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Abstract

In this paper, we propose and analyze a second order accurate (in both time and space)
numerical scheme for the Poisson-Nernst-Planck-Navier-Stokes system, which describes the ion
electro-diffusion in fluids. In particular, the Poisson-Nernst-Planck equation is reformulated
as a non-constant mobility gradient flow in the Energetic Variational Approach. The marker
and cell finite difference method is chosen as the spatial discretization, which facilitates the
analysis for the fluid part. In the temporal discretization, the mobility function is computed by
a second order extrapolation formula for the sake of unique solvability analysis, while a modified
Crank-Nicolson approximation is applied to the singular logarithmic nonlinear term. Nonlinear
artificial regularization terms are added in the chemical potential part, so that the positivity-
preserving property could be theoretically proved. Meanwhile, a second order accurate, semi-
implicit approximation is applied to the convective term in the PNP evolutionary equation, and
the fluid momentum equation is similarly computed. In addition, an optimal rate convergence
analysis is provided, based on the higher order asymptotic expansion for the numerical solution,
the rough and refined error estimate techniques. The following combined theoretical properties
have been established for the second order accurate numerical method: (i) second order accuracy,
(ii) unique solvability and positivity, (iii) total energy stability, and (iv) optimal rate convergence.
A few numerical results are displayed to validate the theoretical analysis.

Key words: Poisson-Nernst-Planck-Navier-Stokes system, positivity-preserving property, total
energy stability, optimal rate convergence analysis, higher order asymptotic expansion, rough
and refined error estimates
AMS subject classification: 35K35, 35K55, 65M06, 65M12

1 Introduction

The coupled Poisson-Nernst-Planck-Navier-Stokes (PNPNS) system is an important model to de-
scribe the diffusion process of charged particles, originated from bio-electronic application. This
well-known electro-fluid model has been used to study the dynamics of electrically charged fluids,
the motion of ions or molecules and their interactions under the influence of electric fields and the
surrounding fluid. In electro hydrodynamics, the ionic motion with different valences suspended in
a solution is driven by the fluid flow and an electric potential, which results from both an applied
potential on the boundary and the distribution of charges carried by the ions. In addition, ionic
diffusion is driven by the concentration gradients of the ions themselves. Conversely, fluid flow is
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forced by the electrical field created by the ions, which arise frequently in a large number of physi-
cal, biophysical, and industrial processes. For more details of the physical background issues of this
system, we refer the readers to [1, 2, 24,26,28] and the references therein.

Several papers have analyzed the mathematical property of PNPNS system. Based on semigroup
ideas, the existence of a unique smooth local solution for smooth initial data, with non-negativity
preserved for the ion concentrations, was obtained in [18]. In [29], Schmuck proved the global
existence and uniqueness of weak solutions in a two or three dimensional bounded domain, with
blocking boundary condition for the ions and homogeneous Neumann boundary condition for the
electric potential. Besides, Bothe et al. [3] investigated the Robin boundary condition for the electric
potential, and established the global existence and stability in two-dimensional domain. Wang et
al. [33] derived a hydrodynamic model of the compressible conductive fluid, so-called generalized
PNPNS system, and developed a general method to prove that the system is globally asymptotically
stable under small perturbations around a constant equilibrium state. They also obtained an optimal
decay rate of the solution and its derivatives of any order under certain conditions. Constantin
published a series of papers, such as [10, 11], to analyze the global existence of smooth solutions
with different boundary conditions.

Since the ion concentration must be non-negative, it would be very important to develop a
numerical scheme preserving positivity for the ion concentrations. For certain gradient flow models
with a singular energy potential, such as the Flory-Huggins-Cahn-Hilliard equation, some existing
works have been reported to establish the positivity-preserving property of the associated numerical
schemes [5, 6, 8, 22, 27]. Meanwhile, for the PNP system, the corresponding analysis becomes more
challenging, due to the lack of the standard diffusion energy in the variational energetic structure.
Some efforts have been made to deal with this issue. For example, Shen and Xu developed a set
of numerical schemes for the PNP equations in [30], and the numerical schemes are proved to be
mass conservative, uniquely solvable and positivity-preserving. He et al. proposed a positivity-
preserving and free energy dissipative numerical scheme for the PNP system in [16], which could be
linearly solved. Subsequently, the theoretical analysis for this linear scheme was provided in [12].
Moreover, Liu et al. considered the PNP system in the energetic variational formulation and
proposed both the first and second order numerical schemes [19,21], which preserve three theoretical
properties: unique solvability/positivity-preserving, unconditional energy stability, and optimal rate
convergence analysis.

The numerical effort for the PNPNS system turns out to be even more challenging, due to the
highly coupled nature between the PNP evolution and fluid motion. Tsai et al. [31] employed an
artificial compressibility approach in capillary electrophoresis microchips, and tested some injection
systems with different configurations. Prohl and Schmuck [25] used the implicit temporal discretiza-
tion, combined with the finite element spatial approximation, to preserve the non-negativity of the
ions. A projection method without non-negativity preserving was also considered in the work. He
and Sun considered a few finite element schemes for the PNPNS system [17], which preserves the
positivity and/or some form of energy dissipation under certain conditions and specific spatial dis-
cretization. Liu and Xu [23] proposed a few numerical methods, with different accuracy orders,
by combining various time-stepping stencils and the spectral spatial discretization. The proposed
numerical schemes result in several elliptic equations, with time-dependent coefficients, to be solved
at each time step. Among these proposed algorithms, only the first order one has been theoretically
proved to be positivity-preserving. Meanwhile, based on the popular scalar auxiliary variable (SAV)
approach, Zhou and Xu [35] proposed a few first/second-order accurate numerical schemes for the
evolutional PNPNS system, in which the ion positivity is preserved.

Of course, based on the energetic variational approach, any numerical analysis for the PNPNS
system has to face three serious theoretical issues: ion concentration positivity and unique solvabil-
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ity, total energy stability, and optimal rate convergence estimate. In fact, most existing numerical
works for the PNPNS system have addressed one or two theoretical issues, while a numerical design
that combines all three theoretical properties turns out to be even more challenging than that of
the PNP system. In addition, the construction of a second order scheme to preserve these three
theoretical properties would be more difficult. In this article, we propose and analyze a second order
numerical scheme for the PNPNS system, in which all three properties will be theoretically justified.
To facilitate the numerical design, the PNP part is reformulated as a non-constant mobility H−1

gradient flow in the energetic variational approach. The highly nonlinear and singular nature of
the logarithmic energy potential has always been the essential difficulty to design a second order
accurate scheme in time, while preserving the variational energetic structures. In the temporal
discretization for the PNP part, a second order accurate extrapolation is taken to the mobility
function, for the sake of unique solvability. In the chemical potential expansion, a modified Crank-
Nicolson approximation is applied to the singular logarithmic nonlinear term, and such a treatment
leads to a stability estimate in terms of the Flory-Huggins energy. Furthermore, nonlinear artifi-
cial regularization terms are added in the chemical potential expansion, which could facilitate the
positivity-preserving analysis for the ion concentration variables. In the fluid convection and the
convection terms for the ion concentration variables, a second order accurate, semi-implicit method
is used. The coupled source terms in the fluid momentum equation is similarly computed. Mean-
while, the marker and cell (MAC) finite difference spatial discretization is used, which in turn makes
the computed velocity vector divergence-free at a discrete level, so that it is orthogonal to the pres-
sure gradient in the discrete ℓ2 space. This fact will also play a key role in the numerical analysis.
The singular nature of the logarithmic terms, combined with the monotonicity of the numerical
system, enable us to theoretically justify its unique solvability/positivity-preserving property. With
such an established property, an unconditional total energy stability becomes an outcome of a care-
ful energy estimate of the numerical system. In addition, an optimal rate convergence analysis will
also be derived for the proposed scheme, which is accomplished by the higher order asymptotic ex-
pansion for the numerical solution, combined with the rough and refined error estimate techniques.
In the authors’ knowledge, there is first work of second order accurate numerical scheme for the
PNPNS system that preserves all three theoretical properties.

The remainder of this paper is organized as follows. In Section 2, we first describe the PNPNS
system, and its reformulation based on EnVarA method. In Section 3, the second order accu-
rate numerical scheme is constructed, based on the reformulated PNPNS system. The unique
solvability/positivity-preserving property is proved in Section 4, and an unconditional total energy
stability is established in Section 5. Moreover, the optimal rate convergence analysis is provided
in Section 6. A few numerical examples are presented in Section 7 as well, which validates the
robustness of thee proposed scheme. Finally, some concluding remarks are made in Section 8.

2 The governing equation and its energy law

2.1 Dimensional system and the energy law

We consider the dimensionless system and omit the dimensionalization process. The general PNPNS
system with K species of ions in the electrolyte solution is given as follows:

∂cq
∂t

+∇ · (ucq) =
Dq

Pe
∇ · (cq∇µq) , (2.1a)

µq = zqϕ+ ln cq, (2.1b)
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− ϵ2∆ϕ =

K∑
q=1

zqcq, (2.1c)

Re
(∂u
∂t

+ (u · ∇)u
)
+∇ψ = ∆u−

K∑
q=1

zqcq∇ϕ, (2.1d)

∇ · u = 0, (2.1e)

where cq is the concentration of q-th ion, u is the velocity, ϕ is the electric potential, ψ is the
pressure, Pe is the Peclet number, Dq is the diffusion coefficient of q-th ion, µq is the chemical
potential of q-th ion, zq is the valence of q-th ion, ϵ is the dielectric coefficient, and Re is the
Reynolds number. Periodic boundary condition could be taken, for simplicity of analysis. As an
alternate choice, the following physically relevant boundary condition could also be considered, so
that the above system (2.1) becomes self-contained:

∂ncq|Γ = 0, ∂nϕ|Γ = 0, (u · n)|Γ = 0, ∂n(u · τ )|Γ = 0, ∂nψ|Γ = 0. (2.2)

The total energy dissipation property has been derived in an existing work [29].

Theorem 2.1. [29] [Total energy law] The following energy dissipation law is satisfied for system
(2.1):

dEtotal
dt

≤ 0, Etotal :=

∫
Ω

(( K∑
q=1

cq(ln cq − 1) +
ϵ2

2
|∇ϕ|2

)
+
Re

2
|u|2

)
dx. (2.3)

Remark 2.1. For the PNPNS system with a periodic boundary condition, the energy dissipation
law is also valid; the technical details are left to interested readers.

2.2 Reformulated system

For the sake of numerical convenience, we consider the two-particle PNPNS system, namely, p for
positive ion and n for negative ion. Meanwhile, the dimensionless constants will not cause any
essential difficulty in the numerical analysis, so that a uniform value is set for all these constants:
Dq = 1, Pe = 1, ϵ = 1, Re = 1 and zp = 1, zn = −1. In turn, system (2.1) could be equivalently
rewritten as the following simplified form:

∂tp+∇ · (up) = ∇ · (p∇µp) , (2.4a)

∂tn+∇ · (un) = ∇ · (n∇µn) , (2.4b)

µp = ln p+ (−∆)−1 (p− n) , (2.4c)

µn = lnn+ (−∆)−1 (n− p) , (2.4d)

∂tu+ (u · ∇)u+∇ψ = ∆u− p∇µp − n∇µn, (2.4e)

∇ · u = 0. (2.4f)

Meanwhile, either the periodic boundary condition, or the homogeneous physical boundary condi-
tion, could be imposed:

∂np|Γ = 0, ∂nn|Γ = 0, ∂nϕ|Γ = 0, (u · n)|Γ = 0, ∂n(u · τ )|Γ = 0, ∂nψ|Γ = 0. (2.5)

Remark 2.2. System (2.4) is equivalent to the original system (2.1), with an introduction of a new

pressure function ψ̃ = ψ −
K∑
q=1

cq. Such a new variable is physically relevant, since
K∑
q=1

cq could be
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regarded as the osmotic pressure. For the sake of convenience, we omit the ·̃ symbol and still use ψ
to represent the pressure function.

Theorem 2.2. The following energy dissipation law is valid for system (2.4):

dEtotal
dt

≤ 0, Etotal :=

∫
Ω

(
p(ln p− 1) + n(lnn− 1) +

1

2
|∇ϕ|2 + 1

2
|u|2

)
dx. (2.6)

The proof of the above inequality is essentially the same as the one in Theorem 2.1. The technical
details are left to the interested readers.

3 The second order accurate numerical scheme

3.1 The finite difference spatial discretization

The numerical scheme is based on the equivalent reformulation system (2.4). For simplicity of
presentation, we consider a two-dimensional domain Ω = (0, Lx)× (0, Ly), with Lx = Ly = L > 0.
Let N be a positive integer such that h = L/N , which stands for the spatial mesh size. All the scalar
variables, such as ion concentration cq, electric potential ϕ, chemical potential µq and pressure ψ,
are evaluated at the cell-centered mesh points: ((i+1/2)h, (j+1/2)h), at the component-wise level.
In this section, we use f to represent the scalar variable, and v as the vector variable. In turn, the
discrete gradient of f is evaluated at the mesh points (ih, (j +1/2)h), ((i+1/2)h, jh), respectively:

(Dxf)i,j+ 1
2
=
fi+ 1

2
,j+ 1

2
− fi− 1

2
,j+ 1

2

h
, (Dyf)i+ 1

2
,j =

fi+ 1
2
,j+ 1

2
− fi+ 1

2
,j− 1

2

h
. (3.1)

Similarly, the wide-stencil differences for cell centered functions could be introduced as

(D̃xf)i+ 1
2
,j+ 1

2
=
fi+ 3

2
,j+ 1

2
− fi− 1

2
,j+ 1

2

2h
, (D̃yf)i+ 1

2
,j+ 1

2
=
fi+ 1

2
,j+ 3

2
− fi+ 1

2
,j− 1

2

2h
. (3.2)

The five-point Laplacian takes a standard form. Meanwhile, a staggered grid is used for the velocity
field, in which the individual components of a given velocity, say, v = (vx, vy), are defined at the
east-west cell edge points (ih, (j + 1/2)h), and the north-south cell edge points ((i + 1/2)h, jh),
respectively. This staggered grid is also known as the marker and cell (MAC) grid; it was first
proposed in [15] to deal with the incompressible Navier-Stokes equations, and the detailed analyses
have been provided in [13,32], etc.

The discrete divergence of v = (vx, yy)T is defined at the cell center points ((i+1/2)h, (j+1/2)h)
as follows:

(∇h · v)i+1/2,j+1/2 := (Dxv
x)i+1/2,j+1/2 + (Dyv

y)i+1/2,j+1/2 . (3.3)

One key advantage of the MAC grid approach is that the discrete divergence of the velocity vector
will always be identically zero at every cell center point. Such a divergence-free property comes
from the special structure of the MAC grid and assures that the velocity field is orthogonal to the
corresponding pressure gradient at the discrete level; also see reference [13].

For u = (ux, uy)T ,v = (vx, vy)T , evaluated at the staggered mesh points
(
xi, yj+1/2

)
,
(
xi+1/2, yj

)
,

respectively, and the cell centered variable f , the following terms are computed as

u · ∇hv =

(
uxi,j+1/2D̃xv

x
i,j+1/2 +Axyu

y
i,j+1/2D̃yv

x
i,j+1/2

Axyu
x
i+1/2,jD̃xv

y
i+1/2,j + uyi,j+1/2D̃yv

y
i+1/2,j

)
, (3.4a)
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∇h ·
(
vuT

)
=

(
D̃x (u

xvx)i,j+1/2 + D̃y (Axyu
yvx)i,j+1/2

D̃x (Axyu
xvy)i+1/2,j + D̃y (u

yvy)i+1/2,j

)
, (3.4b)

Ahf∇hµ =

 (Dxµ · Axf)i,j+1/2

)
i,j+1/2

(Dyµ · Ayf)i+1/2,j

)
i+1/2,j

 , (3.4c)

∇h · (Ahfu) = Dx (u
xAxf)i+1/2,j+1/2 +Dy (u

yAyf)i+1/2,j+1/2 , (3.4d)

in which the following averaging operators have been employed:

Axyu
x
i+1/2,j =

1

4

(
uxi,j−1/2 + uxi,j+1/2 + uxi+1,j−1/2 + uxi+1,j+1/2

)
, (3.5a)

Axfi,j+1/2 =
1

2

(
fi−1/2,j+1/2 + fi+1/2,j+1/2

)
. (3.5b)

A few other average terms, such as Axyu
y
i,j+1/2,Ayfi+1/2,j , could be defined in the same manner.

Definition 1. For any pair of variables ua, ub which are evaluated at the mesh points (i, j + 1/2),
(such as u,Dxf,Dxµ,Dxp, et cetera.), the discrete ℓ2-inner product is defined by

⟨ua, ub⟩A = h2
N∑
j=1

N∑
i=1

uai,j+1/2u
b
i,j+1/2; (3.6)

for any pair of variables va, vb which are evaluated at the mesh points (i + 1/2, j) (such as
v,Dyf,Dyµ,Dyp, et cetera.), the discrete ℓ2-inner product is defined by

⟨va, vb⟩B = h2
N∑
j=1

N∑
i=1

vai+1/2,jv
b
i+1/2,j ; (3.7)

for any pair of variables fa, f b which are evaluated at the mesh points (i+1/2, j+1/2), the discrete
ℓ2-inner product is defined by

⟨fa, f b⟩C = h2
N∑
j=1

N∑
i=1

fai+1/2,j+1/2f
b
i+1/2,j+1/2. (3.8)

In addition, for two velocity vector u = (ux, uy)T and v = (vx, vy)T , we denote their vector inner
product as

⟨u,v⟩1 = ⟨ux, vx⟩A + ⟨uy, vy⟩B . (3.9)

The associated ℓ2 norms, namely, ∥ · ∥2 norm, can be defined accordingly. It is clear that all the
discrete ℓ2 inner products defined above are second order accurate. In addition to the standard ℓ2

norm, we also introduce the ℓp, 1 ≤ p < ∞, and ℓ∞ norms for a grid function f evaluated at mesh
points (i+ 1/2, j + 1/2):

∥f∥∞ := max
i,j

∣∣fi+1/2,j+1/2

∣∣ , ∥f∥p :=
(
h2

N∑
i,j=1

∣∣fi+1/2,j+1/2

∣∣p ) 1
p
, 1 ≤ p <∞. (3.10)
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Meanwhile, the discrete average is denoted as f := 1
|Ω|⟨f, 1⟩C , for any cell centered function f .

For the convenience of the later analysis, an ⟨·, ·⟩−1,h inner product and ∥ · ∥−1,h norm need to be

introduced, for any φ ∈ C̊Ω := {f | ⟨f, 1⟩C = 0}:

⟨φ1, φ2⟩−1,h = ⟨φ1, (−∆h)
−1φ2⟩C , ∥φ∥−1,h = (⟨φ, (−∆h)

−1(φ)⟩C)
1
2 , (3.11)

where the operator ∆h is equipped with either periodic or discrete homogeneous Neumann boundary
condition.

Lemma 3.1. [4, 6] For two discrete grid vector functions u = (ux, uy) ,v = (vx, vy), where ux, uy

and vx, vy are defined on east-west and north-south respectively, and two cell centered functions
f, g, the following identities are valid, if u,v are implemented with homogeneous Dirichlet boundary
condition and homogeneous Neumann boundary condition is imposed for f and g:

⟨v,u · ∇hv⟩1 +
〈
v,∇h ·

(
vuT

)〉
1
= 0, (3.12a)

⟨u,∇hf⟩1 = 0, if ∇h · u = 0, (3.12b)

−⟨v,∆hv⟩1 = ∥∇hv∥22 , (3.12c)

−⟨f,∆hf⟩C = ∥∇hf∥22 , (3.12d)

−⟨g,∇h · (Ahfu)⟩C = ⟨u,Ahf∇hg⟩1 . (3.12e)

The same conclusion is true if all the variables are equipped with periodic boundary condition.

The following Poincaré-type inequality will be useful in the later analysis.

Proposition 3.1. 1. There are constants C0, C̆0 > 0, independent of h > 0, such that ∥f∥2 ≤
C0∥∇hf∥2, ∥f∥−1,h ≤ C0∥f∥2, ∥f∥2 ≤ C̆0h

−1∥f∥−1,h, for all f ∈ C̊Ω := {f | ⟨f, 1⟩C = 0}.

2. For a velocity vector v, with a discrete no-penetration boundary condition v ·n = 0 on ∂Ω, a
similar Poincaré inequality is also valid: ∥v∥2 ≤ C0 ∥∇hv∥2, with C0 only dependent on Ω.

3.2 The second order accurate numerical scheme

ûm+1 − um

τ
+

1

2

(
ũm+1/2 · ∇hû

m+1/2 +∇h ·
(
ûm+1/2(ũm+1/2)T

))
+∇hψ

m −∆hû
m+1/2

= −Ahp̃
m+1/2∇hµ

m+1/2
p −Ahñ

m+1/2∇hµ
m+1/2
n , (3.13a)

nm+1 − nm

τ
+∇h ·

(
Ahñ

m+1/2ûm+1/2
)
= ∇h ·

(
n̆m+1/2∇hµ

m+1/2
n

)
, (3.13b)

pm+1 − pm

τ
+∇h ·

(
Ahp̃

m+1/2ûm+1/2
)
= ∇h ·

(
p̆m+1/2∇hµ

m+1/2
p

)
, (3.13c)

µm+1/2
n =

nm+1 lnnm+1 − nm lnnm

nm+1 − nm
− 1 + τ ln

nm+1

nm
+ (−∆h)

−1(nm+1/2 − pm+1/2), (3.13d)

µm+1/2
p =

pm+1 ln pm+1 − pm ln pm

pm+1 − pm
− 1 + τ ln

pm+1

pm
+ (−∆h)

−1(pm+1/2 − nm+1/2), (3.13e)

um+1 − ûm+1

τ
+

1

2
∇h(ψ

m+1 − ψm) = 0, (3.13f)

∇h · um+1 = 0, (3.13g)
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where

ũm+1/2 :=
3

2
um − 1

2
um−1, ûm+1/2 :=

1

2
ûm+1 +

1

2
um,

p̃m+1/2 :=
3

2
pm − 1

2
pm−1, ñm+1/2 :=

3

2
nm − 1

2
nm−1,

nm+1/2 :=
1

2

(
nm+1 + nm

)
, pm+1/2 :=

1

2

(
pm+1 + pm

)
,

φ̆
m+1/2
i+1/2,j :=

{
Axφ̃

m+1/2
i+1/2,j , if Axφ̃

m+1/2
i+1/2,j > 0,

((Axφ̃
m+1/2
i+1/2,j)

2 + τ8)1/2, if Axφ̃
m+1/2
i+1/2,j ≤ 0,

(φ = n, p),

φ̆
m+1/2
i,j+1/2 :=

{
Ayφ̃

m+1/2
i,j+1/2, if Ayφ̃

m+1/2
i,j+1/2 > 0,

((Ayφ̃
m+1/2
i,j+1/2)

2 + τ8)1/2, if Ayφ̃
m+1/2
i,j+1/2 ≤ 0,

(φ = n, p),

(3.14)

with either periodic boundary condition, or the discrete physical boundary condition:

(ûm+1 · n)
∣∣
Γ
= 0, (∇h(û

m+1 · τ ) · n)
∣∣
Γ
= 0, um+1 · n

∣∣
Γ
= 0, (∇ψm+1 · n)

∣∣
Γ
= 0,

∂np
m+1

∣∣
Γ
= ∂nn

m+1
∣∣
Γ
= 0, ∂nµ

m+1/2
p

∣∣∣
Γ
= ∂nµ

m+1/2
n

∣∣∣
Γ
= 0, (∇hϕ

m+1 · n)
∣∣
Γ
= 0.

(3.15)

Lemma 3.2. At the initial time step, we could take a backward evaluation of the PDE system to
obtain a locally second order accurate approximation to n−1, p−1 and u−1. In turn, a numerical
implementation of the proposed algorithm (3.13) results in a second order local truncation error at
m = 0.

It is clear that the mass conservation identity is valid for the ion concentration variables:

pm+1 = pm = · · · = p0, nm+1 = nm = · · · = n0. (3.16)

To simplify the notation in the later analysis, the following smooth function is introduced:

Fa(x) :=
G(x)−G(a)

x− a
, G (x) = x lnx, ∀x > 0, for any fixed a > 0, (3.17)

This notation leads to a rewritten form of (3.13d) and (3.13e):

µm+1/2
n =Fnm(nm+1)− Fnm(nm+1)− 1 + τ(lnnm+1 − lnnm)

+ (−∆h)
−1(nm+1/2 − pm+1/2), (3.18a)

µm+1/2
p =Fpm(p

m+1)− Fpm(p
m+1)− 1 + τ(ln pm+1 − ln pm)

+ (−∆h)
−1(pm+1/2 − nm+1/2). (3.18b)

Meanwhile, the following Calculus-style estimates will be frequently used in the later analysis.

Lemma 3.3. [4, 7, 21] Let a > 0 be fixed, then

1. F ′
a(x) =

G′(x)(x− a)− (G(x)−G(a))

(x− a)2
≥ 0, for any x > 0.

2. Fa(x) is an increasing function of x, and Fa(x) ≤ Fa(a) = ln a+ 1 for any 0 < x < a.
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4 The unique solvability and positivity-preserving property

Since the implicit part of the numerical scheme (3.13) corresponds to a monotone, singular, while
non-symmetric nonlinear system, a four-step process is needed to establish its unique solvability
and positivity preserving analysis.

Step 1: A connection between ûm+1 and (µ
m+1/2
n , µ

m+1/2
p ) is needed. The following equivalent

form of (3.13a) is observed:

2ûm+1/2 − 2um

τ
+

1

2

(
ũm+1/2 · ∇hû

m+1/2 +∇h ·
(
ûm+1/2(ũm+1/2)T

))
+∇hψ

m −∆hû
m+1/2

= −Ahp̃
m+1/2∇hµ

m+1/2
p −Ahñ

m+1/2∇hµ
m+1/2
n , (4.1a)

ûm+1 = 2ûm+1/2 − um. (4.1b)

Of course, for any given field (µn, µp), a velocity vector v = LNSh (µn, µp) could be defined as the
unique solution of the following discrete convection-diffusion equation:

2v − 2um

τ
+

1

2

(
ũm+1/2 · ∇hv +∇h · (v(ũm+1/2)T )

)
+∇hψ

m −∆hv

= −Ahp̃
m+1/2∇hµ

m+1/2
p −Ahñ

m+1/2∇hµ
m+1/2
n .

(4.2)

Subsequently, the intermediate velocity vector is obtained as ûm+1/2 = LNSh (µ
m+1/2
n , µ

m+1/2
p ), com-

bined with the formula (4.1b) for ûm+1. In addition, um+1 becomes the discrete Helmholtz projec-
tion of ûm+1 into divergence-free space, as implied by (3.13f), (3.13g).

Step 2: A connection between (nm+1, pm+1) and (µ
m+1/2
n , µ

m+1/2
p ) is needed in the further

analysis. A substitution of ûm+1/2 = LNSh (µ
m+1/2
n , µ

m+1/2
p ) into (3.13b) and (3.13c) gives

nm+1 − nm

τ
+∇h ·

(
Ahñ

m+1/2LNSh (µm+1/2
n , µm+1/2

p )
)
= ∇h ·

(
n̆m+1/2∇hµ

m+1/2
n

)
, (4.3a)

pm+1 − pm

τ
+∇h ·

(
Ahp̃

m+1/2LNSh (µm+1/2
n , µm+1/2

p )
)
= ∇h ·

(
p̆m+1/2∇hµ

m+1/2
p

)
. (4.3b)

In turn, we define µ = (µn, µp), c = (n, p) and LNPh : 2(RN2
)2 → 2(RN2

)2 as

LPh (µp) = ∇h ·
(
Ahp̃

m+1/2LNSh (µ)
)
−∇h ·

(
p̆m+1/2∇hµp

)
, (4.4a)

LNh (µn) = ∇h ·
(
Ahñ

m+1/2LNSh (µ)
)
−∇h ·

(
n̆m+1/2∇hµn

)
. (4.4b)

To simplify the notation, the above system could be rewritten as

LNPh (µ) = ∇h ·
(
Ahc̃

m+1/2LNSh (µ)
)
−∇h ·

(
c̆m+1/2∇hµ

)
. (4.5)

Of course, LNPh is a linear operator, with either periodic or homogeneous Neumann boundary
condition. Therefore, an equivalent representation of (4.3) is available:

cm+1 − cm

τ
= −LNPh (µm+1/2). (4.6)

Step 3: To facilitate the theoretical analysis, we have to prove that the operator LNPh is
invertible, so that (LNPh )−1 is well defined. Following similar ideas in [6], we are able to derive the
next two properties of LNPh .
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Lemma 4.1. The linear operator LNPh preserves the monotonicity estimate:

⟨LNPh (µ1)− LNPh (µ2),µ1 − µ2⟩C ≥
∥∥∥√c̆m+1/2∇h (µ1 − µ2)

∥∥∥2
2
≥ 0, (4.7)

for any µ1,µ2. In addition, the equality is realized if and only if µ1 = µ2, if we require µ1 = µ2 = 0.
As a result, the operator LNPh is invertible.

Proof. Given µ1, µ2, a difference function is defined as µD := µ1 − µ2. Since LNPh is a linear
operator, the following expansion becomes available:

LNPh (µ1)− LNPh (µ2) = LNPh (µD) = ∇h ·
(
Ahc̃

m+1/2LNSh (µD)
)
−∇h ·

(
c̆m+1/2∇hµD

)
. (4.8)

Taking a discrete inner product with (4.8) by µD leads to〈
LNPh (µD) ,µD

〉
C
=−

〈
Ahc̃

m+1/2LNSh (µD) ,∇hµD

〉
1
+
〈
c̆m+1/2∇hµD,∇hµD

〉
1

=−
〈
Ahc̃

m+1/2∇hµD,LNSh (µD)
〉
1
+
〈
c̆m+1/2∇hµD,∇hµD

〉
1
.

(4.9)

In addition, we define vj := LNSh (µj), j = 1, 2, and vD := v1 − v2 = LNSh (uD), based on the
linearity of LNSh . Meanwhile, the definition of LNSh in (4.2) indicates that

2vD
τ

+
1

2

(
ũm+1/2 · ∇hvD +∇h ·

(
vD(ũ

m+1/2)T
))

−∆hvD

+Ahp̃
m+1/2∇hµ

m+1/2
p,D +Ahñ

m+1/2∇hµ
m+1/2
n,D = 0.

(4.10)

Of course, the non-homogeneous source terms, namely um/τ and ∇hψ
m, disappear in this difference

equation. Therefore, taking a discrete inner product with (4.10) by vD = LNSh (µD) yields

2

τ
∥vD∥22 + ∥∇hvD∥22 +

〈
Ahc̃

m+1/2∇hµD,LNSh (µD)
〉
1
= 0, (4.11)

in which the following identities have been used:

⟨ũm+1/2 · ∇hvD +∇h · (vD(ũm+1/2)T ),vD⟩1 = 0, (4.12a)

− (vD,∆hvD) = ∥∇hvD∥22 . (4.12b)

A combination of (4.11) and (4.9) results in

〈
LNPh (µD) ,µD

〉
C
=

2

τ
∥ṽ∥22 + ∥∇hṽ∥22 +

∥∥∥√c̆m+1/2∇hµD

∥∥∥2
2
, (4.13)

or equivalently,〈
LNPh (µ1)− LNPh (µ2) ,µ1 − µ2

〉
C
=
〈
LNPh (µD) ,µD

〉
C
≥
∥∥∥√c̆m+1/2∇hµD

∥∥∥2
2
≥ 0, (4.14)

so that (4.7) has been proved. Meanwhile, it is clear that the equality is valid if and only if µD ≡ 0,
i.e., µ1 = µ2, under the requirement that µ1 = µ2 = 0. The proof of Lemma 4.1 is completed.

It is clear that the inverse operator (LNPh )−1 also maps 2RN2
into 2RN2

, since the linear operator
LNPh does. As a direct consequence of Lemma 4.1, the following monotonicity analysis is available.
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Proposition 4.1. The linear operator
(
LNPh

)−1
also preserves the monotonicity estimate:

⟨(LNPh )−1(c1)− (LNPh )−1(c2), c1 − c2⟩C ≥
K∑
q=1

∥∥∥√Ahcmq ∇h(µ
(1)
q − µ(2)q )

∥∥∥2
2

≥ C2
1∥(LNPh )−1(c1 − c2)∥22,

(4.15)

for any c1, c2, with c1 = c2 = 0. In fact, the constant C1 is associated with the minimum of cm,
and the discrete Poincaré regularity, ∥∇hf∥w ≥ C−1

0 ∥f∥2, for any f with f = 0, as indicated by
Proposition 3.1. In addition, the equality is valid if and only if c1 = c2.

Proof. We denote µ =
(
LNPh

)−1
(c), an equivalent statement of c = LNPh (µ). Therefore, an

application of (4.7) implies that〈
(LNPh )−1(c1)− (LNPh )−1(c2), c1 − c2

〉
C
=
〈
LNPh (µ1)− LNPh (µ2),µ1 − µ2

〉
C

≥ ∥
√
c̆m+1/2∇hµD∥22 ≥ C2

1∥µ1 − µ2∥22
= C2

1∥(LNPh )−1(c1 − c2)∥22 ≥ 0,

(4.16)

with C1 = (min c̆m+1/2)
1
2C−1

0 . Of course, the equality is valid if and only if c1 = c2. The proof of
Proposition 4.1 is finished.

Based on the construction (4.2) and the definition (4.5) for LNPh , the following homogenization
formula will be helpful in the later analysis:

LNPh (µ) = LNPh,1 (µ) + LNPh,2 , LNPh,2 = ∇h ·
(
Ahc̃

m+1/2(um − τ

2
∇hψ

m)
)
, for any µ = 0, (4.17)

in which LNPh,1 corresponds to a homogeneous linear operator. In more details, such a homogeneous

operator satisfies the linearity property, in comparison with the operator LNSh given by (4.2). More-
over, the following ∥ · ∥2 bound could always be assumed for the non-homogeneous source term,
dependent on the numerical solution at the previous time steps:∥∥LNPh,2 ∥∥2 ≤ A∗. (4.18)

Proposition 4.2. For any c with c = 0, the following ∥ · ∥2 bound is valid:

∥(LNPh )−1(c)∥2 ≤ C−2
1 (∥c∥2 +A∗). (4.19)

Proof. We denote µ =
(
LNPh

)−1
(c), for any c with c = 0. The homogenization decomposition

(4.17) implies that LNPh,1 (µ) = cD := c−LNPh,2 . On the other hand, the monotonicity estimate (4.7)
indicates that 〈

LNPh,1 (µ) ,µ
〉
C
≥
∥∥∥√c̆m+1/2∇hµ

∥∥∥2
2
≥ C2

1 ∥µ∥
2
2 , so that (4.20a)

∥µ∥22 ≤ C−2
1

〈
LNPh,1 (µ) ,µ

〉
C
≤ C−2

1

∥∥LNPh,1 (µ)
∥∥
2
· ∥µ∥2 , (4.20b)

∥µ∥2 ≤ C−2
1

∥∥LNPh,1 (µ)
∥∥
2
, (4.20c)

with an application of Cauchy inequality. Therefore, the following inequality is available:∥∥∥(LNPh )−1
(c)
∥∥∥
2
= ∥µ∥2 ≤ C−2

1

∥∥LNPh,1 (µ)
∥∥
2
= C−2

1

∥∥c− LNPh,2
∥∥
2
≤ C−2

1 (∥c∥2 + ∥LNPh,1 ∥2), (4.21)

which is exactly (4.19). The proof of Proposition 4.2 is completed.
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Based on (4.3b), (4.3a) and (4.5), (4.6), we conclude that the numerical solution (3.13b) - (3.13f)
could be equivalently represented as the following nonlinear system, in terms of cm+1 :

µm+1 +
1

τ

(
LNPh

)−1 (
cm+1 − cm

)
=
cm+1 ln cm+1 − cm ln cm

cm+1 − cm
− 1 + τ ln

cm+1

cm
+ (−∆h)

−1
(
cm+1/2 −Mcm+1/2

)
+

1

τ

(
LNPh

)−1 (
cm+1 − cm

)
= 0, M =

(
0 1
1 0

)
.

(4.22)

Step 4: We are going to prove the existence of cm+1 in (4.22). Because of the fact that
the operator (LNPh )−1 is non-symmetric, a direct application of the discrete energy minimization
technique does not work out. Moreover, the Browder-Minty lemma is not directly available to
this system, either, which comes from the singularity of ln c as c → 0. To overcome these subtle
difficulties, we have to construct a fixed point sequence to justify the analysis; similar ideas have
been reported in [4, 6] to deal with Flory-Huggins-Cahn-Hilliard-Navier-Stokes system.

Define the nonlinear iteration, at the (k + 1)-th stage:

Gh(n(k+1)) :=Fnm(n(k+1))− 1 + τ(lnn(k+1) − lnnm)

+ (−∆h)
−1
(1
2
(n(k+1) + nm)− 1

2
(p(k+1) + pm)

)
+An(k+1)

=− 1

τ
(LNPh )−1(n(k) − nm) +An(k), with n(0) = nm, (4.23a)

Gh(p(k+1)) :=Fpm(p
(k+1))− 1 + τ(ln p(k+1) − ln pm)

+ (−∆h)
−1
(1
2
(p(k+1) + pm)− 1

2
(n(k+1) + nm)

)
+Ap(k+1)

=− 1

τ
(LNPh )−1(p(k) − pm) +Ap(k), with p(0) = pm. (4.23b)

The unique solvability and positivity-preserving property of the numerical system (4.23), at each
iteration stage, is stated in following proposition. The proof follows similar ideas as in [8], and the
technical details are skipped for simplicity of presentation.

Proposition 4.3. Given cell-centered functions pm, pm−1, p(k) and nm, nm−1, n(k), with a pos-
itivity condition pm, pm−1, nm, nm−1 > 0, and pm = pm−1 = p(k) = β0 < 1, nm = nm−1 =
n(k) = β0 < 1, then there exists a unique solution n(k+1) to (4.23a) and p(k+1) to (4.23b), with

p(k+1) > 0, n(k+1) > 0, at a point-wise level, and p(k+1) = n(k+1) = β0. Meanwhile, by the fact
that pm, pm−1, nm, nm−1 are discrete variables, there is 0 < δm−1, δm, δ(k) < 1/2, such that

pm, nm ≥ δm, p
m−1, nm−1 ≥ δm−1, p

(k), n(k) ≥ δ(k). In addition, p(k+1) and n(k+1) preserves the

estimate p(k+1), n(k+1) ≥ δ(k+1), where δ(k+1) = min(1/2, δ̂) and δ̂ satisfies the following equality:

τ(ln δ̂ − lnβ0) + 2τ | ln δm|+ 1− 2(G(β0)−G(δm))

β0 − δm
+ C∗ = 0, (4.24)

with C∗ = (τ−1C−2
1 h−

d
2 + C0)(max(∥n(k) − nm∥2, ∥p(k) − pm∥2) +A∗) +Aβ0|Ω|h−2.

The main result of this section is stated below.

Theorem 4.1. Given cell-centered functions nm, nm−1, pm, pm−1 > 0, at a point-wise level, and
nm = nm−1 = pm = pm−1 = β0, then there exists the unique cell-centered solution nm+1 and pm+1

to (3.13), with nm+1, pm+1 > 0, at a point-wise level, and nm+1 = pm+1 = β0.
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Proof. With n(0) = nm, p(0) = pm, the iteration solution generated by (4.23) satisfies n(1), p(1) ≥
δ(1) = min(12 , δ̂(1)), where δ̂(1) satisfies equality (4.24). In more details, the following inequality is
observed

C∗ =(τ−1C−2
1 h−

d
2 + C0)(max(∥n(k) − nm∥2, ∥p(k) − pm∥2) +A∗) +Aβ0|Ω|h−2

≤(τ−1C−2
1 h−

d
2 + C0)(2Mh|Ω|

1
2 +A∗) +Aβ0|Ω|h−2 =: Ĉ∗, Mh = h−2β0.

(4.25)

Notice that ∥nm∥∞, ∥pm∥∞, ∥n(k)∥∞, ∥p(k)∥∞ ≤ Mh, for any k ≥ 0, as long as these numerical
solutions stay positive. Subsequently, we are able to replace C∗ by Ĉ∗, and obtain a modified
equality of (4.24), so that δ̂ becomes a constant independent of the iteration stage k. Therefore,
if the sequence generated by (4.23) has a limit, denoted as (nm+1, pn+1), its lower bound has to
satisfy (4.24), with C∗ replaced by Ĉ∗, since the later one is independent of iteration stage k.

Next, we have to prove that Gh is a contraction mapping, so that the existence analysis could
be derived by taking k → +∞ on both sides of (4.23a) and (4.23b). To perform such an analysis,
the difference function between two consecutive iteration stages is defined as

ζ(k)n := n(k) − n(k−1), ζ(k)p := p(k) − p(k−1), for k ≥ 1. (4.26)

By the fact that n(k) = n(k−1) = p(k) = p(k−1) = β0, we immediately get ζ
(k)
n = 0 and ζ

(k)
p = 0.

Taking a difference of (4.23a) and (4.23b), between the kth and (k + 1)st solutions, yields

Gh(n(k+1))− Gh(n(k))
=Fnm(n(k+1))− Fnm(n(k)) + τ(lnn(k+1) − lnn(k)) +Aζ(k+1)

n + (−∆h)
−1ζ(k+1)

n

=− 1

τ
(LNPh )−1(ζ(k)n ) +Aζ(k)n , (4.27a)

Gh(p(k+1))− Gh(p(k))
=Fpm(p

(k+1))− Fpm(p
(k)) + τ(ln p(k+1) − ln p(k)) +Aζ(k+1)

p + (−∆h)
−1ζ(k+1)

p

=− 1

τ
(LNPh )−1(ζ(k)p ) +Aζ(k)p . (4.27b)

Taking a discrete inner product with (4.27a) and (4.27b), by ζ
(k+1)
n and ζ

(k+1)
p separately, gives〈

Fnm(n(k+1))− Fnm(n(k)), ζ(k+1)
n

〉
C
+ τ

〈
lnn(k+1) − lnn(k), ζ(k+1)

n

〉
C
+A∥ζ(k+1)

n ∥22

+ ∥ζ(k+1)
n ∥2−1,h = −1

τ
⟨(LNPh )−1(ζ(k)n ), ζ(k+1)

n ⟩C +A⟨ζ(k)n , ζ(k+1)
n ⟩C , (4.28a)〈

Fpm(p
(k+1))− Fpm(p

(k)), ζ(k+1)
p

〉
C
+ τ

〈
ln p(k+1) − ln p(k), ζ(k+1)

p

〉
C
+A∥ζ(k+1)

p ∥22

+ ∥ζ(k+1)
p ∥2−1,h = −1

τ
⟨(LNPh )−1ζ(k)p ), ζ(k+1)

p ⟩C +A⟨ζ(k)p , ζ(k+1)
p ⟩C . (4.28b)

As an application of Lemma 3.3, combined with the monotonicity of the logarithmic function, it is
clear that the first two terms of (4.28a) and (4.28b) have to be non-negative:〈

Fpm(p
(k+1))− Fpm(p

(k)), ζ(k+1)
p

〉
C
≥ 0,

〈
Fnm(n(k+1)− Fnm(n(k)), ζ(k+1)

n

〉
C
≥ 0, (4.29a)

⟨ln p(k+1) − ln p(k), ζ(k+1)
p ⟩C ≥ 0, ⟨lnn(k+1) − lnn(k), ζ(k+1)

n ⟩C ≥ 0. (4.29b)

In terms of the iteration relaxation, an application of triangular equality reveals that

⟨ζ(k+1)
n , ζ(k+1)

n − ζ(k)n ⟩C =
1

2

(
∥ζ(k+1)
n ∥22 − ∥ζ(k)n ∥22 + ∥ζ(k+1)

n − ζ(k)n ∥22
)
, (4.30a)
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⟨ζ(k+1)
p , ζ(k+1)

p − ζ(k)p ⟩C =
1

2

(
∥ζ(k+1)
p ∥22 − ∥ζ(m)

p ∥22 + ∥ζ(k+1)
p − ζ(k)p ∥22

)
. (4.30b)

Regarding the two electronic potential diffusion terms, an application of inverse inequality in Propo-
sition 3.1 implies that

∥ζ(k+1)
n ∥2−1,h ≥ C̆−2

0 h2∥ζ(k+1)
n ∥22, ∥ζ(k+1)

p ∥2−1,h ≥ C̆−2
0 h2∥ζ(k+1)

p ∥22. (4.31)

The right hand side terms of (4.28a) and (4.28b) are related to the asymmetric operator
(
LNPh

)−1
.

The following bounds could be derived:

⟨(LNPh )−1(ζ(k)n ), ζ(k+1)
n ⟩C = ⟨(LNPh )−1(ζ(k)n ), ζ(k)n ⟩C + ⟨(LNPh )−1(ζ(k)n , ζ(k+1)

n − ζ(k)n ⟩C
≥ ⟨(LNPh )−1(ζ(k)n ), ζ(k+1)

n − ζ(k)n ⟩C
≥ −∥(LNPh )−1(ζ(k)n )∥2 · ∥ζ(k+1)

n − ζ(k)n ∥2
≥ −C−2

1 ∥ζ(k)n ∥2 · ∥ζ(k+1)
n − ζ(k)n ∥2

≥ −1

2
C̆−2
0 τh2∥ζ(k)n ∥22 −

C̆2
0C

4
1

2τh2
∥ζ(k+1)
n − ζ(k)n ∥22, (4.32a)

⟨(LNPh )−1(ζ(k)p ), ζ(k+1)
p ⟩C ≥ −1

2
C̆−2
0 τh2∥ζ(k)p ∥22 −

C̆2
0C

4
1

2τh2
∥ζ(k+1)
p − ζ(k)p ∥22, (similarly). (4.32b)

Notice that the inequality used in the fourth step, ∥(LNPh )−1(ζ
(k)
n )∥2 ≤ C−2

1 ∥ζ(k)n ∥2, comes from
estimate (4.19) in Proposition 4.2, combined with the fact that all the non-homogeneous parts have
been cancelled. Therefore, a substitution of (4.29)-(4.32) into (4.28) results in

(
A

2
+ C̆−2

0 h2)∥ζ(k+1)
n ∥22 +

A

2
∥ζ(k+1)
n − ζ(k)n ∥22 ≤ (

A

2
+

1

2
C̆−2
0 h2)∥ζ(k)n ∥22 +

C̆2
0C

4
1

2τ2h2
∥ζ(k+1)
n − ζ(k)n ∥22,

(
A

2
+ C̆−2

0 h2)∥ζ(k+1)
p ∥22 +

A

2
∥ζ(k+1)
p − ζ(k)p ∥22 ≤ (

A

2
+

1

2
C̆−2
0 h2)∥ζ(k)p ∥22 +

C̆2
0C

4
1

2τ2h2
∥ζ(k+1)
p − ζ(k)p ∥22.

(4.33)
As a result, by taking A ≥ A0 := C̆2

0C
4
1τ

−2h−2, a constant that may depend on τ , h and Ω, and
setting B0 =

A
2 + C̆−2

0 h2, B1 =
A
2 + 1

2 C̆
−2
0 h2, we arrive at the following inequality:

B0∥ζ(k+1)
n ∥22 ≤ B1∥ζ(k)n ∥22, B0∥ζ(k+1)

p ∥22 ≤ B1∥ζ(k)p ∥22. (4.34)

Consequently, the nonlinear iteration (4.23) is guaranteed to be a contraction mapping, due to the
fact that B0 > B1. This finishes the proof of Theorem 4.1.

5 Total energy stability analysis

In the finite difference setting, the discrete energy is defined as

Eh(n, p) := ⟨n(lnn− 1) + p(ln p− 1), 1⟩C +
1

2
∥n− p∥2−1,h, Eh,total(n, p,u) := Eh(n, p) +

1

2
∥u∥22.

(5.1)
The total energy dissipation law is stated in the following theorem.

Theorem 5.1. The following inequality is valid for the numerical solution of (3.13), for any m ≥ 0:

Ẽh
(
nm+1, pm+1,um+1, ψm+1

)
− Ẽh (n

m, pm,um, ψm)

=− τ∥∇h
¯̂um+1/2∥22 − τ([n̆m+1/2∇hµ

m+1/2
n ,∇hµ

m+1/2
n ] + [p̆m+1/2∇hµ

m+1/2
p ,∇hµ

m+1/2
p ]),

with Ẽh(n
m+1, pm+1,um+1, ψm+1) = Eh,total(n

m+1, pm+1,um+1) +
τ2

8
∥∇hψ

m+1∥22.

(5.2)
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Proof. A discrete inner product with (3.13f) by ûm+1/2 = 1
2(û

m+1 + um) leads to

∥ûm+1 ∥22 − ∥um∥22
2τ

+ ⟨∇hψ
m, ûm+1/2⟩1 + ∥∇hû

m+1/2∥22

+ ⟨Ahp̃
m+1/2∇hµ

m+1/2
p , ûm+1/2⟩1 − ⟨Ahñ

m+1/2∇hµ
m+1/2
n , ûm+1/2⟩1 = 0,

(5.3)

with an application of the summation-by-parts formula (3.12a):

⟨ûm+1/2, ũm+1/2 · ∇hû
m+1/2 +∇h · (ûm+1/2(ũm+1/2)T )⟩1 = 0. (5.4)

Meanwhile, based on the summation by part formula (3.12b), a discrete inner product with (3.13c)
by um+1 gives

∥um+1∥22 − ∥ûm+1∥22 + ∥um+1 − ûm+1∥22

=∥um+1∥22 − ∥ ¯̂um+1/2∥22 +
1

4
τ2∥∇h(ψ

m+1 − ψm)∥22 = 0.
(5.5)

Subsequently, a combination of (5.3) and (5.5) yields

∥um+1∥22 − ∥um∥22
2τ

+ ⟨∇hψ
m, ûm+1/2⟩1 +

1

8
τ∥∇h(ψ

m+1 − ψm)∥22 + ∥∇hû
m+1/2∥22

+ ⟨Ahp̃
m+1/2∇hµ

m+1/2
p , ûm+1/2⟩1 − ⟨Ahñ

m+1/2∇hµ
m+1/2
n , ûm+1/2⟩1 = 0.

(5.6)

Regarding the term associated with the pressure gradient, ⟨∇hψ
m, ûm+1/2⟩1, we begin with the

identity, ∇h · ûm+1 = τ
2∆h(ψ

m+1 − ψm), which comes from (3.13c) and (3.13g). Then we get

⟨∇hψ
m, ûm+1/2⟩1 = −⟨ψm,∇h · ûm+1/2⟩C = −1

2
⟨ψm,∇h · ûm+1⟩C

= −1

4
τ⟨ψm,∆h(ψ

m+1 − ψm)⟩C =
1

4
τ⟨∇hψ

m,∇h(ψ
m+1 − ψm)⟩1

=
τ

8
(∥∇hψ

m+1∥22 − ∥∇hψ
m∥22 − ∥∇h(ψ

m+1 − ψm)∥22).

(5.7)

In turn, a substitution of (5.7) into (5.6) gives

∥um+1∥22 − ∥um∥22
2τ

+
τ

8
(∥∇hψ

m+1∥22 − ∥∇hψ
m ∥22) + ∥∇hû

m+1/2∥22

+ ⟨Ahp̃
m+1/2∇hµ

m+1/2
p , ûm+1/2⟩1 + ⟨Ahñ

m+1/2∇hµ
m+1/2
n , ûm+1/2⟩1 = 0.

(5.8)

Meanwhile, taking inner product with (3.13b) and (3.13c) by τµ
m+1/2
n and τµ

m+1/2
p respectively,

we see that

⟨nm+1 − nm, µm+1/2
n ⟩C + ⟨pm+1 − pm, µm+1/2

p ⟩C
− τ⟨Ahñ

m+1/2∇hµ
m+1/2
n , ûm+1/2⟩C − τ⟨Ahp̃

m+1/2∇hµ
m+1/2
p , ûm+1/2⟩C

+ τ([n̆m+1/2∇hµ
m+1/2
n ,∇hµ

m+1/2
n ] + [p̆m+1/2∇hµ

m+1/2
p ,∇hµ

m+1/2
p ]) = 0.

(5.9)

On the other hand, the following equalities and inequalities are observed:

⟨nm+1 − nm, Fnm(nm+1)⟩C = ⟨nm+1 lnnm+1, 1⟩C − ⟨nm lnnm, 1⟩C , (5.10a)

⟨pm+1 − pm, Fpm(p
m+1)⟩C = ⟨pm+1 ln pm+1, 1⟩C − ⟨pm ln pm, 1⟩C , (5.10b)

⟨nm+1 − nm, (−∆h)
−1(nm+1/2 − pm+1/2)⟩C + ⟨pm+1 − pm, (−∆h)

−1(pm+1/2 − nm+1/2)⟩C
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=
1

2
(∥nm+1 − pm+1∥2−1,h − ∥nm − pm∥2−1,h), (5.10c)

⟨nm+1 − nm, lnnm+1 − lnnm⟩C ≥ 0, ⟨pm+1 − pm, ln pm+1 − ln pm⟩C ≥ 0. (5.11)

Consequently, a substitution of (5.10) and (5.11) into (5.9), combined with (5.8), leads to the
following estimate:

⟨nm+1(lnnm+1 − 1), 1⟩C − ⟨nm(lnnm − 1), 1⟩C + ⟨pm+1(ln pm+1 − 1), 1⟩C

− ⟨pm(ln pm − 1), 1⟩C +
1

2
(∥nm+1 − pm+1∥2−1,h − ∥nm − pm∥2−1,h) +

1

2
(∥um+1∥22 − ∥um∥22)

+
τ2

8
(∥∇hψ

m+1∥22 − ∥∇hψ
m∥22) + τ∥∇hû

m+1/2∥22

+ τ([n̆m+1/2∇hµ
m+1/2
n ,∇hµ

m+1/2
n ] + [p̆m+1/2∇hµ

m+1/2
p ,∇hµ

m+1/2
p ]) = 0,

(5.12)

in which the mass conservation identity (3.16) has been used. The proof of Theorem 5.1 is finished.

Remark 5.1. The modified discrete total energy functional, namely Ẽh(n
m+1, pm+1,um+1, ψm+1)

defined in (5.2), is composed of the original version of the discrete total energy introduced in (5.1)

(evaluated at the time step tm+1), combined with a numerical correction term τ2

8 ∥∇hψ
m+1∥22. In fact,

such a numerical correction term comes from the decoupled Stokes solver, and clearly it is of order
O(τ2). Moreover, the discrete total energy functional (5.1) turns out to be an O(h2) approximation
to the continuous version of the total energy defined in (2.6), since the discrete inner product has
been proved to be an O(h2) approximation to its continuous version. A combination of these two
arguments reveals that, the modified discrete total energy functional (given by (5.2)) is an O(τ2+h2)
approximation to the continuous version of the total energy defined in (2.6).

Meanwhile, since the finite difference algorithm computes the numerical solution only at the
numerical grid points, the original version of the discrete total energy in (5.1) would attract the
most attentions in the numerical analysis. Theoretically speaking, the dissipation property of the
modified discrete total energy functional, as proved in Theorem 5.1, does not ensure the dissipation
of the original version defined in (5.1). On the other hand, since the difference between the modified
and the original versions is of O(τ2), the dissipation of the original discrete total energy (5.1) has
been observed in all the numerical examples reported in this article, as will be demonstrated in the
later section, while the theoretical analysis only ensures the dissipation of the modified discrete total
energy. In addition, although the dissipation of the original discrete total energy is not theoretically
available, we are able to derive its uniform bound in time:

Eh,total(n
m+1, pm+1,um+1) ≤Ẽh(nm+1, pm+1,um+1, ψm+1) ≤ Ẽh(n

m, pm,um, ψm) ≤ ...

≤Ẽh(n0, p0,u0, ψ0) = Eh,total(n
0, p0,u0) +

τ2

8
∥∇hψ

0∥22 := C̃0,
(5.13)

for any m ≥ 0. Meanwhile, because of the mass conservation identity, n = p = β0, we observe the
following estimates:

n lnn ≥ n− e− e−1, so that ⟨n lnn, 1⟩C ≥ ∥n∥1 − (e+ e−1)|Ω|, (5.14)

⟨p ln p, 1⟩C ≥ ∥p∥1 − (e+ e−1)|Ω|, (similar argument), (5.15)

Eh(n, p) = ⟨n lnn+ p ln p, 1⟩C − |Ω|(n+ p) = ⟨n lnn+ p ln p, 1⟩C − 2β0|Ω|
≥ ∥n∥1 + ∥p∥1 − 2(e+ e−1 + β0)|Ω|. (5.16)

16



In particular, inequality (5.14) comes from the fact that x lnx ≥ −e−1 ≥ x − e − e−1 for any
0 < x < e, and x lnx ≥ x for any x ≥ e. In turn, a combination of (5.13) and (5.16) leads to

Eh(n
m, pm)+

1

2
∥um∥22 ≤ C̃0, so that ∥nm∥1+∥pm∥1−2(e+e−1+β0)|Ω|+

1

2
∥um∥22 ≤ C̃0, (5.17)

for any m ≥ 1, which in turn yields the following functional bounds for the numerical solution:

∥nm∥1, ∥pm∥1 ≤ C̃0+2(e+e−1+β0)|Ω|, ∥um∥2 ≤
(
2C̃0+4(e+e−1+β0)|Ω|

) 1
2
, ∀m ≥ 1. (5.18)

In addition, it is observed that the uniform-in-time functional bounds (5.18) for the numerical
solution, namely the discrete ∥ · ∥1 norm for the ion concentration variables and the discrete ∥ · ∥2
norm for the velocity variable, turn out to be very weak. These functional bounds are not sufficient
in the optimal rate convergence analysis. To overcome this difficulty, a higher order consistency
analysis via an asymptotic expansion is needed, and the inverse inequality has to be applied to
obtain the ∥ · ∥∞ and the W∞

h bounds of the numerical solution; see the details in the next section.

6 Optimal rate convergence analysis

In this section we present the convergence analysis. Denote (N,P,Φ,U,Ψ) as the exact solution for
the PNPNS system (2.4). With sufficiently regular initial data, the exact solution is assumed to be
of the following regularity class:

N,P,U,Ψ ∈ R := H6 (0, T ;Cper(Ω)) ∩H5
(
0, T ;C2

per(Ω)
)
∩ L∞ (0, T ;C6

per(Ω)
)
. (6.1)

Moreover, a separation property is assumed for the exact ion concentration variables:

N ≥ δ, P ≥ δ, for some δ > 0, (6.2)

at a point-wise level, for all t ∈ [0, T ]. For the convenience of the ∥·∥−1,h error estimate, we introduce
the Fourier projection of the exact solution into BK , the space of trigonometric polynomials of degree
to K(N = 2K + 1): NN (·, t) := PNN(·, t),PN (·, t) := PNP(·, t). In fact, a standard projection
estimate is available:

∥NN − N∥L∞(0,T ;Hk) ≤ Chℓ−k∥N∥L∞(0,T ;Hℓ), ∥PN − P∥L∞(0,T ;Hk) ≤ Chℓ−k∥P∥L∞(0,T ;Hℓ), (6.3)

for any ℓ ∈ N with 0 ≤ k ≤ ℓ, (N,P) ∈ L∞(0, T ;Hℓ
per(Ω)). In fact, the positivity of the ion

concentration variables does not directly come from this Fourier projection estimate; on the other
hand, a similar separation bound, NN , PN ≥ 3δ

4 , could be derived by taking h = L
N sufficiently

small. To simplify the notation in the later analysis, we denote NmN = NN (·, tm) ,PmN = PN (·, tm)
(with tm = m · τ), and notice the mass conservative property of the projection solution at the
discrete level:

NmN =
1

|Ω|

∫
Ω
NN (·, tm) dx =

1

|Ω|

∫
Ω
NN (·, tm−1) dx = Nm−1

N , ∀m ∈ N,

PmN = Pm−1
N , ∀m ∈ N, (similar argument),

(6.4)

which comes from the fact that (NN ,PN ) ∈ BK . On the other hand, the discrete mass conservation
for the numerical solution (3.13b) and (3.13c) has been derived in (3.16). To facilitate the ∥ · ∥−1,h

error analysis, the mass conservative projection is applied to the initial data:

(n0)i,j = Ph NN (·, t = 0) := NN (xi, yj , t = 0),

(p0)i,j = PhPN (·, t = 0) := PN (xi, yj , t = 0).
(6.5)
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In terms of the electric potential variable, we denote its Fourier projection as Φh = (−∆h)
−1(PN−

NN ), with a homogeneous Neumann boundary condition. Of course, a standard error estimate for
the discrete Poisson equation indicates that ∥Φh − Φ∥∞ ≤ Ch2. Subsequently, the discrete error
functions for the ion concentration and electric potential variables are introduced as

n̊m := PhNmN − nm, p̊m := PhPmN − pm, ϕ̊m := PhΦmN − ϕm, ∀m ∈ N. (6.6)

Because of the discrete mass conservation identities (3.16), (6.4), it is clear that n̊m = p̊m = 0, so
that the discrete norm ∥ · ∥−1,h is well defined for n̊m and p̊m, for any m ∈ N.

In terms of the velocity and pressure variables, we just take the associated error functions as

ům := PhUm − um = (̊um, v̊m)T , ψ̊m := PhΨm − ψm, ∀m ∈ N. (6.7)

The following theorem is the main result of this section.

Theorem 6.1. Given initial data N, P, Φ (·, t = 0), U (·, t = 0) ∈ C6
per(Ω), suppose the exact solu-

tion for PNPNS system (2.4) is of regularity class R. Then, provided τ and h are sufficiently small,
and under the linear refinement requirement λ1h ≤ τ ≤ λ2h, we have

∥ům∥2 + ∥n̊m∥2 + ∥p̊m∥2 + ∥ϕ̊m∥H2
h
+ ∥∇hψ̊

m∥2 ≤ C(τ2 + h2), (6.8)

for all positive integers k, such that tk = kτ ≤ T , where C > 0 is independent of τ and h.

In the later analysis, C represents a constant that may depend on Ω and δ, but is independent
on h and τ .

6.1 Higher order consistency analysis of the numerical system

Based on the detailed Taylor expansion analysis, s substitution of the projection solution (NN ,PN )
and the exact profiles (U,Ψ) into the numerical scheme (3.13) leads to a second order local trunca-
tion error, in both time and space. However, such a leading truncation error would not be sufficient
to ensure an a-prioriW 1,∞

h bound for the numerical solution, which is needed for the nonlinear error
estimate. A higher order consistency analysis, accomplished by a perturbation expansion argument,
is needed to remedy this effort. In more details, we have to construct a few supplementary functions,
Ŭ, Ψ̆, N̆, P̆, with the following expansion:

Ŭ = PH
(
U+ τ2Uτ,1 + τ3Uτ,2 + h2Uh,1

)
, Ψ̆ = Ih

(
Ψ+ τ2Ψτ,1 + τ3Ψτ,2 + h2Ψh,1

)
,

N̆ = NN + PN (τ2Nτ,1 + τ3Nτ,2 + h2Nh,1), P̆ = PN + PN (τ2Pτ,1 + τ3Pτ,2 + h2Ph,1),
(6.9)

in which PH stands for a discrete Helmholtz interpolation (into the divergence-free space), and Ih
is the standard point-wise interpolation. In turn, a substitution of these constructed function into
the numerical scheme (3.13) gives a higher order O(τ4+h4) consistency. The constructed functions,
Uτ,i, Ψτ,i, Nτ,i, Pτ,i, (i = 1, 2), Uh,1, Ψh,1, Nh,1, Ph,1, could be obtained by an asymptotic expansion
technique, and they only depend on the exact solution (U,Ψ,N,P). In turn, the numerical error
function between the constructed expansion profile and the numerical solution is analyzed, instead
of a direct error analysis between the numerical and projection solutions.

The following bilinear form is introduced to facilitate the nonlinear analysis:

b(u,v) = u · ∇v, bh(u,v) =
1

2

(
u · ∇hv +∇ ·

(
uvT

))
. (6.10)
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Moreover, the following intermediate velocity vector is needed in the leading order consistency
analysis:

Ûm+1 = Um+1 +
1

2
τ∇
(
Ψm+1 −Ψm

)
. (6.11)

Subsequently, a careful Taylor expansion (in time) for (NN ,PN ,U) and Û implies that

Ûm+1 −Um

τ
+ b(Ũm+1/2, Ûm+1/2) +∇Ψm −∆Ûm+1/2

=− Ñ
m+1/2
N ∇Mm+1/2

n − P̃
m+1/2
N ∇Mm+1/2

p + τ2G
m+1/2
0 +O(τ3 + hm0), (6.12a)

Nm+1
N − NmN

τ
+∇ · (Ñm+1/2

N Ûm+1/2)

=∇ · (Ñm+1/2
N ∇Mm+1/2

n ) + τ2H
m+1/2
n,0 +O(τ3 + hm0), (6.12b)

Mm+1/2
n =FNm

N
(Nm+1

N )− 1 + τ(lnNm+1
N − lnNmN ) + (−∆)−1(N

m+1/2
N − P

m+1/2
N ), (6.12c)

Pm+1
N − PmN

τ
+∇ · (P̃m+1/2

N Ûm+1/2)

=∇ · (P̃m+1/2
N ∇Mm+1/2

p ) + τ2H
m+1/2
p,0 +O(τ3 + hm0), (6.12d)

Mm+1/2
p =FPm

N
(Pm+1

N )− 1 + τ(lnPm+1
N − lnPmN ) + (−∆)−1(P

m+1/2
N − N

m+1/2
N ), (6.12e)

Um+1 − Ûm+1

τ
+

1

2
∇(Ψm+1 −Ψm) = 0, (6.12f)

∇ ·Um+1 =0, (6.12g)

in which ∥Gm+1/2
0 ∥, ∥Hm+1/2

0 ∥ ≤ C, and C depends only on the regularity of the exact solutions.
The correction functions Uτ,1, Ψτ,1, Pτ,1, Nτ,1, Mn,τ,1 and Mp,τ,1, are constructed as the solution

of the following PDE system

∂tUτ,1 + (Uτ,1 · ∇)U+ (U · ∇)Uτ,1 +∇Ψτ,1 −∆Uτ,1

=− Nτ,1∇Mn − NN∇Mn,τ,1 − Pτ,1∇Mp − PN∇Mp,τ,1 −G0, (6.13a)

∂tNτ,1 +∇ · (Nτ,1U+ NNUτ,1) = ∇ · (Nτ,1∇Mn + NN∇Mn,τ,1)−Hn,0, (6.13b)

Mn = lnNN + (−∆)−1(NN − PN ), (6.13c)

Mn,τ,1 =
1

NN
Nτ,1 + (−∆)−1(Nτ,1 − Pτ,1), (6.13d)

∂tPτ,1 +∇ · (Pτ,1U+ PNUτ,1) = ∇ · (Pτ,1∇Mp + PN∇Mn,τ,1)−Hp,0, (6.13e)

Mp = lnPN + (−∆)−1(PN − PN ), (6.13f)

Mp,τ,1 =
1

PN
Pτ,1 + (−∆)−1(Pτ,1 − Nτ,1), (6.13g)

∇ ·Uτ,1 =0. (6.13h)

The homogeneous Neumann boundary condition for Nτ,1 and Pτ,1, combined with the no-penetration,
free-slip boundary condition for Uτ,1, are imposed. Existence and uniqueness of a solution of the
above linear and parabolic PDE system is straightforward. Of course, a similar intermediate velocity
vector could be introduced as

Ûm+1
τ,1 = Um+1

τ,1 +
1

2
τ∇(Ψm+1

τ,1 −Ψm
τ,1). (6.14)
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An application of a temporal discretization to the above linear PDE system for Uτ,1,Ψτ,1, Nτ,1,Pτ,1,

Mn,τ,1, Mp,τ,1 and Ûτ,1 gives

Ûm+1
τ,1 −Um

τ,1

τ
+ b(Ũ

m+1/2
τ,1 , Ûm+1/2) + b(Ũm+1/2, Û

m+1/2
τ,1 ) +∇Ψm

τ,1 −∆U
m+1/2
τ,1

=− Ñ
m+1/2
τ,1 ∇Mm+1/2

n − Ñ
m+1/2
N ∇M

m+1/2
n,τ,1

− P̃
m+1/2
τ,1 ∇Mm+1/2

p − P̃
m+1/2
N ∇M

m+1/2
p,τ,1 −G

m+1/2
0 +O(τ2), (6.15a)

Nm+1
τ,1 − Nmτ,1

τ
+∇ · (Ñm+1/2

τ,1 Ûm+1/2 + Ñ
m+1/2
N Û

m+1/2
τ,1 )

=∇ · (Ñm+1/2
τ,1 ∇Mm+1/2

n + Ñ
m+1/2
N ∇M

m+1/2
n,τ,1 )−H

m+1/2
n,0 +O(τ2), (6.15b)

M
m+1/2
n,τ,1 =

1

N
m+1/2
N

N
m+1/2
τ,1 + (−∆)−1(Nm+1/2 − Pm+1/2), (6.15c)

Pm+1
τ,1 − Pmτ,1

τ
+∇ · (P̃m+1/2

τ,1 Ûm+1/2 + P̃
m+1/2
N Û

m+1/2
τ,1 )

=∇ · (P̃m+1/2
τ,1 ∇Mm+1/2

p + P̃
m+1/2
N ∇M

m+1/2
p,τ,1 )−H

m+1/2
p,0 +O(τ2), (6.15d)

M
m+1/2
p,τ,1 =

1

P
m+1/2
N

P
m+1/2
τ,1 + (−∆)−1(Pm+1/2 − Nm+1/2), (6.15e)

Um+1
τ,1 − Ûm+1

τ,1

τ
+

1

2
∇(Ψm+1

τ,1 −Ψm
τ,1) = 0, (6.15f)

∇ ·Um+1
τ,1 =0. (6.15g)

A combination of (6.12) and (6.15) results in the following third order truncation error for U1 :=
U+ τ2Uτ,1, N1 := NN + τ2PNNτ,1, P1 := PN + τ2PNPτ,1, Ψ1 := Ψ + τ2Ψτ,1:

Ûm+1
1 −Um

1

τ
+ b(Ũ

m+1/2
1 , Û

m+1/2
1 ) +∇Ψm

1 −∆Û
m+1/2
1

=− Ñ
m+1/2
1 ∇Mm+1/2

n,1 − P̃
m+1/2
1 ∇Mm+1/2

p,1 + τ3G
m+1/2
1 +O(τ4 + hm0), (6.16a)

Nm+1
1 − Nm1

τ
+∇ · (Ñm+1/2

1 Û
m+1/2
1 )

=∇ · (Ñm+1/2
1 ∇Mm+1/2

n,1 ) + τ3H
m+1/2
n,1 +O(τ4 + hm0), (6.16b)

M
m+1/2
n,1 =FNm

1
(Nm+1

1 )− 1 + τ(lnNm+1
1 − lnNm1 ) + (−∆)−1(N

m+1/2
1 − P

m+1/2
1 ), (6.16c)

Pm+1
1 − Pm1

τ
+∇ · (P̃m+1/2

1 Û
m+1/2
1 )

=∇ · (P̃m+1/2
1 ∇Mm+1/2

p,1 ) + τ3H
m+1/2
p,1 +O(τ4 + hm0), (6.16d)

M
m+1/2
p,1 =FPm

1
(Pm+1

1 )− 1 + τ(lnPm+1
1 − lnPm1 ) + (−∆)−1(P

m+1/2
1 − N

m+1/2
1 ), (6.16e)

Um+1
1 − Ûm+1

1

τ
+

1

2
∇(Ψm+1

1 −Ψm
1 ) = 0, (6.16f)

∇ ·Um+1
1 =0, (6.16g)

where ∥G1∥, ∥H1∥ ≤ C, and C depends only on the regularity of the exact solutions. In fact, the
following linearized expansions have been applied in the above derivation:

1

N
m+1/2
N

N
m+1/2
τ,1 =

1

2

( 1

NmN
Nmτ,1 +

1

Nm+1
N

Nm+1
τ,1

)
+O(τ2). (6.17)
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Similarly, the next order temporal correction functions, namely Uτ,2, Ψτ,2, Pτ,2 and Nτ,2, are
given by following linear equations:

∂tUτ,2 + (Uτ,2 · ∇)U1 + (U1 · ∇)Uτ,2 +∇Ψτ,2 −∆Uτ,2

=− Nτ,2∇Mn,1 − N1∇Mn,τ,2 − Pτ,2∇Mp,1 − P1∇Mp,τ,2 −G1, (6.18a)

∂tNτ,2 +∇ · (Nτ,2U1 + N1Uτ,2) = ∇ · (Nτ,2∇Mn,1 + N1∇Mn,τ,2)−Hn,1, (6.18b)

Mn,1 = lnN1 + (−∆)−1(N1 − P1), (6.18c)

Mn,τ,2 =
1

NN
Nτ,2 + (−∆)−1(Nτ,2 − Pτ,2), (6.18d)

∂tPτ,2 +∇ · (Pτ,2U1 + P1Uτ,2) = ∇ · (Pτ,2∇Mp,1 + P1∇Mp,τ,2)−Hp,1, (6.18e)

Mp,1 = lnP1 + (−∆)−1(P1 − N1), (6.18f)

Mp,τ,2 =
1

P1
Pτ,2 + (−∆)−1(Pτ,2 − Nτ,2), (6.18g)

∇ ·Uτ,2 =0. (6.18h)

Again, the homogeneous Neumann boundary condition is imposed for Nτ,2 and Pτ,2, combined
with the no-penetration, free-slip boundary condition for Uτ,2. Meanwhile, a similar intermediate
velocity vector is introduced as

Ûm+1
τ,2 = Um+1

τ,2 +
1

2
τ∇(Ψm+1

τ,2 −Ψm
τ,2). (6.19)

In turn, an application of a temporal discretization to the above linear PDE system for Uτ,1, Ψτ,1,
Nτ,1 and Pτ,1 reveals that

Ûm+1
τ,2 −Um

τ,2

τ
+ b(Ũ

m+1/2
τ,2 , Û

m+1/2
1 ) + b(Ũ

m+1/2
1 , Û

m+1/2
τ,2 ) +∇Ψm

τ,2 −∆Û
m+1/2
τ,2

=− Ñ
m+1/2
τ,2 ∇M

m+1/2
n,1 − Ñ

m+1/2
1 ∇M

m+1/2
n,τ,2

− P̃
m+1/2
τ,2 ∇M

m+1/2
p,1 − P̃

m+1/2
1 ∇M

m+1/2
p,τ,2 −G

m+1/2
1 +O(τ2), (6.20a)

Nm+1
τ,2 − Nmτ,2

τ
+∇ · (Ñm+1/2

τ,2 Û
m+1/2
1 + Ñ

m+1/2
1 Û

m+1/2
τ,2 )

=∇ · (Ñm+1/2
τ,2 ∇M

m+1/2
n,1 + Ñ

m+1/2
1 ∇M

m+1/2
n,τ,2 )−H

m+1/2
n,1 +O(τ2), (6.20b)

M
m+1/2
n,1 =FNm

1
(Nm+1

1 ) + (−∆)−1(N
m+1/2
1 − P

m+1/2
1 ) + τ(lnNm+1

1 − lnNm1 ), (6.20c)

M
m+1/2
n,τ,2 =

1

N
m+1/2
1

N
m+1/2
τ,2 + (−∆)−1(N

m+1/2
τ,2 − P

m+1/2
τ,2 ), (6.20d)

Pm+1
τ,2 − Pmτ,2

τ
+∇ · (P̃m+1/2

τ,2 Û
m+1/2
1 + P̃

m+1/2
1 Û

m+1/2
τ,2 )

=∇ · (P̃m+1/2
τ,2 ∇M

m+1/2
p,1 + P̃

m+1/2
1 ∇M

m+1/2
p,τ,2 )−H

m+1/2
p,1 +O(τ2), (6.20e)

M
m+1/2
p,1 =FPm

1
(Pm+1

1 ) + (−∆)−1(P
m+1/2
1 − N

m+1/2
1 ) + τ(lnPm+1

1 − lnPm1 ), (6.20f)

M
m+1/2
p,τ,2 =

1

P
m+1/2
1

P
m+1/2
τ,2 + (−∆)−1(P

m+1/2
τ,2 − N

m+1/2
τ,2 ), (6.20g)

Um+1
τ,2 − Ûm+1

τ,2

τ
+

1

2
∇(Ψm+1

τ,2 −Ψm
τ,2) = 0, (6.20h)

∇ ·Um+1
τ,2 =0. (6.20i)
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A combination of (6.16) and (6.20) yields the following fourth order truncation error for U2 :=
U1 + τ3Uτ,2, N2 := N1 + τ3PNNτ,2, P2 := P1 + τ3PNPτ,2 and Ψ2 := Ψ1 + τ3Ψτ,2:

Ûm+1
2 −Um

2

τ
+ b(Ũ

m+1/2
2 , Û

m+1/2
2 ) +∇Ψm

2 −∆Û
m+1/2
2

=− Ñ
m+1/2
2 ∇Mm+1/2

n,2 − P̃
m+1/2
2 ∇Mm+1/2

p,2 +O(τ4 + hm0), (6.21a)

Nm+1
2 − Nm2

τ
+∇ · (Ñm+1/2

2 Û
m+1/2
2 ) = ∇ · (Ñm+1/2

2 ∇Mm+1/2
n,2 ) +O(τ4 + hm0), (6.21b)

M
m+1/2
n,2 =FNm

2
(Nm+1

2 ) + τ(lnNm+1
2 − lnNm2 ) + (−∆)−1(N

m+1/2
2 − P

m+1/2
2 ), (6.21c)

Pm+1
2 − Pm2

τ
+∇ · (P̃m+1/2

2 Û
m+1/2
2 ) = ∇ · (P̃m+1/2

2 ∇Mm+1/2
p,2 ) +O(τ4 + hm0), (6.21d)

M
m+1/2
p,2 =FPm

2
(Pm+1

2 ) + τ(lnPm+1
2 − lnPm2 ) + (−∆)−1(P

m+1/2
2 − N

m+1/2
2 ), (6.21e)

Um+1
2 − Ûm+1

2

τ
+

1

2
∇(Ψm+1

2 −Ψm
2 ) = 0, (6.21f)

∇ ·Um+1
2 =0, (6.21g)

with ∥G2∥, ∥Hn,2∥, ∥Hp,2∥ ≤ C, and C dependent only on the regularity of the exact solution.
Next, we have to construct the spatial correction function to improve the spatial accuracy

order. In terms of the spatial discretization, the key challenge is associated with the fact that
the velocity vector U2 is not divergence-free at a discrete level, so that its discrete inner product
with the pressure gradient may not vanish. To overcome this difficulty, we make use of a spatial
interpolation operator PH . For any u ∈ H1 (Ω) ,∇ · u = 0, there is an exact stream function ψ so
that u = ∇⊥ψ. Subsequently, we define the following discrete velocity vector:

PH(u) = ∇⊥
h ψ = (−Dyψ,Dxψ)

T . (6.22)

As a result, this definition ensures ∇h · PH (u) = 0 at a point-wise level. Moreover, an O(h2) trun-
cation error is available between the continuous velocity vector u and its Helmholtz interpolation,
PH(u).

Subsequently, we denote U2,PH = PH(U2). An application of the finite difference spatial
approximation over the MAC mesh grid indicates the following truncation error estimate:

Ûm+1
2,PH −Um

2,PH

τ
+ bh(Ũ

m+1/2
2,PH , Û

m+1/2
2,PH ) +∇hΨ

m
2 −∆hÛ

m+1/2
2,PH

=−AhÑ
m+1/2
2 ∇hM

m+1/2
n,2,h −AhP̃

m+1/2
2 ∇hM

m+1/2
p,2,h

+ h2G
m+1/2
h +O(τ4 + h4), (6.23a)

Nm+1
2 − Nm2

τ
+∇h · (AhÑ

m+1/2
2 Û

m+1/2
2,PH )

=∇h · (AhÑ
m+1/2
2 ∇hM

m+1/2
n,2,h ) + h2H

m+1/2
n,h +O(τ4 + h4), (6.23b)

M
m+1/2
n,2,h =FNm

2
(Nm+1

2 ) + τ(lnNm+1
2 − lnNm2 ) + (−∆h)

−1(N
m+1/2
2 − P

m+1/2
2 ), (6.23c)

Pm+1
2 − Pm2

τ
+∇h · (AhP̃

m+1/2
2 Û

m+1/2
2,PH )

=∇h · (AhP̃
m+1/2
2 ∇hM

m+1/2
p,2,h ) + h2H

m+1/2
p,h +O(τ4 + h4), (6.23d)

M
m+1/2
p,2,h =FPm

2
(Pm+1

2 ) + τ(lnPm+1
2 − lnPm2 ) + (−∆h)

−1(P
m+1/2
2 − N

m+1/2
2 ), (6.23e)
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Um+1
2,PH − Ûm+1

2,PH

τ
+

1

2
∇h(Ψ

m+1
2 −Ψm

2 ) = 0, (6.23f)

∇h ·Um+1
2,PH =0, (6.23g)

with ∥Gh∥2, ∥Hn,h∥2, ∥Hp,h∥2 ≤ C, and C dependent only on the regularity of the exact solution.
Subsequently, the spatial correction functions, Uh,1, Nh,1, Ph,1 and Ψh,1, are determined by the
following linear PDE system

∂tUh,1 + (Uh,1 · ∇)U2 + (U2 · ∇)Uh,1 +∇Ψh,1 −∆Uh,1

=− Nh,1∇Mn,2 − N2∇Mn,h,1 − Ph,1∇Mp,2 − P2∇Mp,h,1 −Gh, (6.24a)

∂tNh,1 +∇ · (Nh,1U2 + N2Uh,1) = ∇ · (Nh,1∇Mn,2 + N2∇Mn,h,1)−Hn,h, (6.24b)

Mn,2 = lnN2 + (−∆)−1(N2 − P2), (6.24c)

Mn,h,1 =
1

N2
Nn,h,1 + (−∆)−1(Nh,1 − Ph,1), (6.24d)

∂tPh,1 +∇ · (Ph,1U2 + P2Uh,1) = ∇ · (Ph,1∇Mp,2 + P2∇Mp,h,1)−Hp,h, (6.24e)

Mp,2 = lnP2 + (−∆)−1(P2 − N2), (6.24f)

Mp,h,1 =
1

P2
Np,h,1 + (−∆)−1(Ph,1 − Nh,1), (6.24g)

∇ ·Uh,1 =0. (6.24h)

Similarly, the homogeneous Neumann boundary condition is imposed for Nh,1 and Ph,1, combined
with the no-penetration, free-slip boundary condition for Uh,1. Afterwards, we denote Uh,1,PH =

PH(Uh,1), and Ûm+1
h,1,PH = Um+1

h,1,PH + 1
2τ∇h(Ψ

m+1
h,1 − Ψm

h,1). In turn, an application of both the
temporal and spatial approximations to the above PDE system indicates that

Ûm+1
h,1,PH −Um

h,1,PH

τ
+ bh(Ũ

m+1/2
h,1,PH ,U

m+1/2
2,PH ) + bh(Ũ

m+1/2
2,PH ,U

m+1/2
h,1,PH) +∇hΨ

m
h,1 −∆hU

m+1/2
h,1,PH

=−AhÑ
m+1/2
h,1 ∇hM

m+1/2
n,2,h −AhÑ

m+1/2
2 ∇hM

m+1/2
n,h,1

−AhP̃
m+1/2
h,1 ∇hM

m+1/2
p,2,h −AhP̃

m+1/2
2 ∇hM

m+1/2
p,h,1 −G

m+1/2
h +O(τ2 + h2), (6.25a)

Nm+1
h,1 − Nmh,1

τ
+∇h · (AhÑ

m+1/2
h,1 U

m+1/2
2,PH +AhÑ

m+1/2
2 U

m+1/2
h,1,PH)

=∇h · (AhÑ
m+1/2
h,1 ∇hM

m+1/2
n,2 +AhÑ

m+1/2
2 ∇hM

m+1/2
n,h,1 )−H

m+1/2
n,h +O(τ2 + h2), (6.25b)

M
m+1/2
n,2,h = FNm

2
(Nm+1

2 ) + (−∆h)
−1(N

m+1/2
2 − P

m+1/2
2 ), (6.25c)

M
m+1/2
n,h,1 =

1

N
m+1/2
2

N
m+1/2
h,1 + (−∆h)

−1(N
m+1/2
h,1 − P

m+1/2
h,1 ), (6.25d)

Pm+1
h,1 − Pmh,1

τ
+∇h · (AhP̃

m+1/2
h,1 U

m+1/2
2,PH +AhP̃

m+1/2
2 U

m+1/2
h,1,PH)

=∇h · (AhP̃
m+1/2
h,1 ∇hM

m+1/2
p,2,h +AhP̃

m+1/2
2 ∇hM

m+1/2
p,h,1 )−H

m+1/2
p,h +O(τ2 + h2), (6.25e)

M
m+1/2
p,2,h = FPm

2
(Pm+1

2 ) + (−∆h)
−1(P

m+1/2
2 − N

m+1/2
2 ), (6.25f)

M
m+1/2
p,h,1 =

1

P
m+1/2
2

P
m+1/2
h,1 + (−∆h)

−1(P
m+1/2
h,1 − N

m+1/2
h,1 ), (6.25g)

∇h ·Um+1
h,1,PH = 0. (6.25h)
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Finally, a combination of (6.23) and (6.25) yields an O(τ4 + h4) local truncation error for Ŭ, N̆, P̆
and Ψ̆:

ˆ̆
Um+1 − Ŭm

τ
+ bh(Ũ

m+1/2,
ˆ̆
Um+1/2) +∇hΨ̆

m −∆h
ˆ̆
Um+1/2

=−Ah
˜̆
Nm+1/2∇hM̆

m+1/2
n −Ah

˜̆
Pm+1/2∇hM̆

m+1/2
p + ζmu , (6.26a)

N̆m+1 − N̆m

τ
+∇h · (AhÑ

m+1/2 ˆ̆Um+1/2) = ∇h · (AhÑ
m+1/2∇hM̆

m+1/2
n ) + ζmn , (6.26b)

M̆m+1/2
n =FN̆m(N̆

m+1) + (−∆h)
−1(N̆m+1/2 − P̆m+1/2) + τ(ln N̆m+1 − ln N̆m), (6.26c)

P̆m+1 − P̆m

τ
+∇h · (AhP̃

m+1/2 ˆ̆Um+1/2) = ∇h · (AhP̃
m+1/2∇hM̆

m+1/2
p ) + ζmp , (6.26d)

M̆m+1/2
p =FP̆m(P̆

m+1) + (−∆h)
−1(P̆m+1/2 − N̆m+1/2) + τ(ln P̆m+1 − ln P̆m), (6.26e)

Ŭm+1 − ˆ̆
Um+1

τ
+

1

2
∇h(Ψ̆

m+1 − Ψ̆m) = 0, (6.26f)

∇h · Ŭm+1 =0, (6.26g)

with ∥ζmu ∥2, ∥ζmn ∥2, ∥ζmp ∥2 ≤ C(τ4 + h4).
A few more highlight explanations are provided for this higher order consistency analysis.

1. In terms of the ion concentration variables, the following mass conservative identities and
zero-average property for the local truncation error are available:

n0 ≡ N̆0, p0 ≡ P̆0, nk = n0, pk = p0, ∀k ≥ 0,

N̆k =
1

|Ω|

∫
Ω
N̆ (·, tk) dx =

1

|Ω|

∫
Ω
N̆0dx = n0, P̆k = p0, ∀k ≥ 0,

ζmn = ζmp = 0, ∀m ≥ 0.

(6.27)

2. A similar phase separation estimate could be derived for the constructed (N̆, P̆), by taking τ
and h sufficiently small:

N̆ ≥ 5δ

8
, P̆ ≥ 5δ

8
, for δ > 0, at a point-wise level. (6.28)

3. A discrete W 1,∞
h bound for the constructed profile (Ŭ, N̆, P̆), as well as its discrete temporal

derivative, is available:

∥N̆k∥∞ ≤ C∗, ∥P̆k∥∞ ≤ C∗, ∥Ŭk∥∞ ≤ C∗, ∥ ˆ̆Um+1/2∥∞ ≤ C∗, ∀k ≥ 0,

∥∇hN̆
k∥∞ ≤ C∗, ∥∇hP̆

k∥∞ ≤ C∗, ∥∇hŬ
k∥∞ ≤ C∗, ∀k ≥ 0,

∥N̆k+1 − N̆k∥∞ ≤ C∗τ, ∥P̆k+1 − P̆k∥∞ ≤ C∗τ, ∀k ≥ 0.

(6.29)

Furthermore, by the fact that M̆
m+ 1

2
n and M̆

m+ 1
2

p only depend on the exact solution (N,P),
respectively, combined with a few correction functions, it is natural to assume a discreteW 1,∞

h

bound
∥∇hM̆

m+1/2
n ∥∞ ≤ C∗, ∥∇hM̆

m+1/2
p ∥∞ ≤ C∗. (6.30)
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Remark 6.1. Based on the phase separation estimate (6.28) for the constructed functions (N̆, P̆),
as well as their regularity in time, it is clear that an explicit extrapolation formula in the mobility
function in (6.26b) and (6.26d) has to create a point-wise positive mobility concentration value, a
numerical approximation at time instant tm+1/2. Therefore, the positive regularization formula in
(3.14)) could be avoided in the consistency analysis.

6.2 A rough error estimate

The following error functions are defined:

emu = Ŭm − um, e
m+1/2
u = Ŭm+1/2 − um+1/2, ẽ

m+1/2
u = Ũm+1/2 − ũm+1/2,

êm+1
u =

ˆ̆
Um+1 − ûm+1, ê

m+1/2
u = 1

2(e
m
u + êm+1

u ), e
m+1/2
µn = M̆

m+1/2
n − µ

m+1/2
n ,

emψ = Ψ̆m − ψm, e
m+1/2
ψ = Ψ̆m+1/2 − ψm+1/2, e

m+1/2
µp = M̆

m+1/2
p − µ

m+1/2
p ,

emn = N̆m − nm, e
m+1/2
n = 1

2(e
m+1
n + emn ), ẽ

m+1/2
n = 3

2e
m
n − 1

2e
m−1
n ,

emp = P̆m − pm, e
m+1/2
p = 1

2(e
m+1
p + emp ), ẽ

m+1/2
p = 3

2e
m
p − 1

2e
m−1
p ,

emϕ = (−∆h)
−1(emp − emn ), e

m+1/2
ϕ = 1

2(e
m+1
ϕ + emϕ ), ẽ

m+1/2
ϕ = 3

2e
m
ϕ − 1

2e
m−1
ϕ .

(6.31)

Because of the mass conservation identity (6.27), it is clear that the error functions ekn and ekp are

always average-free: ekn = 0 and ekp = 0, for any k ≥ 0. In turn, their ∥·∥−1,h norms are well defined.

Lemma 6.1. A trilinear form is introduced as B (u,v,w) = ⟨bh (u,v) ,w⟩1. The following esti-
mates are valid:

B (u,v,v) = 0, (6.32a)

|B (u,v,w)| ≤ 1

2
∥u∥2 (∥∇hv∥∞ · ∥w∥2 + ∥∇hw∥2 · ∥v∥∞) . (6.32b)

Proof. Identity (6.32a) comes from the summation by parts formula

B (u,v,v) = ⟨bh (u,v) ,v⟩1 =
1

2

(
⟨u · ∇hv,v⟩1 +

〈
∇h ·

(
uvT

)
,v
〉
1

)
= 0. (6.33)

Inequality (6.32b) could be derived as follows:

|B (u,v,w)| = 1

2

∣∣⟨u · ∇hv,w⟩1 +
〈
∇h ·

(
uvT

)
,w
〉
1

∣∣
=

1

2
|⟨u · ∇hv,w⟩1 − ⟨u · ∇hw,v⟩1|

≤ 1

2
(|⟨u · ∇hv,w⟩1|+ |⟨u · ∇hw,v⟩1|)

≤ 1

2
∥u∥2 (∥∇hv∥∞ · ∥w∥2 + ∥∇hw∥2 · ∥v∥∞) .

(6.34)

This completes the proof.

Taking a difference between the numerical system (3.13) and the consistency estimate (6.26)
results in the following error evolutionary equations:

êm+1
u − emu

τ
+ bh(ẽ

m+1/2
u ,

ˆ̆
Um+1/2) + bh(ũ

m+1/2, ê
m+1/2
u ) +∇he

m
ψ −∆hê

m+1/2
u

+Ahẽ
m+1/2
n ∇hM̆

m+1/2
n +Ahñ

m+1/2∇he
m+1/2
µn
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+Ahẽ
m+1/2
p ∇hM̆

m+1/2
p +Ahp̃

m+1/2∇he
m+1/2
µp = ζmu , (6.35a)

em+1
n − emn

τ
+∇h · (Ahẽ

m+1/2
n

ˆ̆
Um+1/2 +Ahñ

m+1/2ê
m+1/2
u )

=∇h · (Ahẽ
m+1/2
n ∇hM̆

m+1/2
n +Ahñ

m+1/2∇he
m+1/2
µn ) + ζmn , (6.35b)

em+1/2
µn =FN̆m(N̆

m+1)−Gnm(nm+1) + (−∆h)
−1(em+1/2

n − em+1/2
p )

+ τ(ln N̆m+1 − lnnm+1 − ln N̆m + lnnm), (6.35c)

em+1
p − emp

τ
+∇h · (Ahẽ

m+1/2
p

ˆ̆
Um+1/2 +Ahp̃

m+1/2ê
m+1/2
u )

=∇h · (Ahẽ
m+1/2
p ∇hM̆

m+1/2
p +Ahp̃

m+1/2∇he
m+1/2
µp ) + ζmp , (6.35d)

em+1/2
µp =GP̆m(P̆

m+1)−Gpm(p
m+1) + (−∆h)

−1(em+1/2
p − em+1/2

n )

+ τ(ln P̆m+1 − ln pm+1 − ln P̆m + ln pm), (6.35e)

em+1
u − êm+1

u

τ
+

1

2
∇h(e

m+1
ψ − emψ ) = 0, (6.35f)

∇h · em+1
u =0. (6.35g)

To proceed with the convergence analysis, the following a-priori assumption is made for the numer-
ical error functions at the previous time steps:

∥eku∥2, ∥ekn∥2, ∥ekp∥2 ≤ τ
15
4 + h

15
4 , k = m,m− 1, ∥∇he

m
ψ ∥2 ≤ τ

11
4 + h

11
4 . (6.36)

Such an a-priori assumption will be recovered by the error estimate in the next time step, which
will be demonstrated later. Of course, this a-priori assumption leads to a W 1,∞

h bound for the
numerical error function at the previous time steps, which comes from the inverse inequality, the
linear refinement requirement λ1h ≤ τ ≤ λ2h, as well as the discrete Poincaré inequality (stated in
Proposition 3.1):

∥ekn∥∞ ≤ C∥ekn∥2
h

≤ C(τ
11
4 + h

11
4 ) ≤ τ

5
2 + h

5
2 ≤ δ

8
,

∥ekp∥∞ ≤
C∥ekp∥2
h

≤ C(τ
11
4 + h

11
4 ) ≤ τ

5
2 + h

5
2 ≤ δ

8
,

∥∇he
k
n∥∞ ≤ 2∥ekn∥∞

h
≤ C(τ

7
4 + h

7
4 ) ≤ τ + h ≤ 1,

∥∇he
k
p∥∞ ≤

∥∥ekp∥∥∞
h

≤ C(τ
7
4 + h

7
4 ) ≤ τ + h ≤ 1,

(6.37)

for k = m,m − 1, provided that τ and h are sufficiently small. Subsequently, with the help of
the regularity assumption (6.29), an ℓ∞ bound for the numerical solution could be derived at the
previous time steps:

∥nk∥∞ ≤ ∥N̆k∥∞ + ∥ekn∥∞ ≤ C̃1 := C⋆ + 1, ∥pk∥∞ ≤ ∥P̆k∥∞ + ∥ekp∥∞ ≤ C̃1. (6.38)

Moreover, a combination of the ℓ∞ estimate (6.37) for the numerical error function and the separa-
tion estimate (6.28) leads to a similar separation bound for the numerical solution at the previous
time steps:

nk ≥ N̆k − ∥ekn∥∞ ≥ δ

2
, and pk ≥ P̆k − ∥ekp∥∞ ≥ δ

2
. (6.39)

26



Therefore, at the intermediate time instant tm+1/2, the following estimates would be available:

3

2
N̆m − 1

2
N̆m−1 =

1

2
(N̆m+1 + N̆m) +O(τ2), since N̆m+1 − 2N̆m + N̆m−1 = O(τ2),

1

2
(N̆m+1 + N̆m) = N̆(tm+1/2) +O(τ2), N̆(tm+1/2) ≥ 5δ

8
, (by (6.28)),

so that
3

2
N̆m − 1

2
N̆m−1 ≥ 5δ

8
−O(τ2),

∥3
2
emn − 1

2
em−1
n ∥∞ ≤ C(τ

11
4 + h

11
4 ), ( by (6.37)),

ñm+1/2 =
3

2
nm − 1

2
nm−1 =

3

2
N̆m − 1

2
N̆m−1 − 3

2
emn − 1

2
em−1
n

≥ 5δ

8
−O(τ2)−O(τ

11
4 + h

11
4 ) ≥ δ

2
,

p̃m+1/2 =
3

2
pm − 1

2
pm−1 =

3

2
P̆m − 1

2
P̆m−1 − 3

2
emp − 1

2
em−1
p ≥ δ

2
.

(6.40)

As a result, the phase separation bound for the average mobility functions, ñm+1/2 and p̃m+1/2, has
also been established, and such a bound will be useful in the later analysis.

Taking a discrete inner product with (6.35a) by 2ê
m+1/2
u = êm+1

u + emu leads to

1

τ
(∥êm+1

u ∥22 − ∥emu ∥22) + 2B(ẽm+1/2
u , Ûm+1/2, ê

m+1/2
u ) + 2B(ũm+1/2, ê

m+1/2
u , ê

m+1/2
u )

+ 2∥∇hê
m+1/2
u ∥22 = −⟨∇he

m
ψ , ê

m+1
u + emu ⟩1 − 2⟨Ahẽ

m+1/2
n ∇hM̆

m+1/2
n , ê

m+1/2
u ⟩1

− 2⟨Ahñ
m+1/2∇he

m+1/2
µn , ê

m+1/2
u ⟩1 − 2⟨Ahẽ

m+1/2
p ∇hM̆

m+1/2
p , ê

m+1/2
u ⟩1

− 2⟨Ahp̃
m+1/2∇he

m+1/2
µp , ê

m+1/2
u ⟩1 + 2⟨ζmu , ê

m+1/2
u ⟩1.

(6.41)

With an application of the nonlinear identity (6.32a) in Lemma 6.1, we immediately get

B(ũm+1/2, ê
m+1/2
u , ê

m+1/2
u ) = 0. (6.42)

The second term on the left hand side of (6.41) could be bounded with the help of inequality (6.32b):

2|B(ẽm+1/2
u , Ûm+1/2, ê

m+1/2
u )|

≤∥ẽm+1/2
u ∥2(∥∇hÛ

m+1/2∥∞ · ∥êm+1/2
u ∥2 + ∥Ûm+1/2∥∞ · ∥∇hê

m+1/2
u ∥2)

≤C∗∥ẽm+1/2
u ∥2(∥êm+1/2

u ∥2 + ∥∇hê
m+1/2
u ∥2)

≤C∗∥ẽm+1/2
u ∥2 · (C0 + 1)∥∇hê

m+1/2
u ∥2 ≤

(C∗(C0 + 1))2

2
∥ẽm+1/2

u ∥22 +
1

2
∥∇hê

m+1/2
u ∥22

≤C̃2(3∥emu ∥22 + ∥em−1
u ∥22) +

1

2
∥∇hê

m+1/2
u ∥22,

(6.43)

in which C̃2 = (C∗(C0+1))2

2 , and the W 1,∞
h assumption (6.29) (for the constructed solution Ŭ) has

been used in the derivation. In fact, the discrete Pincaré inequality, ∥êm+1/2
u ∥2 ≤ C0∥∇hê

m+1/2
u ∥2,

(which comes from Proposition 3.1), was applied in the second step, because of the no-penetration

boundary condition for ê
m+1/2
u .

In terms of numerical error inner product associated with the pressure gradient, we have

⟨∇he
m
ψ , e

k
u⟩1 = −⟨emψ ,∇h · eku⟩C = 0, since ∇h · emu = 0, k = m,m+ 1, (6.44)
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in which the summation by parts formula (3.12b) has been applied. Regarding the other pressure
gradient inner product term, an application of (6.35f) indicates that

⟨∇he
m
ψ , ê

m+1
u ⟩1 = ⟨∇he

m
ψ , e

m+1
u ⟩1 +

1

2
τ⟨∇he

m
ψ ,∇h(e

m+1
ψ − emψ )⟩1

=
1

2
τ⟨∇he

m
ψ ,∇h(e

m+1
ψ − emψ )⟩1

=
1

4
τ(∥∇he

m+1
ψ ∥22 − ∥∇he

m
ψ ∥22 − ∥∇h(e

m+1
ψ − emψ )∥22),

(6.45)

where the second step is based on the fact that ⟨∇he
m
ψ , e

m+1
u ⟩1 = 0. In terms of the second term on

the right hand side of (6.41), an application of discrete Hölder inequality gives

− 2⟨Ahẽ
m+1/2
n ∇hM̆

m+1/2
n , ê

m+1/2
u ⟩1 ≤ 2∥ẽm+1/2

n ∥2 · ∥∇hM̆
m+1/2
n ∥∞ · ∥êm+1/2

u ∥2
≤2C∗∥ẽm+1/2

n ∥2 · ∥êm+1/2
u ∥2 ≤ 2C0C

∗∥ẽm+1/2
n ∥2 · ∥∇hê

m+1/2
u ∥2

≤8C2
0 (C

∗)2∥ẽm+1/2
n ∥22 +

1

8
∥∇hê

m+1/2
u ∥22 ≤ C̃3(3∥emn ∥22 + ∥em−1

n ∥22) +
1

8
∥∇hê

m+1/2
u ∥22, (6.46a)

− 2⟨Ahẽ
m+1/2
p ∇hM̆

m+1/2
p , ê

m+1/2
u ⟩1 ≤ 2∥ẽm+1/2

p ∥2 · ∥∇hM̆
m+1/2
p ∥∞ · ∥êm+1/2

u ∥2
≤2C∗∥ẽm+1/2

p ∥2 · ∥êm+1/2
u ∥2 ≤ 2C0C

∗∥ẽm+1/2
p ∥2 · ∥∇hê

m+1/2
u ∥2

≤8C2
0 (C

∗)2∥ẽm+1/2
p ∥22 +

1

8
∥∇hê

m+1/2
u ∥22 ≤ C̃3(3∥emp ∥22 + ∥em−1

p ∥22) +
1

8
∥∇hê

m+1/2
u ∥22, (6.46b)

with C̃3 = 8C2
0 (C

∗)2. Again, the W 1,∞
h assumption (6.30) and the discrete Poincaré inequality,

∥êm+1/2
u ∥2 ≤ C0∥∇he

m+1/2
u ∥2, have been applied in the derivation. A bound for the local truncation

error term would be straightforward:

2⟨ζmu , ê
m+ 1

2
u ⟩1 ≤ 2∥ζmu ∥2 · ∥ê

m+ 1
2

u ∥2 ≤ 2C0∥ζmu ∥2 · ∥∇hê
m+ 1

2
u ∥2 ≤ 4C2

0∥ζmu ∥22 +
1

4
∥∇hê

m+ 1
2

u ∥22. (6.47)

As a consequence, a substitution of (6.42)-(6.47) into (6.41) results in

1

τ
(∥êm+1

u ∥22 − ∥emu ∥22) + ∥∇hê
m+1/2
u ∥22 +

τ

4
(∥∇he

m+1
ψ ∥22 − ∥∇he

m
ψ ∥22)

≤− 2⟨Ahñ
m+1/2∇he

m+1/2
µn , ê

m+1/2
u ⟩1 − 2⟨Ahp̃

m+1/2∇he
m+1/2
µp , ê

m+1/2
u ⟩1

+
τ

4
∥∇h(e

m+1
ψ − emψ )∥22 + C̃2(3∥emu ∥22 + ∥em−1

u ∥22)

+ C̃3(3∥emn ∥22 + ∥em−1
n ∥22) + C̃3(3∥emp ∥22 + ∥em−1

p ∥22) + 4C2
0∥ζmu ∥22.

(6.48)

On the other hand, a discrete inner product with (6.35f) by 2em+1
u yields

∥em+1
u ∥22 − ∥êm+1

u ∥22 + ∥em+1
u − êm+1

u ∥22 = 0, so that

∥em+1
u ∥22 − ∥êm+1

u ∥22 +
τ2

4
∥∇h(e

m+1
ψ − emψ )∥22 = 0,

(6.49)

where the discrete divergence-free condition for em+1
u has been applied. Subsequently, a combination

of (6.48) and (6.49) leads to

1

τ
(∥em+1

u ∥22 − ∥emu ∥22) + ∥∇hê
m+1/2
u ∥22 +

τ

4
(∥∇he

m+1
ψ ∥22 − ∥∇he

m
ψ ∥22)

≤− 2⟨Ahñ
m+1/2∇he

m+1/2
µn , ê

m+1/2
u ⟩1 − 2⟨Ahp̃

m+1/2∇he
m+1/2
µp , ê

m+1/2
u ⟩1

+ C̃2(3∥emu ∥22 + ∥em−1
u ∥22) + C̃3(3∥emn ∥22 + ∥em−1

n ∥22 + 3∥emp ∥22 + ∥em−1
p ∥22) + 4C2

0∥ζmu ∥22.

(6.50)
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Now we proceed into a rough error estimate for the PNP error evolutionary equation. Taking a

discrete inner product with (6.35b) and (6.35d) by e
m+1/2
µn and e

m+1/2
µp respectively, and a summation

gives
1

τ
⟨em+1
n , em+1/2

µn ⟩C +
1

τ
⟨em+1
p , em+1/2

µp ⟩C

− ⟨Ahñ
m+1/2∇he

m+1/2
µn , ê

m+1/2
u ⟩1 + ⟨Ahñ

m+1/2∇he
m+1/2
µn ,∇he

m+1/2
µn ⟩1

− ⟨Ahp̃
m+1/2∇he

m+1/2
µp , ê

m+1/2
u ⟩1 + ⟨Ahp̃

m+1/2∇he
m+1/2
µp ,∇he

m+1/2
µp ⟩1

= ⟨Ahẽ
m+1/2
n ∇he

m+1/2
µn ,

ˆ̆
Um+1/2⟩1 − ⟨Ahẽ

m+1/2
n ∇hM̆

m+1/2
n ,∇he

m+1/2
µn ⟩1

+ ⟨Ahẽ
m+1/2
p ∇he

m+1/2
µp ,

ˆ̆
Um+1/2⟩1 − ⟨Ahẽ

m+1/2
p ∇hM̆

m+1/2
p ,∇he

m+1/2
µp ⟩1

+ ⟨ζmn , em+1/2
µn ⟩C +

1

τ
⟨emn , em+1/2

µn ⟩C + ⟨ζmp , em+1/2
µp ⟩C +

1

τ
⟨emp , em+1/2

µp ⟩C ,

(6.51)

with an application of summation by parts formula (3.12e). Meanwhile, the right hand side terms
could be estimated as follows, with the help of the ℓ∞ bound (6.29) and (6.30):

⟨Ahẽ
m+1/2
n ∇he

m+1/2
µn ,

ˆ̆
Um+1/2⟩1 ≤ ∥ẽm+1/2

n ∥2 · |∇he
m+1/2
µn ∥2 · ∥ ˆ̆Um+1/2∥∞

≤C∗∥ẽm+1/2
n ∥2 · ∥∇he

m+1/2
µn ∥2 ≤ 4(C∗)2δ−1(3∥emn ∥22 + ∥em−1

n ∥22) +
δ

16
∥∇he

m+1/2
µn ∥22, (6.52a)

⟨Ahẽ
m+1/2
p ∇he

m+1/2
µp ,

ˆ̆
Um+1/2⟩1 ≤ ∥ẽm+1/2

p ∥2 · ∥∇he
m+1/2
µp ∥2 · ∥ ˆ̆Um+1/2∥∞

≤C∗∥ẽm+1/2
p ∥2 · ∥∇he

m+1/2
µp ∥2 ≤ 4(C∗)2δ−1(3∥emp ∥22 + ∥em−1

p ∥22) +
δ

16
∥∇he

m+1/2
µp ∥22, (6.52b)

− ⟨Ahẽ
m+1/2
n ∇hM̆

m+1/2
n ,∇he

m+1/2
µn ⟩1 ≤ ∥ẽm+1/2

n ∥2 · ∥∇he
m+1/2
µn ∥2 · ∥∇hM̆

m+1/2
n ∥∞

≤C∗∥ẽm+1/2
n ∥2 · ∥∇he

m+1/2
µn ∥2 ≤ 4(C∗)2δ−1(3∥emn ∥22 + ∥em−1

n ∥22) +
δ

16
∥∇he

m+1/2
µn ∥22, (6.52c)

− ⟨Ahẽ
m+1/2
p ∇hM̆

m+1/2
p ,∇he

m+1/2
µp ⟩1 ≤ ∥ẽm+1/2

p ∥2 · ∥∇he
m+1/2
µp ∥2 · ∥∇hM̆

m+1/2
p ∥∞

≤C∗∥ẽm+1/2
p ∥2 · ∥∇he

m+1/2
µp ∥2 ≤ 4(C∗)2δ−1(3∥emp ∥22 + ∥em−1

p ∥22) +
δ

16
∥∇he

m+1/2
µp ∥22, (6.52d)

⟨ζmn , em+1/2
µn ⟩C ≤ ∥ζmn ∥−1,h · ∥∇he

m+1/2
µn ∥2 ≤ 4δ−1∥ζmn ∥2−1,h +

δ

16
∥∇he

m+1/2
µn ∥22, (6.52e)

⟨ζmp , em+1/2
µp ⟩C ≤ ∥ζmp ∥−1,h · ∥∇he

m+1/2
µp ∥2 ≤ 4δ−1∥ζmp ∥2−1,h +

δ

16
∥∇he

m+1/2
µp ∥22, (6.52f)

⟨emn , em+1/2
µn ⟩C ≤ ∥emn ∥−1,h · ∥∇he

m+1/2
µn ∥2 ≤

4

τδ
∥emn ∥2−1,h +

τδ

16
∥∇he

m+1/2
µn ∥22, (6.52g)

⟨emp , em+1/2
µp ⟩C ≤ ∥emp ∥−1,h · ∥∇he

m+1/2
µp ∥2 ≤

4

τδ
∥emp ∥2−1,h +

τδ

16
∥∇he

m+1/2
µp ∥22. (6.52h)

Because of the phase separation bound (6.40) for the average mobility functions, the following
estimate becomes available:

⟨Ahñ
m+1/2∇he

m+1/2
µn ,∇he

m+1/2
µn ⟩1 ≥

δ

2
∥∇he

m+1/2
µn ∥22,

⟨Ahp̃
m+1/2∇he

m+1/2
µp ,∇he

m+1/2
µp ⟩1 ≥

δ

2
∥∇he

m+1/2
µp ∥22.

(6.53)

In terms of the first two terms on the left hand side of (6.51), we have to recall the following
preliminary rough estimate, which has been established in an existing work [21].
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Lemma 6.2. [21] The regularity requirement (6.29), and phase separation (6.28) assumptions are
made for the constructed approximate solution (N̆, P̆), as well as the a-priori assumption (6.36) for
the numerical solution at the previous time steps. In addition, we define the following sets:

Λn =
{
(i, j) : nm+1

i,j ≥ 2C∗ + 1
}
, Λp =

{
(i, j) : pm+1

i,j ≥ 2C∗ + 1
}
, (6.54)

and denote K∗
n := |Λn|, K∗

p := |Λp|, the number of grid points in Λn and Λp, respectively. Then we
have a rough bound control of the following nonlinear inner products:

⟨em+1
n , FN̆m(N̆

m+1)− Fnm(nm+1)⟩C

+ τ⟨em+1
n , ln N̆m+1 − lnnm+1 − (ln N̆m − lnnm)⟩C ≥ 1

2
C∗K∗

nh
2 − C̃4∥emn ∥22,

⟨em+1
p , FP̆m(P̆

m+1)− Fpm(p
m+1)⟩C

+ τ⟨em+1
p , ln P̆m+1 − ln pm+1 − (ln P̆m − ln pm)⟩C ≥ 1

2
C∗K∗

ph
2 − C̃4∥emp ∥22,

(6.55)

in which C̃4 is a constant only dependent on δ and C∗, independent of τ and h. In addition, if
K∗
n = 0 and K∗

p = 0, i.e, both Λn and Λp are empty sets, we have an improved bound control:

⟨em+1
n , FN̆m(N̆

m+1)− Fnm(nm+1)⟩C
+ τ⟨em+1

n , ln N̆m+1 − lnnm+1 − (ln N̆m − lnnm)⟩C ≥ C̃5∥em+1
n ∥22 − C̃4∥emn ∥22,

⟨em+1
p , FP̆m(P̆

m+1)− Fpm(p
m+1)⟩C

+ τ⟨em+1
p , ln P̆m+1 − ln pm+1 − (ln P̆m − ln pm)⟩C ≥ C̃5∥em+1

p ∥22 − C̃4∥emp ∥22,

(6.56)

in which C̃5 stands for another constant only dependent on δ and C∗.

As a direct consequence of Lemma 6.2, we see that

⟨em+1
n , em+1/2

µn ⟩C =⟨em+1
n , FN̆m(N̆

m+1)− Fnm(nm+1) + (−∆h)
−1(em+1/2

n − em+1/2
p )⟩C

+ τ⟨em+1
n , ln N̆m+1 − lnnm+1⟩C − τ⟨em+1

n , ln N̆m − lnnm⟩C ,

≥1

2
C∗K∗

nh
2 − C̃4∥ẽmn ∥22 + ⟨ẽm+1

n , (−∆h)
−1(ẽm+1/2

n − ẽm+1/2
p )⟩C , (6.57a)

⟨em+1
p , em+1/2

µp ⟩C =⟨em+1
p , FP̆m(P̆

m+1)− Fpm(p
m+1) + (−∆h)

−1(em+1/2
p − em+1/2

p )⟩C
+ τ⟨em+1

p , ln P̆m+1 − ln pm+1⟩C − τ⟨em+1
p , ln P̆m − ln pm⟩C ,

≥1

2
C∗K∗

ph
2 − C̃4∥ẽmp ∥22 + ⟨ẽm+1

p , (−∆h)
−1(ẽm+1/2

p − ẽm+1/2
p )⟩C . (6.57b)

On the other hand, the following fact is observed:

⟨em+1
n , (−∆h)

−1(em+1/2
n − em+1/2

p )⟩C + ⟨em+1
p , (−∆h)

−1(em+1/2
p − em+1/2

n )⟩C

=
1

2
⟨(−∆h)

−1(em+1
n − em+1

p + emn − emp ), e
m+1
n − em+1

p ⟩C

≥ 1

4
(∥em+1

n − em+1
p ∥2−1,h − ∥emn − emp ∥2−1,h).

(6.58)

Going back (6.57), we arrive at

⟨em+1
n , em+1/2

µn ⟩C + ⟨em+1/2
p , em+1

µp ⟩C

≥1

2
C∗(K∗

n +K∗
p)h

2 − C̃4(∥emn ∥22 + ∥emp ∥22)−
1

4
∥emn − emp ∥2−1,h.

(6.59)
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Subsequently, a substitution of (6.52)-(6.59) into (6.51) yields

1

τ

(1
2
C∗(K∗

n +K∗
p)h
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1

4
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)
+
δ
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+
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m+1/2∇he
m+1/2
µn , ê
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m+1/2
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≤8(C∗)2δ−1(3∥emn ∥22 + ∥em−1
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p ∥22)
+ 4δ−1(∥ζmn ∥2−1,h + ∥ζmp ∥2−1,h) + 4(τδ)−1(∥emn ∥2−1,h + ∥emp ∥2−1,h).

(6.60)

Moreover, a combination of (6.50) and (6.60) leads to

1

2
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4
(∥∇he
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2
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p)h

2

≤1

2
∥emu ∥22 +

τ2

8
∥∇he

m
ψ ∥22 + C̃4(∥emn ∥22 + ∥emp ∥22) +

1

4
∥emn − emp ∥2−1,h

+ 8(C∗)2δ−1τ(3∥emn ∥22 + ∥em−1
n ∥22 + 3∥emp ∥22 + ∥em−1

p ∥22)
+ 4δ−1τ(∥ζmn ∥2−1,h + ∥ζmp ∥2−1,h) + 4δ−1τ−1(∥emn ∥2−1,h + ∥emp ∥2−1,h) + 2C2

0τ∥ζmu ∥22

+
C̃3τ

2
(3∥emn ∥22 + ∥em−1

n ∥22 + 3∥emp ∥22 + ∥em−1
p ∥22) +

C̃2τ

2
(3∥emu ∥22 + ∥em−1

u ∥22).

(6.61)

Meanwhile, the following estimates are available for the right hand side of (6.61), with the help of
a-priori assumption (6.36):

4δ−1τ−1(∥emn ∥2−1,h + ∥emp ∥2−1,h) ≤ Cδ−1τ−1(∥emn ∥22 + ∥emp ∥22) ≤ C(τ
13
2 + h

13
2 ), (6.62a)

4δ−1τ(∥ζmn ∥2−1,h + ∥ζmp ∥2−1,h), 2C
2
0τ∥ζmu ∥22 ≤ C(τ9 + τh8), (6.62b)(

8(C∗)2δ−1 +
C̃3

2

)
τ(3∥emn ∥22 + ∥em−1

n ∥22 + 3∥emp ∥22 + ∥em−1
p ∥22) ≤ C(τ

17
2 + h

17
2 ), (6.62c)

C̃4(∥emn ∥22 + ∥emp ∥22),
1

4
∥emn − emp ∥2−1,h ≤ C(τ

15
2 + h

15
2 ), (6.62d)(1

2
+

3C̃2τ

2

)
∥emu ∥22 +

C̃2τ

2
∥em−1

u ∥22 ≤ C(τ
15
2 + h

15
2 ), (6.62e)

τ2

8
∥∇he

m
ψ ∥22 ≤ C(τ

15
2 + h

15
2 ), (6.62f)

in which the discrete Poincaré inequality, ∥f∥−1,h ≤ C0∥f∥2, as well as the linear refinement con-
straint λ1h ≤ τ ≤ λ2h, have been repeatedly applied. A substitution of (6.62) into (6.61) gives

1

2
C∗(K∗

n +K∗
p)h

2 ≤ C(τ
13
2 + h

13
2 ). (6.63)

If K∗
n ≥ 1 or K∗

p ≥ 1, the above inequality will make a contradiction, provided that τ and h are
sufficiently small. Subsequently, we conclude that K∗

n = 0 and K∗
p = 0, so that both Λn and Λp are

empty sets. As a result, an application of (6.56) (in Lemma 6.2) yields an improved estimate:

⟨em+1
n , em+1/2

µn ⟩C + ⟨em+1/2
p , em+1/2

µp ⟩C

≥C̃5(∥em+1
n ∥22 + ∥em+1

p ∥22)− C̃4(∥emn ∥22 + ∥emp ∥22)−
1

4
∥emn − emp ∥2−1,h.

(6.64)

Furthermore, its combination with (6.62) and (6.50)-(6.53) implies that

1

2
∥em+1

u ∥22 + C̃5(∥em+1
n ∥22 + ∥em+1

p ∥22) ≤ C(τ
13
2 + h

13
2 ). (6.65)
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In particular, the following rough error estimate becomes available:

∥em+1
u ∥2 + ∥em+1

n ∥2 + ∥em+1
p ∥2 ≤ Ĉ(τ

13
4 + h

13
4 ) ≤ τ3 + h3, (6.66)

under the linear refinement requirement λ1h ≤ τ ≤ λ2h, with Ĉ dependent only on the physical
parameters and the computational domain.

As a direct consequence of the above rough error estimate, an application of 2-D inverse in-
equality indicates that

∥em+1
n ∥∞ + ∥em+1

p ∥∞ ≤
C(∥em+1

n ∥2 + ∥em+1
p ∥2)

h
≤ C(τ2 + h2) ≤ δ

8
, (6.67)

under the same linear refinement requirement, provided that τ and h are sufficiently small. With
the help of the separation estimate (6.28) for the constructed approximate solution (N̆, P̆), a similar
property becomes available for the numerical solution at time step tm+1:

δ

2
≤ nm+1 ≤ C∗ +

δ

2
≤ C̃1, and

δ

2
≤ pm+1 ≤ C∗ +

δ

2
≤ C̃1. (6.68)

Such a ∥ · ∥∞ bound will play a crucial role in the refined error estimate. Moreover, the following
bound for the discrete temporal derivative of the numerical solution could also be derived:

∥em+1
n − emn ∥∞ ≤ ∥em+1

n ∥∞ + ∥emn ∥∞ ≤ C(τ2 + h2) ≤ τ, (by (6.37), (6.67)),

∥N̆m+1 − N̆m∥∞ ≤ C∗τ, (by (6.29)),

∥nm+1 − nm∥∞ ≤ ∥N̆m+1 − N̆m∥∞ + ∥em+1
n − emn ∥∞ ≤ (C∗ + 1)τ,

∥pm+1 − pm∥∞ ≤ (C∗ + 1) τ, (similar analysis).

(6.69)

6.3 A refined error estimate

The following preliminary result, which has been established in an existing work [21], is recalled.

Lemma 6.3. [21] Under the a-priori ∥ · ∥∞ estimate (6.38), (6.39) for the numerical solution at
the previous time steps and the rough ∥ · ∥∞ estimates (6.68), (6.69) for the one at the next time
step, we have

⟨em+1
n − emn , FN̆m(N̂

m+1)− Fnm(nm+1)⟩C

≥ 1

2

(〈 1

N̆m+1
, (em+1

n )2
〉
C
−
〈 1
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, (emn )

2
〉
C

)
− C̃6τ(∥em+1

n ∥22 + ∥emn ∥22), (6.70a)

⟨em+1
n − emn , ln N̂

m+1 − lnnm+1 − (ln N̂m − lnnm)⟩C ≥ −C̃7τ(∥em+1
n ∥22 + ∥emn ∥22), (6.70b)

⟨em+1
p − emp , FP̆m(P̂

m+1)− Fpm(p
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≥ 1
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(〈 1
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p )2
〉
C
−
〈 1

P̆m
, (emp )

2
〉
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)
− C̃6τ(∥em+1

p ∥22 + ∥emp ∥22), (6.70c)

⟨em+1
p − emp , ln P̂

m+1 − ln pm+1 − (ln P̂m − ln pm)⟩C ≥ −C̃7τ(∥em+1
p ∥22 + ∥emp ∥22), (6.70d)

in which the constants C̃6 and C̃7 only depend on δ, and C∗.
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Now we proceed into the refined error estimate. Again, a combination of the inner product
equation (6.51) and the estimates (6.52), (6.53), leads to
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(6.71)

On the other hand, the temporal stencil inner product has to be analyzed more precisely. A detailed

expansion for e
m+1/2
µn and e

m+1/2
µp reveals that
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(6.72)

In terms of the last term, a careful calculation implies the following equality:
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(6.73)

A combination of (6.73) with the refined estimates (6.70) (in Lemma 6.3) yields
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(6.74)

In turn, a substitution of (6.74) into (6.71) results in
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(6.75)

with C̃8 = 2(C̃6 + C̃7 + 24(C∗)2δ−1)C∗, and the following bound has been applied in the last step:〈 1

N̆k
, (ekn)

2
〉
C
≥ 1

C∗ ∥e
k
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〈 1
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2
〉
C
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k
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k
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In addition, a combination of (6.75) and (6.50) leads to
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With an introduction of a unified error functional, Gk = Fk + 1
2∥e

k
u∥22 + τ2

8 ∥∇he
m+1
ψ ∥22, we see that

Gm+1 − Gm ≤ C̃9τ(Gm+1 + Gm + Gm−1) + 4C2
0τ∥ζmu ∥22 + 4δ−1τ(∥ζmn ∥2−1,h + ∥ζmp ∥2−1,h), (6.78)

where C̃9 = max(C̃8 + 6C̃3C
∗, 6C̃2). Therefore, with sufficiently small τ and h, an application of

discrete Gronwall inequality results the desired higher order convergence estimate

Gm+1 ≤ C(τ8 + h8), so that ∥em+1
u ∥2 + ∥em+1

n ∥2 + ∥em+1
p ∥2 + τ∥∇he

m+1
ψ ∥2 ≤ C(τ4 + h4), (6.79)

in which the higher order truncation error accuracy, ∥ζmu ∥2, ∥ζmn ∥2, ∥ζmp ∥2 ≤ C(τ4 + h4), has been
applied in the analysis. This completes the refined error estimate.

6.4 Recovery of the a-priori assumption (6.36)

With the the higher order convergence estimate (6.79) in hand, the a-priori assumption in (6.36) is
recovered at the next time step tm+1 :

∥em+1
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n ∥2, ∥em+1
p ∥2 ≤ C(τ4 + h4) ≤ τ

15
4 + h

15
4 ,

∥∇he
m+1
ψ ∥2 ≤ C(τ3 + h3) ≤ τ

11
4 + h

11
4 ,

(6.80)

provided τ and h are sufficiently small, under the linear refinement constraint. As a result, an
induction analysis could be effectively applied, and the higher order convergence analysis is finished.

As a further result, the error estimate (6.8) for the ion concentration variables comes from a
combination of (6.79) with the constructed expansion (6.9) of the approximate solution (N̆, P̆), as
well as the projection estimate (6.3). The error estimate (6.8) for the pressure variable could be
obtained by a similar argument.

To get a convergence estimate for the electric potential variable ϕ, we have to recall (6.31), the
definition for emϕ , and make use of an elliptic regularity:

∥emϕ ∥H2
h
≤ C∥∆he

m
ϕ ∥2 ≤ C∥emn − emp ∥2 ≤ C(τ4 + h4). (6.81)

Meanwhile, the following observation is made:

−∆h(e
m
ϕ − ϕ̊m) = Ph(τ2(Pτ,1 − Nτ,1) + τ3(Pτ,2 − Nτ,2) + h2(Ph,1 − Nh,1))

so that ∥emϕ − ϕ̊m∥H2
h
≤ C∥∆h(e

m
ϕ − ϕ̊m)∥2 ≤ Ĉ1(τ

2 + h2),
(6.82)

This in turn gives

∥ϕ̊m∥H2
h
≤ ∥emϕ ∥H2

h
+ ∥emϕ − ϕ̊m∥H2

h
≤ C(τ4 + h4) + Ĉ1(τ

2 + h2) ≤ (Ĉ1 + 1)(τ2 + h2). (6.83)

This finishes the proof of Theorem 6.1.
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7 Numerical results

In this section, we present a few numerical experiment results to validate the theoretical analysis,
including the numerical tests for convergence rate, energy stability, mass conservation and the
concentration positivity. Since the proposed numerical scheme (3.13) is nonlinear and coupled, its
implementation turns out to be quite technical. A linearized iteration solver is applied to implement
the numerical algorithm. In more details, the nonlinear parts are evaluated in terms of the numerical
solution at the previous stage, while the linear diffusion and temporal derivative parts are implicitly
computed at each iteration stage. In turn, only a linear numerical solver is needed at each iteration
stage, although the numerical scheme (3.13) is nonlinear. Such a linearized iteration solver has
been widely reported for various nonlinear numerical schemes; in particular, a geometric iteration
convergence rate has been theoretically justified for the Poisson-Nernst-Planck (PNP) system [20],
a highly nonlinear and singular gradient flow model. A similar theoretical analysis is expected for
the linearized iteration approach to the numerical scheme (3.13), while the technical details will
be left in the future works. Such a linearized iteration method is highly efficient; the theoretical
analysis in [20] indicates a geometric iteration convergence rate, while the practical computations
have revealed an even better iteration convergence rate in the implementation process. Only five to
ten linear solvers are needed in the iteration process for most computational examples reported in
this article, and the computational cost of the linear solver is comparable with a standard Poisson
solver. Moreover, other than the linearized linear solver, some other alternate iteration approaches,
such as preconditioned steepest descent (PSD) solver [9, 14], could be chosen, and a comparison
between difference iteration methods will be considered in the future works.

A two dimensional domain is set as Ω = (−2, 2)2. At the initial time step, a first-order scheme is
used to obtain the numerical solution. In the subsequent time steps, an iterative algorithm (similar
to the one in [21]) is used to implement the fully nonlinear scheme (3.13).

The initial data is chosen as

p0(x, y) = 0.6 + 0.2 cos (πx) cos (0.5πy) ,

n0(x, y) = 0.6 + 0.2 cos (0.5πx) cos (πy) ,

u0(x, y) = −0.25 sin2 (πx) sin (2πy) ,

v0(x, y) = 0.25 sin (2πx) sin2 (πy) ,

ψ0(x, y) = cos (0.5πx) cos (0.5πy) ,

(7.1)

where periodic boundary condition is used. The computation is performed with a sequence of
uniform mesh resolutions, and the time step size is taken as τ = 0.1h. Since the exact solution
could not be explicitly represented, we measure the Cauchy error to test the convergence rate, a
similar approach to that of [34]. In particular, the error between coarse and fine grid spacings h and
h/2 is recorded by ∥eζ∥ = ∥ζh− ζh/2∥. We present the ℓ2 and ℓ∞ errors of all the physical variables
at a final time T = 0.1. An almost perfect second order accuracy, in both time and space, has been
observed in this numerical experiment, which agrees with the theoretical analysis.

In addition, the simulation results are used to demonstrate the numerical performance to preserve
certain physical properties. The total mass conservation of the ion concentration variables (over the
computational domain) has been perfectly confirmed in the upper panel of the Figure 1. Moreover,
in the same figure, a monotone dissipation property of the discrete total energy Eh is also clearly ob-
served, which confirms the theoretical analysis. To explore the positivity-preserving property, we fo-
cus on the evolution of the minimum concentration value, i.e., Cmin := mini,j (mini,j n

m
i,j ,mini,j p

m
i,j).

As displayed in Figure 2, the numerical solutions of ion concentration variables remain positive all
the time, even though their values could become very low. Overall, these numerical evidences have
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Table 1: The ℓ2 numerical error and convergence rate for p, n and ϕ at T = 0.1, with τ = 0.1h, in
a 2-D simulation with the initial data (7.1).

h Error(p) Order Error(n) Order Error(ϕ) Order

2−3 1.9814e-02 – 1.9814e-02 – 1.2041e-03 –
2−4 4.2380e-03 2.23 4.2380e-03 2.23 1.4096e-04 3.09
2−5 1.0167e-03 2.06 1.0167e-03 2.06 2.6455e-05 2.41
2−6 2.5224e-04 2.01 2.5224e-04 2.01 6.6204e-06 2.00
2−7 6.3859e-05 1.98 6.3859e-05 1.98 2.0524e-06 1.70

Table 2: The ℓ2 numerical error and convergence rate for u, v and ψ at T = 0.1, with τ = 0.1h, in
a 2-D simulation with the initial condition (7.1).

h Error(u) Order Error(v) Order Error(ψ) Order

2−3 3.4045e-02 – 3.4045e-02 – 1.1670e-01 –
2−4 1.7835e-03 4.25 1.7835e-03 4.25 2.9702e-02 1.97
2−5 2.8403e-04 2.65 2.8403e-04 2.65 7.4107e-03 2.00
2−6 6.1956e-05 2.20 6.1956e-05 2.20 1.8390e-03 2.01
2−7 1.4938e-05 2.05 1.4938e-05 2.05 4.6457e-04 1.99

Table 3: The ℓ∞ numerical error and convergence rate for p, n and ϕ at T = 0.1, with τ = 0.1h, in
a 2-D simulation with the initial data (7.1).

h Error(p) Order Error(n) Order Error(ϕ) Order

2−3 1.0010e-02 – 1.0010e-02 – 5.6139e-04 –
2−4 2.2635e-03 2.14 2.2635e-03 2.14 9.6335e-05 2.54
2−5 5.5796e-04 2.02 5.5796e-04 2.02 1.6750e-05 2.52
2−6 1.3907e-04 2.00 1.3907e-04 2.00 3.4815e-06 2.27
2−7 3.4712e-05 2.00 3.4712e-05 2.00 9.6136e-07 1.86

Table 4: The ℓ∞ numerical error and convergence rate for u, v and ψ at T = 0.1, with τ = 0.1h, in
a 2-D simulation with the initial data (7.1).

h Error(u) Order Error(v) Order Error(ψ) Order

2−3 8.8146e-03 – 8.8146e-03 – 5.8266e-02 –
2−4 4.7646e-04 4.21 4.7646e-04 4.21 1.4692e-02 1.99
2−5 1.0576e-04 2.17 1.0576e-04 2.17 3.4509e-03 2.09
2−6 2.5684e-05 2.04 2.5684e-05 2.04 7.4629e-04 2.21
2−7 6.3948e-06 2.01 6.3948e-06 2.01 1.6649e-04 2.16

demonstrated that, the proposed numerical scheme is capable of maintaining mass conservation,
total energy dissipation, and positivity at a discrete level.
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Figure 1: Time evolution of the total energy functional and mass of positive ion for the numerical
example with initial data (7.1).

Figure 2: Time evolution of the minimum value of positive ion for example, (7.1). The curve shows
the minimum concentration of positive ion is always positive.

8 Conclusion

A second order accurate (in both time and space) numerical scheme has been proposed and analyzed
for the Poisson-Nernst-Planck-Navier-Stokes (PNPNS) system. The PNP equation is reformulated
as a non-constant mobility H−1 gradient flow, and the Energetic Variational Approach (EnVarA)
leads to a total energy dissipation law. The marker and cell (MAC) finite difference is taken as
the spatial discretization, while a modified Crank-Nicolson approximation is applied to the singular
logarithmic nonlinear term. In turn, its inner product with the discrete temporal derivative exactly
gives the corresponding nonlinear energy difference, so that the energy stability is ensured for
the logarithmic part. The mobility function is explicitly computed by a second order accurate
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extrapolation formula, and the elliptic nature of the temporal derivative part is preserved and
the unique solvability could be ensured. Moreover, nonlinear artificial regularization terms are
added in the numerical design to facilitate the positivity-preserving analysis, with the help of the
singularity associated with the logarithmic function. Meanwhile, the convective term in the PNP
evolutionary equation and the fluid momentum equation are updated in a semi-implicit way, with
second order accurate temporal approximation. The unique solvability/positivity preserving and
total energy stability analysis has been theoretically established. In addition, an optimal rate
convergence analysis is provided, in which the higher order asymptotic expansion for the numerical
solution, the rough and refined error estimate techniques have to be included to accomplish such an
analysis. In the authors’ knowledge, this is the first work to combine the three theoretical properties
for any second order accurate scheme for the PNPNS system.
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