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Abstract. The Maxwell equations are solved by a long-stencil fourth order finite dif-
ference method over a Yee grid, in which different physical variables are located at
staggered mesh points. A careful treatment of the numerical values near the boundary
is introduced, which in turn leads to a “symmetric image” formula at the “ghost” grid
points. Such a symmetric formula assures the stability of the boundary extrapolation. In
turn, the fourth order discrete curl operator for the electric and magnetic vectors gives a
complete set of eigenvalues in the purely imaginary axis. To advance the dynamic equa-
tions, the four-stage Runge–Kutta method is utilized, which results in a full fourth order
accuracy in both time and space. A stability constraint for the time step is formulated
at both the theoretical and numerical levels, using an argument of stability domain.
An accuracy check is presented to verify the fourth order precision, using a compari-
son between exact solution and numerical solutions at a fixed final time. In addition,
some numerical simulations of a loss-less rectangular cavity are also carried out and the
frequency is measured precisely.
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1. Introduction

Time domain simulation of electromagnetic fields is of great practical significance
in engineering and physics, since it allows a broad spectrum of frequencies to be
analyzed in a single simulation. The classical central difference scheme introduced
by Yee [22] proved to be second order accurate in space and time. As always in the
case of a second order method, the Yee scheme begins to accumulate phase errors as
time grows large, especially for electrically large domains or for late-time analysis.
Because of this, a number of attempts have been made to extend this scheme to
fourth order accuracy since Fang’s pioneering work [2]. Fourth order methods allow
a coarser time step and spatial mesh to be used while maintaining the same accuracy
(effectively increasing simulation speed), or can increase the accuracy for a given
mesh spacing and time step.

A direct application of a fourth order long-stencil difference results in a one-
sided approximation formula around the boundary, such as a fourth order closure
proposed in Petropoulous and Yefet [12] and relevant works [3,4,11,13,16], etc. An
alternate approach to overcome the boundary difficulties is to introduce a compact
difference operator for the spatial derivatives over the Yee stencil, as discussed in
detail in Young [26]. Unfortunately, these conventional approaches of fourth order
methods tend to suffer from instability near the boundary or require an implicit
updating scheme. Additionally, the fourth order leap-frog or the classic fourth order
Runge–Kutta method (RK4) is typically used for the fourth order time integration.
The fourth order leap frog scheme leads to a corrective derivative that is very com-
plicated to implement. The RK4 integrator requires the storage of many temporary,
intermediate field values, which increases the memory storage requirements dras-
tically over the second order method. Discussions of other fourth order FDTD

schemes and related issues can also be found in [1, 20, 21, 23, 24, 27], etc.
In this paper, a fully explicit fourth order scheme over the Yee mesh grid is

proposed, which does not suffer from instability near the boundary. Different phys-
ical variables representing electric and magnetic vectors are located at different
mesh points. Such a staggered grid makes the computed vectors divergence-free
at a discrete level. The extrapolation formulas near the boundary are very sim-
ple to implement. (Here, the treatment of boundary conditions is demonstrated
for a perfectly conducting rectangular domain, but the principles can be extended
to accommodate other types of boundary conditions.) This article is the first to
demonstrate a fourth order accuracy using a “symmetric image” formula. In addi-
tion, the time integration is done using Jameson method, a four-stage integrator
that is improved from the commonly used RK4 integrator in that fewer temporary
storage variables are required, saving memory. Such a time integration, proposed
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by Jameson in [7, 8] in the numerical simulations of gas dynamics, is only second
order accurate for nonlinear equations. It is the first time the Jameson method has
been applied to the computation of electromagnetic fields. The resulting scheme is
shown to preserve fourth order accuracy in space and time for the linear Maxwell
equations. At the same time, it offers a larger stability domain than the second
order scheme. It is shown that the corresponding CFL number can be improved
over that of the second order leap-frog scheme by a factor of 2

√
2. Meanwhile, the

long stencil difference operator leads to an eigenvalue with a maximum magnitude
of 7

6 times that of the classical (second order) central difference. As a result, the
overall fourth order scheme has a maximum CFL number of 12

√
2

7 , which is a drastic
improvement.

The article is organized as follows. In Sec. 2, we review the formulation of the
Maxwell equations and formulate the eigenvalues and eigenfunctions of the curl
operator at the continuous level. In Sec. 3, we describe the fourth order scheme in
detail, including both the spatial and temporal discretizations. In Sec. 4, an exact
solution with a single mode is studied and computed by the proposed scheme. An
accuracy check is performed by a comparison between the exact and numerical
solutions at a given time instant, which in turn shows a full fourth order accuracy.
In Sec. 5, we compute a physical example of a loss-less rectangular cavity. Different
modes are included in the initial data with a decaying magnitude. An FFT tool
is utilized to analyze the frequency of the wave over time. This shows that the
proposed 4 × 4 scheme performs much better than the classical 2 × 2 and 2 × 4
methods in the accuracy of resonant frequency computations.

2. The Formulation

We denote E = (Ex, Ey, Ez)T , H = (Hx, Hy, Hz)T as the electric field and the
magnetic field, respectively. Over a 3-D domain Ω ⊂ R3, the Maxwell equations
take the form of



∂tE =
1
ε
∇ × H =

1
ε




∂yHz − ∂zHy

∂zHx − ∂xHz

∂xHy − ∂yHx


 ,

∂tH = − 1
µ
∇ × E = − 1

µ




∂yEz − ∂zEy

∂zEx − ∂xEz

∂xEy − ∂yEx


 ,

∇ · E = 0,

∇ · H = 0,

(2.1)

in which µ, ε > 0 represent magnetic permeability and electric permittivity, respec-
tively. As a result, the speed of light is given by c =

√
1
µε . The perfectly conducting
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boundary conditions are imposed as

E · τ = 0,
∂(E · n)

∂n
= 0, on ∂Ω,

H · n = 0,
∂(H · τ)

∂n
= 0, on ∂Ω,

(2.2)

in which n and τ represent the unit normal and tangential vectors on the boundary,
respectively. Note that the second part of (2.2) comes from an application of the
divergence-free constraint for both E and H on the boundary.

We note that each component of E and H satisfies the wave equation:

∂2
t Ei =

1
µε

(
∂2

x + ∂2
y + ∂2

z

)
Ei, ∂2

t Hi =
1
µε

(
∂2

x + ∂2
y + ∂2

z

)
Hi, for i = 1, 2, 3.

(2.3)

The above wave equations come from the following identity

∇× (∇× u) = −�u + ∇(∇ · u), (2.4)

for any u ∈ R3.
In a cubic rectangular domain Ω = (0, a1) × (0, a2) × (0, a3), we observe the

following profile

Ex = A1 cos
(

lπx

a1

)
sin

(
mπy

a2

)
sin

(
nπz

a3

)
,

Ey = A2 sin
(

lπx

a1

)
cos

(
mπy

a2

)
sin

(
nπz

a3

)
,

Ez = A3 sin
(

lπx

a1

)
sin

(
mπy

a2

)
cos

(
nπz

a3

)
,

Hx = B1 sin
(

lπx

a1

)
cos

(
mπy

a2

)
cos

(
nπz

a3

)
,

Hy = B2 cos
(

lπx

a1

)
sin

(
mπy

a2

)
cos

(
nπz

a3

)
,

Hz = B3 cos
(

lπx

a1

)
cos

(
mπy

a2

)
sin

(
nπz

a3

)
,

(2.5)

is divergence-free and satisfies the boundary condition (2.2) for any l, m, n ∈ Z, if
the following constraints for the coefficients are imposed

l̄A1 + m̄A2 + n̄A3 = 0, l̄B1 + m̄B2 + n̄B3 = 0, with (2.6a)

l̄ =
lπ

a1
, m̄ =

mπ

a2
, n̄ =

nπ

a3
. (2.6b)
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Moreover, they form a complete set of eigenfunctions of the operator in (2.1) pro-
vided that

−1
ε

(m̄B3 − n̄B2) = λA1, −1
ε

(
n̄B1 − l̄B3

)
= λA2,

−1
ε

(
l̄B2 − m̄B1

)
= λA3, − 1

µ
(m̄A3 − n̄A2) = λB1,

− 1
µ

(
n̄A1 − l̄A3

)
= λB2, − 1

µ

(
l̄A2 − m̄A1

)
= λB3.

(2.7)

Additionally, by setting λ̄l,m,n =
√

(l̄)2 + (m̄)2 + (n̄)2, we have the following eigen-
values (with i =

√−1)

A1 =

√
1
ε
, A2 =

√
1
ε
· −l̄ m̄ + n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, A3 =

√
1
ε
· −l̄ n̄ − m̄ λ̄l,m,ni

(m̄)2 + (n̄)2
,

B1 =
√

1
µ

, B2 =
√

1
µ
· −l̄ m̄ + n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, B3 =

√
1
µ
· −l̄ n̄ − m̄ λ̄l,m,ni

(m̄)2 + (n̄)2

λ =
√

1
µε

(
(l̄)2 + (m̄)2 + (n̄)2

)
i,

(2.8a)

A1 =

√
1
ε
, A2 =

√
1
ε
· −l̄ m̄ + n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, A3 =

√
1
ε
· −l̄ n̄ − m̄ λ̄l,m,ni

(m̄)2 + (n̄)2
,

B1 = −
√

1
µ

, B2 = −
√

1
µ
· −l̄ m̄ + n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, B3 = −

√
1
µ
· −l̄ n̄ − m̄ λ̄l,m,ni

(m̄)2 + (n̄)2
,

λ = −
√

1
µε

(
(l̄)2 + (m̄)2 + (n̄)2

)
i,

(2.8b)

A1 =

√
1
ε
, A2 =

√
1
ε
· −l̄ m̄ − n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, A3 =

√
1
ε
· −l̄ n̄ + m̄ λ̄l,m,ni

(m̄)2 + (n̄)2
,

B1 =
√

1
µ

, B2 =
√

1
µ
· −l̄ m̄ − n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, B3 =

√
1
µ
· −l̄ n̄ + m̄ λ̄l,m,ni

(m̄)2 + (n̄)2
,

λ = −
√

1
µε

(
(l̄)2 + (m̄)2 + (n̄)2

)
i,

(2.8c)
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A1 =

√
1
ε
, A2 =

√
1
ε
· −l̄ m̄ − n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, A3 =

√
1
ε
· −l̄ n̄ + m̄ λ̄l,m,ni

(m̄)2 + (n̄)2
,

B1 = −
√

1
µ

, B2 = −
√

1
µ
· −l̄ m̄ − n̄ λ̄l,m,ni

(m̄)2 + (n̄)2
, B3 = −

√
1
µ
· −l̄ n̄ + m̄ λ̄l,m,ni

(m̄)2 + (n̄)2
,

λ =
√

1
µε

(
(l̄)2 + (m̄)2 + (n̄)2

)
i.

(2.8d)

In other words, all the eigenvalues are purely imaginary, and the corresponding
eigenfunctions take the form of (2.5) if a perfectly conducting boundary is consid-
ered. This property assures the well-posedness of the PDE system (2.1) and makes
the design and derivation of an efficient fourth order numerical scheme possible.

3. The Fourth Order Numerical Scheme

For simplicity of the presentation, we consider the computational domain Ω = (0, 1)3

with a uniform mesh �x = �y = �z = h. The case of different mesh sizes can be
dealt with in the same fashion and does not add any mathematical difficulty.

A staggered grid was introduced and utilized in Yee’s pioneering work [22] for the
Maxwell equations formulated in (2.1)–(2.2). With the node distribution of electric
and magnetic field components, the first order curl operators are discretized by
central differences in both time and space. The electric vector E = (Ex, Ey, Ez)T is
evaluated at the mesh points (i±1/2, j, k), (i, j±1/2, k), (i, j, k±1/2), respectively.
The magnetic vector H = (Hx, Hy, Hz)T is evaluated at the mesh points (i, j ±
1/2, k± 1/2), (i± 1/2, j, k± 1/2), (i± 1/2, j ± 1/2, k), respectively. More precisely,
Ex is located at the plus points, Ey at the minus points, and Ez at the cross points;
Hx is located at the triangle points, Hy at the circle points, and Hz at the star
points. This staggered grid is also known as the 3-D marker and cell (MAC) grid,
whose 2-D version was first proposed by Harlow and Welch in [5] to deal with the
numerical solution of the Navier–Stokes equations. Its advantage is the divergence-
free property of the computed electric and magnetic vectors at the discrete level.
See a more detailed discussion in Sec. 3.3. Note that the divergences of the electric
field E and the magnetic field H are evaluated at (i, j, k), (i±1/2, j±1/2, k±1/2),
respectively. In addition, such a choice of mesh locations for E and H facilitates
the implementation of boundary condition (2.2).

The classical Yee scheme has been widely applied in many application problems
and its capabilities have been well established. Unfortunately, a central difference
approximation introduces numerical dispersion, therefore accumulating phase errors
as time grows large. A fourth order numerical scheme has an obvious advantage over
the standard second order centered difference scheme, because of the enormous
scale of the three-dimensional setting. However, the difficulty of numerical stability
(especially near the boundary) may lead to a numerical artifact, as shown in many
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earlier articles. Furthermore, the efficiency of the numerical implementation of a
fourth order method has always been another challenging issue.

In this article, the spatial derivatives of each variable are approximated with
fourth order accuracy by long stencil differences, with the “ghost” point values
recovered by one-sided extrapolation near the boundary. Such an extrapolation is
accomplished by using information from the original PDE, to reduce the number of
interior points needed in the one-sided formula for improved stability.

Before the formal discussion of the scheme, we introduce some finite difference
and average operators to simplify the explanations below. The following notations
of centered differences using different stencils at different grid points are introduced
to facilitate the description:

Dxg(x) =
g(x + 1

2�x) − g(x − 1
2�x)

�x
, D̃xg(x) =

g(x + �x) − g(x −�x)
2�x

,

D2
xg(x) =

g(x −�x) − 2g(x) + g(x + �x)
�x2 ,

(3.1)

Dxg(x) = Dx

(
1 − �x2

24
D2

x

)
g(x)

=
g(x − 3

2h) − 27g(x − 1
2h) + 27g(x + 1

2h) − g(x + 3
2h)

24�x
. (3.2)

It can be easily verified by a careful Taylor expansion that the long-stencil operator
in (3.2) is a fourth order approximations to ∂x. Note that (3.2) is evaluated for
variables located within a staggered grid. The corresponding operator in the y- and
z-directions can be defined in a similar way. We omit the details here.

3.1. Update of the dynamic equations: method of lines

Due to the staggered locations of different physical variables, the components of
E = (Ex, Ey, Ez)T and H = (Hx, Hy, Hz)T are updated at the “plus”, “minus”,
“cross”, “triangle”, “circle” and “star” points indicated by Fig. 1, respectively.
At these mesh points, the long-stencil centered difference approximation (3.2) is
utilized to compute the curl of H and E, with fourth order accuracy. For instance,
at (i + 1/2, j, k) where Ex is located, we have

(DyHz)i+1/2,j,k

=
(Hz)i+1/2,j−3/2,k − 27(Hz)i+1/2,j−1/2,k + 27(Hz)i+1/2,j+1/2,k − (Hz)i+1/2,j+3/2,k

24�y
,

(DzHy)i+1/2,j,k

=
(Hy)i+1/2,j,k−3/2 − 27(Hy)i+1/2,j,k−1/2 + 27(Hy)i+1/2,j,k+1/2 − (Hy)i+1/2,j,k+3/2

24�z
,

(3.3a)

and the method of lines gives

∂tEx =
1
ε

(DyHz −DzHy) , at (i + 1/2, j, k). (3.3b)
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(i,j,k)

(i,j+1,k)

(i+1,j,k)

(i+1,j+1,k)

Hz
i+1/2,j+1/2,k

Ex
i+1/2,j,k

Ey
i,j+1/2,k

Hx
i,j+1/2,k+1/2

Hx
i+1,j+1/2,k+1/2

Hy
i+1/2,j,k+1/2

Hy
i+1/2,j+1,k+1/2

Ez
i,j,k+1/2

Ez
i+1,j,k+1/2

Ez
i,j+1,k+1/2

(i,j,k+1)

(i,j+1,k+1)

(i+1,j,k+1)

(i+1,j+1,k+1)

Hz
i+1/2,j+1/2,k+1

Ex
i+1/2,j,k+1

Ex
i+1/2,j+1,k+1

Ey
i,j+1/2,k+1

Ey
i+1,j+1/2,k+1

Fig. 1. The 3-D MAC grid for the Maxwell equations.

The other five components can be updated in a similar manner

∂tEy =
1
ε

(DzHx −DxHz) , at (i, j + 1/2, k),

∂tEz =
1
ε

(DxHy −DyHx) , at (i, j, k + 1/2),

∂tHx = − 1
µ

(DyEz − DzEy) , at (i, j + 1/2, k + 1/2),

∂tHy = − 1
µ

(DzEx − DxEz) , at (i + 1/2, j, k + 1/2),

∂tHz = − 1
µ

(DxEy − DyEx) , at (i + 1/2, j + 1/2, k).

(3.4)

3.2. Boundary condition and boundary extrapolation for E and H

We see that the long-stencil scheme (3.3)–(3.4) requires “ghost” point values for
E and H at a mesh point close to the boundary. For instance, since a Dirich-
let boundary condition is imposed for Ex in both the y- and z-directions, we
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have (Ex)i+1/2,j,0 = (Ex)i+1/2,j,N = 0 and (Ex)i+1/2,0,k = (Ex)i+1/2,N,k = 0
on the boundary sections z = 0, z = 1, y = 0, y = 1, respectively. In
turn, Ex is updated at mesh points (i + 1/2, j, k), 0 ≤ i ≤ N − 1, 1 ≤
j, k ≤ N − 1, requiring the prescription of the “ghost” values: (Ex)i+1/2,j,−1,

(Ex)i+1/2,j,N+1, (Ex)i+1/2,−1,k, (Ex)i+1/2,N+1,k, due to the stencil of the discretiza-
tion (3.3).

Regarding Hx, a Dirichlet boundary condition imposed in the x-direction shows
that (Hx)0,j+1/2,k+1/2 = (Hx)N,j+1/2,k+1/2 = 0 on the boundary sections x = 0, 1.
Consequently, it is updated at mesh points (i, j + 1/2, k + 1/2) with 1 ≤ i ≤
N − 1, 0 ≤ j, k ≤ N − 1. Due to the Neumann boundary condition imposed in the
y- and z-directions, Hx on the boundary sections y = 0, 1, z = 0, 1 is not known
explicitly, only its normal derivative. It is necessary to determine “ghost” point
values for (Hx)i,−1/2,k+1/2, (Hx)i,−3/2,k+1/2, (Hx)i,N+1/2,k+1/2, (Hx)i,N+3/2,k+1/2,
(Hx)i,j+1/2,−1/2, (Hx)i,j+1/2,−3/2, (Hx)i,j+1/2,N+1/2 and (Hx)i,j+1/2,N+3/2 around
the corresponding boundary sections.

The other four components can be dealt with in the same manner. Then
we get

Ex : updated at (i + 1/2, j, k), 0 ≤ i ≤ N − 1, 1 ≤ j, k ≤ N − 1,

(Ex)i+1/2,j,0 = (Ex)i+1/2,j,N = 0, (Ex)i+1/2,0,k = (Ex)i+1/2,N,k = 0,

(Ex)i+1/2,j,−1, (Ex)i+1/2,j,N+1, (Ex)i+1/2,−1,k,

(Ex)i+1/2,N+1,k are needed,

(3.5a)

Ey : updated at (i, j + 1/2, k), 0 ≤ j ≤ N − 1, 1 ≤ i, k ≤ N − 1,

(Ey)i,j+1/2,0 = (Ey)i,j+1/2,N = 0, (Ey)0,j+1/2,k = (Ey)N,j+1/2,k = 0,

(Ey)i,j+1/2,−1, (Ey)i,j+1/2,N+1, (Ey)−1,j+1/2,k,

(Ey)N+1,j+1/2,k are needed,

(3.5b)

Ez : updated at (i, j, k + 1/2), 0 ≤ k ≤ N − 1, 1 ≤ i, j ≤ N − 1,

(Ez)i,0,k+1/2 = (Ez)i,N,k+1/2 = 0, (Ez)0,j,k+1/2 = (Ez)N,j,k+1/2 = 0,

(Ez)i,−1,k+1/2, (Ez)i,N+1,k+1/2, (Ez)−1,j,k+1/2,

(Ez)N+1,j,k+1/2 are needed,

(3.5c)

Hx : updated at (i, j + 1/2, k + 1/2), 1 ≤ i ≤ N − 1, 0 ≤ j, k ≤ N − 1,

(Hx)0,j+1/2,k+1/2 = (Hx)N,j+1/2,k+1/2 = 0,

(Hx)i,−1/2,k+1/2, (Hx)i,−3/2,k+1/2,

(Hx)i,N+1/2,k+1/2, (Hx)i,N+3/2,k+1/2,

(Hx)i,j+1/2,−1/2, (Hx)i,j+1/2,−3/2,

(Hx)i,j+1/2,N+1/2, (Hx)i,j+1/2,N+3/2 are needed,

(3.5d)
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Hy : updated at (i + 1/2, j, k + 1/2), 1 ≤ j ≤ N − 1, 0 ≤ i, k ≤ N − 1,

(Hy)i+1/2,0,k+1/2 = (Hy)i+1/2,N,k+1/2 = 0,

(Hy)−1/2,j,k+1/2, (Hy)−3/2,j,k+1/2,

(Hy)N+1/2,j,k+1/2, (Hy)N+3/2,j,k+1/2,

(Hy)i+1/2,j,−1/2, (Hy)i+1/2,j,−3/2,

(Hy)i+1/2,j,N+1/2, (Hy)i+1/2,j,N+3/2 are needed,

(3.5e)

Hz : updated at (i + 1/2, j + 1/2, k), 1 ≤ k ≤ N − 1, 0 ≤ i, j ≤ N − 1,

(Hz)i+1/2,j+1/2,0 = (Hz)i+1/2,j+1/2,N = 0,

(Hz)−1/2,j+1/2,k, (Hz)−3/2,j+1/2,k,

(Hz)N+1/2,j+1/2,k, (Hz)N+3/2,j+1/2,k,

(Hz)i+1/2,−1/2,k, (Hz)i+1/2,−3/2,k,

(Hz)i+1/2,N+1/2,k, (Hz)i+1/2,N+3/2,k are needed.

(3.5f)

3.2.1. “Ghost” value approximation under a Dirichlet boundary condition

For instance, around the bottom boundary z = 0, a local Taylor expansion for Ex

gives

(Ex)i+1/2,j,−1 = 2(Ex)i+1/2,j,0 − (Ex)i+1/2,j,1 + h2∂2
z (Ex)i+1/2,j,0 + O(h4)

= −(Ex)i+1/2,j,1 + h2∂2
z (Ex)i+1/2,j,0 + O(h4),

(3.6)

in which the second step comes from the Dirichlet boundary condition. The term
∂2

zEx for k = 0 is prescribed by considering the original PDE at the boundary. Since
all six components satisfy the wave equation (2.3), we have the following evaluation
for Ex at z = 0:

∂2
t Ex|z=0 =

1
µε

(∂2
x + ∂2

y)Ex|z=0 +
1
µε

∂2
zEx|z=0 =

1
µε

∂2
zEx|z=0. (3.7)

The second equality follows from the fact that Ex is identically zero along z = 0.
This in turn yields

∂2
zEx|z=0 =

1
µε

∂2
t Ex|z=0 = 0, (3.8)

where the same boundary condition is utilized in the second step. A substitution of
(3.8) into (3.6) leads to

(Ex)i+1/2,j,−1 = −(Ex)i+1/2,j,1 + O(h4). (3.9)

Due to its symmetry, formula (3.9) is usually referred as a “symmetric image”
formula. Although the formula appears to be second order accurate, the above
derivation shows that fourth order accuracy is obtained.
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Analogous formulas can be derived for other physical variables and at other
boundary sections. We omit the details here.

(Ex)i+1/2,j,−1 = −(Ex)i+1/2,j,1 + O(h4),

(Ex)i+1/2,j,N+1 = −(Ex)i+1/2,j,N−1 + O(h4),

(Ex)i+1/2,−1,k = −(Ex)i+1/2,1,k + O(h4),

(Ex)i+1/2,N+1,k = −(Ex)i+1/2,N−1,k + O(h4),

(Ey)i,j+1/2,−1 = −(Ey)i,j+1/2,1 + O(h4),

(Ey)i,j+1/2,N+1 = −(Ey)i,j+1/2,N−1 + O(h4),

(Ey)−1,j+1/2,k = −(Ey)1,j+1/2,k + O(h4),

(Ey)N+1,j+1/2,k = −(Ey)N−1,j+1/2,k + O(h4),

(Ez)i,−1,k+1/2 = −(Ez)i,1,k+1/2 + O(h4),

(Ez)i,N+1,k+1/2 = −(Ez)i,N−1,k+1/2 + O(h4),

(Ez)−1,j,k+1/2 = −(Ez)1,j,k+1/2 + O(h4),

(Ez)N+1,j,k+1/2 = −(Ez)N−1,j,k+1/2 + O(h4).

(3.10)

3.2.2. “Ghost” value approximation under a Neumann boundary condition

For instance, a local Taylor expansion for Hx around the bottom boundary z = 0
shows that

(Hx)i,j+1/2,−1/2 = (Hx)i,j+1/2,1/2 −�z∂z(Hx)i,j+1/2,0

− �z3

24
∂3

z (Hx)i,j+1/2,0 + O(h5),

(Hx)i,j+1/2,−3/2 = (Hx)i,j+1/2,3/2 − 3�z∂z(Hx)i,j+1/2,0

− 9�z3

8
∂3

z (Hx)i,j+1/2,0 + O(h5),

(3.11)

in which the term ∂z(Hx)i,j+1/2,0 is known to vanish because of the no-flux bound-
ary condition. The remaining work is focused on the determination of ∂3

zHx at
k = 0, for which we use information from the original PDE and its derivatives.
Similarly, the component Hx also satisfies the wave equations indicated by (2.3):
∂2

t Hx = 1
µε

(
∂2

x + ∂2
y + ∂2

z

)
Hx. Applying the vertical derivative ∂z to this equation

leads to

∂2
t (∂zHx) =

1
µε

(
∂2

x + ∂2
y

)
(∂zHx) +

1
µε

∂3
zHx, at z = 0. (3.12)

The first term on the right-hand side vanishes because of the homogeneous no-flux
boundary condition. Similarly, the left-hand side is also identically zero for the same
reason. As a result, we arrive at

∂3
zHx =

1
µε

∂2
t (∂zHx) = 0, at z = 0, (3.13)
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which combined with (3.11) results in

(Hx)i,j+1/2,−1/2 = (Hx)i,j+1/2,1/2 + O(h5),

(Hx)i,j+1/2,−3/2 = (Hx)i,j+1/2,3/2 + O(h5).
(3.14)

Analogous formulas for one-sided extrapolations of H around each boundary
sections can be derived in a similar way.

(Hx)i,j+1/2,−1/2 = (Hx)i,j+1/2,1/2 + O(h5),

(Hx)i,j+1/2,−3/2 = (Hx)i,j+1/2,3/2 + O(h5),

(Hx)i,−1/2,k+1/2 = (Hx)i,1/2,k+1/2 + O(h5),

(Hx)i,−3/2,k+1/2 = (Hx)i,3/2,k+1/2 + O(h5),

(Hy)i+1/2,j,−1/2 = (Hy)i+1/2,j,1/2 + O(h5),

(Hy)i+1/2,j,−3/2 = (Hy)i+1/2,j,3/2 + O(h5),

(Hy)−1/2,j,k+1/2 = (Hy)1/2,j,k+1/2 + O(h5),

(Hy)−3/2,j,k+1/2 = (Hy)3/2,j,k+1/2 + O(h5),

(Hz)i+1/2,−1/2,k = (Hz)i+1/2,1/2,k + O(h5),

(Hz)i+1/2,−3/2,k = (Hz)i+1/2,3/2,k + O(h5),

(Hz)−1/2,j+1/2,k = (Hz)1/2,j+1/2,k + O(h5),

(Hz)−3/2,j+1/2,k = (Hz)3/2,j+1/2,k + O(h5).

(3.15)

Remark 3.1. There has been much work on the fourth order extension of the
Yee scheme since Fang’s pioneering article [2], based on long stencil differences
(3.3)–(3.4). See [6,11,13,16] for relevant discussions. As mentioned above, the most
challenging difficulty comes from the implementation of boundary conditions. Most
earlier works utilized a one-sided closure near the metallic boundaries. For instance,
a third-order closure takes the form of

∂t(Ez)i,· =
1

ε

„− 23(Hy)i−1/2,· + 21(Hy)i+1/2,· + 3(Hy)i+3/2,· − (Hy)i+5/2,·
24�x

−DyHx

«
,

at (i, j, k + 1/2), (3.16)

for i close to 0. A fourth order closure was derived in Petropoulous and Yefet [12].
Unfortunately, such a formula breaks the symmetry around the boundary and makes
a mathematical analysis impossible for the numerical curl operator, especially its
discrete eigenvalue and eigenfunctions.

By contrast, formulas (3.10) and (3.15) result in a complete set of eigenvalues
on the purely imaginary axis and eigenfunctions analogous to the continuous case,
due to its symmetry. The details will be given in Sec. 3.4.
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Remark 3.2. Other than long stencil differences (3.3)–(3.4), a number of alternate
developments of fourth order numerical scheme can also be found in earlier refer-
ences. For instance, a compact difference approximation for the spatial derivatives
over the Yee stencil was utilized in [26]. This method avoids a one-sided formula
so that the boundary condition can be satisfied exactly. Therefore, many promising
results were presented in the numerical simulations. However, its implementation
becomes complicated since the compact operator is implicit. More specifically, the
determination of a derivative at any mesh point is globally connected to the deriva-
tives at other points in the domain, which results in a tri-diagonal linear system.
Some relevant discussions are also available in [9, 15, 17, 18], etc.

Remark 3.3. In fact, the “symmetric image” formulas (3.10) and (3.15) have
even higher order accuracy. For instance, applying the wave equation for Ex

on the boundary sections z = 0 and x = 0 repeatedly, in a similar man-
ner as those of (3.7) and (3.12), we arrive at the estimates of (∂4

zEx)|z=0 and
(∂5

xEx)|x=0

∂4
t Ex|z=0 =

1
µε

(
∂2

x + ∂2
y

)
∂2

zEx|z=0 +
1
µε

∂4
zEx|z=0,

which implies ∂4
zEx|z=0 = 0,

∂4
t (∂xEx)|x=0 =

1
µε

(
∂2

y + ∂2
z

)
(∂xEx)|x=0 +

1
µε

∂5
xEx|x=0,

which implies ∂5
xEx|x=0 = 0.

(3.17)

Consequently, its substitution into a sixth order Taylor expansion for Ex around
the boundary sections z = 0 and x = 0 gives

(Ex)i+1/2,j,−1 = 2(Ex)i+1/2,j,0 − (Ex)i+1/2,j,1 + �x2∂2
z (Ex)i+1/2,j,0

+
�x4

12
∂4

z (Ex)i+1/2,j,0 + O(h6)

= −(Ex)i+1/2,j,1 +
�x4

12
∂4

z (Ex)i+1/2,j,0 + O(h6)

= −(Ex)i+1/2,j,1 + O(h6), (3.18)

(Ex)−1/2,j,k = (Ex)1/2,j,k − �x3

24
∂3

x(Ex)0,j,k − �x5

1920
∂5

x(Ex)0,j,k + O(h7)

= (Ex)1/2,j,k − �x5

1920
∂5

x(Ex)0,j,k + O(h7) = (Ex)1/2,j,k + O(h7).

Similar derivations can be applied for other physical variables at other boundary
sections. Therefore, extrapolation formulas (3.10) and (3.15) result in sixth order
accuracy around the boundary.
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Remark 3.4. The idea of a symmetric boundary extrapolation formula was also
discussed in the second author’s earlier works [10,14,19], in which fourth order finite
difference schemes for incompressible fluid were proposed and analyzed. In the fluid
model, such a symmetric formula works well and gives very accurate numerical
results. A theoretical analysis of the symmetric formula for the dissigative fluid
system was also provided. For the Maxwell equations, this technique can be applied
in a similar way. The detailed fourth order convergence analysis for the proposed
scheme will be given in a forthcoming article.

3.3. Divergence-free property for the numerical electric and

magnetic vectors at a discrete level

The divergence and curl of the electric and magnetic vectors E and H at the
discrete level are defined as

∇h · E = DxEx + DyEy + DzEz , at (i, j, k),

∇h · H = DxHx + DyHy + DzHz, at (i + 1/2, j + 1/2, k + 1/2),

∇h × E =




(DyEz −DzEy)i,j+1/2,k+1/2

(DzEx −DxEz)i+1/2,j,k+1/2

(DxEy −DyEx)i+1/2,j+1/2,k


 ,

∇h × H =




(DyHz −DzHy)i+1/2,j,k

(DzHx −DxHz)i,j+1/2,k

(DxHy −DyHx)i,j,k+1/2


 .

(3.19)

Note that all these quantities represent a fourth order numerical approximation
to the exact values. It is clear that the components of curl of E are located at the
same mesh points as those of H , while the components of curl of H are located
at the same mesh points as those of E. This fact drastically facilitates the time
marching effort in the Maxwell equations, as will be shown later. Meanwhile, since
the coordinate system is orthogonal, we observe that the composition of the diver-
gence and curl operator results in an identically zero value for both E and H, at
the discrete level:

∇h · (∇h × H) = Dx (DyHz −DzHy) + Dy (DzHx −DxHz)

+Dz (DxHy −DyHx)
= 0, at (i, j, k),

∇h · (∇h × E) = Dx (DyEz −DzEy) + Dy (DzEx −DxEz)

+Dz (DxEy −DyEx)
= 0, at (i + 1/2, j + 1/2, k + 1/2).

(3.20)
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As a result, the scheme of method of lines (3.3)-(3.4) indicates

∂t (∇h · E) =
1
ε
∇h · (∇h × H) = 0, at (i, j, k),

∂t (∇h · H) = − 1
µ
∇h · (∇h × E) = 0, at (i + 1/2, j + 1/2, k + 1/2),

(3.21)

which comes from the fact that all the spatial operators are commutative. In other
words, both E and H remain divergence-free (at the discrete level with a fourth
order numerical approximation) if the initial data E( ·, t = 0) and H( ·, t = 0) have
zero divergence.

3.4. Eigenfunctions and eigenvalues of the discrete curl operator

One prominent advantage of the proposed fourth order scheme on the staggered
grid can be seen from the complete set of eigenfunctions and eigenvalues of the curl
operator at the discrete level. Because of the symmetric boundary extrapolation
formulas (3.10) and (3.15), the components of E and H can be represented as

(Ex)i+1/2,j,k =
N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

A1m,n,k

× cos
(

l(i + 1/2)π
N

)
sin

(
mjπ

N

)
sin

(
nkπ

N

)
,

(Ey)i,j+1/2,k =
N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

A2m,n,k

× sin
(

liπ

N

)
cos

(
m(j + 1/2)π

N

)
sin

(
nkπ

N

)
,

(Ez)i,j,k+1/2 =
N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

A3m,n,k

× sin
(

liπ

N

)
sin

(
mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,

(Hx)i,j+1/2,k+1/2 =
N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

B1m,n,k

× sin
(

liπ

N

)
cos

(
m(j + 1/2)π

N

)
cos

(
n(k + 1/2)π

N

)
,

(Hy)i+1/2,j,k+1/2 =
N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

B2m,n,k

× cos
(

l(i + 1/2)π
N

)
sin

(
mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,
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(Hz)i+1/2,j+1/2,k =
N−1∑
l=0

N−1∑
m=0

N−1∑
n=0

B3m,n,k

×cos
(

l(i + 1/2)π
N

)
cos

(
m(j + 1/2)π

N

)
sin

(
nkπ

N

)
.

(3.22)

For simplicity of description, we look at the profile of E and H with a single
mode (l, m, n):

(Ex)i+1/2,j,k = A1 cos
(

l(i + 1/2)π
N

)
sin

(
mjπ

N

)
sin

(
nkπ

N

)
,

(Ey)i,j+1/2,k = A2 sin
(

liπ

N

)
cos

(
m(j + 1/2)π

N

)
sin

(
nkπ

N

)
,

(Ez)i,j,k+1/2 = A3 sin
(

liπ

N

)
sin

(
mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,

(Hx)i,j+1/2,k+1/2 = B1 sin
(

liπ

N

)
cos

(
m(j + 1/2)π

N

)
cos

(
n(k + 1/2)π

N

)
,

(Hy)i+1/2,j,k+1/2 = B2 cos
(

l(i + 1/2)π
N

)
sin

(
mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,

(Hz)i+1/2,j+1/2,k = B3 cos
(

l(i + 1/2)π
N

)
cos

(
m(j + 1/2)π

N

)
sin

(
nkπ

N

)
.

(3.23)

An application of the long stencil difference to these profiles leads to the following
results:

(DxEx)i,j,k = −A1 l̄
′ sin

(
liπ

N

)
sin

(
mjπ

N

)
sin

(
nkπ

N

)
,

(DyEx)i+1/2,j+1/2,k = A1m̄
′ cos

(
l(i + 1/2)π

N

)

× cos
(

m(j + 1/2)π
N

)
sin

(
nkπ

N

)
,

(DzEx)i+1/2,j,k+1/2 = A1n̄
′ cos

(
l(i + 1/2)π

N

)

× sin
(

mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,

(3.24a)
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with

l̄′ =
sin (lπ�x)

�x

[
1 +

�x2

3
sin2

(
lπ�x

2

)]
,

m̄′ =
sin (mπ�y)

�y

[
1 +

�y2

3
sin2

(
mπ�y

2

)]
,

n̄′ =
sin (nπ�z)

�z

[
1 +

�z2

3
sin2

(
nπ�z

2

)]
.

(3.24b)

Similarly, we have

(DxEy)i+1/2,j+1/2,k = A2 l̄
′ cos

(
l(i + 1/2)π

N

)

× cos
(

m(j + 1/2)π
N

)
sin

(
nkπ

N

)
,

(DyEy)i,j,k = −A2m̄
′ sin

(
liπ

N

)
sin

(
mjπ

N

)
sin

(
nkπ

N

)
,

(DzEy)i,j+1/2,k+1/2 = A2n̄
′ sin

(
liπ

N

)

× cos
(

m(j + 1/2)π
N

)
cos

(
n(k + 1/2)π

N

)
,

(3.25a)

(DxEz)i+1/2,j,k+1/2 = A3 l̄
′ cos

(
l(i + 1/2)π

N

)

× sin
(

mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,

(DyEz)i,j+1/2,k+1/2 = A3m̄
′ sin

(
liπ

N

)

× cos
(

m(j + 1/2)π
N

)
cos

(
n(k + 1/2)π

N

)
,

(DzEz)i,j,k = −A3n̄
′ sin

(
liπ

N

)
sin

(
mjπ

N

)
sin

(
nkπ

N

)
,

(3.25b)

(DxHx)i+1/2,j+1/2,k+1/2 = B1 l̄
′ cos

(
l(i + 1/2)π

N

)

× cos
(

m(j + 1/2)π
N

)
cos

(
n(k + 1/2)π

N

)
,
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(DyHx)i,j+1/2,k+1/2 = −B1m̄
′ sin

(
liπ

N

)

× sin
(

mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,

(DzHx)i,j+1/2,k+1/2 = −B1n̄
′ sin

(
liπ

N

)

× cos
(

m(j + 1/2)π
N

)
sin

(
nkπ

N

)
,

(3.25c)

(DxHy)i,j,k+1/2 = −B2 l̄
′ sin

(
liπ

N

)

× sin
(

mjπ

N

)
cos

(
n(k + 1/2)π

N

)
,

(DyHy)i+1/2,j+1/2,k+1/2 = B2m̄
′ cos

(
l(i + 1/2)π

N

)

× cos
(

m(j + 1/2)π
N

)
cos

(
n(k + 1/2)π

N

)
,

(DzHy)i+1/2,j,k = −B2n̄
′ cos

(
l(i + 1/2)π

N

)

× sin
(

mjπ

N

)
sin

(
nkπ

N

)
,

(3.25d)

(DxHz)i,j+1/2,k = −B3 l̄
′ sin

(
liπ

N

)

× cos
(

m(j + 1/2)π
N

)
sin

(
nkπ

N

)
,

(DyHz)i+1/2,j,k = −B3m̄
′ cos

(
l(i + 1/2)π

N

)

× sin
(

mjπ

N

)
sin

(
nkπ

N

)
,

(D2Hz)i+1/2,j+1/2,k+1/2 = B3n̄
′ cos

(
l(i + 1/2)π

N

)

× cos
(

m(j + 1/2)π
N

)
cos

(
n(k + 1/2)π

N

)
.

(3.25e)
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Since the numerical vectors E and H are divergence-free at the discrete level as
shown in Sec. 3.3, the above equations yield

A1 l̄
′ + A2m̄

′ + A3n̄
′ = 0, B1 l̄

′ + B2m̄
′ + B3n̄

′ = 0, (3.26)

in which l∗, m∗, n∗ are given by formula (3.24b).
Next, we are going to show that all the eigenvalues of the discrete curl operator

are purely imaginary and the corresponding eigenfunctions take the same form as
that of (2.5). From the calculations (3.24)–(3.25), it is obvious that a single mode
profile (3.23) becomes an eigenfunction if

−1
ε

(m̄′B3 − n̄′B2) = λA1, −1
ε

(
n̄′B1 − l̄′B3

)
= λA2,

−1
ε

(
l̄′B2 − m̄′B1

)
= λA3, − 1

µ
(m̄′A3 − n̄′A2) = λB1,

− 1
µ

(
n̄′A1 − l̄′A3

)
= λB2, − 1

µ

(
l̄′A2 − m̄′A1

)
= λB3.

(3.27)

Using the same argument as that of (2.8), a complete set of eigenvalues and the
corresponding coefficients are given by (with λ̄′

l,m,n =
√

(l̄′)2 + (m̄′)2 + (n̄′)2)

A1 =

√
1
ε
, A2 =

√
1
ε
· −l̄′ m̄′ + n̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

A3 =

√
1
ε
· −l̄′ n̄′ − m̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

B1 = ±
√

1
µ

, B2 = ±
√

1
µ
· −l̄′ m̄′ + n̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

B3 = ±
√

1
µ
· −l̄′ n̄′ − m̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

λ = ±
√

1
µε

(
(l̄′)2 + (m̄′)2 + (n̄′)2

)
i,

(3.28a)

A1 =

√
1
ε
, A2 =

√
1
ε
· −l̄′ m̄′ − n̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

A3 =

√
1
ε
· −l̄′ n̄′ + m̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

B1 = ±
√

1
µ

, B2 = ±
√

1
µ
· −l̄′ m̄′ − n̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

B3 = ±
√

1
µ
· −l̄′ n̄′ + m̄′ λ̄′

l,m,ni

(m̄′)2 + (n̄′)2
,

λ = ∓
√

1
µε

(
(l̄′)2 + (m̄′)2 + (n̄′)2

)
i.

(3.28b)
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Therefore, for each integer index (l, m, n), there are four eigenfunctions with eigen-
values λl,m,n = ±

√
1
µε λ̄

′
l,m,ni. In other words, the discrete curl operator created

by long-stencil difference (3.2a) along with the “symmetric image” formulas (3.10),
(3.15) results in a complete set of eigenvalues and eigenfunctions with the same form
as the continuous case (2.8). There is only a slight modification from the continuous
formulas, due to the fourth order approximations.

3.5. Temporal discretization

Due to the hyperbolic property of the curl operator, a fully explicit scheme must
be applied. In the classical Yee scheme, the components of E and H are computed
alternately in the leap-frog manner. Furthermore, the leap-frog integration is known
to be stable under a CFL constraint

√
1
µε

√
1

�x2 +
1

�y2 +
1

�z2 ≤ 1
�t

. (3.29)

Meanwhile, the leap-frog scheme turns out to be highly dispersive and thus
leads to an accumulation of phase errors in late-time data analysis, due to its cen-
tral difference feature. As a result, its higher order extension has attracted much
attention. For instance, a fourth order leap frog method was briefly introduced
in Fang [2] and subsequently discussed in Young [26]. In particular, the numer-
ical values of a physical variable f at the time step tn+1 is determined from f

at tn, its first order and third order correctional temporal derivatives at tn+1/2:
fn+1 = fn +�t∂tf

n+1/2 + �t3

24 ∂3
t fn+1/2 +O(�t5). For each variable, the first order

term is given by the curl operator and the third order correctional term is converted
into spatial derivatives through a repeated application of the Maxwell equations.
For instance, the electric field vector is updated using

En+1 = En +
�t

ε
∇h × Hn+1/2 +

1
µε2

· �t3

24
∇h × (∇2

hHn+1/2) + O(�t5).

(3.30)

However, the implementation of boundary conditions and the computation of the
curl-Laplacian term becomes very complicated, as shown in Fang’s article [2]. There-
fore, this fourth order approach is not recommended in practical computation.

The four-stage Runge–Kutta (RK) integrator is considered in this article. Given
the electric and magnetic field vectors En and Hn at the time step tn, we set
yn = (En, Hn)T and denote f (yn) = (1

ε∇h × Hn,− 1
µ∇h × Hn)T , the discrete

curl operator. Note that f is a linear transformation of yn. In other words, this
transformation can be represented as f (yn) = Ayn, with A a constant matrix.
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Classical RK4

yn,(1) = yn +
1
2
�tf (yn) ,

yn,(2) = yn +
1
2
�tf

(
yn,(1)

)
,

yn,(3) = yn + �tf
(
yn,(2)

)
,

yn+1 =
1
3
(−yn + yn,(1) + 2yn,(2) + yn,(3)) +

1
6
�tf

(
yn,(3)

)
.

(3.31)

The classical RK4 method gives a full fourth order accuracy in time and leads
to a much improved stability criterion compared to the classical Yee scheme, as will
be explained in detail later. A similar argument can be found in [26], in which the
authors combined the classical RK4 with a compact difference.

Meanwhile, as mentioned in [26], the main disadvantage of the classical four-
stage RK integrator is its requirement of additional memory at each time step,
since the numerical values of yn,(i), i = 1, 2, 3, have to be stored at each RK stage.
To overcome this disadvantage, we utilize the Jameson method, an alternate four-
stage RK method, in this article. With the same notations as that of (3.31), the
scheme can be written as the following.

Jameson’s method

yn,(1) = yn +
1
4
�tf

(
yn

)
,

yn,(2) = yn +
1
3
�tf

(
yn,(1)

)
,

yn,(3) = yn +
1
2
�tf

(
yn,(2)

)
,

yn+1 = yn + �tf
(
yn,(3)

)
.

(3.32)

This multi-stage time integration was proposed by Jameson in [7,8] in the numer-
ical simulations of gas dynamics. It is obvious that the memory storage is drastically
reduced, since only the numerical profile at the previous time stage is needed in the
time integration for each physical variable. Meanwhile, it should be noted that the
Jameson scheme is only second order accurate for nonlinear gas dynamics. However,
such a time integration gives a full fourth order accuracy for the Maxwell equations
because of their linearity. In fact, since f is linear, we observe that the classical
RK4 method (3.31) and Jameson’s method (3.32) give exactly the same numerical
value of y at tn+1:

yn+1 =
(

I + �tA +
�t2

2
A2 +

�t3

6
A3 +

�t4

24
A4

)
yn. (3.33)
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Fig. 2. Stability domain of the classical RK4, the Jameson method and the classical leap frog. D
represents the common stability domain of the classical RK4 and the Jameson method, and the
bold line represents that of the leap frog.

Regarding the numerical stability in time, we see that the stability domains
of the classical RK4 and Jameson’s method are the same. Their common stability
domain is shown in Fig. 2, along with that of the classical leap frog time integration.

We see that the stability domain of RK4 and Jameson method contains a 2-D
region, while that of the leap frog only contains a line segment on the purely imag-
inary axis:

DLF =
{

z = αi : − 1
�t

≤ α ≤ 1
�t

}
. (3.34)

For the stability domain DRK4, we see that

DI =

{
z = αi : −2

√
2

�t
≤ α ≤ 2

√
2

�t

}
⊂ DRK4. (3.35)

Consequently, if the all the eigenvalues of the discrete curl operator lie within DI

given by (3.35), the Jameson scheme becomes stable. Since the eigenvalues are given
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by λl,m,n = ±
√

1
µε

(
(l̄′)2 + (m̄′)2 + (n̄′)2

)
i, we observe that the numerical stability

condition is equivalent to

max
l,m,n

√
1
µε

(
(l̄′)2 + (m̄′)2 + (n̄′)2

) ≤ 2
√

2
�t

. (3.36)

Meanwhile, formula (3.24b) shows that

l̄′ ≤

∣∣∣∣sin (lπ�x)
∣∣∣∣

�x

[
1 +

1
3
sin2

(
lπ�x

2

)]
≤ sin(π

2 )
�x

[
1 +

1
3
sin2

(π

4

)]
=

7
6�x

,

(3.37a)

and similar estimates in y- and z-directions can be obtained:

m̄′ ≤ 7
6�y

, n̄′ ≤ 7
6�z

. (3.37b)

As a result, the stability condition (3.34) is satisfied provided that√
1
µε

√
1

�x2 +
1

�y2 +
1

�z2 ≤ 6
7
· 2

√
2

�t
=

12
√

2
7

· 1
�t

. (3.38)

In other words, the overall fourth order scheme has a maximum CFL number
of 12

√
2

7 , which is a drastic improvement. Moreover, the Jameson method preserves
both fourth order accuracy and the stability domain, while it drastically reduces
the required memory.

Remark 3.5. The CFL constraint (3.29) for the classical Yee scheme can also be
derived from the stability domain DLF given by (3.34). Moreover, a similar analysis
can be applied to a 2× 4 scheme, i.e. long stencil difference approximation coupled
with leap frog time integration. The combination of the estimate (3.37) for l̄′, m̄′, n̄′

and the stability domain (3.34) shows that the 2×4 scheme is conditionally stable if√
1
µε

√
1

�x2 +
1

�y2 +
1

�z2 ≤ 6
7
· 1
�t

=
6

7�t
. (3.39)

As a result, we see that the proposed 4 × 4 scheme has a better stability property
than that of the 2 × 2 and 2 × 4 schemes.

Remark 3.6. The 6
7 factor in the CFL stability condition for the fourth order long

stencil approximation was first reported by Fang in [2]. This result was also cited in
a relevant work [25]. Yet, the derivation was based on Von Neumann analysis, with
an assumption of periodic boundary conditions for E and H . Our work is the first
such result with perfectly conducting boundary conditions imposed for all physical
variables.

Remark 3.7. Since the Jameson method (3.32) is fully explicit, we see that the
numerical profile yn,(i) (i = 1, 2, 3) is divergence-free, using the same argument
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for the discrete curl operator in Sec. 3.3. As a result, a divergence-free vector
yn = (En, Hn)T leads to a numerical profile yn+1 = (En+1, Hn+1)T with zero
divergence at a discrete level. Hence, the proposed numerical scheme is proven to
preserve the divergence-free property.

4. Numerical Accuracy Check

In this section, we perform an accuracy check for the proposed fourth order scheme
over the Yee grid. For simplicity, we set the computational domain as a cubic box
Ω = (0, a1)× (0, a2)× (0, a3) with a1 = a2 = a3 = 1 and the physical parameters as
µ = ε = 1. The initial data is chosen to contain a single mode with l = m = n = 1:

Ex( ·, t = 0) = cos (πx) sin (πy) sin (πz) , Ey( ·, t = 0) = 0,

Ez( ·, t = 0) = −sin (πx) sin (πy) cos (πz) ,

Hx( ·, t = 0) = 0, Hy( ·, t = 0) = 0, Hz( ·, t = 0) = 0.

(3.1)

Since the single mode indicates a frequency with a magnitude λ∗ =√
(l̄)2 + (m̄)2 + (n̄)2 =

√
3π, the exact solution of the Maxwell equation with the

above initial data can be determined by a careful calculation:

Ex =
√

u cos (λ∗t) cos (πx) sin (πy) sin (πz), Ey = 0,

Ez = −√
u cos (λ∗t) sin (πx) sin (πy) cos (πz),

Hx =
√

3
3

√
ε sin (λ∗t) sin (πx) cos (πy) cos (πz),

Hy = −2
√

3
3

√
ε sin (λ∗t) cos (πx) sin (πy) cos (πz),

Hz =
√

3
3

√
ε sin (λ∗t) cos (πx) cos (πy) sin (πz).

(3.2)

For simplicity, we take Nx = Ny = Nz = N so that the grid size is determined
by h = 1

N . We compute solutions with grid sizes 20 : 4 : 64 until a final time t = 4,
using the proposed fourth order difference scheme over the Yee grid in conjunction
with the Jameson time stepping. The “symmetric image” extrapolation for E and
H is utilized. The time step �t is set to be �t = 0.5�x, which satisfies the
condition (3.38).

Figures 3 and 4 present the L2 and L∞ norm of the errors between the numerical
and exact solutions for all components of electric and magnetic field vectors. Part
(a) shows the error for different values of N , while Part (b) gives the plot of these
values on a base 2 log − log scale. The Lp norm is defined by

‖f‖Lp =
(∫

Ω

|f |pdx

) 1
p

, for 1 ≤ p < ∞, (3.3a)

‖f‖L∞ = max
x∈Ω

|f(x)|. (3.3b)
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Fig. 3. L2 error of the fourth order FDTD method for the Maxwell equations: (a): the error
versus the number of grid points N ; (b): plot of these values on a base 2 log− log scale. The final
time is taken to be 4.0. The circle line represents the error of the Ex variable, the triangle line
represents that of the Hx variable, the star line represents that of the Hy variable, and the cross
line represents that of the Hz variable. Parameter: µ = ε = 1, �t = 0.5�x.
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Fig. 4. L∞ error of the fourth order FDTD method for the Maxwell equations: (a): the error
versus the number of grid points N ; (b): plot of these values on a base 2 log− log scale. The final
time is taken to be 4.0. The circle line represents the error of the Ex variable, the triangle line
represents that of the Hx variable, the star line represents that of the Hy variable, and the cross
line represents that of the Hz variable. Parameter: µ = ε = 1, �t = 0.5�x.
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The numerical results provide clear evidence that the scheme is stable, and a
fourth order accuracy in both space and time is apparently observed for all physical
variables at a fixed final time. In particular, a full fourth order accuracy of the L∞

errors shows that the “symmetric image” extrapolation formula does not cause any
loss of accuracy.

5. A Benchmark Computation: Simulations of a Lossless
Rectangular Cavity

To analyze and compare the performance of the 2 × 2, 2 × 4, and 4 × 4 numerical
schemes, a rectangular metallic cavity was simulated. The dimensions of the cavity
were chosen to be 1 m by 1 m by 1 m. Such a cavity can support an infinite number of
eigen-modes, all of which are known from theory. This makes the rectangular cavity
an ideal benchmark problem. Each mode has a corresponding resonant frequency,
which is also known from theory to be 1

2c
√

l2 + m2 + n2, where l, m, and n are
non-negative integers and at least two are nonzero. Here, the physical values of
µ = 1.257× 10−6 and ε = 8.854 × 10−12 were used.

The initial condition was chosen to force the initial magnetic field to be zero,
and the initial electric field to be

E ( ·, t = 0) =
∑

l,m,n

Al,m,nE0
l,m,n, with

(Ex)0l,m,n = cos (lπx) sin (mπy) sin (nπz),

(Ey)0l,m,n = −1
2

sin (lπx) cos (mπy) sin (nπz),

(Ez)0l,m,n = −1
2

sin (lπx) sin (mπy) cos (nπz).

(3.1)

A simple calculation shows that E and H are divergence free and satisfy the
boundary conditions at the cavity walls. For the trial simulation, the l = 3, m =
3, n = 3 mode was used. This mode is a good test of the fourth order scheme
because it has rapidly varying fields in the x-, y-, and z-directions. The theoretical
resonant frequency is 778.88MHz. In addition to this single mode initial condition, a
multi-mode initial condition was also tested. It consists of a superposition of modes
with different l, m, and n values. Again, the frequency of the mode l = 3, m =
3, n = 3 was measured. The amplitude of each mode in the initial condition was
given by

Al,m,n =
1

l2 + m2 + n2
, for 1 ≤ l, m, n ≤ 20. (3.2)

The accuracy of the simulations was measured by taking a dot product of the
cavity fields with the known modal distribution of the 3× 3× 3 mode at each time
step, in effect selecting only the mode of interest. An FFT is then performed with
an appropriate window function, in this case a raised cosine function. Then, the
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Fig. 6. Comparison between the proposed fourth order scheme with the classical 2 × 2 and 2 × 4
scheme. The phase errors for the l = 3, m = 3, n = 3 mode, between the numerical simulations
and the exact profile, are plotted. The dot line represents the error of the 2×2 method, the square
line represents that of the 2 × 4 method, the triangle line represents that of the proposed fourth
order method.
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frequency of the peak in the Fourier power spectrum is compared to the known
resonant frequency. A number of simulations were performed for each scheme, with
different numbers of grid points, hence varying �x (with the assumption �x =
�y = �z). �t

�x was fixed by the most restrictive CFL condition (the 2 × 4 case).
The final time was also fixed.

We collect the data at a fixed sample point and compute the frequency of each
mode. The spectrum distribution (computed by the 4×4 method) is shown in Fig. 5.

Its comparison with the 2× 2 and 2× 4 schemes, regarding the frequency of the
mode l = 3, m = 3, n = 3, is given in Fig. 6.

It is obvious that the the proposed fourth order method provides much more
accurate simulation results than those of the 2 × 2 and 2 × 4 methods. Such an
accuracy can even be observed for a relatively course mesh. For a 20× 20× 20 grid,
for example, an error of 632kHz is observed. By comparison, a 50× 50× 50 grid in
CST , a commercial FDTD electromagnetic simulation software, gives an error of
1.15MHz.
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