
numerical accuracy check. In a two-dimensional computational domain Ω=(0,1)2, and
the exact solution for the phase variable is given by

ue(x,y,t)=cos(πx)cos(πy)e−t. (6.1)

In turn, ue satisfies the original PDE (1.2), with an artificial, time-dependent forcing term
added on the right hand side:

∂tue =∆(u3
e −ue−ε2∆ue)+g, (x,y,t)∈Ω×(0,T]. (6.2)

The final time is taken to be T=1, and the physical parameter is given by ε2=0.05.

The nonlinear equations are solved by Newton’s method. In the iteration process, the
initial guess is chosen to be a second order extrapolation of the previous two steps, i.e.,

un+1,0
h = 2un

h−un−1
h , which usually leads to one iteration stage less than the one with an

initial guess as un+1,0
h = un

h . Therefore, this methodology reduces the computation cost.

The stopping criterion for the nonlinear iteration is given by ‖u
n+1,(m)
h −u

n+1,(m−1)
h ‖< δ3,

with δ=h.

We compute solutions with grid sizes N = 32,64,128,256,512, with the L2 errors re-
ported at the final time T = 1. The time step is determined by a few different linear
refinement paths: τ = 0.25h, τ= 0.5h, and τ = h, respectively, where h is the spatial grid
size. Fig. 1 shows the L2 error between the numerical and exact solutions. A clear sec-
ond order accuracy, for both the temporal and spatial approximations, is observed in the
convergence test. We also note that, the convergence constant associated with τ= 0.25h
is almost the same as the one associated with τ = 0.5h. This interesting phenomenon
is associated with the following subtle fact: the temporal truncation error is associated
with the fourth order temporal derivative, while the spatial truncation error is associated
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Figure 1: L2 numerical errors at T=1.0 plotted versus N for the second order BDF scheme (2.2). The surface

diffusion parameter is taken to be ε2=0.05 and the time step size is given by τ=0.25h, τ=0.5h, τ=h, respectively.
The data lie roughly on curves CN−2, for appropriate choices of C, confirming the full second-order accuracy
of the scheme.

with the sixth order spatial derivatives. Meanwhile, for the exact test function (6.1), the
fourth order temporal derivative is in a much smaller numerical scale than the sixth or-
der spatial derivatives. In turn, the overall numerical error is dominated by the spatial
ones; with a decreasing values of time step size, the temporal errors will become more
and more negligible. Therefore, the difference of convergence constants could be clearly
observed between τ=h and τ=0.5h, while the overall convergence constants for τ=0.5h
and τ=0.25h are almost the same in the figure.

In addition, to test whether a larger value of A may lead to a bigger numerical error,
we perform the numerical accuracy check with a sequence of A: A = 0, 1

16 , 1, 2 and 4,
and report the corresponding numerical errors, defined as the difference between the
numerical solutions and the exact test function (6.1), in Fig. 2. It is observed that, a bigger
value of A may give less accurate solutions when A≥1; while for A<1, numerical errors
are at a comparable level. In particular, the right part of Fig. 2 shows the L2 errors for
different choices of A for N=64.

Another interesting phenomenon to be observed in Fig. 2 is that, the numerical
scheme with A = 1 yields the smallest numerical error, instead of the one with A = 0.
Such a performance comes from the following subtle fact: the artificial Douglas-Dupont
regularization term, −Aτ∆2(uk+1−uk), leads to an O(τ2) local truncation error. In turn,
its combination with the truncation error associated with the 2nd order BDF stencil ap-
proximation gives the overall temporal truncation error. More interestingly, these two
truncation errors have the maximum cancellation effect with A = 1; that is the reason
why the L2 numerical error associated with A=1 is even better than the one with A=0.
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Figure 2: Left: L2 numerical errors at T= 1.0 plotted versus N, with the same physical parameter as Fig. 1,
the time step size τ=0.5h, and different values of A. Right: L2 error versus A, with N=64.

On the other hand, with an increasing value of A, such a cancellation effect vanishes; that
is the reason why the L2 numerical error with A= 2 and A= 4 become larger than the
ones with A≤1.

6.2 Numerical simulation of coarsening process

A numerical simulation result of a physics example is presented in this subsection. In
particular, the long time evolution scaling law for certain physical quantities, such as
the energy, has caused a great deal of scientific interests, with the assumption that the
interface width is in a much smaller scale than the domain size, i.e., ε ≪ min

{

Lx,Ly

}

,

with Ω=(0,Lx)×(0,Ly). A formal analysis has indicated a lower decay bound as t−1/3

for the energy dissipation law, with the lower bound typically observed for the averaged
values of the energy quantity. A numerical prediction of this scaling law turns out to be
a challenging work, due to the fact that both short and long-time accuracy and stability
are required in the large time scale simulation, in particular for small values of ε.

We compare the numerical simulation result with the predicted coarsening rate, using
the proposed second order BDF scheme (2.2) for the Cahn-Hilliard flow (1.2). The surface
diffusion coefficient parameter is taken to be ε2=0.005, and the computational domain is
taken to be Ω=(0,12.8)2. For the spatial discretization, we use a resolution of N = 256,
which is sufficient to resolve the small structures for such a value of ε.

For the temporal step size, we use increasing values of τ in the time evolution. In
more detail, τ=0.004 on the time interval [0,100], τ=0.04 on the time interval [100,2000].
Whenever a new time step size is applied, we initiate the two-step numerical scheme
by taking φ−1 = φ0, with the initial data φ0 given by the final time output of the last
time period. Both the energy stability and second order numerical accuracy have been



Y. Yan et al. / Commun. Comput. Phys., 23 (2018), pp. 572-602 595

Figure 3: (Color online.) Snapshots of the computed phase variable φ at the indicated times for the parameters

L=12.8, ε2 =0.005.

theoretically assured by our arguments in Theorems 4.1, 5.1, respectively. Fig. 3 presents
time snapshots of the phase variable φ with ε2 = 0.005. A significant coarsening process
is clearly observed in the system. At early times many small structures are present. At
a later time, t= 1000, a single interface structure emerges, and further coarsening is not
possible.

The long time characteristics of the energy decay rate is of interest to material sci-
entists. To facilitate the energy scaling analysis, we add a constant 1

4 |Ω| to the energy
introduced by (1.1):

Ê(u)=
∫

Ω

(

1

4
u4−

1

2
u2+

1

4
+

ε2

2
|∇u|2

)

dx=E(u)+
1

4
|Ω|. (6.3)

As a result, this energy is always non-negative. Fig. 4 presents the log-log plot for the
energy versus time, with the given physical parameter ε2 = 0.005 and the artificial coef-
ficient A= 1. The detailed scaling “exponent” is obtained using least squares fits of the
computed data up to time t=100. A clear observation of the aetbe scaling law can be made,
with ae =3.0018, be =−0.3463. In other words, an almost perfect t−1/3 energy dissipation
law is confirmed by our numerical simulation.
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Figure 4: Log-log plot of the temporal evolution the energy E for ε2 = 0.005. The energy decreases like t−1/3

until saturation. The blue line represents the energy plot obtained by the simulation, while the red line is
obtained by least squares approximations to the energy data. The least squares fit is only taken for the linear
part of the calculated data, only up to about time t=100. The fitted line has the form aetbe , with ae =3.0018,
be =−0.3463.

Moreover, we preform a numerical test of this coarsening process with a bigger time
step size and smaller value of A. Our numerical experiments show that, the physical
energy still keeps decreasing even with a bigger time step size and A<

1
16 . In particu-

lar, Fig. 5 gives the energy dissipation curve for A= 0 with larger time steps chosen at
different coarsening process: τ = 0.04 on the time interval [0,100], τ = 0.08 on the time
interval [100,2000]. In this log-log plot, the slope of the least square fit line is −0.3222,
which indicates a nice consistency with the t−1/3 dissipation law.

These numerical simulation results have also provided many more insights on the
proposed numerical scheme (2.2). Although a theoretical justification of the energy sta-
bility is only available with A ≥ 1

16 , this numerical experiment has shown that such a
constraint may only be a theoretical issue. Indeed, the numerical energy stability is often
observed for any A≥0.

We make another observation that, although Figs. 4 and 5 give almost exactly the
same coarsening rate for the energy over time period [0,100], the numerical result dis-
played in Fig. 4 seems to be more accurate, since the log-log oscillation over this time
period is weaker than the one displayed in Fig. 5. On the other hand, such a coarsening
rate is only valid for short and medium time scales; after t=100 (for a surface diffusion
ε2=0.005), the t−1/3 coarsening rate may not be accurate any more, and the solutions are
expected to converge to a steady state. Over the time period [100, 1000], we believe that
the numerical results in Fig. 4 are more accurate, due to the fact that the smaller time step
sizes have been used to create this figure.
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Figure 5: Log-log plot of the temporal evolution the energy E, with the same physical set-up as Fig. 4. The
artificial parameter is set as A=0, and larger time steps are taken.

7 Concluding remarks

In this paper we have presented a second order BDF-type scheme for the Cahn-Hilliard
equation (1.2), with a mixed finite element approximation in space. A unique solvabil-
ity and unconditional energy stability (with a mild requirement A≥ 1

16 ) turns out to be
available. Moreover, such an energy estimate leads to a full order O(τ2+h2) conver-
gence analysis in the ℓ∞(0,T;L2)∩ℓ2(0,T;H2

h) norm. In addition, the numerical exper-
iment shows that the proposed second order BDF scheme is able to produce accurate
long time numerical results with a reasonable computational cost. In particular, the en-
ergy dissipation rate given by the numerical simulation indicates an almost perfect match
with the theoretical t−1/3 prediction, which is remarkable.
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A Proof of Proposition 5.1

Proof. We observe that



598 Y. Yan et al. / Commun. Comput. Phys., 23 (2018), pp. 572-602

(un+1)3−(un+1
h )3=(un+1)3−(Rhun+1)3+(Rhun+1)3−(un+1

h )3.

Therefore, we could separate the estimate of J2 into two parts:

‖(un+1)3−(Rhun+1)3‖2= ‖
(

(un+1)2+un+1Rhun+1+(Rhun+1)2
)

ρn+1‖2

≤ 8(‖un+1‖4
∞+‖Rhun+1‖4

∞)‖ρn+1‖2

≤C11h2(q+1)‖un+1‖2
Hq+1 , (A.1)

for some C11>0 that is independent of h and τ. The last estimate implies that

((un+1)3−(Rhun+1)3,−∆hσn+1
h )≤

2C11h2(q+1)

ε2
‖un+1‖2

Hq+1+
ε2

8
‖∆hσn+1

h ‖2.

Define u0 := 1
|Ω| (u0,1). Observe that (Rhun−u0,1)=(un

h−u0,1)=0. In particular, (σn
h ,1)=0,

for all n≥0. We assume, as is standard, that |u0|≤1. Now, for the second part, we apply
Hölder’s inequality and use the embedding H1(Ω) →֒ L6(Ω), and we get

((Rhun+1)3−(un+1
h )3,−∆hσn+1

h )≤‖(Rhun+1)3−(un+1
h )3‖·‖∆hσn+1

h ‖

≤‖(Rhun+1)2+Rhun+1un+1
h +(un+1

h )2‖L3 ·‖σn+1
h ‖L6 ·‖∆hσn+1

h ‖

≤2
(

‖Rhun+1‖2
L6 +‖un+1

h ‖2
L6

)

·‖σn+1
h ‖L6 ·‖∆hσn+1

h ‖

≤4
(

‖Rhun+1−u0‖
2
L6+‖un+1

h −u0‖
2
L6 +2|Ω|

1
3 |u0|

2
)

·‖σn+1
h ‖L6 ·‖∆hσn+1

h ‖

≤4C
(

‖∇Rhun+1‖2+‖∇un+1
h ‖2+2|Ω|

1
3

)

·‖∇σn+1
h ‖·‖∆hσn+1

h ‖

≤4C
(

‖∇un+1‖2+‖∇un+1
h ‖2+2|Ω|

1
3

)

·‖∇σn+1
h ‖·‖∆hσn+1

h ‖

≤4C(C+C1+1)·C‖∇σn+1
h ‖·‖∆hσn+1

h ‖

≤C12‖σn+1
h ‖

1
2 ·‖∆hσn+1

h ‖
3
2 , (A.2)

for some C12>0 that is independent of τ and h. Next, we apply Young’s inequality,

ab≤
ap

p
+

bq

q
,

with p=4 and q=4/3. By carefully balancing the coefficients, we obtain

((Rhun+1)3−(uh)
3,−∆hσn+1

h )≤
54

ε6
C4

12‖σn+1
h ‖2+

ε2

8
‖∆hσn+1

h ‖2.

This in turn yields inequality (5.32). The proof of Proposition 5.1 is complete.
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B Proof of Proposition 5.2

Proof. For n=0, inequality (5.30) indicates that

1

2
‖σ1

h‖
2+

τε2

2
‖∆hσ1

h‖
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τ

2
+

108τ

ε6
C4

12

)

‖σ1
h‖

2+2Ch2(q+1)
∫ t1

0
‖∂tu‖

2
Hq+1 dt

+
4Ch2(q+1)

ε2
τ‖w1‖2

Hq+1+
4

ε2
C11τh2(q+1)‖u1‖2

Hq+1

+
8C

ε2
τh2(q+1)‖u0‖2

Hq+1+
4

ε2
Ch2(q+1)

∫ t1

0
‖∂tu‖

2
Hq+1dt

+4τ4C9+4τ4C10. (B.1)

Equivalently,

3

2
‖σ1

h‖
2+

τε2

2
‖∆hσ1

h‖
2≤ τ

(

3

2
+

324

ε6
C4

12
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0
‖∂tu‖

2
Hq+1 dt
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ε2
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12

ε2
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0
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Now, observe that
∥

∥p1
∥

∥

2

G
= 3

2

∥

∥σ1
h

∥

∥

2
and

∥

∥pn+1
∥

∥

2

G
≥ 1

2

∥

∥

∥
σn+1

h

∥

∥

∥
. Summing (5.29) from k=2 to

k=n+1, adding (B.2), and keeping in mind (5.3) (the relationship between G-norm and
L2-norm), we arrive at the following estimate for n≥1:
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Under the time step requirement (5.34), which implies that

1

4
‖σn+1

h ‖2+
ε2τ

4

n

∑
k=0

‖∆hσk+1
h ‖2≤

(

3

2
+
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ε6
C4

12+
40

ε2

)

τ
n

∑
k=1

‖σk
h‖

2

+ C13(ε)(h
2(q+1)+τ4).

Now, we can apply the discrete Gronwall inequality (5.1) and get

‖σn+1
h ‖2+ε2τ

n+1

∑
k=1

‖∆hσk
h‖

2≤C15(T,ε)(h2(q+1)+τ4).

This completes the proof of Proposition 5.2.
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