
Journal of Computational and Applied Mathematics 280 (2015) 347–366

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

An energy-conserving second order numerical scheme for
nonlinear hyperbolic equation with an exponential nonlinear
term
Lingdi Wanga, Wenbin Chena, Cheng Wangb,⇤
a School of Mathematical Sciences, Fudan University, China
b Mathematics Department, The University of Massachusetts, North Dartmouth, MA, USA

a r t i c l e i n f o

Article history:
Received 25 September 2013
Received in revised form 11 August 2014

MSC:
35L70
65M06
65M12

Keywords:
Nonlinear hyperbolic equation
Energy stability
Positivity
Linear iteration
Convergence analysis

a b s t r a c t

We present a second order accurate numerical scheme for a nonlinear hyperbolic equation
with an exponential nonlinear term. The solution to such an equation is proven to have
a conservative nonlinear energy. Due to the special nature of the nonlinear term, the
positivity is proven to be preserved under a periodic boundary condition for the solution.
For the numerical scheme, a highly nonlinear fractional term is involved, for the theoretical
justification of the energy stability. We propose a linear iteration algorithm to solve this
nonlinear numerical scheme. A theoretical analysis shows a contraction mapping property
of such a linear iteration under a trivial constraint for the time step. We also provide a
detailed convergence analysis for the second order scheme, in the `1(0, T ; `1) norm. Such
an error estimate in the maximum norm can be obtained by performing a higher order
consistency analysis using asymptotic expansions for the numerical solution. As a result,
instead of the standard comparison between the exact and numerical solutions, an error
estimate between the numerical solution and the constructed approximate solution yields
an O(1t3 + h4) convergence in `1(0, T ; `2) norm, which leads to the necessary `1 error
estimate using the inverse inequality, under a standard constraint 1t  Ch. A numerical
accuracy check is given and some numerical simulation results are also presented.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider the following nonlinear hyperbolic equation in the domain⌦ = [0, L]2, with a periodic boundary condition,
⇢
@2t u �1u = ↵e�u, in⌦T ,
u |t=0 = C0, @tu |t=0 = 0. (1.1)

Here ⌦T is defined as ⌦ ⇥ (0, T ],↵ = ↵(x, y) is a periodic non-negative function with finite upper bound ↵̄ and is
differentiable with respect to space up to the rth order, and C0 is a non-negative constant. An integral equation arises from
Johnson–Mehl–Avrami–Kolmogorov theory [1–3] and Cahn’s time conemethod [4], which characterizes the nucleation and
growth phenomenon of nuclei. In the framework of the time cone method, u stands for the number of nuclei and satisfies
an integral equation in the time–space region. Recently, Liu and Yamamoto successfully proved that the integral equation
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could be reduced to a hyperbolic system [5], which is exactly the same as (1.1) in one dimensional case. In addition, similar
nonlinear hyperbolic systems can be derived in high dimensional cases. The righthand term ↵e�u describes the nucleation
rate. The introduction of the nonlinear term e�u is an available assumption based on the physical fact that nucleation rate
decreases with the increase of the number of nuclei.

Similar to the linear problem, the nonlinear equation (1.1) also admits an energy law. Indeed, we can define the nonlinear
energy as follows,

E(t) =
Z

⌦

✓
1
2
|@tu|2 + 1

2
|ru|2 + ↵e�u

◆
dx

= 1
2

⇣
k@tuk2

L2(⌦)
+ kruk2

L2(⌦)

⌘
+

Z

⌦

↵e�udx. (1.2)

By taking inner product with @tu for the equation of (1.1), it is straightforward to observe that

E 0(t) ⌘ 0, i.e. E(t) = E(0), 8t > 0, (1.3)

which shows a conservation for the energy defined as (1.2).
Although the energy E(t) is always conserved for all time, we should point out that the existence and uniqueness of the

solution of (1.1) are not straightforward. Similar energy conservation also holds if the exponential nonlinear term e�u is
replaced by a polynomial one |u|p, while the solution may not exist globally in time and blow up once p exceeds a critical
value [6]. Up to now, the existence of a global (in time) solution of (1.1) with a general boundary condition and initial
value has been an open problem. In this paper we prove there exists a global in time, unique positive solution of (1.1) with
periodic boundary conditions and special initial values. The positivity property is important to prove the well-posedness
of the problem, and a new metric of the solution space is introduced to establish the global (in time) existence. On the
other hand, the positivity property is also required by the physical problem, since the solution corresponds to the expected
number of nuclei, which is expected to be positive. The technique used here cannot be directly applied to the equation with
Dirichlet boundary condition, since the solution may not always be positive and the well-posedness is not clear in two or
three dimensional cases. Meanwhile, the local existence can be established in enough small time interval, and the numerical
scheme also works well for the equation with Dirichlet boundary condition.

There are many numerical schemes to solve nonlinear hyperbolic equations, for example, see [7–9]. However, very few
have dealt with an exponential nonlinear term. Due to the special nature of the nonlinear term appearing in (1.1), the
positivity property is proven to be preserved under a periodic boundary condition. Based on the positivity, we present an
energy-conserving second order numerical scheme. For this scheme, a highly nonlinear fractional term is involved, for the
theoretical justification of the energy stability. For the implementation part, we propose a linear iteration method to solve
this nonlinear numerical scheme. A theoretical analysis will be given to prove a contraction mapping property of such a
linear iteration under a trivial constraint for the time step.

We also provide a detailed convergence analysis for the second order scheme, in the `1(0, T ; `1) norm. Such an error
estimate in the maximum norm can be obtained by performing a higher order consistency analysis using asymptotic
expansions for the numerical solution. As a result, instead of the standard comparison between the exact and numerical
solutions, an error estimate between the numerical solution and the constructed approximate solution yields anO(1t3+h4)
convergence in `1(0, T ; `2) norm, which leads to the necessary `1 error estimate using the inverse inequality, under a
standard constraint1t  Ch, where C stands for some given constant.

The rest of the paper is organized as follows. In Section 2, we discuss the well-posedness and positivity of the solution to
problem (1.1). In Section 3, the second order scheme is proposed and the energy-conserving property is proven. In Section 4,
to facilitate the numerical implementation, we modify the numerical scheme based on the positivity of the solution and
discuss some details in the implementation process. Next we give the corresponding convergence analysis in Section 5.
Subsequently, several numerical examples are carried out in Section 6. Finally, some conclusions are made in Section 7.

2. Well-posedness and positivity

In this section, we prove the well-posedness and positivity of the solution to (1.1). The main tool we use here is Banach’s
fixed point theorem [10]; also see the related discussions in [11].

Let C(0, T ; C#(⌦)) denote the space of all functions which are continuous with respect to both time and space. Herein
andwhat after, the subscript #means that the functions in the corresponding space are periodicwith respect to space, i.e. for
any function f , there exists its periodic extension defined in R2, still denoted as f , which satisfies

f (x + mL, y + nL) = f (x, y), (2.1)

with any integers m and n. We denote X as the subspace of C(0, T ; C#(⌦)), which contains all non-negative functions.
Besides, we introduce the following metric. For any functions f , g 2 C(0, T ; C#(⌦)), define

�(f , g) = max
t2[0,T ]

�
e�st kf (x, y, t) � g(x, y, t)kC(⌦)

�
, (2.2)
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as the metric on C(0, T ; C#(⌦)), where s is a given weight. Here the norm k·kC(⌦) is defined as

kf (x, y, t)kC(⌦) = max
(x,y)2⌦

|f (x, y, t)| . (2.3)

The following lemma defines an operator A : X ! X through a linear problem.

Lemma 1. Assume that the non-negative function ↵ 2 C#(⌦). Consider the following linear hyperbolic equation with a periodic
boundary condition,

⇢
@2t w �1w = ↵e�u, in⌦T ,
w |t=0 = C0, @tw |t=0 = 0, (2.4)

with u 2 X. Then there exists a unique solution w 2 X. Hence, we could define an operator A : X ! X as A[u] = w.

Proof. For simplicity, we denote f = ↵e�u. Thanks to the periodic boundary condition, we could transform the initial–
boundary problem (2.4) to the corresponding Cauchy problem by periodic extension. According to [12,13], themild solution
to the Cauchy problem in two dimensional case is given by

w(x, y, t) = C0 + 1
2⇡

Z t

0
d⌧

ZZ

⇥t�⌧

f (x + ⇠ , y + ⌘, ⌧ )
p

(t � ⌧ )2 � ⇠ 2 � ⌘2
d⇠d⌘, (2.5)

where⇥t = {(⇠ , ⌘) 2 R2 : ⇠ 2 + ⌘2 < t2}. By the periodicity of ↵ and u, we have

f (x + mL, y + nL, t) = f (x, y, t), 8(x, y) 2 R2 andm, n 2 Z.

Thus,

w(x + mL, y + nL, t) = w(x, y, t), 8(x, y) 2 R2 and m, n 2 Z,

i.e.w is also a periodic function. Since ↵ 2 C#(⌦) and u 2 C(0, T ; C#(⌦)), it is obvious that f 2 C(0, T ; C#(⌦)). Meanwhile,
by observing that

1
2⇡

ZZ

⇥t

1
p
t2 � ⇠ 2 � ⌘2

d⇠d⌘ = t, (2.6)

we conclude that w is continuous with respect to space.
For the temporal continuity, let t" = t + ", we have

2⇡ |w(x, y, t") � w(x, y, t)| =
�����

Z t"

0
d⌧

ZZ

⇥⌧

f (x + ⇠ , y + ⌘, t" � ⌧ )
p
⌧ 2 � ⇠ 2 � ⌘2

d⇠d⌘

�
Z t

0
d⌧

ZZ

⇥⌧

f (x + ⇠ , y + ⌘, t � ⌧ )
p
⌧ 2 � ⇠ 2 � ⌘2

d⇠d⌘

�����


�����

Z t"

0
d⌧

ZZ

⇥⌧

f (x + ⇠ , y + ⌘, t" � ⌧ ) � f (x + ⇠ , y + ⌘, t � ⌧ )
p
⌧ 2 � ⇠ 2 � ⌘2

d⇠d⌘

�����

+
�����

Z t"�t

0
d⌧

ZZ

⇥⌧

f (x + ⇠ , y + ⌘, t � ⌧ )
p
⌧ 2 � ⇠ 2 � ⌘2

d⇠d⌘

����� . (2.7)

Due to the temporal continuity of f and (2.6), we see that both parts of (2.7) tend to zero as " ! 0, which yields the
continuity of w with respect to time.

Finally, the positivity of w comes directly from (2.5), since both C0 and f are non-negative. Above all, we get w|⌦T =
A[u] 2 X . ⇤

Now we turn to the original nonlinear problem (1.1) and give the following result.

Theorem 1. For problem (1.1), there exists a unique solution u in X.

Proof. By Lemma 1, the original problem (1.1) is equivalent to the operator equation A[u] = u. Thanks to Banach’s fixed
point theorem, we only need to show that operator A is a strict contraction in X with metric defined as (2.2). For any u and
v in X , due to the positivity, we have

��↵e�u � ↵e�v
��
C(⌦)

 C k↵kC(⌦) ku � vkC(⌦) , (2.8)
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Fig. 2.1. Minimum of the numerical solution to (1.1) with Dirichlet boundary condition.

for some constant C � 0. On the other hand, by combining with (2.6), we have

|A[u] � A[v]| = 1
2⇡

�����

Z t

0
d⌧

ZZ

⇥t�⌧

(↵e�u � ↵e�v)(x + ⇠ , y + ⌘, ⌧ )
p

(t � ⌧ )2 � ⇠ 2 � ⌘2
d⇠d⌘

�����


Z t

0
(t � ⌧ )

��↵e�u � ↵e�v
��
C(⌦)

d⌧ . (2.9)

Substituting (2.8) into (2.9), we obtain

|A[u] � A[v]|  C k↵kC(⌦)

Z t

0
(t � ⌧ ) ku � vkC(⌦) d⌧

= C k↵kC(⌦)

Z t

0
e�s⌧ ku � vkC(⌦) (t � ⌧ )es⌧d⌧

 C k↵kC(⌦) �(u, v)

Z t

0
(t � ⌧ )es⌧d⌧

 C k↵kC(⌦) �(u, v)
est

s2
.

Hence by combining with (2.2) and (2.3), we get

�(A[u], A[v])  C k↵kC(⌦)

s2
�(u, v). (2.10)

Thus, by taking the weight s satisfying Ck↵kC(⌦)

s2 < 1, A becomes a strict contraction. Therefore, the existence, uniqueness
and positivity to the solution to (1.1) come directly from Banach’s fixed point theorem. ⇤

Remark 1. In the above proof, thanks to the periodic boundary condition, we transform the original initial–boundary
problem to the corresponding Cauchy problem by periodic extension and we can use the mild solution formula (2.5) to
prove the existence, uniqueness and positivity. However, this method fails if the Dirichlet boundary condition is applied.
Specially, the positivity is no longer preserved with the Dirichlet boundary condition. To illustrate this, let us consider the
problem (1.1) with a homogeneous Dirichlet boundary condition. Set ↵ = 1 and C0 = 0. Fig. 2.1 gives the minimum of the
numerical solution. It shows that the numerical solution to problem (1.1) with a homogeneous Dirichlet boundary condition
is not always positive. Corresponding analysis would be presented in our future work.

Corollary 1. The solution to problem (1.1) belongs to X
T

C(0, T ; Cr(⌦)), where C(0, T ; Cr(⌦)) denotes the space containing
all the functions that are continuous with respect to time and differentiable with respect to space up to the rth order, based on
that non-negative function ↵ 2 Cr

#(⌦).
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Proof. With mild solution formula (2.5), we have

u = A[u] = C0 + 1
2⇡

Z t

0
d⌧

ZZ

⇥t�⌧

↵e�u(x + ⇠ , y + ⌘, ⌧ )
p

(t � ⌧ )2 � ⇠ 2 � ⌘2
d⇠d⌘. (2.11)

Taking derivative with respect to x on both sides, we get

@xu = 1
2⇡

Z t

0
d⌧

ZZ

⇥t�⌧

[(@x↵)e�u � ↵e�u@xu](x + ⇠ , y + ⌘, ⌧ )
p

(t � ⌧ )2 � ⇠ 2 � ⌘2
. (2.12)

On the other hand, we consider the following equation:

w = 1
2⇡

Z t

0
d⌧

ZZ

⇥t�⌧

[(@x↵)e�u � ↵e�uw](x + ⇠ , y + ⌘, ⌧ )
p

(t � ⌧ )2 � ⇠ 2 � ⌘2
.= B[w]. (2.13)

With a similar process as in Theorem 1, we could prove that (2.13) admits a solution w 2 C(0, T ; C(⌦)). Indeed, it is easy
to check that operator Bmaps from C(0, T ; C(⌦)) to C(0, T ; C(⌦)). Moreover, for any w, v 2 C(0, T ; C(⌦)), we have

|B[w] � B[v]| =
�����
1
2⇡

Z t

0
d⌧

ZZ

⇥t�⌧

↵e�u(w � v)(x + ⇠ , y + ⌘, ⌧ )
p

(t � ⌧ )2 � ⇠ 2 � ⌘2

�����

 Ck↵kC(⌦)

Z t

0
(t � ⌧ )kw � vkC(⌦)

= C k↵kC(⌦)

Z t

0
e�s⌧ kw � vkC(⌦) (t � ⌧ )es⌧d⌧

 C k↵kC(⌦) �(w, v)

Z t

0
(t � ⌧ )es⌧d⌧

 C k↵kC(⌦) �(w, v)
est

s2
,

which yields

�(B[w], B[v])  C k↵kC(⌦)

s2
�(w, v). (2.14)

By taking s such that Ck↵kC(⌦)

s2 < 1, B is a strict contraction. Thus the existence and uniqueness of solution w to (2.13) come
directly from Banach’s fixed point theorem. Hence we conclude that @xu = w belongs to C(0, T ; C(⌦)). With the same
process, we could prove that all the derivatives of u with respect to space, up to the rth order, belong to C(0, T ; C(⌦)).
Hence the solution to (1.1) belongs to C(0, T ; Cr(⌦)). ⇤

Corollary 2. The solution to problem (1.1) belongs to X
T

Cr(⌦T ), where Cr(⌦T ) = {@ i1t @ i2x @ i2y u 2 C(⌦T ), |(i1, i2, i3)|  r}
denotes the space containing all the functions that are differentiable up to the rth order, based on that non-negative function
↵ 2 Cr

#(⌦).
Proof. In polar coordinate, (2.11) can be rewritten as

u = C0 + 1
2⇡

Z t

0
d⌧

Z t�⌧

0
dr

Z 2⇡

0
d✓

(↵e�u)(x + r cos ✓ , y + r sin ✓ , ⌧ )r
p

(t � ⌧ )2 � r2
. (2.15)

Let r = (t � ⌧ ) sin ,  2 [0, ⇡2 ], then we get

u = C0 + 1
2⇡

Z t

0
d⌧

Z ⇡
2

0
d 

Z 2⇡

0
d✓

�
(t � ⌧ ) sin (↵e�u)(x0, y0, ⌧ )

 
, (2.16)

where x0 = x + (t � ⌧ ) sin cos ✓ , y0 = y + (t � ⌧ ) sin sin ✓ . Taking derivative with respect to time on both sides of
(2.16), we arrive at

@tu = 1
2⇡

Z t

0
d⌧

Z ⇡
2

0
d 

Z 2⇡

0
d✓

�
sin (↵e�u)(x0, y0, ⌧ ) + (t � ⌧ ) sin @t(↵e�u)(x0, y0, ⌧ )

 
. (2.17)

From the definitions of x0 and y0, we have

@t(↵e�u)(x0, y0, ⌧ ) = (s1@x↵(x0, y0) + s2@y↵(x0, y0))e�u(x0, y0, ⌧ )

�↵(x0, y0)e�u(x0, y0, ⌧ )(s1@xu(x0, y0, ⌧ ) + s2@yu(x0, y0, ⌧ )), (2.18)
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where s1 = sin cos ✓ and s2 = sin sin ✓ . Therefore,

|@tu|  C(t2 + 1)kukC(0,T ;C1(⌦)).

By Corollary 1, we conclude that u 2 C1(⌦T ). Note that the derivative of u with respect to time is converted into the
derivatives of ↵ and uwith respect to spacewith the chain rule of the derivative, so similarly we could show that u 2 Cr(⌦T )
if u 2 C(0, T ; Cr(⌦)) and ↵ 2 Cr(⌦), which is the result proven by Corollary 1. ⇤

Remark 2. As shown by the above proof, due to the special form ofmild solution formula (2.5), the derivative of the solution
u respect to time could be converted into the derivatives of ↵ and uwith respect to space. Thus ↵, although independent on
time, determines the regularity of uwith respect to both time and space. On the other hand, from the above proof, we could
conclude that kukCr (⌦)  Cest and kukCr (⌦T )  Cp(T )esT where p(T ) is a polynomial bound of T . Moreover, even if another
source term k(x, y, t) is added on the righthand side of (1.1), there still exists a unique solution to the modified problem as
long as k(x, y, t) satisfies certain regularity. Specially, with the same process as in Theorem 1, Corollaries 1 and 2, we could
prove that the solution belongs to X

T
Cr(⌦T ) if k(x, y, t) belongs to X

T
C(0, T ; Cr(⌦)).

3. The second order scheme with energy conservation

For the 2Ddomain⌦ = [0, L]2,we take the uniformnumerical grid (xi, yj)with1x = 1y = h = L
N . Denote�h = D2

x+D2
y

as the standard second order centered difference operator. A second order scheme is formulated at a pointwise level as

 n+1 �  n

1t
� 1

2
�h

�
un+1 + un� = ↵

�e�un+1 + e�un

un+1 � un , (3.1)

un+1 � un

1t
=  n+1 +  n

2
, (3.2)

with u0 = C0, 
0 = 0.

With a substitution  n+1 = 2(un+1�un)
1t �  n, scheme (3.1) can be reformulated as a closed equation for un+1:

2un+1

1t2
� 1

2
�hun+1 = ↵

�e�un+1 + e�un

un+1 � un + 1
2
�hun +

2un
1t + 2 n

1t
. (3.3)

This equation is nonlinear. However, amore detailed derivation shows that it can be efficiently solved using a linear iteration.

3.1. Energy conservation

For any grid functions f and g evaluated at the uniform numerical mesh, we define the discrete L2 inner product and L2
norm in the following standard way:

hf , gi = h2
N�1X

i,j=0

fi,jgi,j, kf k2 = phf , f i. (3.4)

And the following summation by parts formula could be derived in a straightforward way:

hf ,�hgi = �hrhf , rhgi , (3.5)

where

krhf k2
2 = kDxf k2

2 + kDyf k2
2

with

kDxf k2
2 = h2

N�1X

i,j=0

(fi+1,j � fi,j)2/h2, kDyf k2
2 = h2

N�1X

i,j=0

(fi,j+1 � fi,j)2/h2.

In addition, we also define the discrete L1 norm as follows:

kf k1 = max
0i,jN�1

|fi,j|. (3.6)

Define the discrete energy as

En
h = 1

2

�� n
��2
2 + 1

2

��rhun
��2
2 + En

nl,h, with En
nl,h = h2

N�1X

i,j=0

(↵e�un)i,j. (3.7)
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Taking inner product of (3.1) with un+1 � un = 1
21t

�
 n+1 +  n

�
yields

1
2
⌦�
 n+1 �  n� ,

�
 n+1 +  n�↵ � 1

2
⌦
�h

�
un+1 + un� ,

�
un+1 � un�↵ �

*

↵
�e�un+1 + e�un

un+1 � un ,
�
un+1 � un�

+

= 0. (3.8)

The first term becomes

1
2
⌦�
 n+1 �  n� ,

�
 n+1 +  n�↵ = 1

2
h2

N�1X

i,j=0

�
( n+1)2 � ( n)2

�
i,j

= 1
2

⇣�� n+1
��2
2 � �� n

��2
2

⌘
. (3.9)

The second term can be analyzed as

� 1
2
⌦
�h

�
un+1 + un� ,

�
un+1 � un�↵ = 1

2
⌦rh

�
un+1 + un� , rh

�
un+1 � un�↵

= 1
2

⇣��rhun+1
��2
2 � ��rhun

��2
2

⌘
, (3.10)

in which the summation by parts was applied in the first step. The analysis for the nonlinear term is also straightforward:

�
*

↵
�e�un+1 + e�un

un+1 � un ,
�
un+1 � un�

+

= h2
N�1X

i,j=0

↵i,j

⇣
e�un+1 + e�un

⌘

i,j

= En+1
nl,h � En

nl,h. (3.11)

As a result, a combination of (3.9)–(3.11) shows that

En+1
h � En

h = 0, (3.12)

which indicates that the scheme is energy conserving.

4. An alternate nonlinear energy; an alternate second order scheme

As stated above, with scheme (3.1)–(3.2), we must solve un+1 from (3.3) at every step. On the other hand, solving such a
nonlinear equation is not a trivial work. To facilitate the numerical implementation, we introduce the following functional
F(u):

F(u) =
⇢
e�u, if u � 0,
1 � u, if u < 0. (4.1)

Note that F(u) is equivalent to the nonlinear term e�u when u � 0, and it becomes a linear functional for u < 0. Clearly, it
is a C1 functional, since the left and right directional derivatives equal to each other at u = 0. In addition, we observe that

F 0(u) = �1, if u < 0, F 0(u) = �e�u, if u � 0. (4.2)

With this functional, we propose a modified second order scheme as follows,

 n+1 �  n

1t
� 1

2
�h

�
un+1 + un� = ↵

�F(un+1) + F(un)

un+1 � un , (4.3)

un+1 � un

1t
=  n+1 +  n

2
. (4.4)

Thanks to the positivity of the exact solution, there would not be any trouble in the consistency of this scheme.
In turn, we introduce a modified discrete energy as follows:

Ẽn
h = 1

2

�� n
��2
2 + 1

2

��rhun
��2
2 + Ẽn

nl,h, with Ẽn
nl,h = h2

N�1X

i,j=0

�
↵F(un)

�
i,j . (4.5)

With the similar work as in Section 3.1, we could show that themodified discrete energy (4.5) is conserved for this alternate
scheme, i.e.

Ẽn+1
h = Ẽn

h . (4.6)
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4.1. Numerical implementation; linear iteration

Similar to (3.3), the alternate scheme (4.3) can be rewritten as

2un+1

1t2
� 1

2
�hun+1 = ↵

�F(un+1) + F(un)

un+1 � un + g
�
un, n� , (4.7)

with g
�
un, n� = 1

2
�hun +

2un
1t + 2 n

1t
.

To overcome the difficulty associated with the implicit treatment of the nonlinear term, the following linear iteration algo-
rithm is proposed to solve the above scheme:

2un+1,(m+1)

1t2
� 1

2
�hun+1,(m+1) = ↵

�F(un+1,(m)) + F(un)

un+1,(m) � un + g
�
un, n� , (4.8)

in which un+1,(m) corresponds to the solution at the m-th iteration. The following theorem shows that such an iteration
algorithm is convergent.

Theorem 2. The linear iteration (4.8) is a contraction mapping under a trivial requirement 1t <
q

2
↵̄
.

To prove the theorem, a preliminary estimate is needed.

Lemma 2. For any a, x 2 R with x 6= a, we have

��h0(x)
��  1, where h(x) = F(x) � F(a)

x � a
. (4.9)

Proof. A direct calculation yields

h0(x) = F 0(x) · (x � a) � (F(x) � f (a))
(x � a)2

= F 0(x) � F(x)�F(a)
x�a

x � a
. (4.10)

An application of intermediate value theorem gives

F(x) � F(a)
x � a

= F 0(⇠), so that h0(x) = F 0(x) � F 0(⇠)
x � a

, (4.11)

with ⇠ between x and a. Meanwhile, with the construction of functional F , it is easy to check that
��F 0(x) � F 0(⇠)

��  |x � ⇠ |. (4.12)

Going back to (4.11), we have

��h0(x)
�� =

��F 0(x) � F 0(⇠)
��

|x � a|  |x � ⇠ |
|x � a|  1, (4.13)

in which the inequality |x � ⇠ |  |x � a| was used. ⇤

Now we proceed into the proof of Theorem 2.

Proof. We denote the iteration error at every step as

e(m) = un+1,(m) � un+1, (4.14)

with un+1,(m) generated by the iteration scheme (4.8). Subtracting (4.7) from (4.8) yields
✓

2
1t2

� 1
2
�h

◆
e(m+1) = ↵

✓�F(un+1,(m)) + F(un)

un+1,(m) � un � �F(un+1) + F(un)

un+1 � un

◆
.

Taking inner product with e(m+1) leads to

2
1t2

��e(m+1)
��2
2 + 1

2

��rhe(m+1)
��2
2 =

⌧
↵

✓�F(un+1,(m)) + F(un)

un+1,(m) � un � �F(un+1) + F(un)

un+1 � un

◆
, e(m+1)

�
. (4.15)
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The nonlinear iteration error term can be bounded with the help of Lemma 2 by setting a = un:
����
�F(un+1,(m)) + F(un)

un+1,(m) � un � �F(un+1) + F(un)

un+1 � un

���� = ��h(un+1,(m)) � h(un+1)
��

= ��h0(⇠)(un+1,(m) � un+1)
��

 ��h0(⇠)
�� · |e(m)|  |e(m)|, (4.16)

at the pointwise level, with ⇠ between un+1,(m) and un+1. This in turn indicates that
⌧
↵

✓�F(un+1,(m)) + F(un)

un+1,(m) � un � �F(un+1) + F(un)

un+1 � un

◆
, e(m+1)

�
 ↵̄

��⌦e(m), e(m+1)↵��

 ↵̄

2

⇣��e(m)
��2
2 + ��e(m+1)

��2
2

⌘
. (4.17)

Combine with (4.15), we get
✓

2
1t2

� ↵̄

2

◆��e(m+1)
��2
2 + 1

2

��rhe(m+1)
��2
2  ↵̄

2

��e(m)
��2
2 . (4.18)

As a direct consequence, if we have

2
1t2

� ↵̄

2
>
↵̄

2
, i.e.1t <

r
2
↵̄

. (4.19)

the contraction mapping property could be assured. ⇤

Remark 3. A linear iteration can be applied to solve a nonlinear equation. A geometric convergence in certain norm could
be established if the nonlinear derivative is bounded by the linear operator in a functional way. The related work for an
epitaxial thin film growth model can be found in a recent article [14].

4.2. The convergence result in maximum norm for a fixed final time

For the alternate scheme (4.3)–(4.4), we have the following convergence result at the pointwise level.

Theorem 3. Suppose ue, e = @tue as the exact solution to the original PDE (1.1). Denote (u, ) as the numerical solution given
by the proposed second order scheme (4.3)–(4.4). Then, provided1t and h are sufficiently small with the linear refinement path
constraint 1t  Ch, with C any fixed constant, we have

�� e(tn) �  n
��1 + ��rh

�
ue(tn) � un���1  C

�
1t2 + h2� , (4.20)

with the constant C only dependent on the exact solution and the final time T , independent on the numerical grid sizes1t and h.

The proof of this theorem is not trivial, so we will give it in the next section.

5. Proof for Theorem 3

In this section we provide a detailed convergence analysis for the alternate second order scheme (4.3)–(4.4). To obtain
the desired convergence in k·k1 norm, we perform a higher order consistency analysis, up to O(1t4 + h4), in addition to
the leading O(1t2 + h2) consistency for the exact solution, through a construction of approximate solution which satisfies
the numerical schemewith higher order accuracy. In turn, an O(1t3 +h4) convergence in `1(0, T ; `2) norm can be derived,
between the numerical solution and the constructed approximate solution, and this convergence result is applied to derive
an error estimate in k·k1 norm, using an inverse inequality under a mild linear refinement constraint,1t  Ch.

5.1. Higher order consistency analysis; asymptotic expansion of the numerical solution

By standard consistency analysis, the exact solution (ue, e) solves the discrete equation

 k+1
e �  k

e

1t
� 1

2
�h

�
uk
e + uk+1

e
� = �↵ F(uk+1

e ) � F(uk
e)

uk+1
e � uk

e
+ ⌧ k

1 , (5.1)

uk+1
e � uk

e

1t
= 1

2
�
 k+1

e +  k
e
� + ⌧ k

2 , (5.2)

with
���
�
⌧ k
1
�
i,j

��� ,
���
�
⌧ k
2
�
i,j

���  C
�
1t2 + h2� , (5.3)
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for some C � 0 that depends only on T , ⌦ and the exact solution. Superscript k denotes that the variable is taken at time
tk = k1t . We note that the consistency of the nonlinear term appearing in (5.1) comes from the following fact,

uk+1
e , uk

e > 0, so that F(uk+1
e ) = e�uk+1

e , F(uk
e) = e�uke . (5.4)

By Taylor expansion, we have,

e�⇠ � e�⌘

⇠ � ⌘
= �e

�⇠�⌘
2

✓
1 + 1

24
(⇠ � ⌘)2 + O

�
(⇠ � ⌘)4

�◆
.

Thus

� F(uk+1
e ) � F(uk

e)

uk+1
e � uk

e
= e� uk+1

e +uke
2 + O

�
1t2

� = e�u
k+ 1

2
e + O(1t2). (5.5)

Meanwhile, it is observed that the leading local truncation error in (5.1)–(5.3) will not be enough to recover a full
O(1t2 + h2) error estimate in the k · k1 norm. To remedy this, we need to construct supplementary fields so that the
proposed numerical scheme (4.3)–(4.4) satisfies a higher O(1t4 + h4) consistency.

For simplicity of presentation, given the exact solution (ue, e), we denote U = ue and introduce the following function

 (x, y, t) := @tU(x, y, t) � 1t2

12
@3t U(x, y, t). (5.6)

It is clear that  is an O(1t2) approximation to the exact solution  e = @tue. A detailed Taylor expansion shows that

Uk+1 � Uk

1t
= 1

2
�
 k+1 +  k� + O(1t4). (5.7)

Wenote that anO(1t2) correction term is added in the construction (5.6) for so that a higher order consistency is obtained
in (4.4). Such a correction term is based on an asymptotic expansion of the numerical scheme and the resulting higher order
consistency is crucial in the stability and convergence analysis.

Lemma 3. For numerical scheme (4.3)–(4.4), there exists an approximate solution (Û,  ̂) such that an O(1t4 + h4) consistency
is satisfied. The approximate solution could be expressed as

Û = U + h2Uh,1 +1t2U1t,1,  ̂ =  + h2 h,1 +1t2 1t,1, (5.8)

where  is the O(1t2) approximation to @tue as defined in (5.6), and Uh,1,U1t,1, h,1, 1t,1 are constructed fields depending
solely on the exact solution (ue, e).

Proof. The construction of the approximate solution consists of two steps. In the spatial discretization, the following
truncation error analysis can be obtained by using a straightforward Taylor expansion for the exact solution:

@2t U ��hU = ↵e�U + h2g(0) + O(h4). (5.9)

Here the spatially discrete function g(0) is smooth enough in the sense that its discrete derivatives are bounded. Also note
that there is no O(h3) truncation error term, due to the fact that the centered difference used in the spatial discretization
gives local truncation errors with only even order terms, O(h2),O(h4), etc.

The spatial correction function
�
Uh,1, h,1

�
is given by solving the following equation:

@2t Uh,1 ��hUh,1 = �↵e�UUh,1 � g(0), (5.10)

 h,1 = @tUh,1 � 1t2

12
@3t Uh,1. (5.11)

Existence of a solution to the above linear system of ODEs is a standard exercise. Note that the solution depends only on the
exact solution U . In addition, the divided differences of

�
Uh,1, h,1

�
of various orders are bounded.

Now, we define

U⇤
h := U + h2Uh,1,  ⇤

h :=  + h2 h,1. (5.12)

A combination of (5.6), (5.9), (5.10) and (5.11) leads to the fourth order local truncation error for
�
U⇤
h , ⇤

h
�
:

@2t U
⇤
h ��hU⇤

h = ↵e�U⇤
h + O(h4), (5.13)

 ⇤
h = @tU⇤

h � 1t2

12
@3t U

⇤
h , (5.14)
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for which the following estimate is used:

e�U⇤
h = e�U�h2Uh,1 = e�U � e�Uh2Uh,1 + O(h4). (5.15)

In addition, using the same type of Taylor expansion as in (5.7), we are able to derive the following higher order estimate:

(U⇤
h )k+1 � (U⇤

h )k

1t
= 1

2
�
( ⇤

h )k+1 + ( ⇤
h )k

� + O(1t4), (5.16)

based on the construction (5.6), (5.11) and (5.12). In other words, the O(1t2) correction terms added in the construction
(5.6), (5.11) for  and  h,1 ensure that an O(1t4) order consistency is satisfied as in (5.16).

For the temporal correction term, we observe that an application of the proposed second order scheme (4.3) for the
profile

�
U⇤
h , ⇤

h
�
gives

�
 ⇤

h
�k+1 � �

 ⇤
h
�k

1t
� 1

2
�h

�
(U⇤

h )k+1 + (U⇤
h )k

� + ↵
F
�
(U⇤

h )k+1
� � F

�
(U⇤

h )k
�

(U⇤
h )k+1 � (U⇤

h )k

= 1t2g(1) + O(1t4) + O(h4), (5.17)

using a similar Taylor expansion as in (5.5), where g(1) behaves similarly as g(0) in (5.9) and only depends on U⇤
h . In turn, the

first order temporal correction function
�
U1t,1, 1t,1

�
is given by the solution to the following linear system of ODEs,

@2t U1t,1 ��hU1t,1 = �↵e�U⇤
h U1t,1 � g(1), (5.18)

 1t,1 = @tU1t,1 � 1t2

12
@3t U1t,1. (5.19)

Again, the solution to (5.18)–(5.19), which exists and is unique, depends solely on the profile U⇤
h , hence depends solely on

the exact solution U , and is smooth enough in the sense that its divided differences of various orders are bounded. Similar
to (5.17), an application of the linearized second order scheme to

�
U1t,1, 1t,1

�
reads

 k+1
1t,1 �  k

1t,1

1t
� 1

2
�h

�
Uk+1
1t,1 + Uk

1t,1
� + 1

2
↵e� (U⇤

h )k+1+(U⇤
h )k

2
�
Uk+1
1t,1 + Uk

1t,1
�

= �g (1) + O(1t2) + O(1t2h2). (5.20)

For the nonlinear term, a careful Taylor expansion indicates that

F
�
(U⇤

h )k+1
� � F

�
(U⇤

h )k
�

(U⇤
h )k+1 � (U⇤

h )k
+ 1

2
1t2e� (U⇤

h )k+1+(U⇤
h )k

2
�
Uk+1
1t,1 + Uk

1t,1
�

= F
�
(U⇤

h +1t2U1t,1)
k+1

� � F
�
(U⇤

h +1t2U1t,1)
k
�

(U⇤
h +1t2U1t,1)k+1 � (U⇤

h +1t2U1t,1)k
+ O(1t4)

=
F
⇣
Ûk+1

⌘
� F

⇣
Ûk

⌘

Ûk+1 � Ûk
+ O(1t4), (5.21)

as long as1t, h are small enough, with the full expansion for Û recalled in (5.8).
Therefore, a combination of (5.17), (5.20) and (5.21) shows that

 ̂ k+1 �  ̂ k

1t
� 1

2
�h

⇣
Ûk+1 + Ûk

⌘
+ ↵

F
⇣
Ûk+1

⌘
� F

⇣
Ûk

⌘

Ûk+1 � Ûk
= O(1t4 +1t4h2 + h4), (5.22)

Ûk+1 � Ûk

1t
= 1

2

⇣
 ̂ k+1 +  ̂ k

⌘
+ O(1t4), (5.23)

in which a similar estimate as in (5.7) and (5.16), based on a careful Taylor expansion, is performed to derive (5.23). ⇤

Lemma 3 illustrates the construction of the approximate solution which has an O(1t4 + h4) consistency. This higher
order consistency is crucial in the stability and convergence analysis, as will be shown in the next subsection.
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5.2. O(1t3 + h4) convergence in `1(0, T ; `2) norm
As stated earlier, the purpose of the higher order expansion (5.8) is to obtain an `1 estimate of the error function via

its `2 norm in higher order accuracy by utilizing an inverse inequality in spatial discretization, which will be shown below.
Instead of a direct comparison between the numerical solution (u, ) and the exact solution (ue, e), we estimate the error
between the numerical solution and the constructed solution to obtain a higher order convergence in k · k2 norm. Define
the error function as follows,

ũk := Ûk � uk,  ̃k :=  ̂ k �  k. (5.24)

Subtracting (4.3)–(4.4) from (5.22)–(5.23) yields

 ̃k+1 �  ̃k

1t
� 1

2
�h

�
ũk+1 + ũk� + ↵

0

@
F
⇣
Ûk+1

⌘
� F

⇣
Ûk

⌘

Ûk+1 � Ûk
� F

�
uk+1

� � F
�
uk
�

uk+1 � uk

1

A = ⌧̂ k
1 ,

��(⌧̂1)ki,j
��  C

�
1t4 + h4� ,

(5.25)

ũk+1 � ũk

1t
= 1

2

⇣
 ̃k+1 +  ̃k

⌘
+1t ⌧̂ k

2 ,
��(⌧̂2)ki,j

��  C1t3. (5.26)

Taking an inner product with the error difference function
�
ũk+1 � ũk

�
gives

1
1t

D
 ̃k+1 �  ̃k, ũk+1 � ũk

E
� 1

2
⌦
�h

�
ũk+1 + ũk� , ũk+1 � ũk↵

= �
*

↵

0

@
F
⇣
Ûk+1

⌘
� F

⇣
Ûk

⌘

Ûk+1 � Ûk
� F

�
uk+1

� � F
�
uk
�

uk+1 � uk

1

A , ũk+1 � ũk

+

+ ⌦
⌧̂ k
1 , ũ

k+1 � ũk↵ . (5.27)

By (5.26), the term associated with the second order temporal derivative can be analyzed as
1
1t

D
 ̃k+1 �  ̃k, ũk+1 � ũk

E
= 1

2

D
 ̃k+1 �  ̃k,  ̃k+1 +  ̃k

E
+1t

D
 ̃k+1 �  ̃k, ⌧̂ k

2

E

= 1
2

✓��� ̃k+1
���
2

2
�

��� ̃k
���
2

2

◆
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D
 ̃k+1 �  ̃k, ⌧̂ k

2
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� 1
2

✓��� ̃k+1
���
2

2
�
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���
2

2

◆
� 1

2
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✓��� ̃k+1 �  ̃k
���
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2

��2
2

◆

� 1
2

✓��� ̃k+1
���
2

2
�

��� ̃k
���
2
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◆
� 1

2
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2

��2
2 �1t

✓��� ̃k+1
���
2
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+

��� ̃k
���
2

2

◆
. (5.28)

The reason for the higher order temporal expansion as in (5.6), (5.11) and (5.19) can be observed in the above derivation. In
more detail, the second order temporal derivative may introduce a reduction of accuracy in the stability and convergence
estimate; therefore, a higher order consistency analysis is needed to avoid such an accuracy reduction.

The diffusion and local truncation error terms in (5.27) can be handled in a standard way, with the help of summation
by parts:

� ⌦
�h

�
ũk+1 + ũk� , ũk+1 � ũk↵ = ⌦rh

�
ũk+1 + ũk� , rh

�
ũk+1 � ũk�↵

= ��rhũk+1
��2
2 � ��rhũk

��2
2 , (5.29)

and
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◆
. (5.30)

Moreover, the following estimate is crucial in the analysis for the nonlinear error term.
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Lemma 4. We have
������

F
⇣
Ûk+1

⌘
� F

⇣
Ûk

⌘

Ûk+1 � Ûk
� F

�
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� � F
�
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�
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������
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�� + ��ũk
�� , (5.31)

at a pointwise level.

Proof. We start from the following rewriting:
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Each part can be analyzed with an application of Lemma 2:
������

F
⇣
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�� ·
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���  |ũk+1|, (a = Ûk), (5.33)
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at the pointwise level, with ⇠1 between uk+1 and Ûk+1, ⇠2 between uk and Ûk, respectively. In turn, a combination of
(5.32)–(5.34) yields (5.31). ⇤

Consequently, we arrive at the following nonlinear estimate
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Finally, a combination of (5.27)–(5.30) and (5.35) gives
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��2
2 � ��rhũk
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Meanwhile, by (5.26), we have the following expansion for ũk in terms of  ̃ l, 0  l  k:
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at a pointwise level. This in turn shows that
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in which the local truncation error bound
��(⌧̂2)li,j

��  C1t3 is used. Going back to (5.36), we get
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Summing over k and using ũ0 ⌘ 0,  ̃0 ⌘ 0, we obtain
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Meanwhile, by the following observation
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we arrive at
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By denoting ˜̂Ek =
��� ̃k

���
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+ ��rhũk
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2, the above inequality shows that
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An application of the discrete Gronwall inequality yields the desired result:
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with C independent on1t and h. Subsequently, its substitution to (5.39) gives

��ũn
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i.e.,
��ũn
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In turn, the following estimate of valid:
��� ̃n
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+ ��ũn

��
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��
2  C

�
1t3 + h4� , (5.47)

i.e. the O(1t3 + h4) convergence in `1(0, T ; `2) norm, between the numerical solution (u, ) and the constructed approx-
imate solution

⇣
Û,  ̂

⌘
.

5.3. O(1t2 + h2) convergence in `1(0, T ; `1) norm

As shown above, we have already had the convergence result (5.47), in `2 norm. To get the corresponding result in l1
norm, the following discrete inverse inequality in two dimensional case is necessary:

kuk1  kuk2

h
, (5.48)

where h is the discrete mesh size.
Thus we get
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with the linear refinement constraint1t  Ch.
On the other hand, by Lemma 3, we have

���Û � U
���1

 C(1t2 + h2),
��� ̂ �  

���1
 C(1t2 + h2). (5.50)

Hence, a direct application of triangle inequality yields
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��un � un
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��1 
���un � Ûn

���1
+

���Un � Ûn
���1

 C
�
1t2 + h2� , (5.52)

for any n ·1t  T , which is just the convergence result stated in Theorem 3.

Remark 4. In Theorem3, the linear refinement path constraint1t  Ch is a necessary condition sincewe use the constraint
in the discrete inverse inequality to get the l1 normconvergence result from the l2 normconvergence result. However, due to
the special structure of the nonlinear term and our choice of functional F(u), the l2 norm convergence result is unconditional.
Actually, we have

��un � un
e

��
2 

���un � Ûn
���
2
+

���Un � Ûn
���
2
, (5.53)

where ue = U is the exact solution. The first part is of order O(1t3 + h4) due to (5.47) and the second part is of order
O(1t2 + h2) due to (5.8). Then we have

��un � un
e

��
2  C(1t2 + h2), (5.54)

which is independent of the choice of1t and h.

6. Numerical simulation

In this section, we give several numerical examples to illustrate the theoretical results analyzed above. We take L = 1 so
that the two dimensional domain becomes⌦ = [0, 1]2.
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Fig. 6.1. The left figure shows both exact solution and numerical solution. The dotted line corresponds to themean of the numerical solution to (1.1) using
scheme (4.3)–(4.4), and the solid line corresponds to that of the exact solution to (6.1). The right figure illustrates the error.

Table 6.1

Relative error corresponding to different time steps. The order column is
calculated by log2(

e1t
e21t

).

1t Relative error Order

0.1 1.33e�3 /
0.1 ⇥ 2�1 3.33e�4 1.9978
0.1 ⇥ 2�2 8.34e�5 1.9974
0.1 ⇥ 2�3 2.08e�5 2.0035
0.1 ⇥ 2�4 5.21e�6 1.9972
0.1 ⇥ 2�5 1.30e�6 2.0028
0.1 ⇥ 2�6 3.26e�7 1.9956

6.1. A special case for constant ↵

When ↵ is a constant, it is easy to show that under a periodic boundary condition, the solution to (1.1) in⌦ at any time
is also a constant, whose value is equal to the solution to the following ODE problem,

8
<

:

d2u
dt2

= ↵e�u,

u |t=0 = C0 � 0, @tu |t=0 = 0.
(6.1)

And the solution to the ODE problem is given by

u(t) = � ln

8
><

>:

C � C
⇣

e
p
2Ct�1

e
p
2Ct+1

⌘2

↵

9
>=

>;
, with C = ↵e�C0 . (6.2)

Here we set C0 = 0 and ↵ = 1 and use the numerical scheme (4.3)–(4.4) to perform the simulation. To calculate un+1

from un and  n, we use the iteration algorithm (4.8) and take the solution calculated from leap-frog scheme as the initial
guess at every time step.

Fig. 6.1 gives the results. The two lines, which represent exact and numerical solutions, respectively, match well in the
left figure. The right figure illustrates the error.

To illustrate the convergence rate,we take time step as 10�1, 2�1⇥10�1, 2�2⇥10�1, 2�3⇥10�1, 2�4⇥10�1, respectively.
Fig. 6.2 shows the semilog plot of the relative error, and Table 6.1 shows the relative error corresponding to different time
steps. Both illustrate the second order convergence rate in time, which agrees with the above theoretical analysis.

Moreover, Fig. 6.3 presents the discrete energy corresponding to the simulation. The left figure corresponds to the value
of Ẽn

h � Ẽ0
h , and the right figure corresponds to the value of Ẽn

h . We could clearly observe the conservation for the discrete
energy En

h defined as (4.5), up to a machine error.
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Fig. 6.2. Semilog figure of the relative error corresponding to (1.1) with ↵ = 1 and C0 = 0.

Fig. 6.3. The discrete energy of the numerical solution.

6.2. The case for nonconstant ↵

Now consider the following modified nonlinear equation with a periodic boundary condition,
⇢
@2t u �1u = ↵e�u + k, in⌦T ,
u |t=0 ⌘ C0 � 0, @tu |t=0 ⌘ 0. (6.3)

Set

u(x, y, t) = t2(1 + cos t)(2 + sin 2⇡x + sin 2⇡y) (6.4)

as the solution to (6.3). And set ↵ = ↵(x, y) = 1 + sin 2⇡x sin 2⇡y and C0 = 0. Then we have

k(x, y, t) = (2 + 2 cos t � 4t sin t � t2 cos t)(2 + sin 2⇡x + sin 2⇡y) + 4⇡2t2(1 + cos t)(sin 2⇡x + sin 2⇡y)

�↵(x, y, t)e�t2(1+cos t)(2+sin 2⇡x+sin 2⇡y). (6.5)

For this example, we also use the numerical scheme (4.3)–(4.4) to perform the simulation, where we take k as kn+
1
2 to

keep the accuracy. For the iteration part, again we use the numerical solution obtained from leap-frog scheme as our initial
guess for un+1 at every time step.
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Fig. 6.4. The exact and numerical solution to (6.3) at T = 100.

Fig. 6.5. The relative error between exact solution and numerical solution to (6.3) at T = 100.

Table 6.2

Relative errors corresponding to different time steps and space steps. The
order column is calculated by log2(

eh
e2h

).

1t = h Relative error Order

0.1 1.31e�2 /
0.1 ⇥ 2�1 3.29e�3 1.9916
0.1 ⇥ 2�2 8.25e�4 1.9941
0.1 ⇥ 2�3 2.07e�4 1.9953
0.1 ⇥ 2�4 5.18e�5 1.9972
0.1 ⇥ 2�5 1.30e�5 1.9985
0.1 ⇥ 2�6 3.24e�6 1.9992

Fig. 6.4 presents the results at T = 100, in which the left figure corresponds to the exact solution and the right figure
corresponds to the numerical solution, respectively. Fig. 6.5 gives the relative error. From both figures we could see that two
results are very close.

To illustrate the convergence rate, initially, we take both time step and space step as 0.1. Then we halve both in the
same time for the later simulation. Fig. 6.6 shows the semilog plot of the relative error. Table 6.2 shows the relative error
corresponding to different time steps and space steps. Both illustrate that the convergence rate is O(1t2 +h2), which agrees
with the theoretical analysis above.

Moreover, although we could not prove that scheme (4.3)–(4.4) preserves positivity at a theoretical level, from the
convergence of the scheme and the positivity of the exact solution, we still could believe that the numerical solution keeps
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Fig. 6.6. Semilog figure of relative error corresponding to (6.3).

Fig. 6.7. Minimum of the numerical solution to (6.3).

non-negative. Fig. 6.7 gives the minimum of the numerical solution, which shows its positivity preserving property at a
numerical level.

7. Conclusions

In this work, we propose an energy-conserving second order scheme to solve a nonlinear hyperbolic equation with
an exponential nonlinear term, i.e. (1.1). Based on the positivity of the solution, a modification of the nonlinear term is
introduced. With this modification, we apply a linear iteration algorithm to solve the numerical scheme and prove that the
iteration is a contraction mapping. We also analyze the numerical scheme in detail and give an O(1t2 + h2) convergence
analysis in `1(0, T ; `1) norm, under a standard constraint 1t  Ch. Furthermore, several numerical examples are
presented, which justify our theoretical results.
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