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Abstract. A second order accurate (in time) numerical scheme is analyzed for the
slope-selection (SS) equation of the epitaxial thin film growth model, with Fourier
pseudo-spectral discretization in space. To make the numerical scheme linear while
preserving the nonlinear energy stability, we make use of the scalar auxiliary variable
(SAV) approach, in which a modified Crank-Nicolson is applied for the surface dif-
fusion part. The energy stability could be derived a modified form, in comparison
with the standard Crank-Nicolson approximation to the surface diffusion term. Such
an energy stability leads to an H2 bound for the numerical solution. In addition, this
H2 bound is not sufficient for the optimal rate convergence analysis, and we estab-
lish a uniform-in-time H3 bound for the numerical solution, based on the higher order
Sobolev norm estimate, combined with repeated applications of discrete Hölder in-
equality and nonlinear embeddings in the Fourier pseudo-spectral space. This discrete
H3 bound for the numerical solution enables us to derive the optimal rate error esti-
mate for this alternate SAV method. A few numerical experiments are also presented,
which confirm the efficiency and accuracy of the proposed scheme.
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1 Introduction

In this article we consider a slope-selection (SS) epitaxial thin film growth equation,
which corresponds to the L2 gradient flow associated with the following energy func-
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tional

E(φ)=
∫

Ω

(
1
4
(|∇φ|2−1)2+

ε2

2
|∆φ|2

)
dx, (1.1)

where Ω=(0,Lx)×(0,Ly), u : Ω→R is a periodic height function, and ε is a constant pa-
rameter of transition layer width. In more details, the first nonlinear term represents the
Ehrlich-Schwoebel (ES) effect [23,38–40,54], which results in an uphill atom current in the
dynamics and the steepening of mounds in the film. The second higher order quadratic
term represents the isotropic surface diffusion effect [39,49]. In turn, the chemical poten-
tial becomes the following variational derivative of the energy

µ :=δφE=−∇·
(
|∇φ|2∇φ

)
−∆φ+ε2∆2φ, (1.2)

and the PDE stands for the L2 gradient flow

∂tφ=∇·
(
|∇φ|2∇φ

)
−∆φ−ε2∆2φ. (1.3)

Meanwhile, another epitaxial thin film model has also been extensively studied, with the
following energy functional

E(φ) :=
∫

Ω

(
−1

2
ln(1+|∇φ|2)+ ε2

2
|∆φ|2

)
dx, (1.4)

and the dynamical equation is formulated as

∂tφ=−∇·
( ∇φ

1+|∇φ|2
)
−ε2∆2φ. (1.5)

This model is referred to as the no-slope-selection (NSS) equation. In fact, the slope-
selection energy (1.1) could be viewed an a polynomial approximation to the no-slope-
selection energy (1.4), under a small-slope assumption that |∇φ|2� 1; see the related
discussions in [36, 37, 39, 49]. A solution to (1.3) exhibits pyramidal structures, where
the faces of the pyramids have slopes |∇u|≈1; meanwhile, the no-slope-selection equa-
tion (1.5) exhibits mound-like structures, and the slopes of which (on an infinite domain)
may grow unbounded [39,59]. On the other hand, both solutions have up-down symme-
try in the sense that there is no way to distinguish a hill from a valley. This can be altered
by adding adsorption/desorption or other dynamics.

The numerical schemes with energy stability have been of great interests, due to the
long time nature of the gradient flow coarsening process. There have been many efforts to
devise and analyze energy stable numerical schemes for both the SS and NSS equations;
see the related references [1, 11, 26, 35, 46, 50–53, 55, 59, 61, 64], etc. In particular, the linear
schemes have attracted a great amount of attentions among the energy stable numerical
approaches, due to its simplicity of implementation. For the NSS equation (1.5), there
have been extensive works of linear, energy stable numerical schemes [5, 7, 8, 10, 13, 33,
35, 44, 48], with up to the third order accuracy in time. Such a nonlinear energy stability
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analysis is based on the following subtle fact: in spite of its complicated form in the
denominator, the nonlinear term in the NSS equation (1.5) has automatically bounded
higher order derivatives in the L∞ norm.

However, this approach is not applicable to the nonlinear analysis for the SS equa-
tion (1.3), due to the polynomial pattern of the nonlinear terms, which in turn requires
an W1,∞ bound for the numerical solution at both time steps, tn and tn+1, respectively;
see the pioneering work [63] of the linear numerical scheme for the SS equation, in which
an artificial regularization term, in the form of A∆(φn+1−φn), has to be included for the
sake of energy stability. A theoretical analysis has been provided in [43] for the first or-
der accurate (in time) scheme, to justify the lower bound of the artificial parameter A.
Various estimates have indicated that, the theoretical value of A is of orderO(ε−2 lnε) for
the first order scheme, while such an artificial regularization parameter has to be of order
O(ε−m0), with m0≥10, for the temporally second order schemes [41, 42].

It is clear that, such a singular dependence of the theoretical value of artificial regular-
ization parameter on ε comes from the W1,∞ estimate for the numerical solution. To avoid
a singular artificial regularization parameter in a linear numerical scheme, while preserv-
ing an energy stability, the scalar auxiliary variable (SAV) approach for various gradient
flows has attracted many attentions in recent years [56–58,67]. To overcome the difficulty
associated with the nonlinearity, the energy functional is split into two parts: a nonlinear
energy functional with a uniform lower bound, combined with a quadratic surface diffu-
sion energy with constant-coefficients. In turn, the elevated nonlinear energy part (which
contains a global constant to make its value positive) is rewritten as a quadratic term, not
in terms of the original physical variable, but in terms of an artificially-introduced auxil-
iary variable. As a result, linear schemes could be derived for the gradient flow reformu-
lated in the quadratic nonlinear energy and the surface diffusion energy, so that both the
unique solvability and modified energy stability could be theoretically justified for the
linear schemes. Also notice that, such an energy estimate is in terms of the reformulated
energy functional, not in terms of the original energy functional.

An application of the SAV method to the SS equation (1.3) has been reported in a
recent article [17], combined with the Fourier pseudo-spectral spatial approximation. The
unique solvability, numerical implementation process and a modified energy stability
have been presented for the second order accurate (in time) SAV scheme, with Crank-
Nicolson temporal discretization. However, an optimal rate convergence analysis seems
challenging for the proposed scheme in [17]. In particular, a discrete W1,∞ bound for the
numerical solution is necessary to pass through the error estimate. On thr other hand,
the discrete energy stability (established in [17]) leads to a uniform-in-time discrete H2

bound for the numerical solution, while this bound is not sufficient to ensure a W1,∞

bound for the numerical solution.
In this article, we present an optimal rate convergence analysis and error estimate

for the second order SAV scheme to the SS equation (1.3), with a slight modification of
the surface diffusion coefficients. In more details, the standard Crank-Nicolson approx-
imation to the surface diffusion term is replaced by an alternate one, with 3/4 and 1/4



Q. Cheng and C. Wang / Adv. Appl. Math. Mech., 13 (2021), pp. 1318-1354 1321

coefficient distribution at time steps tn+1, tn−1, respectively. Such an alternate Crank-
Nicolson approximation has been reported in [16,19,20,30–32] for the Cahn-Hilliard and
other related gradient model, and great success and advantages over the standard Crank-
Nicolson have been observed. With an application of this approximation to the second
order SAV scheme for the SS equation (1.3), a modified energy stability could also be
proved in a careful way, so that a uniform H2 bound for the numerical solution (of the
phase variable) is available. In addition, a higher order H3 estimate could also be derived,
with the help of various discrete Sobolev inequality in the Fourier pseudo-spectral space.
With such an H3 bound at hand, we are able to control the nonlinear chemical poten-
tial error function, in the Fourier pseudo-spectral space. In addition, one nonlinear error
inner product could be cancelled between the error evolutionary equations for the orig-
inal phase variable and the one for the introduced auxiliary variable. These preliminary
estimates enable one to obtain an optimal rate (O(∆t2+hm)) convergence analysis for
the proposed numerical scheme in the energy norm, i.e., in the `∞(0,T;H2

N)∩`2(0,T;H4
N)

norm. In particular, the aliasing error control techniques have to be applied in the non-
linear error estimate associated with the 4-Laplacian term.

The outline of the paper is given as follows. In Section 2 we present the numerical
scheme. First we review the Fourier pseudo-spectral approximation in space and recall
an aliasing error control technique. Then we recall the SAV numerical scheme, and prove
its energy stability in a modified way. In addition, a uniform-in-time H3 bound for the
numerical solution is established in Section 3, and an optimal rate convergence analysis
is provided in Section 4. Some numerical results are presented in Section 5. Finally, some
concluding remarks are made in Section 6.

2 The numerical scheme

2.1 Review of Fourier pseudo-spectral approximations

The Fourier pseudo-spectral method is also referred as the Fourier collocation spectral
method. It is closely related to the Fourier spectral method, but complements the basis by
an additional pseudo-spectral basis, which allows to represent functions on a quadrature
grid. This simplifies the evaluation of certain operators, and can considerably speed up
the calculation when using fast algorithms such as the fast Fourier transform (FFT); see
the related descriptions in [2, 12, 14, 16, 28, 29, 34, 65, 66], etc.

To simplify the notation in our pseudo-spectral analysis, we assume that the domain
is given by Ω=(0,1)2, Nx =Ny =: N∈N and N ·h=1. We further assume that N is odd:

N=2K+1 for some K∈N.

The analyses for more general cases are a bit more tedious, but can be carried out without
essential difficulty. The spatial variables are evaluated on the standard 2D numerical grid
ΩN , which is defined by grid points (xi,yj), with xi = ih, yj = jh, 0≤ i, j≤2K+1.
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We define the grid function space

GN :=
{

f :Z2→R | f is ΩN-periodic
}

. (2.1)

Given any periodic grid functions f ,g∈GN , the `2 inner product and norm are defined as

〈 f ,g〉 :=h2
N−1

∑
i,j,k=0

fi,j ·gi,j, ‖ f ‖2 :=
√
〈 f , f 〉. (2.2)

The zero-mean grid function subspace is denoted as

G̊N :=
{

f ∈GN | 〈 f ,1〉=: f =0
}

.

For f ∈GN , we have the discrete Fourier expansion

fi,j =
K

∑
`,m=−K

f̂ N
`,m exp

(
2πi(`xi+myj)

)
, (2.3)

where the discrete Fourier coefficients are given by

f̂ N
`,m :=h2

N−1

∑
i,j,=0

fi,j,k exp
(
−2πi

(
`xi+mxj

))
. (2.4)

The collocation Fourier spectral first and second order derivatives of f are defined as

Dx fi,j :=
K

∑
`,m=−K

(2πi`) f̂ N
`,m exp

(
2πi(`xi+myj)

)
, (2.5a)

D2
x fi,j :=

K

∑
`,m=−K

(
−4π2`2) f̂ N

`,m exp
(
2πi(`xi+myj)

)
. (2.5b)

The differentiation operators in the y direction, Dy and D2
y, can be defined in the same

fashion. In turn, the discrete Laplacian, gradient and divergence operators are given by

∆N f :=
(
D2

x+D2
y

)
f , ∇N f :=

( Dx f
Dy f

)
, ∇N ·

(
f1
f2

)
:=Dx f1+Dy f2, (2.6)

at the point-wise level. It is straightforward to verify that

∇N ·∇N f =∆N f . (2.7)

See the derivations in the related references [2, 3, 27].
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Definition 2.1. Suppose that the grid function f ∈GN has the discrete Fourier expansion
(2.3). Its spectral extension into the trigonometric polynomial space PK (the space of
trigonometric polynomials of degree at most K) is defined as

fS(x,y)=
K

∑
`,m=−K

f̂ N
`,m exp(2πi(`x+my)). (2.8)

We write SN( f )= fS and call SN :GN→PK the spectral interpolation operator. Suppose
g∈Cper(Ω,R). We define the grid projection QN : Cper(Ω,R)→GN via

QN(g)i,j := g(xi,yj). (2.9)

The resultant grid function may, of course, be expressed as a discrete Fourier expansion:

QN(g)i,j =
K

∑
`,m=−K

Q̂N(g)
N

`,m exp
(
2πi(`xi+myj)

)
.

We define the de-aliasing operator RN :Cper(Ω,R)→PK via RN :=SN(QN). In other words,

RN(g)(x,y)=
K

∑
`,m=−K

Q̂N(g)
N

`,m exp(2πi(`x+my)). (2.10)

Finally, for any g ∈ L2(Ω,R), we define the (standard) Fourier projection operator PN :
L2(Ω,R)→PK via

PN(g)(x,y)=
K

∑
`,m=−K

ĝ`,m exp(2πi(`x+my)),

where

ĝ`,m =
∫

Ω
g(x,y)exp(−2πi(`x+my))dx,

are the (standard) Fourier coefficients.

To overcome a key difficulty associated with the Hm bound of the nonlinear term
obtained by collocation interpolation, the following lemma is introduced. The case of
r=0 was proven in an earlier work [21,22], and the case of r≥1 was analyzed in a recent
article [29].

Lemma 2.1. Suppose that m and K are non-negative integers, and, as before, assume that N =
2K+1. For any ϕ∈PmK in Rd, we have the estimate

‖RN(ϕ)‖Hr≤m
d
2 ‖ϕ‖Hr (2.11)

for any non-negative integer r.
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Furthermore, to facilitate the analysis in later sections, we introduce an operator LN
as LN f := ε2∆2

N f , for any f ∈GN . In addition, a fractional operator is similarly introduced

as L
1
2
N f := ε(−∆N) f , for any f ∈GN .

The following summation-by-parts formulas are valid (see the related discussions
in [5, 10, 28, 29]): for any periodic grid functions f ,g∈GN ,

〈 f ,∆N g〉=−〈∇N f ,∇N g〉,
〈

f ,∆2
N g
〉
= 〈∆N f ,∆N g〉. (2.12)

Similarly, the following identity could be derived in the same manner:

〈 f ,LN g〉= 〈L
1
2
N f ,L

1
2
N g〉, ∀ f ,g∈GN . (2.13)

In addition to the standard `2 norm, we also introduce the `p, 1≤ p<∞, and `∞ norms
for a grid function f ∈GN :

‖ f ‖∞ :=max
i,j,k
| fi,j|, ‖ f ‖p :=

(
h2

N−1

∑
i,j=0
| fi,j|p

) 1
p
, 1≤ p<∞. (2.14)

The discrete H1 and H2 norms are introduced as

‖ f ‖2
H1

N
=‖ f ‖2

2+‖∇N f ‖2
2, ‖ f ‖2

H2
N
=‖ f ‖2

H1
N
+‖∆N f ‖2

2. (2.15)

For any periodic grid function φ∈GN , the discrete energy is defined as

EN(φ) :=
1
4
‖∇Nφ‖4

4−
1
2
‖∇Nφ‖2

2+
ε2

2
‖∆Nφ‖2

2 . (2.16)

The following result corresponds to a discrete Sobolev embedding from H2
N to W1,6

N
in the pseudo-spectral space. Similar discrete embedding estimates, in the lower order
ones, could be found in Lemma 2.1 of [16]; also see the related results [24,25] in the finite
difference version. A direct calculation is not able to derive these inequalities; instead, a
discrete Fourier analysis has to be applied in the derivation; the details of the proof has
been provided in a recent work [15].

Proposition 2.1 ([15]). For any periodic grid function f , we have

‖∇N f ‖6≤C‖∆N f ‖2, (2.17)

for some constant C only dependent on Ω.

2.2 The fully discrete numerical scheme

The energy (1.1) is decomposed into two parts:

E(φ)=E1(φ)+
1
2
(φ,Lφ), E1(φ)=

∫

Ω

{
1
4
|∇φ|4− 1

2
|∇φ|2+ 1

4

}
dx, Lφ= ε2∆2φ. (2.18)
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In particular, due to the point-wise quadratic inequality

1
4
|∇φ|4− 1

2
|∇φ|2+ 1

4
≥0, (2.19)

we conclude that E1(φ) have a well-established lower bound:

E1(φ)≥|Ω|. (2.20)

In turn, the nonlinear chemical potential becomes

N(φ) :=δφE1=−∇·(|∇φ|2∇φ)+∆φ. (2.21)

Therefore, with an introduction of a scalar auxiliary variable

r :=
√

E1(φ), (2.22)

the original SS equation (1.3) could be rewritten as the following system:




φt =∆
( r√

E1(φ)
N(φ)+Lφ

)
,

rt =
1

2
√

E1(φ)

∫

Ω
N(φ)φt dx.

(2.23)

Based on this reformulation, the fully discrete second order SAV scheme is proposed as
follows, with Fourier pseudo-spectral spatial approximation:





φn+1−φn

∆t
=− rn+1/2

√
E1,N(φ̂n+1/2)

NN(φ̂
n+1/2)−LN

(3
4

φn+1+
1
4

φn−1
)

, (2.24a)

rn+1−rn

∆t
=

1

2
√

E1,N(φ̂n+1/2)

〈
NN(φ̂

n+1/2),
φn+1−φn

∆t

〉
, (2.24b)

in which

NN(φ) :=−∇N ·(|∇Nφ|2∇Nφ)+∆Nφ, LNφ= ε2∆2
Nφ, rn+1/2=

1
2
(rn+1+rn),

and a second order explicit extrapolation is applied to obtain

φ̂n+1/2=
3
2

φn− 1
2

φn−1.

The discrete nonlinear energy functional is introduced as

E1,N(φ) :=
1
4
‖∇Nφ‖4

4−
1
2
‖∇Nφ‖2

2+
1
4
|Ω|,
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similar to the notation in (2.16).
Since (2.24) is a two-step numerical method, a ”ghost” point extrapolation for φ−1 is

useful. To preserve the second order accuracy in time, we apply the following approxi-
mation:

φ−1=φ0+∆tµ0, µ0 :=−∇N ·(|∇Nφ0|2∇Nφ0)+∆Nφ0+ε2∆2
Nφ0. (2.25)

A careful Taylor expansion indicates anO(∆t2+hm) accuracy for such an approximation:

‖φ−1−Φ−1‖2≤C(∆t2+hm). (2.26)

In turn, we take

r0 :=
√

E1,N(φ0), r−1 :=
√

E1,N(φ−1).

2.3 Unique solvability and efficient numerical solver for the numerical
scheme

In this section we analyze the unique solvability of the proposed SAV scheme (2.24). From
(2.24a), one can get

(
I+

3
4

∆tLN

)
φn+1=−∆t

rn+1/2
√

E1,N(φ̂n+1/2)
NN(φ̂

n+1/2)− 1
4

∆tLNφn−1+φn. (2.27)

Define
AN = I+

3
4

∆tLN ,

so that the following identity is valid:

φn+1=−∆t
rn+1/2

√
E1,N(φ̂n+1/2)

A−1
N NN(φ̂

n+1/2)+A−1
N

(
φn− 1

4
∆tLNφn−1

)
.

From (2.24b), we see that

rn+1= rn+
1

2
√

E1,N(φ̂n+1/2)
〈NN(φ̂

n+1/2),φn+1−φn〉. (2.28)

A substitution of (2.28) into (2.27) gives

(
I+

3
4

∆tLN

)
φn+1+

NN(φ̂
n+1/2)

4E1,N(φ̂n+1/2)
∆t〈NN(φ̂

n+1/2),φn+1〉

=− ∆tNN(φ̂
n+1/2)√

E1,N(φ̂n+1/2)

(
rn− 1

4
√

E1,N(φ̂n+1/2)
〈NN(φ̂

n+1/2),φn〉
)
+φn− 1

4
∆tLNφn−1.
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Let gn
N denotes the right-hand of the above equation, then it becomes

ANφn+1+
NN(φ̂

n+1/2)

4E1,N(φ̂n+1/2)
∆t〈NN(φ̂

n+1/2),φn+1〉= gn
N .

Multiplying both sides by A−1
N implies that

φn+1+
1

4E1,N(φ̂n+1/2)
∆t〈NN(φ̂

n+1/2),φn+1〉·A−1
N NN(φ̂

n+1/2)=A−1
N gn

N . (2.29)

Denote LHS=〈NN(φ̂
n+1/2),φn+1〉, a scalar value. Taking a discrete inner product with (2.29)

by NN(φ̂
n+1/2) leads to

〈NN(φ̂
n+1/2),φn+1〉+ ∆t

4E1,N(φ̂n+1/2)
·LHS·〈NN(φ̂

n+1/2),A−1
N NN(φ̂

n+1/2)〉

=〈NN(φ̂
n+1/2),A−1

N gn
N〉.

Then we arrive at
(

1+
∆t

4E1,N(φ̂n+1/2)
·〈NN(φ̂

n+1/2),A−1
N NN(φ̂

n+1/2)〉
)
·LHS

=〈NN(φ̂
n+1/2),A−1

N gn
N〉. (2.30)

In addition, we notice that

〈NN(φ̂
n+1/2),A−1

N NN(φ̂
n+1/2)〉≥0, (2.31)

since all the eigenvalues of the symmetric operator A−1
N are non-negative. As a direct

consequence, the coefficient on the left hand side of (2.30) is positive, so that the value
of LHS is uniquely solvable. Going back (2.29), the numerical solution φn+1 is uniquely
determined:

φn+1=− ∆t
4E1,N(φ̂n+1/2)

·LHS·A−1
N NN(φ̂

n+1/2)+A−1
N gn

N . (2.32)

Furthermore, a substitution of φn+1 into (2.28) gives the numerical value of rn+1.

Theorem 2.1. Given φn,φn−1∈GN , two scalar values rn, rn−1, with φn =φn−1, there exists a
unique solution φn+1 ∈GN for the numerical schemes (2.24). The scheme is mass conservative,
i.e., φk≡φ0 :=β0, for any k≥0, provided that φ−1=φ0=β0.

Proof. The unique solvability comes from the derived identities (2.28), (2.30) and (2.32).
In addition, the mass conservation property is a direct consequence of a summation of
(2.24a) over Ω, which is turn leads to

φn+1=φn+∆t∆N

(
rn+1/2

√
E1,N(φ̂n+1/2)

NN(φ̂n+1/2)+LN

(3
4

φn+1+
1
4

φn−1
))

=φn, (2.33)
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with the fact that ∆N f =0, ∀ f ∈GN , has been applied. An application of induction implies
that φk = β0, for any k≥ 0, provided that φ−1 = φ0 = β0. This completes the proof of
Theorem 2.1.

2.4 Modified energy stability for the numerical scheme

Theorem 2.2. For k≥1, define the discrete modified energy

EN(φ
k+1,φk,rk+1) :=

1
2
‖L

1
2
Nφk+1‖2

2+|rk+1|2+ 1
8
‖L

1
2
N(φ

k+1−φk)‖2
2. (2.34)

Solution of the numerical scheme (2.24) satisfies the following dissipation properties

EN(φ
k+1,φk,rk+1)≤EN(φ

k,φk−1,rk). (2.35)

Proof. We begin with a rewritten form of the numerical scheme (2.24):





φn+1−φn

∆t
=−µn+1/2

N , (2.36a)

µn+1/2
N =LN

(3
4

φn+1+
1
4

φn−1
)
+

rn+1/2
√

E1,N(φ̂n+1/2)
NN(φ̂

n+1/2), (2.36b)

rn+1−rn

∆t
=

1

2
√

E1,N(φ̂n+1/2)

〈
NN(φ̂

n+1/2),
φn+1−φn

∆t

〉
. (2.36c)

Subsequently, taking discrete inner product with (2.36a) by µn+1
N , with (2.36b) by−(φn+1−

φn), with (2.36c) by 2rn+1/2= rn+1+rn, we have

〈φn+1−φn,µn+1/2
N 〉=−∆t‖µn+1/2

N ‖2
2, (2.37a)

−〈φn+1−φn,µn+1/2
N 〉=−

〈
LN

(3
4

φn+1+
1
4

φn−1
)

,φn+1−φn
〉

+
rn+1/2

√
E1,N(φ̂n+1/2)

〈−NN(φ̂
n+1/2),φn+1−φn〉, (2.37b)

(rn+1−rn)(rn+1+rn)=
rn+1/2

√
E1,N(φ̂n+1/2)

〈NN(φ̂
n+1/2),φn+1−φn〉. (2.37c)

In turn, by adding (2.37a), (2.37b) and (2.37c), we obtain

〈
LN

(3
4

φn+1+
1
4

φn−1
)

,φn+1−φn
〉
+〈rn+1−rn,2rn+1〉=−∆t‖µn+1/2

N ‖2
2. (2.38)
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Meanwhile, the derivation of the following two identities are straightforward:
〈

LN

(3
4

φn+1+
1
4

φn−1
)

,φn+1−φn
〉

=
〈

L
1
2
N

(3
4

φn+1+
1
4

φn−1
)

,L
1
2
N(φ

n+1−φn)
〉

=
1
2

(
‖L

1
2
Nφn+1‖2

2−‖L
1
2
Nφn‖2

2

)
+

1
8

(
‖L

1
2
N(φ

n+1−φn)‖2
2−‖L

1
2
N(φ

n−φn−1)‖2
2

)

+
1
8

(
‖L

1
2
N(φ

n+1−2φn+φn−1‖2
2

)
, (2.39a)

(rn+1−rn)(rn+1+rn)= |rn+1|2−|rn|2, (2.39b)

in which identity (2.13) has been applied in the first step of (2.39a). Going back (2.38), we
arrive at

EN(φ
n+1,φn,rn+1)−EN(φ

n,φn−1,rn)

=− 1
8
‖L

1
2
N(φ

n+1−2φn+φn−1)‖2
2−∆t‖µn+1/2

N ‖2
2≤0. (2.40)

This completes the proof of Theorem 2.2.

As a direct consequence of the energy stability, a uniform in time H2
N bound for the

numerical solution is derived as follows.

Corollary 2.1. Suppose that the initial data are sufficiently regular so that

1
2
‖L

1
2
Nφ0‖2

2+|r0|2+ 1
8
‖L

1
2
N(φ

0−φ−1)‖2
2≤ C̃0

for some C̃0 that is independent of h. Then we have the following uniform (in time) H2
N bound for

the numerical solution:
‖φm

S ‖H2≤ C̃1, ∀m≥1, (2.41)

in which φm
S stands for the spectral interpolation of the numerical solution φm, as given by for-

mula (2.8). The constant C̃1 > 0 depends on Ω and C̃0, but is independent of h, ∆t and final
time.

Proof. As a result of (2.35), the following energy bound is available:

1
2
‖L

1
2
Nφm‖2

2≤EN(φ
m,φm−1,rm)≤EN(φ

0,φ−1,r0)

=
1
2
‖L

1
2
Nφ0‖2

2+|r0|2+ 1
8
‖L

1
2
N(φ

0−φ−1)‖2
2≤ C̃0 (2.42)

for any m≥1. On the other hand, since L
1
2
N f =−ε∆N f , for any f ∈GN , we see that

ε2

2
‖∆Nφm‖2

2≤ C̃0, so that ‖∆Nφm‖2≤
√

2ε−2C̃
1
2
0 , ∀m≥1. (2.43)
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This in turn leads to

‖∆φm
S ‖=‖∆Nφm‖2≤

√
2ε−2C̃

1
2
0 , since φm∈GN . (2.44)

Meanwhile, by the mass conservative property stated in Theorem 2.1, we have
∫

Ω
φm

S dx=φm =β0, ∀m≥0, (2.45)

in which the first step is based on the fact that φm∈GN . In turn, an application of elliptic
regularity implies that

‖φm
S ‖H2≤C

(∣∣∣
∫

Ω
φm

S dx
∣∣∣+‖∆φm

S ‖
)
≤C(|β0|+

√
2ε−2C̃

1
2
0 ) := C̃1, ∀m≥1. (2.46)

This completes the proof of Corollary 2.1.

Remark 2.1. It is obvious that the modified energy functional (2.34) is the second order
approximation to the original discrete energy (2.16), under certain regularity assumption
for the numerical solution. Meanwhile, such a modified discrete energy is in terms of
a scalar auxiliary variable r, combined with the linear surface diffusion energy part, not
fully in terms of the original phase variable φ, as formulated in (2.16). Although a direct
bound of the original energy functional is not available in terms of the initial data, a
uniform in time H2

N bound for the numerical solution could be derived, up to a constant
multiple, as demonstrated in Corollary 2.1.

Remark 2.2. As a combination of the uniform in time H2
N bound (2.41) and the discrete

Sobolev embedding inequality (2.17), we arrive at a uniform in time W1,6
N estimate for the

numerical solution:
‖∇Nφm‖6≤CC̃1, ∀m≥1. (2.47)

And also, the modified energy inequality (2.42) indicates that

|rm|2≤ C̃0, so that rm≤ C̃
1
2
0 , ∀m≥1. (2.48)

These estimates will be useful in the higher order stability analysis presented below.

3 A uniform-in-time H3 estimate for the numerical solution

Theorem 3.1. For the numerical solution (2.24), the following estimate is available:

‖φm
S ‖H3≤Q(3), ∀m≥1, (3.1)

in which φm
S stands for the spectral interpolation of the numerical solution φm, as given by for-

mula (2.8). The constant Q(3) only depends on the initial H3 data and the domain, and it is
independent of ∆t, h and T.
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Proof. Taking a discrete inner product with (2.24a) by −2∆3
Nφn+1, we obtain

1
∆t
〈φn+1−φn,−2∆3

Nφn+1〉−ε2
〈

∆3
Nφn+1,∆2

N

(3
2

φn+1+
1
2

φn−1
)〉

=2
rn+1/2

√
E1,N(φ̂n+1/2)

〈NN(φ̂
n+1/2),∆3

Nφn+1〉. (3.2)

The temporal stencil term could be handled in a straightforward way:

〈φn+1−φn,−2∆3
Nφn+1〉

=2〈∇N∆N(φ
n+1−φn),∇N∆Nφn+1〉

=‖∇N∆Nφn+1‖2
2−‖∇N∆Nφn‖2

2+‖∇N∆N(φ
n+1−2φn+φn−1)‖2

2. (3.3)

The surface diffusion part could be analyzed as follows

−
〈

∆3
Nφn+1,∆2

N

(3
2

φn+1+
1
2

φn−1
)〉

=
〈
∇N∆2

Nφn+1,∇N∆2
N

(3
2

φn+1+
1
2

φn−1
)〉

≥3
2
‖∇N∆2

Nφn+1‖2
2−

1
4

(
‖∇N∆2

Nφn+1‖2
2+‖∇N∆2

Nφn−1‖2
2

)

≥5
4
‖∇N∆2

Nφn+1‖2
2−

1
4
‖∇N∆2

Nφn−1‖2
2. (3.4)

For the right hand side nonlinear inner product, we begin with the following observa-
tions:

E1,N(φ̂
n+1/2)≥|Ω|, |rn+1/2|≤ C̃

1
2
0 (by (2.48)). (3.5)

These two bounds imply that

rn+1/2
√

E1,N(φ̂n+1)
≤
( C̃0

|Ω|
) 1

2
. (3.6)

Meanwhile, the following summation by parts formula is applied

2
rn+1/2

√
E1,N(φ̂n+1/2)

〈NN(φ̂
n+1/2),∆3

Nφn+1〉

=−2
rn+1/2

√
E1,N(φ̂n+1/2)

〈
∇N NN(φ̂

n+1/2),∇N∆2
Nφn+1

〉
. (3.7)
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For the nonlinear term, the following expansion is recalled

∇N NN(φ̂
n+1)=−∇N∇N ·(|∇N φ̂n+1|2∇N φ̂n+1)+∇N∆N φ̂n+1. (3.8)

The linear part could be controlled in a standard fashion:

−2
rn+1/2

√
E1,N(φ̂n+1/2)

〈∇N∆N φ̂n+1/2,∇N∆2
Nφn+1〉

≤2
( C̃0

|Ω|
) 1

2 ‖∇N∆N φ̂n+1/2‖2 ·‖∇N∆2
Nφn+1‖2

≤4C̃0ε−2

|Ω| ‖∇N∆N φ̂n+1/2‖2
2+

1
4

ε2‖∇N∆2
Nφn+1‖2

2. (3.9)

For the nonlinear 4-Laplacian part, the following grid function is introduced:

q̂n+1/2 := |∇N φ̂n+1/2|2∇N φ̂n+1/2. (3.10)

This in turn implies that

‖∇N∇N ·(|∇N φ̂n+1/2|2∇N φ̂n+1/2)‖2=‖∇(∇· q̂n+1/2
S )‖L2 , (3.11)

in which q̂n+1/2
S is the spectral interpolation of q̂n+1/2, given by formula (2.8). Moreover,

since q̂n+1/2 is the point-wise interpolation of the continuous function

ϕq̂n+1/2 := |∇φ̂n+1/2
S |2∇φ̂n+1/2

S with φ̂n+1/2
S =

3
2

φn
S−

1
2

φn−1
S , (3.12)

we see that q̂n+1/2
S = RN(ϕq̂n+1/2). In turn, by making use of the aliasing error control

inequality stated in Lemma 2.1, we conclude that

‖∇(∇· q̂n+1/2
S )‖L2≤‖q̂n+1/2

S ‖H2 =‖RN(ϕq̂n+1/2)‖H2≤3‖ϕq̂n+1/2‖H2 , (3.13)

since ϕq̂n+1/2 ∈P3K. Meanwhile, for ϕq̂n+1/2 given by (3.12), a detailed expansion and re-
peated applications of Hölder inequality indicate that

‖ϕq̂n+1/2‖H2≤C(‖ϕq̂n+1/2‖+‖∆ϕq̂n+1/2‖)

=C
(
‖|∇φ̂n+1/2

S |2∇φ̂n+1/2
S ‖+‖∆(|∇φ̂n+1/2

S |2∇φ̂n+1/2
S )‖

)

≤C
(
‖∇φ̂n+1

S ‖2
L∞ ·‖∇φ̂n+1

S ‖H2+‖∇∇φ̂n+1
S ‖2

L6 ·‖∇φ̂n+1
S ‖L6

)
. (3.14)
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Furthermore, the following 2-D Sobolev embedding and interpolation inequalities could
be derived:

‖∇φ̂n+1/2
S ‖L∞≤C

(
‖∆φ̂n+1/2

S ‖+‖∆φ̂n+1/2
S ‖ 5

6 ·‖∇∆2φ̂n+1/2
S ‖ 1

6

)

≤C
(

C̃1+C̃
5
6
1 ‖∆3φ̂n+1/2

S ‖ 1
6

)
, (3.15a)

‖∇φ̂n+1/2
S ‖L6≤C‖∆φ̂n+1/2

S ‖≤CC̃1, (3.15b)

‖∇∇φ̂n+1/2
S ‖L6≤C‖∇∇φ̂n+1/2

S ‖H1≤C‖∆φ̂n+1/2
S ‖ 2

3 ·‖∇∆2φ̂n+1/2
S ‖ 1

3

≤CC̃
2
3
1 ‖∇∆2φ̂n+1/2

S ‖ 1
3 , (3.15c)

‖∇φ̂n+1/2
S ‖H2≤C‖∆φ̂n+1/2

S ‖ 2
3 ·‖∆3φ̂n+1/2

S ‖ 1
3 ≤CC̃

2
3
1 ‖∇∆2φ̂n+1/2

S ‖ 1
3 , (3.15d)

in which the uniform in time H2 bound (2.41) of the numerical solution has been exten-
sively used. In turn, a substitution of the above estimates into (3.14) yields

‖ϕq̂n+1‖H3≤C
(

C̃3
1+C̃

7
3
1 ‖∆3φ̂n+1/2

S ‖ 2
3

)
. (3.16)

Subsequently, its combination with (3.11) and (3.13) reveals that

‖∇N∇N ·(|∇N φ̂n+1/2|2∇N φ̂n+1/2)‖2

≤C
(

C̃3
1+C̃

7
3
1 ‖∇∆2φ̂n+1/2

S ‖ 2
3

)

≤C
(

C̃3
1+C̃

7
3
1 ‖∇N∆2

N φ̂n+1/2‖ 2
3

)
, (3.17)

in which the fact that φ̂n+1/2
S ∈PK has been applied in the last step. As a consequence, we

arrive at

−2
rn+1/2

√
E1,N(φ̂n+1/2)

〈
∇N∇N ·(|∇N φ̂n+1/2|2∇N φ̂n+1/2),∇N∆2

Nφn+1
〉

≤2
( C̃0

|Ω|
) 1

2 ‖∇N∇N ·(|∇N φ̂n+1/2|2∇N φ̂n+1/2)‖2 ·‖∇N∆2
Nφn+1‖2

≤C(C̃3
1+C̃

7
3
1 ‖∆3

N φ̂n+1/2‖ 2
3 )·‖∇N∆2

Nφn+1‖2

≤Cε−2
(

C̃6
1+C̃

14
3

1 ‖∇N∆2
N φ̂n+1/2‖ 4

3

)
+

ε2

4
‖∇N∆2

Nφn+1‖2
2. (3.18)

A combination of (3.9) and (3.18) leads to

2
rn+1/2

√
E1,N(φ̂n+1)

〈NN(φ̂
n+1),∆3

Nφn+1〉
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≤4C̃0ε−2

|Ω| ‖∇N∆N φ̂n+1/2‖2
2+Cε−2

(
C̃6

1+C̃
14
3

1 ‖∇N∆2
N φ̂n+1/2‖ 4

3

)

+
ε2

2
‖∇N∆2

Nφn+1‖2
2. (3.19)

Finally, a substitution of (3.3), (3.4) and (3.19) into (3.2) results in

1
∆t

(
‖∇N∆Nφn+1‖2

2−‖∇N∆Nφn‖2
2+‖∇N∆N(φ

n+1−2φn+φn−1)‖2
2

)

+
3
4

ε2‖∇N∆2
Nφn+1‖2

2−
1
4

ε2‖∇N∆2
Nφn−1‖2

2

≤4C̃0ε−2

|Ω| ‖∇N∆N φ̂n+1/2‖2
2+Cε−2

(
C̃6

1+C̃
14
3

1 ‖∇N∆2
N φ̂n+1/2‖ 4

3

)
. (3.20)

Meanwhile, the following interpolation inequality and Cauchy inequality are available:

‖∇N∆N φ̂n+1/2‖2≤‖∆N φ̂n+1/2‖
2
3
2 ·‖∇N∆2

N φ̂n+1‖
1
3
2 ≤ (2C̃1)

2
3 ‖∇N∆2

N φ̂n+1/2‖
1
3
2 , (3.21a)

‖∇N∆2
N φ̂n+1/2‖2

2=
∥∥∥∇N∆2

N

(3
2

φn− 1
2

φn−1
)∥∥∥

2

2
≤3‖∇N∆2

Nφn‖2
2+‖∇N∆2

Nφn−1‖2
2. (3.21b)

Then we obtain the following estimates:

4C̃0ε−2

|Ω| ‖∇N∆N φ̂n+1/2‖2
2

≤ 2
10
3 C̃0C̃

4
3
1 ε−2

|Ω| ‖∇N∆2
N φ̂n+1/2‖

2
3
2

≤ CC̃
3
2
0 C̃2

1ε−4

|Ω| 32
+

ε2

32
‖∇N∆2

N φ̂n+1/2‖2
2

≤ CC̃
3
2
0 C̃2

1ε−4

|Ω| 32
+

ε2

32

(
3‖∇N∆2

Nφn‖2
2+‖∇N∆2

Nφn−1‖2
2

)
, (3.22a)

CC̃
14
3

1 ε−2‖∇N∆2
N φ̂n+1/2‖ 4

3

≤CC̃14
1 ε−10+

ε2

32
‖∇N∆2

N φ̂n+1/2‖2

≤CC̃14
1 ε−10+

ε2

32

(
3‖∇N∆2

Nφn‖2
2+‖∇N∆2

Nφn−1‖2
2

)
, (3.22b)

in which the Young’s inequality has been applied in the first step of (3.22b). Going
back (3.20), we arrive at

1
∆t

(
‖∇N∆Nφn+1‖2

2−‖∇N∆Nφn‖2
2

)
+

3
4

ε2‖∇N∆2
Nφn+1‖2

2−
1
4

ε2‖∇N∆2
Nφn−1‖2

2

≤ ε2

16

(
3‖∇N∆2

Nφn‖2
2+‖∇N∆2

Nφn−1‖2
2

)
+

CC̃
3
2
0 C̃2

1ε−4

|Ω| 32
+Cε−10(C̃14

1 +1). (3.23)
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Moreover, the following quantity is introduced:

Gn+1 :=‖∇N∆Nφn+1‖2
2+

9ε2

16
∆t‖∇N∆2

Nφn+1‖2
2+

5ε2

16
∆t‖∇N∆2

Nφn‖2
2. (3.24)

By adding 3
8 ε2‖∇N∆3

Nφn‖2
2 on both sides of (3.23), we obtain the following inequality:

Gn+1−Gn+
3ε2

16
∆t‖∇N∆2

Nφn+1‖2
2+

ε2

16
∆t‖∇N∆2

Nφn‖2
2≤M(0)∆t, (3.25)

with

M(0)=
CC̃

3
2
0 C̃2

1ε−4

|Ω| 32
+Cε−10(C̃14

1 +1).

In addition, the following elliptic regularity estimates are valid:

C2‖∇N∆Nφn+1‖2
2≤‖∇N∆2

Nφn+1‖2
2, C2‖∇N∆Nφn‖2

2≤‖∇N∆2
Nφn‖2

2, (3.26)

so that we arrive at

1
8

C2Gn+1≤ 3
16
‖∇N∆2

Nφn+1‖2
2+

1
16
‖∇N∆2

Nφn‖2
2. (3.27)

Going back (3.25), we get

Gn+1−Gn+
C2ε2

8
∆tGn+1≤M(0)∆t. (3.28)

An application of induction argument implies that

Gn+1≤
(

1+
C2ε2

8
∆t
)−(n+1)

G0+
8M(0)

C2ε2 . (3.29)

Of course, we could introduce a uniform in time quantity

B∗3 :=G0+
8M(0)

C2ε2 ,

so that
‖∇N∆Nφm‖2≤Gm≤B∗3

for any m≥0. In turn, an application of elliptic regularity shows that

‖φm
S ‖H3≤C

(
|φm|+‖∇∆φm‖

)
≤C(|β0|+(B∗3)

1/2) :=Q(3), ∀m≥0, (3.30)

in which the uniform in time constant Q(3) depends on Ω and the initial H3 data. This
finishes the proof of Theorem 3.1.
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Remark 3.1. Higher order Hm estimate (beyond the norm given by the physical energy)
is available for many gradient flows, due to the analytic property of the surface diffusion
parabolic operator; see the related discussions in [4]. There have also been quite a few
works of uniform in time H2 estimate for certain energy stable numerical schemes for the
Cahn-Hilliard equation [16, 32, 56], beyond the H1 bound given by the energy estimate.
In fact, similar estimates have also been reported for 2-D incompressible Navier-Stokes
equations, in terms of the first, second and higher order temporal numerical approxima-
tions; see the delated works [14, 28, 62], etc.

Remark 3.2. As can be observed in the analysis (3.4) for the surface diffusion term, the
alternate temporal stencil structure, which gives 3/4 and 1/4 coefficient distribution at
time steps tn+1, tn−1, respectively, plays an important role to pass through the nonlinear
estimate. Because of the higher concentration at time step tn+1, the additional diffusion
inner product term is able to control the corresponding nonlinear growth given by (3.19),
which turns out to be an essential point in the H3 estimate for the numerical solution.
Instead, if the standard Crank-Nicolson approximation is applied, such an additional
diffusion inner product term would not be available in the derivation in (3.19), so that the
nonlinear growth in (3.19) could hardly be controlled. As a result, the standard Crank-
Nicolson method for the surface diffusion term is able to preserve the modified energy
stability, in a similar way as in Theorem 2.2, while a theoretical justification of the H3

estimate for the numerical solution would not go through.

4 The optimal rate convergence analysis

Now we proceed into the convergence analysis for the numerical scheme (2.24). Due to
the SAV structure of the algorithm, the error estimate has to be performed in the energy
norm, i.e., in the `∞(0,T;H2

N)∩`2(0,T;H4
N) for the phase variable. Similar techniques have

also been applied to the convergence estimate [45] for the SAV scheme applied to Cahn-
Hilliard equation. These ideas have also been reported for the corresponding analysis for
the phase field flow coupled with fluid motion [6, 9, 18, 19, 47]. With an initial data with
sufficient regularity, we could assume that the exact solution has regularity of classR:

Φ∈R :=H3(0,T;C0)∩H2(0,T;H4)∩L∞(0,T;Hm+4). (4.1)

In particular, the following bound is available for the exact solution:

‖∂m
t Φ‖L∞(0,T;L∞)≤C∗, (1≤m≤3), ‖Φk‖Hm+4≤C∗, ∀k≥0. (4.2)

Theorem 4.1. Given initial data Φ0∈Hm+4
per (Ω), suppose the exact solution for SS equation (1.3)

is of regularity classR. For ∆t and h are sufficiently small, we have

max
0≤n≤M

‖∆N(Φn−φn)‖2+
(

∆t
M

∑
k=1
‖∆2

N(Φ
k−φk)‖2

2

)1/2
≤C(∆t2+hm), (4.3)

where C>0 is independent of ∆t and h, and ∆t=T/M.
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4.1 The consistency analysis

For Φ∈R, we construct an approximate scalar value of R as follows

Rn+1 :=
√

E1,N(Φn+1), (4.4a)

En+1
1,N (Φn+1)=

1
4
‖∇NΦn+1‖4

4−
1
2
‖∇NΦn+1‖2

2+
5
4
|Ω|, (4.4b)

Rn+1/2=
1
2
(Rn+1+Rn). (4.4c)

A similar extrapolation

Φ̂n+1 :=2Φn−Φn−1

is taken. In turn, a careful consistency analysis indicates the following truncation error
estimate:





Φn+1−Φn

∆t
=−

( Rn+1/2
√

E1,N(Φ̂n+1/2)
NN(Φ̂n+1/2)+LN

(3
4

Φn+1+
1
4

Φn−1
))

+τn+1
φ , (4.5a)

Rn+1−Rn

∆t
=

1

2
√

E1,N(Φ̂n+1/2)

〈
NN(Φ̂n+1/2),

Φn+1−Φn

∆t

〉
+τn+1

r , (4.5b)

with

‖τn+1/2
φ ‖2,|τn+1/2

r |≤C(∆t2+hm).

The derivation of (4.5) is accomplished with the help of the spectral approximation esti-
mate and other related estimates; the details are left to interested readers.

The numerical error function is defined at a point-wise level:

ek :=Φk−φk, êk+1/2 :=
3
2

ek− 1
2

ek−1, (4.6a)

Ñk+1/2 :=NN(Φ̂k+1/2)−NN(φ̂
k+1/2), ∀k≥0. (4.6b)

And also, the following scalar numerical errors are introduced

r̃k :=Rk−rk, r̃k+1/2 :=
1
2
(r̃k+1+ r̃k), (4.7a)

Ẽk+1/2
1 :=E1,N(Φ̂k+1/2)−E1,N(φ̂

k+1/2), ∀k≥0. (4.7b)
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In turn, subtracting the numerical scheme (2.24) from (4.5) gives





en+1−en

∆t
=−

(( r̃n+1/2
√

E1,N(φ̂n+1/2)
−Bn+1/2Rn+1/2Ẽn+1/2

1

)
NN(φ̂

n+1/2)

+
Rn+1/2

√
E1,N(Φ̂n+1/2)

Ñn+1/2+LN

(3
4

en+1+
1
4

en−1
))

+τn+1/2
φ , (4.8a)

r̃n+1− r̃n

∆t
=

1

2
√

E1,N(φ̂n+1/2)

〈
NN(φ̂

n+1/2),
en+1−en

∆t

〉

+
1

2
√

E1,N(φ̂n+1/2)

〈
Ñn+1/2,

Φn+1−Φn

∆t

〉

−1
2

Bn+1/2Ẽn+1/2
1

〈
NN(Φ̂n+1/2),

Φn+1−Φn

∆t

〉
+τn+1/2

r , (4.8b)

with Bn+1/2=
1√

E1,N(Φ̂n+1/2)
√

E1,N(φ̂n+1/2)
(√

E1,N(Φ̂n+1/2)+
√

E1,N(φ̂n+1/2)
) .(4.8c)

4.2 A few preliminary estimates

The following estimates are needed in the later analysis.

Lemma 4.1. We have

E1,N(φ̂
n+1/2)≥|Ω|, E1,N(Φ̂n+1/2)≥|Ω|, 0≤Bn+1/2≤ 1

2
|Ω|− 3

2 , (4.9a)

|Ẽn+1/2
1 |≤ C̃2‖∇N ên+1/2‖2, (4.9b)

‖NN(φ̂
n+1/2)‖≤ C̃3, (4.9c)

‖Ñn+1/2‖≤ C̃4‖∆N ên+1/2‖2, (4.9d)
∥∥∥Φn+1−Φn

∆t

∥∥∥
2
≤CC∗, (4.9e)

in which

ên+1 := Φ̂n+1−φ̂n+1=2en−en−1,

and C̃j are independent of ∆t and h, j=2,3,4.

Proof. The lower bound for E1,N(φ̂
n+1/2) and E1,N(Φ̂n+1/2) comes from their definition,

and the estimate 0≤Bn+1/2≤2|Ω|− 3
2 is a direct result of its representation given by (4.8c).
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Moreover, a detailed expansion for E1,N(φ̂
n+1/2) and E1,N(Φ̂n+1/2) implies that

Ẽn+1/2
1 =E1,N(Φ̂n+1/2)−E1,N(φ̂

n+1/2)

=
1
4
(‖∇NΦ̂n+1/2‖4

4−‖∇N φ̂n+1/2‖4
4)−(‖∇NΦ̂n+1/2‖2

2−‖∇N φ̂n+1/2‖2
2)

=
1
4
〈|∇NΦ̂n+1/2|2+|∇N φ̂n+1/2|2,∇N(Φ̂n+1/2+φ̂n+1/2)·∇N ên+1/2〉
−〈∇N(Φ̂n+1/2+φ̂n+1/2),∇N ên+1/2〉. (4.10)

For the first error expansion, an application of discrete Hölder inequality shows that

1
4

∣∣∣〈|∇NΦ̂n+1/2|2+|∇N φ̂n+1/2|2,∇N(Φ̂n+1/2+φ̂n+1/2)·∇N ên+1/2〉
∣∣∣

≤1
4
(‖∇NΦ̂n+1/2‖2

6+‖∇N φ̂n+1/2‖2
6)·(‖∇NΦ̂n+1/2‖6+‖∇N φ̂n+1/2‖6)·‖∇N ên+1/2‖2

≤1
4
(4(C∗)2+CC̃2

1)·(2C∗+CC̃1)·‖∇N ên+1/2‖2

≤C((C∗)3+C̃3
1)‖∇N ên+1/2‖2, (4.11)

in which the regularity assumption (4.2) for the exact solution and the discrete W1,6

bound (2.47) for the numerical solution have been applied. The second error expansion
term in (4.10) could be controled in an even simpler way:

∣∣∣〈|∇N(Φ̂n+1/2+φ̂n+1/2),∇N ên+1/2〉
∣∣∣

≤(‖∇NΦ̂n+1/2‖2+‖∇N φ̂n+1/2‖2)·‖∇N ên+1/2‖2

≤(2C∗+CC̃1)‖∇N ên+1/2‖2, (4.12)

with (4.2), (2.47), applied again. This comletes the proof of inequality (4.9b), by setting

C̃2 :=C((C∗)3+C̃3
1+C∗+C̃1).

To obtain a discrete `2 estimate for NN(φ̂
n+1/2), we recall the grid function q̂n+1/2

introduced in (3.10), so that the following identity is valid:

‖∇N ·(|∇N φ̂n+1/2|2∇N φ̂n+1/2)‖2=‖∇(∇· q̂n+1/2
S )‖L2 , (4.13)

in which q̂n+1/2
S is the spectral interpolation of q̂n+1/2. Because of the fact q̂n+1/2

S =
RN(ϕq̂n+1/2), as indicated by the point-wise interpolation given by (3.12), we make use
of the aliasing error control inequality in Lemma 2.1 and get

‖∇· q̂n+1/2
S ‖L2≤‖q̂n+1/2

S ‖H1 =‖RN(ϕq̂n+1/2)‖H1≤3‖ϕq̂n+1/2‖H1 , (4.14)



1340 Q. Cheng and C. Wang / Adv. Appl. Math. Mech., 13 (2021), pp. 1318-1354

an inequality similar to (3.13). Moreover, a detailed expansion and repeated applications
of Hölder inequality lead to

‖ϕq̂n+1/2‖H1≤C(‖ϕq̂n+1/2‖+‖∇ϕq̂n+1/2‖)
≤C(‖|∇φ̂n+1/2

S |2∇φ̂n+1/2
S ‖+‖∇(|∇φ̂n+1/2

S |2∇φ̂n+1/2
S )‖)

≤C‖∇φ̂n+1
S ‖2

L∞ ·‖∇φ̂n+1
S ‖H1≤C‖φ̂n+1

S ‖3
H3≤C(Q(3))3, (4.15)

in which the uniform in time H3 estimate (3.1) (for the numerical solution) has been
applied in the last step. Going back (4.14) and (4.13), we arrive at

‖∇N ·(|∇N φ̂n+1/2|2∇N φ̂n+1/2)‖2≤C(Q(3))3. (4.16)

The other expansion term in NN(φ̂
n+1) could be bounded in a more standard way:

‖∆N φ̂n+1/2‖2≤‖φ̂n+1/2
S ‖H3≤2Q(3). (4.17)

Therefore, a combination of (4.16) and (4.17) gives the inequality (4.9c), by taking C̃3 =
C(Q(3))3+2Q(3).

Inequality (4.9d) could be derived in a similar manner. Making a comparison between
NN(Φ̂n+1/2) and NN(φ̂

n+1/2), we observe that Ñn+1/2 turns out to be the point-wise in-
terpolation of the following continuous function

Ñn+1/2
S =−∇·(RN(ϕÑn+1/2)+∆ên+1/2

S , (4.18a)

ϕÑn+1/2 := |∇Φ̂n+1/2
S |2∇Φ̂n+1/2

S −|∇φ̂n+1/2
S |2∇φ̂n+1/2

S , (4.18b)

with
Φ̂n+1/2

S =
3
2

Φn
S−

1
2

Phin−1
S , ên+1/2

S =
3
2

en
S−

1
2

en−1
S .

A similar expansion is available for ϕÑn+1 :

ϕÑn+1/2 = |∇Φ̂n+1/2
S |2∇ên+1/2

S +(∇(Φ̂n+1/2
S +φ̂n+1/2

S )·∇ên+1/2
S )∇φ̂n+1/2

S . (4.19)

Again, repeated applications of Hölder inequality gives the following estimate

‖ϕÑn+1/2‖H1

≤C(‖ϕÑn+1/2‖+‖∇ϕÑn+1/2‖)
≤C
(
‖|∇Φ̂n+1/2

S |2∇ên+1/2
S ‖+‖(∇(Φ̂n+1/2

S +φ̂n+1/2
S )·∇ên+1/2

S )∇φ̂n+1/2
S ‖

+‖∇(|∇Φ̂n+1/2
S |2∇ên+1/2

S )‖+‖∇((∇(Φ̂n+1/2
S +φ̂n+1/2

S )·∇ên+1/2
S )∇φ̂n+1/2

S )‖
)

≤C(‖∇Φ̂n+1/2
S ‖H2+‖∇φ̂n+1/2

S ‖H2)2 ·‖∇ên+1/2
S ‖H1

≤C((C∗)2+(Q(3))2)‖∇ên+1/2
S ‖H1 , (4.20)
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with the uniform in time H3 estimate (3.1) and the regularity assumption (4.2) recalled.
Since ϕÑn+1 ∈P3K, we go back (4.18) and arrive at

‖Ñn+1/2‖2=‖Ñn+1/2
S ‖=‖−∇·(RN(ϕÑn+1/2))+∆ên+1/2

S ‖
≤3‖ϕÑn+1/2‖H1+‖∆ên+1/2

S ‖
≤C((C∗)2+(Q(3))2)‖∇ên+1/2

S ‖H1+‖∇ên+1/2
S ‖H1

≤C((C∗)2+(Q(3))2+1)‖∇ên+1/2
S ‖H1

≤C((C∗)2+(Q(3))2+1)‖∆ên+1/2
S ‖

≤C((C∗)2+(Q(3))2+1)‖∆N ên+1‖2, (4.21)

in which the elliptic regularity,

‖∇ên+1/2
S ‖H1≤C‖∆ên+1/2

S ‖,

has been applied in the fourth step, due to the fact that
∫

Ω
∇ên+1/2

S dx=0

and the last step comes from the fact that ên+1/2
S is the spectral interpolation function of

ên+1/2. This completes the proof of inequality (4.9d), by setting

C̃4=C((C∗)2+(Q(3))2+1).

The last inequality (4.9e) is a direct consequence of the following estimates

∥∥∥Φn+1−Φn

∆t

∥∥∥
∞
≤C∗ by (4.2) , (4.22)

combined with the fact that ‖·‖∞ is a norm stronger than ‖·‖2.

4.3 Proof of the convergence theorem

Now we proceed into the proof of Theorem 4.1.

Proof. Taking a discrete inner product of (4.8a) with en+1−en

∆t , with a repeated application
of summation by parts, we get

1
∆t

〈
en+1−en,LN

(3
4

en+1+
1
4

en−1
)〉

+
∥∥∥ en+1−en

∆t

∥∥∥
2

2

=−
〈
(NLE1+NLE2+NLE3−τn+1/2

φ ),
en+1−en

∆t

〉
, (4.23a)
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NLE1=
r̃n+1/2

√
E1,N(φ̂n+1/2)

NN(φ̂
n+1/2), (4.23b)

NLE2=−Bn+1/2Rn+1/2Ẽn+1/2
1 NN(φ̂

n+1/2), (4.23c)

NLE3=
Rn+1/2

√
E1,N(Φ̂n+1/2)

Ñn+1/2. (4.23d)

The temporal stencil term could be analyzed in the same manner as (2.39a):

〈
LN

(3
4

en+1+
1
4

en−1
)

,φn+1−φn
〉

=
1
2

(
‖L

1
2
Nen+1‖2

2−‖L
1
2
Nen‖2

2

)
+

1
8

(
‖L

1
2
N(e

n+1−en)‖2
2−‖L

1
2
N(e

n−en−1)‖2
2

)

+
1
8

(
‖L

1
2
N(e

n+1−2en+en−1‖2
2

)
. (4.24)

A bound for the truncation error inner product term is standard:

〈
τn+1/2

φ ,
en+1−en

∆t

〉
≤‖τn+1

φ ‖2 ·
∥∥∥ en+1−en

∆t

∥∥∥
2
≤2‖τn+1/2

φ ‖2
2+

1
8

∥∥∥ en+1−en

∆t

∥∥∥
2

2
. (4.25)

The first nonlinear inner product term could be rewritten as follows:

−
〈
NLE1,

en+1−en

∆t

〉
=−

〈 r̃n+1
√

E1,N(φ̂n+1/2)
NN(φ̂

n+1/2),
en+1−en

∆t

〉
. (4.26)

For the second and third nonlinear inner product terms, we begin with the following
estimates:

‖NLE2‖2=‖Bn+1/2Rn+1/2Ẽn+1/2
1 NN(φ̂

n+1/2)‖2

≤|Bn+1/2|·|Rn+1/2|·|Ẽn+1/2
1 |·‖NN(φ̂

n+1)‖2

≤ 1
2
|Ω|− 3

2 ·(C̃0+1)
1
2 ·C̃2‖∇N ên+1/2‖2 ·C̃3

= C̃5‖∇N ên+1/2‖2 with C̃5=
1
2

C̃2C̃3(C̃0+1)
1
2 |Ω|− 3

2 , (4.27a)

‖NLE3‖2=‖Rn+1/2(E1,N(Φ̂n+1/2))−
1
2 Ñn+1/2‖2

≤|Rn+1/2|·|Ω|− 1
2 ·‖Ñn+1‖2

≤ (C̃0+1)
1
2 |Ω|− 1

2 ·C̃4‖∆N ên+1/2‖2

= C̃6‖∆N ên+1/2‖2 with C̃6= C̃4(C̃0+1)
1
2 |Ω|− 1

2 , (4.27b)
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in which the preliminary estimates (4.9a)-(4.9d) in Lemma 4.1 have been extensively ap-
plied in the derivation. We also notice that the inequality |Rn+1|,|Rn| ≤ (C̃0+1)

1
2 comes

from the fact that
E(Φ(t))≤E(Φ0)= C̃0+hm,

the pseudo-spectral approximation order, combined with the inequality

E1,N(Φk)≤EN(Φk).

And also, the following estimate for ‖NLE1‖2 is derived below, which will be needed in
the later analysis:

‖NLE1‖2=‖r̃n+1/2(E1,N(φ̂
n+1/2))−

1
2 NN(φ̂

n+1/2)‖2

≤|r̃n+1/2|·|Ω|− 1
2 ·‖NN(φ̂

n+1/2)‖2

≤|Ω|− 1
2 ·C̃3 · r̃n+1/2= C̃7r̃n+1/2 with C̃7= C̃3|Ω|−

1
2 . (4.28)

As a consequence of (4.27a), (4.27b), the following inequalities are available:

−
〈
NLE2+NLE3,

en+1−en

∆t

〉

≤
(
‖NLE2‖2+‖NLE3‖2

)
·
∥∥∥ en+1−en

∆t

∥∥∥
2

≤2
(
‖NLE2‖2

2+‖NLE3‖2
2

)
+

1
4

∥∥∥ en+1−en

∆t

∥∥∥
2

2

≤2
(

C̃2
5‖∇N ên+1/2‖2

2+C̃2
6‖∆N ên+1/2‖2

2

)
+

1
4

∥∥∥ en+1−en

∆t

∥∥∥
2

2

≤C̃8‖∆N ên+1/2‖2
2+

1
4

∥∥∥ en+1−en

∆t

∥∥∥
2

2
, C̃8=2(C̃2

5C2
3+C̃2

6), (4.29)

in which C3 corresponds to the elliptic regularity,

‖∇N f ‖2≤C3‖∆N f ‖2,

an inequality similar to (3.26). Therefore, a substitution of (4.24)-(4.26) and (4.29) into (4.23a)
yields

1
2∆t

(∥∥∥L
1
2
Nen+1

∥∥∥
2

2
−
∥∥∥L

1
2
Nen
∥∥∥

2

2

)
+

1
8

(∥∥∥L
1
2
N(e

n+1−en)
∥∥∥

2

2
−
∥∥∥L

1
2
N(e

n−en−1)
∥∥∥

2

2

)

+
5
8

∥∥∥ en+1−en

∆t

∥∥∥
2

2

≤−
〈 r̃n+1/2
√

E1,N(φ̂n+1/2)
NN(φ̂

n+1/2),
en+1−en

∆t

〉
+C̃8‖∆N ên+1/2‖2

2+2‖τn+1
φ ‖2

2. (4.30)
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On the other hand, the original error evolutionary equation (4.8a) gives

en+1−en

∆t
=−

(
LN

(3
4

en+1+
1
4

en−1
)
+NLE1+NLE2+NLE3−τn+1

φ

)
. (4.31)

In turn, an application of quadratic inequality implies that

∥∥∥ en+1−en

∆t

∥∥∥
2

2

≥1
2

∥∥∥LN

(3
4

en+1+
1
4

en−1
)∥∥∥

2

2
−2‖NLE1+NLE2+NLE3−τn+1

φ ‖2
2

≥1
2

∥∥∥LN

(3
4

en+1+
1
4

en−1
)∥∥∥

2

2
−4
(
‖NLE1+NLE2+NLE3‖2

2+‖τn+1
φ ‖2

2

)

≥1
2

∥∥∥LN

(3
4

en+1+
1
4

en−1
)∥∥∥

2

2
−12

(
‖NLE1‖2

2+‖NLE2‖2
2+‖NLE3‖2

2

)
−4‖τn+1

φ ‖2
2

≥1
2

∥∥∥LN

(3
4

en+1+
1
4

en−1
)∥∥∥

2

2
−12

(
C̃2

7(r̃
n+1/2)2

+(C̃2
5C2

3+C̃2
6)‖∆N ên+1/2‖2

2

)
−4‖τn+1

φ ‖2
2, (4.32)

with the estimates (4.27a)-(4.28) recalled. Going back (4.30), we arrive at

1
2∆t

(
‖L

1
2
Nen+1‖2

2−‖L
1
2
Nen‖2

2

)
+

1
8

(
‖L

1
2
N(e

n+1−en)‖2
2−‖L

1
2
N(e

n−en−1)‖2
2

)

+
5

16

∥∥∥LN

(3
4

en+1+
1
4

en−1
)∥∥∥

2

2
+
〈 r̃n+1/2
√

E1,N(φ̂n+1/2)
NN(φ̂

n+1/2),
en+1−en

∆t

〉

≤12C̃2
7(r̃

n+1/2)2+7C̃8‖∆N ên+1/2‖2
2+6‖τn+1/2

φ ‖2
2. (4.33)

Taking a discrete inner product of (4.8b) with 2r̃n+1/2= r̃n+1+ r̃n gives

1
∆t

(|r̃n+1|2−|r̃n|2)

=
r̃n+1/2

√
E1,N(φ̂n+1/2)

〈
NN(φ̂

n+1/2),
en+1−en

∆t

〉
+

r̃n+1/2
√

E1,N(φ̂n+1/2)

〈
Ñn+1/2,

Φn+1−Φn

∆t

〉

−Bn+1/2Ẽn+1/2
1 r̃n+1/2

〈
NN(Φ̂n+1/2),

Φn+1−Φn

∆t

〉
+2τn+1/2

r · r̃n+1/2. (4.34)

The inner product associated with the truncation error could be controlled via Cauchy
inequality:

2τn+1/2
r · r̃n+1/2≤|τn+1/2

r |2+|r̃n+1/2|2. (4.35)
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The first nonlinear inner product on the right hand side is kept. The second and third
nonlinear inner product terms could be analyzed as follows

r̃n+1/2
√

E1,N(φ̂n+1/2)

〈
Ñn+1/2,

Φn+1−Φn

∆t

〉
≤|r̃n+1/2|·|Ω|− 1

2 ·‖Ñn+1‖2 ·
∥∥∥Φn+1−Φn

∆t

∥∥∥
2

≤|r̃n+1/2|·|Ω|− 1
2 ·C̃4‖∆N ên+1/2‖2 ·CC∗≤ C̃9|r̃n+1/2|·‖∆N ên+1/2‖2

≤ C̃9

2
(|r̃n+1/2|2+‖∆N ên+1/2‖2

2), C̃9=CC̃4C∗|Ω|− 1
2 , (4.36a)

−Bn+1/2Ẽn+1/2
1 r̃n+1/2

〈
NN(Φ̂n+1/2),

Φn+1−Φn

∆t

〉

≤|Bn+1/2|·|Ẽn+1/2
1 |·|r̃n+1/2|·‖NN(Φ̂n+1/2)‖2 ·

∥∥∥Φn+1−Φn

∆t

∥∥∥
2

≤ 1
2
|Ω|− 3

2 ·C̃2‖∇N ên+1/2‖2 ·|r̃n+1/2|·C̃3 ·CC∗≤ C̃10|r̃n+1/2|·‖∆N ên+1/2‖2

≤ C̃10

2
(|r̃n+1/2|2+‖∆N ên+1/2‖2

2), C̃10=CC̃2C̃3C3C∗|Ω|− 3
2 , (4.36b)

with repeated application of the preliminary estimates (4.9a)-(4.9e) in Lemma 4.1. Subse-
quently, a substitution of (4.35)-(4.36b) into (4.34) yields

1
∆t

(|r̃n+1|2−|r̃n|2)

≤ r̃n+1/2
√

E1,N(φ̂n+1/2)

〈
NN(φ̂

n+1/2),
en+1−en

∆t

〉

+
C̃9+C̃10

2

(
|r̃n+1/2|2+‖∆N ên+1/2‖2

2

)
+|r̃n+1/2|2+|τn+1/2

r |2. (4.37)

Finally, a combination of (4.33) and (4.37) results in

1
2∆t

(
‖L

1
2
Nen+1‖2

2−‖L
1
2
Nen‖2

2

)
+

1
8

(
‖L

1
2
N(e

n+1−en)‖2
2−‖L

1
2
N(e

n−en−1)‖2
2

)

+
5

16

∥∥∥LN

(3
4

en+1+
1
4

en−1
)∥∥∥

2

2
+

1
∆t

(|r̃n+1|2−|r̃n|2)

≤C̃11|r̃n+1/2|2+C̃12‖∆N ên+1/2‖2
2+6‖τn+1/2

φ ‖2
2+|τn+1/2

r |2 (4.38)

with

C̃11=12(C̃2
7+C̃2

9+C̃2
10)+1, C̃12=7C̃8+

C̃9+C̃10

2
.

In particular, we notice that the first nonlinear error inner product terms have been can-
celled; this subtle fact has played a crucial role in the analysis. In addition, the following
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inequality is observed:

‖∆N ên+1/2‖2
2=
∥∥∥∆N

(3
2

en− 1
2

en−1
)∥∥∥

2

2
≤3‖∆Nen‖2

2+‖∆Nen−1‖2
2

≤ε−2
(

3‖L
1
2
Nen‖2

2+‖L
1
2
Nen−1‖2

2

)
, (4.39)

in which we have used the fact that

‖∆N f ‖2= ε−1‖L
1
2
N f ‖2.

Going back (4.38), we arrive at

1
∆t

(Hn+1−Hn)+
5
16

∥∥∥LN

(3
4

en+1+
1
4

en−1
)∥∥∥

2

2

≤C̃11|r̃n+1|2+C̃12ε−2(‖L
1
2
Nen‖2

2+‖L
1
2
Nen−1‖2

2)+6‖τn+1
φ ‖2

2+|τn+1
r |22

≤C̃11|r̃n+1|2+2C̃12ε−2(Hn+Hn−1)+6‖τn+1/2
φ ‖2

2+|τn+1/2
r |22, (4.40a)

with Hn+1 :=
1
2
‖L

1
2
Nen+1‖2

2+
1
8
‖L

1
2
N(e

n+1−en)‖2
2+|r̃n+1|2. (4.40b)

Therefore, with an application of discrete Gronwall inequality, and making use of the fact
that

‖τn+1/2
φ ‖2,|τn+1/2

r |≤C(∆t2+hm),

we arrive at

Hn+1+
5

16
∆t

n

∑
j=1

∥∥∥LN

(3
4

ej+1+
1
4

ej−1
)∥∥∥

2

2
≤ Ĉ(∆t4+h2m), (4.41)

with Ĉ independent on ∆t and h. Meanwhile, the following summation estimate is avail-
able:

n

∑
j=1

∥∥∥LN

(3
4

ej+1+
1
4

ej−1
)∥∥∥

2

2
≥

n

∑
j=1

(3
8

∥∥∥LN
3
4

ej+1
∥∥∥

2

2
− 1

8
‖LNej−1‖2

2

)

≥1
4

n

∑
j=0
‖LNej+1‖2

2−C(∆t4+h2m)≥ ε4

4

n

∑
j=0
‖∆2

Nej+1‖2
2−C(∆t4+h2m). (4.42)

In turn, the desired convergence estimate is available

‖∆Nen+1‖2+
(

∆t
k+1

∑
j=1
‖∆2

Nej‖2
2

) 1
2 ≤CĈ

1
2 (∆t2+hm), (4.43)

in which the equality,

‖L
1
2
Nen+1‖2= ε‖∆Nen+1‖2

has been recalled. This completes the proof of Theorem 4.1.
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Remark 4.1. In an earlier error analysis work [45] for the SAV scheme applied to the
Cahn-Hilliard flow, a linear refinement requirement for the time step size, ∆t≤Ch, has
to be imposed for the convergence estimate, since an inverse inequality has to be applied
in the error estimate in the energy norm. In contrast, we have derived a higher order H3

bound for the numerical solution, which in turn leads to an unconditional convergence
estimate (no scaling law constraint between ∆t and h) for the SAV scheme applied to the
SS equation.

Remark 4.2. As can be seen in the proof of Lemma 4.1, the uniform in time H3 esti-
mate (3.1) (for the numerical solution) plays an essential role in the derivation of the
preliminary inequalities (4.9c), (4.9d). These two inequalities turn out to be very useful
in the optimal rate convergence analysis for the proposed SAV scheme, since the error es-
timate has to be carried out in the `∞(0,T;H2

N)∩`2(0,T;H4
N) norm. Instead, if the standard

Crank-Nicolson approximation is applied to the surface diffusion term, such a uniform
in time H3 estimate is not theoretically available, as argued in Remark 3.2. As a result,
the convergence analysis and error estimate for the standard Crank-Nicolson would not
be theoretically established.

Remark 4.3. For the NSS equation (1.5) with the physical energy (1.4), the corresponding
SAV scheme could be similar derived and analyzed. For example, the following inequal-
ity turns out to be valid, with an application of elliptic regularity:

∫

Ω

(
− 1

2
ln(1+|∇φ|2)+ ε2

4
|∆φ|2+Cε

)
dx≥|Ω|,

in which Cε only depends on ε. In turn, one could denote

E(φ)=E1(φ)+
1
2
(φ,Lφ)

with

E1(φ)=
∫

Ω

(
− 1

2
ln(1+|∇φ|2)+ ε2

4
|∆φ|2+Cε

)
dx, Lφ=

ε2

2
∆2φ.

The corresponding SAV scheme could be designed by this energy decomposition, using
similar ideas. The modified energy stability, uniform in time H3 estimate for the numer-
ical solution, and the optimal rate convergence analysis could be derived in a similar
manner. This work will be left to the future works.

Remark 4.4. Other than the Crank-Nicolson method, some alternate second order tem-
poral approximation, such as the second order BDF scheme, could be applied to the SAV
scheme. In a recent work [60], a second order accurate SAV-BDF2 scheme has been suc-
cessfully applied to the square phase field crystal (SPFC) model, in which the energy
stability and optimal rate convergence analysis have been theoretically established. An
application of the BDF2 temporal discretization to the SAV formulation (2.23) of the SS
equation is expected to be feasible, with all the theoretical results available. The technical
details are left to interested readers.
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5 Numerical results

In this section we present some numerical simulation results to demonstrate the stability
and accuracy of the proposed scheme (2.24).

5.1 Convergence tests

We test the temporal convergence rate of the numerical scheme (2.24). The exact solution
is taken as

φ(x,y,t)=
(sin(2x)cos(2y)

4
+0.48

)(
1− sin2(t)

2

)
. (5.1)

The computational domain is given by (0,2π)2, and interface width is set as ε2 =0.1. We
use 1282 Fourier modes in space. From Fig. 1, the second order temporal convergence
order has been clearly observed for the numerical scheme (2.24).

The corresponding SAV scheme could be designed by this energy decomposition, using similar ideas.
The modified energy stability, uniform in time H3 estimate for the numerical solution, and the
optimal rate convergence analysis could be derived in a similar manner. This work will be left to
the future works.

Remark 4.6. Other than the Crank-Nicolson method, some alternate second order temporal ap-
proximation, such as the second order BDF scheme, could be applied to the SAV scheme. In a
recent work [59], a second order accurate SAV-BDF2 scheme has been successfully applied to the
square phase field crystal (SPFC) model, in which the energy stability and optimal rate convergence
analysis have been theoretically established. An application of the BDF2 temporal discretization to
the SAV formulation (2.24) of the SS equation is expected to be feasible, with all the theoretical
results available. The technical details are left to interested readers.

5 Numerical results

In this section we present some numerical simulation results to demonstrate the stability and
accuracy of the proposed scheme (2.25).

5.1 Convergence tests

We test the temporal convergence rate of the numerical scheme (2.25). The exact solution is taken
as

φ(x, y, t) =
(sin(2x) cos(2y)

4
+ 0.48

)(
1− sin2(t)

2

)
. (5.1)

The computational domain is given by (0, 2π)2, and interface width is set as ε2 = 0.1. We use 1282

Fourier modes in space. From Figure 1, the second order temporal convergence order has been
clearly observed for the numerical scheme (2.25).

Figure 1: Convergence rate of SAV scheme (2.25) in time. The numerical error data is parallel to
the curve of ∆t2.

24

Figure 1: Convergence rate of SAV scheme (2.24) in time. The numerical error data is parallel to the curve of
∆t2.

5.2 The coarsening dynamics

In this subsection, we provide the coarsening process numerical simulation results for
the MBE model (1.3) with slope selection. A random initial data is taken, varying from
−0.001 to 0.001. The physical parameters are set as

ε=0.03, M=1. (5.2)
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Figure 2: The isolines of the numerical solutions of the height function φ and its Laplacian ∆φ for the model
with slope selection with random initial data. For each subfigure, the left is φ and the right is ∆φ. Snapshots
are taken at t=0,2,20,40,60,100, respectively.

Figure 3: Dynamics of energy and roughness with respect to time. The energy evolution is parallel to the t−
1
3

curve, while the roughness evolution is parallel to the t
1
3 curve.

The computational domain is given by Ω=(0,12.8)2, and we use 1282 Fourier modes so
that the numerical errors from the spatial discretization are negligibly small, in compar-
ison with the temporal discretization error. The snapshot plots of the physical variable
at a sequence of time instants, at t= 0,20,40,60,100, computed by the numerical scheme
(2.24), are displayed in Fig. 2. In addition, the time evolutions of the energy, as well as the
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roughness growth, are displayed in Fig. 3. A very nice agreement with the scaling laws,
as given by t−

1
3 and t

1
3 , respectively [37], is observed.

6 Concluding remarks

In this article, we have analyzed a scalar auxiliary variable (SAV)-based numerical scheme
for slope-selection (SS) equation of the epitaxial thin film growth model, with Fourier
pseudo-spectral spatial approximation. In particular, the standard Crank-Nicolson ap-
proximation to the surface diffusion term is replaced by a modified version, with 3/4
and 1/4 coefficient distribution at time steps tn+1, tn−1, respectively. With an appli-
cation of this approximation to the second order SAV scheme for the SS equation, a
modified energy stability is proved, so that a uniform H2 bound for the numerical so-
lution (of the phase variable) is available. In addition, a higher order H3 estimate has
also been derived, with the help of various discrete Sobolev inequality in the Fourier
pseudo-spectral space. With such an H3 bound at hand, we have derived an optimal
rate (O(∆t2+hm)) convergence analysis for the numerical scheme in the energy norm,
i.e., in the `∞(0,T;H2

N)∩`2(0,T;H4
N) norm. In particular, the aliasing error control tech-

niques have to be applied in the nonlinear error estimate associated with the 4-Laplacian
term. A few numerical experiments are also presented, which confirm the efficiency and
accuracy of the proposed scheme.
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