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Abstract. In this work, we propose and analyze a second-order accurate numerical
scheme, both in time and space, for the multi-dimensional Poisson-Nernst-Planck sys-
tem. Linearized stability analysis is developed, so that the second order accuracy is
theoretically justified for the numerical scheme, in both temporal and spatial discretiza-
tion. In particularly, the discrete W 1,4 estimate for the electric potential field, which
plays a crucial role in the proof, are rigorously established. In addition, various numer-
ical tests have confirmed the anticipated numerical accuracy, and further demonstrated
the effectiveness and robustness of the numerical scheme in solving problems of practi-
cal interest.
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1. Introduction

The Poisson–Nernst–Planck (PNP) system has been widely used in modeling transmem-

brane ion channels, semiconductor, and electrochemical devices. The Poisson’s equation

describes the electrostatic potential stemming from the charge density that consists of mo-

bile ions and fixed charges. The Nernst-Planck equations model the diffusion and migration

of ion species in the gradient of electrostatic potential. For symmetric 1 : 1 electrolytes, the

ion transport is described by the PNP system

nt = Dn∆n− eβ∇ · !Dnn∇φ" , (1.1a)

pt = Dp∆p+ eβ∇ ·
#

Dpp∇φ
$

, (1.1b)

−∇ · ϵ0ϵr∇φ = e(p− n) +ρ f , (1.1c)
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where p and n are the concentrations of positive and negative charged species, Dp and

Dn are their diffusion constants, e is the elementary charge, β is the inverse of thermal

energy, φ is the electrostatic potential, ϵ0 is the vacuum permittivity, ϵr is the relative

permittivity(or dielectric coefficient), and ρ f is the density of fixed charge.

Let L, D0, and c0 be the characteristic length, diffusion constant, and concentration,

respectively. Denote another characteristic length λD =
%

ϵ0ϵr

2βe2c0
for an ionic solution with

bulk ionic concentration c0 and homogenous dielectric coefficient ϵr . We shall introduce

the following dimensionless parameters and variables:

x̃ = x/L, t̃ = tD0/LλD, p̃ = p/c0, ñ= n/c0, (1.2a)

D̃p= Dp/D0, D̃n= Dn/D0, φ̃= βeφ, ρ̃ f= ρ f/c0e. (1.2b)

Rescaling above quantities and dropping all the tildes lead to a nondimensionalized PNP

system
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∂t p =
λD

L
Dp∇ ·

!∇p+ p∇φ" ,

∂t n=
λD

L
Dn∇ ·

!∇n− n∇φ",

− 2
λ2

D

L2
∆φ = p− n+ρ f .

(1.3)

For ease of presentation, we choose a computational domain Ω = (0,1)3, and consider

zero Neumann boundary conditions

∂ φ

∂ n

= 0,
∂ p

∂ n

=
∂ n

∂ n

= 0 on ∂Ω. (1.4)

For simplicity, we denote by Cn =
λD

L
Dn , Cp =

λD

L
Dp, and κ = L2

2λ2
D

.

Recently, there has been growing interests in incorporating effects that are beyond the

mean-field description to the PNP theory, such as the steric effect, ion-ion correlations, and

inhomogeneous dielectric environment [12, 13, 16, 19, 22, 23, 27, 31]. Various versions of

modified PNP theory have been developed to account for such ignored effects within the

framework of the PNP theory. For instance, the steric effect of ions have been taken into

account by including excess free energy of solvent entropy [13–15, 22, 33], hard-sphere

interaction kernels [12, 27], or the fundamental measure theory [23]. A modified PNP

model has been proposed to consider Coulombic ion-ion correlations in inhomogeneous

dielectric environment [19].

Due to the nonlinear coupling of the electrostatic potential and ionic concentrations, it

is not trivial to solve the PNP system analytically, even numerically. Much effort has been

devoted to the development of numerical methods that possess desired properties [1–3,5,

8–10,17,18,20,21,24–27,29,32]. For instance, a hybrid numerical scheme that employs

adaptive grids has been proposed to solve a two-dimensional PNP system [25]. A delicate

temporal discretization scheme has been recently developed to preserve free energy dy-

namics [8]. Using Slotboom variables, Liu and Wang [17] have developed a free energy
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satisfying finite difference scheme for a 1D PNP system. Also, they have constructed a free

energy satisfying discontinuous Galerkin method, in which the positivity of numerical solu-

tions is enforced by an accuracy-preserving limiter [18]. A finite element discretization that

is able to enforce positivity of numerical solutions has been proposed for the PNP system,

as well as the PNP system coupled with the incompressible Navier-Stokes equations [24].

Theoretical analysis of the numerical methods for the PNP system turns out to be very

challenging, and the convergence analysis works for the nonlinear system is very limit-

ed. Motivated by the variational energy structure of the PNP system, the energy stability

analysis has attracted a great deal of attentions [8, 11, 17, 18, 24], in terms of either the

logarithmic free energy or a simplified electric energy. Meanwhile, a theoretical justifica-

tion of the convergence analysis has not been available in these works, due to the difficulty

in the nonlinear error estimate. Among the existing theoretical works on the convergence

analysis, it is worthy of reviewing the following works. A semi-discrete scheme was an-

alyzed in [30], with the spatial convergence estimate is given. A convergence proof was

provided for certain class of fully discrete finite element schemes, while the convergence

order has not been justified. A first order (in time) scheme was proposed and analyzed

in [10], with a semi-implicit treatment for the nonlinear term, and an optimal rate con-

vergence estimate was provided. The only theoretical analysis for a second order (in time)

scheme could be found in [28], in which a fully implicit treatment for the nonlinear term

is involved. The second order convergence order in time has been proved in the article,

while a theoretical justification of the unique solvability of the numerical scheme is not

available, due to the implicit treatment for the nonlinear term.

In this article, we propose and analyze a second order in time, centered difference

numerical scheme for the PNP system (1.3). In particular, a modified version of Adams-

Moulton interpolation formula is applied to the diffusion term, and the coefficient distribu-

tion at the temporal stencil points, tn+1 and tn−1, leads to a much improved stability prop-

erty than the standard Crank-Nicolson approximation, in comparison with the one used

in [28]. Also, a fully explicit treatment is taken for the nonlinear convection term, with an

application of second order accurate Adams-Bashforth extrapolation formula. Because of

its linear nature, the unique solvability of the proposed numerical scheme is automatically

assured. In addition, we provide an optimal rate convergence analysis for the numerical

scheme. The key difficulty in the nonlinear error estimate has always been associated with

a bound of the numerical solution in certain norms. In the PNP system, instead of obtain-

ing the ℓ∞ bound of the numerical solution, which has been a standard approach, we only

make use of the discrete ℓ4 bound of the discrete gradient for the numerical solution of

electric potential, namely, ∥∇φ∥4. In turn, the discrete ℓ4 estimate of the numerical error

function for n and p has to be derived, and such an estimate could be accomplished via

the Sobolev interpolation inequality at a discrete level. On the other hand, to obtain the

bound for ∥∇φ∥4, we apply the linearized stability analysis. In more details, the discrete

ℓ2 convergence estimate up to the previous time step yields a discrete H2
h bound of the nu-

merical solution for φ, by making use of a discrete elliptic regularity inequality. Moreover,

with the help of discrete Sobolev embedding, from H2
h to W

1,4
h

, a bound for ∥∇φ∥4 could

be derived, up to the previous time step. Due to the explicit treatment of the nonlinear
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convection term, such a bound is sufficient to pass through the convergence estimate at the

next time step, so that an induction analysis becomes available. A combination of all these

techniques yields the desired convergence result, and such a convergence is unconditional,

i.e., no scaling law between the time step size △t and spatial resolution h is needed, since

we have avoided using the inverse inequality in the analysis. This is the first such result

for the PNP system.

This paper is organized as follows. In Section 2 we present the fully discrete numerical

scheme. A preliminary estimate is provided in Section 3, which gives the discrete ℓ4 and

W
1,4
h

estimate of a grid function. Subsequently, the optimal rate convergence analysis is

established in Section 4. Some numerical results are presented in Section 5. Finally, some

concluding remarks are made in Section 6.

2. The numerical scheme

The variables n, p, φ are cell-centered evaluated at (i ± 1/2, j ± 1/2, k ± 1/2). For

simplicity of presentation, we assume Nx = Ny = Nz = N and ∆x = ∆y = ∆z = h, with

h= 1
N

. The following notations of centered differences using different stencils at different

grid points are introduced to facilitate the description:

Dx g(x) =
g(x + h/2)− g(x − h/2)

h
,

D2
x g(x) =

g(x − h)− 2g(x)+ g(x + h)

h2
.

The corresponding operators in the y and z directions can be defined in a similar way; the

details are skipped for breviy.

In the dynamic equation (1.1a) for n, the nonlinear term ∇ · !n∇φ" can be approxi-

mated by centered difference as

(h(∇φ, n) =∇h ·
!

n∇hφ
"

= Dx

!

nDxφ
"

+ Dy

#

nDyφ
$

+ Dz

!

nDzφ
"

at
*

i ± 1

2
, j ± 1

2
, k± 1

2

+

. (2.1)

Similar centered difference method can be applied to dynamic equation (1.1b) for p; the

corresponding approximations to the two nonlinear terms are given below:

(h(∇φ, p) =∇h ·
!

p∇hφ
"

= Dx

!

pDxφ
"

+ Dy

#

pDyφ
$

+ Dz

!

pDzφ
"

, (2.2)

and both terms are evaluated at the mesh points (i± 1/2, j± 1/2, k± 1/2). The boundary

conditions for these physical variables are implemented through finite difference approx-

imation. The boundary extrapolation formulas for n and p can be derived in the same

manner:

ni+1/2, j+1/2,−1/2 = ni+1/2, j+1/2,1/2, pi+1/2, j+1/2,−1/2 = pi+1/2, j+1/2,1/2. (2.3)
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The other four boundary sections can be dealt with in the same way; the details are skipped

for brevity.

The following second order (in time) numerical scheme is proposed:

nk+1− nk

△t

= Cn∆h

,

3

4
nk+1+

1

4
nk−1

-

−Cn

.

3

2
(h

!∇φk, nk"− 1

2
(h

!∇φk−1, nk−1"
/

, (2.4a)

pk+1 − pk

△t

= Cp∆h

,

3

4
pk+1+

1

4
pk−1

-

+Cp

.

3

2
(h

!∇φk, pk"− 1

2
(h

!∇φk−1, pk−1"
/

, (2.4b)

−∆hφ
k+1 = κ

#

pk+1 − nk+1+ρ f
$

, (2.4c)

nk+1
i±1/2, j±1/2,−1/2

= nk+1
i±1/2, j±1/2,1/2

, pk+1
i±1/2, j±1/2,−1/2

= pk+1
i±1/2, j±1/2,1/2

, (2.4d)

φk+1
i±1/2, j±1/2,−1/2

= φk+1
i±1/2, j±1/2,1/2

. (2.4e)

Notice that the solution to the Poisson’s equation with homogeneous Neumann boundary

conditions is not unique, up to an additive constant. In numerical simulations, we set the

electrostatic potential at one corner to be zero to single out the solution. Such a treatment

does not affect the numerical simulation and analysis.

Remark 2.1. The proposed scheme is a three-step method that requires two levels of initial

data. To prepare the first two levels of initial data, we use a backward Euler discretization

of the Nernst–Planck equations to compute for one time step.

Remark 2.2. In the multi-step scheme, we choose specific combinations of the coefficients.

A modified version of Adams-Moulton interpolation formula is applied to the diffusion

term, with extra weight on the implicit time level. Such a treatment leads to a much

improved stability property than the standard Crank-Nicolson approximation.

2.1. Discrete inner product and norm

For any pair of variables φa, φb which are defined at the mesh points (i + 1/2, j +

1/2, k+ 1/2), (such as n, p, φ, etc.), the discrete L2-inner product is given by

〈φa,φb〉 =
N−1
∑

k=0

N−1
∑

j=0

N−1
∑

i=0

φa
i+1/2, j+1/2,k+1/2φ

b
i+1/2, j+1/2,k+1/2 h3. (2.5)

Clearly all the discrete L2 inner products defined above are second order accurate. The

corresponding discrete L2 norms can be defined accordingly, and we denote them by ∥·∥2.
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In addition to the standard ∥·∥2 norm, we introduce a discrete ∥·∥p norm for any p ≥ 1.

For example, for the phase variable φ, which is evaluated at the mesh points (i + 1/2, j+

1/2, k+ 1/2), its discrete ∥·∥p norm is given by

1

1φ
1

1

p
=

⎛

⎜

⎝
h3

N−1
∑

k=0

N−1
∑

j=0

N−1
∑

i=0

|φi+1/2, j+1/2,k+1/2|p
⎞

⎟

⎠

1
p

. (2.6)

For its discrete gradient, the following definitions are introduced:

1

1∇hφ
1

1

p
=
*

1

1Dxφ
1

1

p

p
+
1

1Dyφ
1

1

p

p
+
1

1Dzφ
1

1

p

p

+
1
p

(2.7a)

with
1

1Dxφ
1

1

p

p
= h3

N−1
∑

k=0

N−1
∑

j=0

N−1
∑

i=1

|(Dxφ)i, j+1/2,k+1/2|p,

1

1Dyφ
1

1

p

p
= h3

N−1
∑

k=0

N−1
∑

j=1

N−1
∑

i=0

|(Dyφ)i+1/2, j,k+1/2|p,

1

1Dzφ
1

1

p

p
= h3

N−1
∑

k=1

N−1
∑

j=0

N−1
∑

i=0

|(Dzφ)i+1/2, j+1/2,k |p. (2.7b)

The corresponding ∥·∥p (p ≥ 1) norms for the other physical variables can be defined in a

similar manner.

3. Preliminary estimate

Consider a discrete grid function f , evaluated at the mesh points (i+ 1/2, j+ 1/2, k+

1/2). If f satisfies the discrete Neumann condition, as given by (2.3), it has a correspond-

ing discrete Fourier Cosine transformation in quarter wave sequence:

fi+1/2, j+1/2,k+1/2 =

N−1
∑

l ,m,n=0

αl ,m,n f̂ N
l ,m,n cos

lπxi+1/2

L̂
cos

mπyj+1/2

L̂
cos

nπzk+1/2

L̂

with αl ,m,n =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, if l ≠ 0, m ≠ 0, n ≠ 0,
8

1
2
, if one among l, m, n is 0,

8

1
4
, if two among l, m, n are 0,

8

1
8
, if l = m = n= 0,

where xi+1/2 = (i+
1
2
)h, yj+1/2 = ( j+

1
2
)h, zk+1/2 = (k+

1
2
)h. Then we make its extension

to a continuous function:

fN (x , y, z) =

N−1
∑

l ,m,n=0

αl ,m,n f̂ N
l ,m,n cos

lπx

L̂
cos

mπy

L̂
cos

nπz

L̂
, (3.1)
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where

f̂ N
l ,m,n =

8

L̂3

∫ L̂

0

∫ L̂

0

∫ L̂

0

αl ,m,n fN (x , y, z) cos
lπx

L̂
cos

mπy

L̂
cos

nπz

L̂
d xd ydz.

The following result gives a bound of the discrete ℓ4 norm of the grid function in terms of

the continuous L4 norm of its continuous version; also see the related analyses in [4,6,7],

in which the periodic boundary conditions are considered.

Lemma 3.1. We have

1

1 f
1

1

4
≤
.

2
d 1
1 fN

1

1

L4 ,
1

1∇h f
1

1

4
≤
.

2
d 1
1∇ fN

1

1

L4 with d the dimension. (3.2)

Proof. For simplicity of presentation, we focus our analysis in the 2-D case; for the 3-D

grid function, the analysis could be carried out in a similar, yet more tedious way.

We denote the following grid function

gi+1/2, j+1/2 =
#

fi+1/2, j+1/2

$2
. (3.3)

A direct calculation shows that
1

1 f
1

1

4
=
#1

1g
1

1

2

$
1
2 . (3.4)

Note that both norms are discrete in the above identity. Moreover, we assume the grid

function g has a discrete Fourier expansion as

gi+1/2, j+1/2 =

N−1
∑

l ,m=0

αl ,m

!

ĝN
c

"

l ,m cos
lπxi+1/2

L̂
cos

mπyj+1/2

L̂
, (3.5)

and denote its continuous version as

G(x , y) =

N−1
∑

l ,m=0

αl ,m( ĝ
N
c )l ,m cos

lπx

L̂
cos

mπy

L̂
. (3.6)

With an application of the Parseval equality at both the discrete and continuous levels, we

have
1

1g
1

1

2

2
= ∥G∥2

L2 =
1

4
L̂2

N−1
∑

l ,m=0

:

:

:

!

ĝN
c

"

l ,m

:

:

:

2

. (3.7)

On the other hand, we also denote

H(x , y) =
!

fN (x , y)
"2
=

2N−2
∑

l ,m=0

αl ,m(ĥ
N )l ,m cos

lπx

L̂
cos

mπy

L̂
∈ 02N−2, (3.8)

where 02N−2 is the space of trigonometric polynomials in x and y of degree up to 2N −2.

The reason for H ∈ 02N−2 is because fN ∈ 0N−1. We note that H ≠ G, since H ∈ 02N−2,
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while G ∈ 0N−1, although H and G have the same interpolation values on at the numerical

grid points (xi+1/2, yj+1/2). In other words, g is the interpolation of H onto the numerical

grid point and G is the continuous version of g in0N−1. As a result, collocation coefficients

ĝN
c for G are not equal to ĥN for H, due to the aliasing error. In more detail, for 0 ≤ l, m ≤

N − 1, we have the following representations:

( ĝN
c )l ,m=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(ĥN )l ,m−(ĥN )l+N ,m− (ĥN )l ,m+N+ (ĥ
N )l+N ,m+N , 1≤l≤N−2,1≤m≤N−2,

(ĥN )l ,m−(ĥN )l+N ,m−
.

2(ĥN )l ,m+N+
.

2(ĥN )l+N ,m+N , 1≤ l≤N−2, m= 0,

(ĥN )l ,m−(ĥN )l+N ,m, 1≤ l≤N−2, m=N−1,

(ĥN )l ,m−
.

2(ĥN )l+N ,m− (ĥN )l ,m+N+
.

2(ĥN )l+N ,m+N , l = 0, 1≤ m≤ N−2,

(ĥN )l ,m−
.

2(ĥN )l+N ,m−
.

2(ĥN )l ,m+N+ 2(ĥN )l+N ,m+N , l = 0, m = 0,

(ĥN )l ,m−
.

2(ĥN )l+N ,m, l = 0, m = N−1,

(ĥN )l ,m−(ĥN )l ,m+N , l=N−1, 1≤m≤N−2,

(ĥN )l ,m−
.

2(ĥN )l ,m+N , l = N−1, m= 0,

(ĥN )l ,m, l = N−1, m =N−1.

With an application of Cauchy inequality, it is clear that

N−1
∑

l ,m=0

:

:( ĝN
c )l ,m

:

:

2 ≤ 4

2N−2
∑

l ,m=0

:

:(ĥN )l ,m
:

:

2
. (3.9)

Meanwhile, an application of Parseval’s identity to the Fourier expansion (3.8) gives

∥H∥2 = 1

4
L̂2

2N−2
∑

l ,m=0

:

:(ĥN )l ,m
:

:

2
. (3.10)

Its comparison with (3.7) indicates that
1

1g
1

1

2

2
= ∥G∥2 ≤ 4∥H∥2 , i.e.

1

1g
1

1

2
≤ 2∥H∥ (3.11)

with the estimate (3.9) applied. Meanwhile, since H(x , y) =
!

fN (x , y)
"2

, we have

1

1 fN

1

1

L4 =
!∥H∥2

"
1
2 . (3.12)

Therefore, a combination of (3.4), (3.9) and (3.12) results in

1

1 f
1

1

4
=
#1

1g
1

1

2

$
1
2 ≤ !2∥H∥L2

"
1
2 ≤
.

2
1

1 fN

1

1

L4 . (3.13)

This finishes the proof of (3.2) for d = 2.

The 3-D case could be analyzed in the same fashion, and the details are skipped for

the sake of brevity. The second inequality of (3.2) could be proved in a similar way. This

finishes the proof of Lemma 3.1. !

The next proposition, which corresponds to a discrete version of Sobolev inequality, is

crucial in the nonlinear stability and convergence analysis.
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Proposition 3.1. The following estimate is valid:

1

1 f
1

1

4
≤ Č1

1

1 f
1

1

2
+ Č2

1

1 f
1

1

1
4

2 ·
1

1∇h f
1

1

3
4

2 , (3.14a)
1

1∇h f
1

1

4
≤ Č3

1

1∆h f
1

1

2
, (3.14b)

where Č1, Č2 and Č3 are constants independent on h.

Proof. Parseval’s identity (at both the discrete and continuous levels) implies that

N−1
∑

i, j,k=0

| fi+1/2, j+1/2,k+1/2|2 =
1

8
N3

N−1
∑

l ,m,n=0

| f̂ N
l ,m,n|2, (3.15a)

1

1 fN

1

1

2

L2 =
1

8
L̂3

N−1
∑

l ,m,n=0

| f̂ N
l ,m,n|2. (3.15b)

This in turn results in (based on the fact that hN = L̂)

1

1 f
1

1

2

2
= h3

N−1
∑

i, j,k=0

| fi+1/2, j+1/2,k+1/2|2 =
1

8
L̂3

N−1
∑

l ,m,n=0

| f̂ N
l ,m,n|2 =

1

1 fN

1

1

2

L2 . (3.16)

For the comparison between the discrete and continuous gradient, we start with the fol-

lowing Fourier expansions:

(Dx f )i, j+1/2,k+1/2 =
fi+1/2, j+1/2,k+1/2 − fi−1/2, j+1/2,k+1/2

h

=

N−1
∑

l ,m,n=0

αl ,m,nµl f̂ N
l ,m,n sin

lπxi

L̂
cos

mπyj+1/2

L̂
cos

nπzk+1/2

L̂
, (3.17a)

(∂x fN )i, j+1/2,k+1/2 =

N−1
∑

l ,m,n=0

αl ,m,nνl f̂ N
l ,m,n sin

lπxi

L̂
cos

mπyj+1/2

L̂
cos

nπzk+1/2

L̂
(3.17b)

with

µl = −
2 sin lπh

2L̂

h
, νl = −

lπ

L̂
. (3.18)

In turn, an application of Parseval’s identity yields

1

1Dx f
1

1

2

2
=

1

8
L̂3

N−1
∑

l ,m,n=0

|µl |2| f̂ N
l ,m,n|2, (3.19a)

1

1∂x fN

1

1

2

L2 =
1

8
L̂3

N−1
∑

l ,m,n=0

|νl |2| f̂ N
l ,m,n|2. (3.19b)
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The comparison of Fourier eigenvalues between |µl | and |νl | shows that

2

π
|νl |≤ |µl |≤ |νl | for 0≤ l≤ N− 1. (3.20)

This indicates that
2

π

1

1∂x fN

1

1

L2 ≤
1

1Dx f
1

1

2
≤
1

1∂x fN

1

1

L2 . (3.21)

Similar comparison estimates can be derived in the same manner to reveal

2

π
∥∇ fN∥L2 ≤ ∥∇h f ∥2 ≤ ∥∇ fN∥L2. (3.22)

It can be proved analogously that

4

π2
∥∆ fN∥L2 ≤ ∥∆h f ∥2 ≤ ∥∆ fN∥L2. (3.23)

On the other hand, we make use of (3.2) in Lemma 3.1. For the continuous function

fN (x , y, z), we have the following estimate in Sobolev embedding:

1

1 fN

1

1

L4 ≤ C
1

1 fN

1

1

H3/4 ≤ C
1

1 fN

1

1

1
4 ·
1

1 fN

1

1

3
4

H1 ≤ C
1

1 fN

1

1

1
4 · (
1

1 fN

1

1+
1

1∇ fN

1

1)
3
4

≤ C1

1

1 fN

1

1+ C2

1

1 fN

1

1

1
4 ·
1

1∇ fN

1

1

3
4 , (3.24a)

1

1∇ fN

1

1

L4 ≤ C3

1

1∆ fN

1

1

L2 . (3.24b)

Finally, a combination of the equivalence estimates (3.16), (3.22), (3.23), (3.2) in Lem-

ma 3.1 and the Sobolev inequalities (3.24a), (3.24b) result in the desired inequalities

(3.14a), (3.14b). The proof of Proposition 3.1 is finished. !

4. Convergence analysis

The following is the main theorem of this paper.

Theorem 4.1. Let ne, pe, φe be the exact solution of the PNP (1.3) with the boundary condi-

tions (1.4) and let (n△t,h, p△t ,h,φ△t ,h) be the numerical solution of (2.4a)-(2.4e). Then the

following convergence result holds as △t and h go to zero:

∥ne − n△t,h∥ℓ∞(0,T ;ℓ2) + ∥pe − p△t,h∥ℓ∞(0,T ;ℓ2) + ∥φe −φ△t ,h∥ℓ∞(0,T ;H2
h
)

≤C(△t2 + h2), (4.1)

where the constant C depends only on the regularity of the exact solution and the fixed charge

function ρ f .
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4.1. Consistency analysis

Our goal is to construct approximate profiles n, P, Φ and and show that they satisfy the

numerical scheme (2.4a)-(2.4e) up to an 1 (△t2 + h2) error.

We denote

ni+1/2, j+1/2,k+1/2 = (ne)(xi+1/2, yj+1/2, zk+1/2), (4.2a)

Pi+1/2, j+1/2,k+1/2 = (pe)(xi+1/2, yj+1/2, zk+1/2) (4.2b)

for 0 ≤ i, j, k ≤ N − 1 (at interior grid points). In addition, an even symmetric “ghost"

point extrapolation is taken for n and P:

ni+1/2, j+1/2,−1/2 = ni+1/2, j+1/2,1/2, Pi+1/2, j+1/2,−1/2 = Pi+1/2, j+1/2,1/2 (4.3)

following the discrete boundary condition (2.3). Similar even symmetric extrapolation

formulas can be derived at four other boundary sections.

To facilitate the convergence analysis in later sections, we construct the approximate

profile Φ through the following discrete Poisson’s equation

−∆hΦ = κ(P − n+ρ f ) with Φi±1/2, j±1/2,−1/2 = Φi±1/2, j±1/2,1/2. (4.4)

Moreover, a careful analysis indicates the following consistency between Φ and φe:
1

1Φ−φe

1

1

W
2,∞
h
≤ Ch2 (4.5)

provided that φe is smooth enough. Note that ∥·∥W 2,∞
h

denotes the discrete W 2,∞ norm, in

which the point-wise maximum norm of the given discrete function is measured, up to its

second order finite differences.

By combining all the consistency analyses above, it is straightforward to verify the

following local truncation estimates:

nk+1− nk

△t
= Cn∆h

,

3

4
nk+1+

1

4
nk−1

-

−Cn

,

3

2
(h(∇Φk,nk)− 1

2
(h

#

∇Φk−1,nk−1
$

-

+τ
k+ 1

2
n , (4.6a)

Pk+1 − Pk

△t
= Cp∆h

,

3

4
Pk+1+

1

4
Pk−1

-

+Cp

,

3

2
(h(∇Φk, Pk)− 1

2
(h

#

∇Φk−1, Pk−1
$

-

+τ
k+ 1

2
p , (4.6b)

−∆hΦ
k+1 = κ

#

Pk+1 − nk+1+ρ f
$

, (4.6c)

nk+1
i±1/2, j±1/2,−1/2

= nk+1
i±1/2, j±1/2,1/2

, Pk+1
i±1/2, j±1/2,−1/2

= Pk+1
i±1/2, j±1/2,1/2

, (4.6d)

Φk+1
i±1/2, j±1/2,−1/2

= Φk+1
i±1/2, j±1/2,1/2

, (4.6e)
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where

τ
n,k+ 1

2

i, j,k
=∆t2U

n,k+ 1
2

i, j,k
+ h2V

n,k+ 1
2

i, j,k
,

τ
P,k+ 1

2

i, j,k
=∆t2U

P,k+ 1
2

i, j,k
+ h2V

P,k+ 1
2

i, j,k

with U
n,k+ 1

2

i, j,k
, U

P,k+ 1
2

i, j,k
, V

n,k+ 1
2

i, j,k
, and V

P,k+ 1
2

i, j,k
associated with certain high order derivatives of

exact solution n and P. Thus, we can get

1

1

1τ
k+ 1

2
n

1

1

1

2
≤ C(∆t2 + h2),

1

1

1τ
k+ 1

2

P

1

1

1

2
≤ C(∆t2 + h2). (4.7)

We also note a discrete W 2,∞ bound for the constructed approximate solution

1

1nk
1

1

W
1,∞
h
+
1

1Pk
1

1

W
1,∞
h
+
1

1Φk
1

1

W
2,∞
h
≤ C∗0 (4.8)

at any time step tk, which comes from the regularity of the constructed solution. This

bound will be used in the stability and convergence analysis for the numerical error func-

tions.

4.2. Stability and convergence analysis

The following error functions are denoted:

ñ= n− n, p̃ = P − p, φ̃ = Φ−φ (4.9)

at the corresponding mesh points. Subtracting (2.4a)-(2.4e) from (4.6a) yields the follow-

ing system for the error functions:

ñk+1− ñk

△t
= Cn∆h

,

3

4
ñk+1+

1

4
ñk−1

-

− Cn

,

3

2
(h

!∇φ̃k,nk"+
3

2
(h

!∇φk, ñk"

−1

2
(h

!∇φ̃k−1,nk−1"− 1

2
(h

!∇φk−1, ñk−1"
-

+τ
k+ 1

2
n , (4.10a)

p̃k+1 − p̃k

△t
= Cp∆h

,

3

4
p̃k+1 +

1

4
p̃k−1

-

+ Cp

,

3

2
(h

!∇φ̃k, Pk"+
3

2
(h

!∇φk, p̃k"

−1

2
(h

!∇φ̃k−1, Pk−1"− 1

2
(h(∇φk−1, p̃k−1)

-

+τ
k+ 1

2
p , (4.10b)

−∆hφ̃
k+1 = κ

!

p̃k+1− ñk+1", (4.10c)

ñk+1
i±1/2, j±1/2,−1/2

= ñk+1
i±1/2, j±1/2,1/2

, p̃k+1
i±1/2, j±1/2,−1/2

= p̃k+1
i±1/2, j±1/2,1/2

, (4.10d)

φ̃k+1
i±1/2, j±1/2,−1/2

= φ̃k+1
i±1/2, j±1/2,1/2

. (4.10e)
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First, we assume a-priori that the numerical error function (for n and p) has an ℓ2 bound

at time step t j , j = k, k− 1:

1

1ñ j
1

1

2
+
1

1p̃ j
1

1

2
≤ 1 for j = k, k− 1. (4.11)

In turn, by the discrete Poisson’s equation (4.10c), we get

1

1∆hφ̃
j
1

1

2
=
1

1κ(p̃ j − ñ j)
1

1

2
≤ κ

1

1p̃ j − ñ j
1

1

2
≤ C∗1 for j = k, k− 1, (4.12)

where C∗1 is constant depending on κ. Meanwhile, it is observed that φ̃ j satisfies a homo-

geneous Neumann boundary condition. As an application of (3.14b) in Proposition 3.1,

we obtain
1

1∇hφ̃
j
1

1

4
≤ Č3

1

1∆hφ̃
j
1

1

2
≤ C∗1 Č3 := C∗2 for j = k, k− 1. (4.13)

Therefore, the following discrete W 1,4 bound for the numerical solution φ j is derived:

1

1∇hφ
j
1

1

4
≤
1

1∇hΦ
j
1

1

4
+
1

1∇hφ̃
j
1

1

4
≤ CC∗0 + C∗2 := C∗3 for j = k, k− 1, (4.14)

in which the discrete W 1,∞ bound (4.8) for the constructed solution Φk was used.

Taking a discrete inner product with (4.10a) by the error function 2ñk+1 gives

1

1ñk+1
1

1

2

2
−
1

1ñk
1

1

2

2
+
1

1ñk+1− ñk
1

1

2

2
+

3

2
Cn△t

1

1∇hñk+1
1

1

2

2
+

1

2
Cn△t〈∇hñk+1,∇hñk−1〉2

=2△t
;

τ
k+ 1

2
n , ñk+1

<

− 3Cn△t
;

(h(∇φ̃k,nk), ñk+1
<

− 3Cn△t
;

(h(∇φk, ñk), ñk+1
<

+ Cn△t
;

(h(∇φ̃k−1,nk−1), ñk+1
<

+ Cn△t
;

(h(∇φk−1, ñk−1), ñk+1
<

.

Note that the homogeneous Neumann boundary condition for ñk+1 was used in the sum-

mation by parts for the diffusion term. In addition, the Cauchy inequality could be applied

to the other diffusion term associated with Adams-Moulton interpolation:

−1

2

;

∇hñk+1,∇hñk−1
<

2
≤ 1

4

,

∥∇hñk+1∥22 + ∥∇hñk−1∥22
-

. (4.15)

The estimate for the local truncation error term is standard:

2
;

τ
k+ 1

2
n , ñk+1

<

≤
1

1

1τ
k+ 1

2
n

1

1

1

2

2
+
1

1ñk+1
1

1

2

2
. (4.16)

The first nonlinear inner product on the right hand side of (4.15) is a linearized term. With

an application of summation by parts, we have

− 3Cn

;

(h(∇φ̃k,nk), ñk+1
<

≤ CCn

1

1∇hφ̃
k
1

1

2
·
1

1nk
1

1

∞ ·
1

1∇hñk+1
1

1

2

≤CCnC∗0
1

1∆hφ̃
k
1

1

2
·
1

1∇hñk+1
1

1

2
≤ CCnC∗0

1

1κ(p̃k − ñk)
1

1

2
·
1

1∇hñk+1
1

1

2

≤C̃4

,

1

1p̃k
1

1

2

2
+
1

1ñk
1

1

2

2

-

+
1

16
Cn

1

1∇hñk+1
1

1

2

2
, (4.17)
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where the discrete elliptic regularity,
1

1∇hφ̃
k
1

1

2
≤ C

1

1∆hφ̃
k
1

1

2
, was applied in the second

step, the discrete Poisson’s equation (4.10c) was recalled in the third step, and C̃4 =

C(CnC∗0)
2/Cn. Similar inequality could be derived for the third nonlinear term on the

right hand side of (4.15):

Cn

;

(h(∇φ̃k−1,nk−1), ñk+1
<

≤C̃4

,

1

1p̃k−1
1

1

2

2
+
1

1ñk−1
1

1

2

2

-

+
1

16
Cn

1

1∇hñk+1
1

1

2

2
. (4.18)

For the second nonlinear inner product on the right hand side of (4.15), we start from the

following inequality, based on summation by parts and an application of discrete Hölder

inequality:

−3Cn

;

(h(∇φk, ñk), ñk+1
<

≤ CCn

1

1∇hφ
k
1

1

4
·
1

1ñk
1

1

4
·
1

1∇hñk+1
1

1

2
. (4.19)

To carry out this nonlinear estimate, we recall the discrete W 1,4 bound (4.14) for the

numerical solution φk, based on the a-priori assumption (4.14). For the second term ap-

pearing on the right hand side of (4.19), we recall an application of (3.14a) in Proposition

3.1, due to a homogeneous Neumann boundary condition for ñk and p̃k:

1

1ñk
1

1

4
≤ Č1

1

1ñk
1

1

2
+ Č2

1

1ñk
1

1

1
4

2 ·
1

1∇hñk
1

1

3
4

2 , (4.20a)

1

1p̃k
1

1

4
≤ Č1

1

1p̃k
1

1

2
+ Č2

1

1p̃k
1

1

1
4

2 ·
1

1∇hp̃k
1

1

3
4

2 . (4.20b)

In turn, a substitution into (4.19) shows that

−3Cn

;

(h(∇φk, ñk), ñk+1
<

≤ CCnC∗3
1

1∇hñk+1
1

1

2

,

Č1

1

1ñk
1

1

2
+ Č2

1

1ñk
1

1

1
4

2 ·
1

1∇hñk
1

1

3
4

2

-

≤ C̃6

1

1ñk
1

1

2

2
+

1

8
Cn

1

1∇hñk
1

1

2

2
+

1

16
Cn

1

1∇hñk+1
1

1

2

2
, (4.21)

in which the Young’s inequality was applied in the last step and C̃6 depends on Cn, C∗3, Č1

and Č2.

The fourth nonlinear inner product on the right hand side of (4.15) could be analyzed

in the same manner; the technical details are left to interested readers:

Cn

;

(h(∇φk−1, ñk−1), ñk+1
<

≤C̃6

1

1ñk−1
1

1

2

2
+

1

8
Cn

1

1∇hñk−1
1

1

2

2
+

1

16
Cn

1

1∇hñk+1
1

1

2

2
. (4.22)

Therefore, a combination of (4.15)-(4.18) and (4.21) leads to

1

1ñk+1
1

1

2

2
−
1

1ñk
1

1

2

2
+ Cn△t

1

1∇hñk+1
1

1

2

2
− 1

4
Cn△t

1

1∇hñk−1
1

1

2

2

≤△t
1

1ñk+1
1

1

2

2
+ C̃4△t

,

1

1p̃k
1

1

2

2
+
1

1p̃k−1
1

1

2

2

-

+ C̃7△t

,

1

1ñk
1

1

2

2
+
1

1ñk−1
1

1

2

2

-

+
1

8
Cn△t

,

∥∇hñk∥22 + ∥∇hñk−1∥22
-

+△t

1

1

1

1

τ
k+ 1

2
n

1

1

1

1

2

2

(4.23)
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with C̃7 = C̃4 + C̃6 + 1.

The discrete energy estimate for the numerical error equation (4.10b) (for p) can be

performed in the same way. The following inequality could be derived in the same manner;

the details are skipped for brevity:

1

1p̃k+1
1

1

2

2
−
1

1p̃k
1

1

2

2
+ Cp△t

1

1∇hp̃k+1
1

1

2

2
− 1

4
Cp△t

1

1∇hp̃k−1
1

1

2

2

≤△t
1

1p̃k+1
1

1

2

2
+ C̃4△t

,

1

1ñk
1

1

2

2
+
1

1ñk−1
1

1

2

2

-

+ C̃7△t

,

1

1p̃k
1

1

2

2
+
1

1p̃k−1
1

1

2

2

-

+
1

8
Cp△t

,

∥∇hp̃k∥22 + ∥∇hp̃k−1∥22
-

+△t

1

1

1

1

τ
k+ 1

2
p

1

1

1

1

2

2

. (4.24)

Finally, a combination of (4.23) and (4.24) leads to

1

1ñk+1
1

1

2

2
−
1

1ñk
1

1

2

2
+
1

1p̃k+1
1

1

2

2
−
1

1p̃k
1

1

2

2
+ Cn△t

1

1∇hñk+1
1

1

2

2
+ Cp△t

1

1∇hp̃k+1
1

1

2

2

≤△t

,

1

1ñk+1
1

1

2

2
+
1

1p̃k+1
1

1

2

2

-

+ C̃8

,

1

1ñk
1

1

2

2
+
1

1p̃k
1

1

2

2
+
1

1ñk−1
1

1

2

2
+
1

1p̃k−1
1

1

2

2

-

+
1

8
Cn△t∥∇hñk∥22 +

3

8
Cn△t∥∇hñk−1∥22 +

1

8
Cp△t∥∇hp̃k∥22

+
3

8
Cp△t∥∇hp̃k−1∥22 +△t

=

1

1

1

1

τ
k+ 1

2
n

1

1

1

1

2

2

+

1

1

1

1

τ
k+ 1

2
p

1

1

1

1

2

2

>

(4.25)

with C̃8 = C(C̃4 + C̃7). Summing over time steps and an application of discrete Gronwall

inequality give

1

1ñk+1
1

1

2

2
+
1

1p̃k+1
1

1

2

2
≤ C̃9(△t2 + h2)2 ∀ 0≤ k ≤ Nk, (4.26)

which is equivalent to

1

1ñk+1
1

1

2
+
1

1p̃k+1
1

1

2
≤ C̃10(△t2+ h2) ∀ 0≤ k ≤ Nk. (4.27)

Recovery of the a-priori bound (4.11). With the help of the ℓ∞(0, T ;ℓ2) error estimate

(4.27) for n and p, we see that the a-priori bound (4.11) is also valid for the numerical

error functions ñ, p̃ at time step tk+1, provided that

△t ≤
#

2C̃10

$− 1
2 , h≤

#

2C̃10

$− 1
2 with C̃10 dependent on T .

This completes the convergence analysis.

Combining the construction (4.2b) for n and P, and the O(h2) consistency (4.5) be-

tween Φ and φe, completes the proof of Theorem 4.1. !
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Figure 1: Evolution of the electrostatic potential φ and concentrations p and n at time T = 0, T = 0.1,
and T = 1.

5. Numerical examples

5.1. Accuracy test

We now test the performance of the proposed numerical method in a two dimensional

setting. The computational domain is chosen as Ω = (−1,1)2, and we consider an asym-

metric 2:1 electrolyte with κ= 1:

ρ f (x , y) =e−100
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Here the fixed charge density ρ f (x , y) approximates two positive and two negative point

charges located in four quadrants using Gaussian functions with small local supports. The

initial data for concentrations are given by

p(0, x , y) = 0.1, n(0, x , y) = 0.2. (5.1)

The initial distribution of electrostatic potential is obtained by solving the Poisson’s equa-

tion with initial concentrations. The homogeneous Neumann boundary conditions (1.4)

are applied in the numerical simulation. Fig. 1 displays the evolution of concentrations
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Table 1: The ℓ2 error and convergence order for the numerical solutions of p, n, and φ with ∆t = h.

h ℓ2 error in p Order ℓ2 error in n Order ℓ2 error in φ Order

0.1 1.5913e-004 - 1.5913e-004 - 1.7003e-004 -

0.05 4.7390e-005 1.7475 4.7390e-005 1.7475 4.4962e-005 1.9190

0.025 1.1904e-005 1.9931 1.1904e-005 1.9931 1.1076e-005 2.0212

0.0125 2.4374e-006 2.2880 2.4374e-006 2.2880 2.4503e-006 2.1764

and the potential at time T = 0, T = 0.1, and T = 1. One can observe that the initial

electrostatic potential is induced by the fixed charges. As time evolves, the mobile ions are

attracted to the oppositely charged fixed charges. Accordingly, the electrostatic potential

at fixed charges gets screened by accumulated mobile ions of opposite signs. Our simula-

tion results have demonstrated that the proposed numerical scheme can effectively solve

problems of physical interest.

To verify the accuracy of the semi-implicit scheme (2.4a)-(2.4e), we numerically solve

the problem using various spatial step sizes h and temporal step sizes ∆t, with ∆t = h.

Table 1 lists the ℓ2 error and convergence order for numerical solutions of p, n, and φ at

time T = 0.5. The ℓ2 numerical errors are obtained by a comparison between the numerical

solution and a reference solution computed with a highly refined mesh. As expected, we

can see that the ℓ2 error decreases robustly as the mesh refines, and the convergence order

is about two for both the concentrations and electrostatic potential.

5.2. Application

To further demonstrate the effectiveness and robustness of the numerical scheme, we

apply the proposed scheme to study a singular perturbation problem when the coefficient

κ in the Poisson’s equation becomes large. We take the same parameters and initial con-

ditions as the previous example, except that κ varies from 1, 50, 100, and 200. We recall

that κ = L2

2λ2
D

. Large values of κ correspond to a relatively short Debye length, comparing

to the physical dimension.

Since zero-flux boundary conditions are used for the Nernst-Planck equations, the total

mass of concentrations is conserved. For large κ values, the boundary layer effect comes

into play and the concentration becomes high and concentrated around the fixed charges.

Fig. 2 displays the electrostatic potential and concentrations at the steady state with a

growing κ. As expected, the potential and concentration become more and more concen-

trated in the vicinity of the four fixed charges. The simulation results illustrate that the

developed scheme is capable of capturing the boundary layer effects.

6. Concluding remarks

In this work, we propose and analyze a second-order accurate, both in time and space,

finite difference numerical scheme for the PNP system. The nonlinear convection terms

are treated in a fully explicit way, so that the unique solvability is automatically assured.
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Figure 2: The electrostatic potential (Left) and the concentration (Right) at the steady state with κ= 1,
κ= 50, κ= 100, and κ= 200.

In addition, a careful application of discrete Fourier analysis results in a discrete Sobolev

embedding from H2
h into W

1,4
h

, which in turns yields a desired bound for the numerical

solution. With the help of such a bound, we are able to derive an optimal rate convergence

analysis for the fully discrete scheme, with second order accuracy both in time and space.

In addition, such a convergence is unconditional, i.e., no scaling law between the time step

size△t and spatial resolution h is needed, since the inverse inequality has been avoided in

the analysis. The numerical results have also demonstrated the robustness, efficiency, and

accuracy of the proposed numerical scheme.

We now discuss several issues and possible further refinements of our work. In this

work, we propose a novel second-order accurate numerical scheme and focus on the anal-

ysis of convergence order. As a matter of fact, the mass conservation, preservation of the

positivity of numerical solutions, and the free-energy decay of the charged system at a dis-

crete level are of great importance to a numerical scheme for the PNP equations. Rigorous



Convergence Analysis for PNP System 625

proof of such desired properties is a challenging task. Some progress has been made in the

literature, cf. [1, 8, 9, 11, 17, 24, 27]. In our numerical tests, we have numerically checked

the positivity of the numerical solutions. It remains for future work to rigorously prove the

desired properties for the proposed numerical scheme.
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