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In this paper we construct an energy stable finite difference scheme for the amplitude 
expansion equations for the two-dimensional phase field crystal (PFC) model. The 
equations are formulated in a periodic hexagonal domain with respect to the reciprocal 
lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. 
To our knowledge, this is the first such energy stable scheme for the PFC amplitude 
equations. The convexity of each part in the amplitude equations is analyzed, in both 
the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity 
analysis for the energy (in both the spatially continuous and discrete cases). As a result, 
unique solvability and unconditional energy stability are available for the resulting scheme. 
Moreover, we show that the scheme is point-wise stable for any time and space step 
sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical 
experiments are presented, including grain rotation and shrinkage and grain growth 
studies, as examples of the strength and robustness of the proposed scheme and solver.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

One of the major challenges in material science is the complex interplay between macroscopic scale and atomistic scale 
material properties. For instance, in crystalline materials, liquid–solid and solid–solid phase transitions can be mediated 
and limited by a larger framework of order and symmetry that includes topological defects, such as dislocations, vacancies, 
and grain boundaries. But, because of the great number of degrees of freedom involved, simulating crystalline material 
properties across disparate length and time scales is an enormous obstacle. In this article we concentrate on the popular 
phase field crystal modeling framework, which can capture phase transition dynamics on mesoscopic time scales, and on 
length scales that extend from atomic to mesoscopic.

Increases in computational power have given new means to study discrete many-particle systems. One of the most 
straightforward methods is molecular dynamics (MD) simulation, which is based on explicitly calculating the structure of 
matter as a function of inter-particle potentials. MD simulations can be applied either to solve for the structure evolution 
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in time or to find the minimum energy state of the system using a suitable optimization algorithm. MD methods have been 
hugely successful in explaining different mesoscopic phenomena, but they come with certain grave limitations. One major 
disadvantage of the MD simulation is its short time scale, typically the time scale of thermal vibration. Due to this, MD 
methods are often limited to study relatively fast phenomena. Another problem is simulation data processing: MD methods 
involve a great deal of information and it turns out to be extremely difficult to separate, analyze, and identify emergent 
phenomena.

To overcome the aforementioned difficulties we use a coarser statistical field theoretical framework. Instead of study-
ing the positions of single particles, we use the ensemble averaged one-particle probability density field that is calculated 
by taking the average of the particle positions in a thermal bath. This approach eliminates the time scale of the thermal 
vibration and allows for extending the analysis to a larger diffusive time scale. In this article we use the PFC framework 
originally introduced by Elder et al. [11–13], which is one of the simplest models to tackle a wide range of different prob-
lems, including, grain-boundary melting [7,30] and energy [28]; fractal growth [39]; surface ordering [1,2,34,35]; epitaxial 
growth [11–13,46]; yield stress of polycrystals [24,37,38]; and glass transitions [8,9].

PFC models represent crystalline solids by a spatially oscillating, smooth number density field that is very close to 
the one-mode approximation of the crystal structure. The wavelength is related to the atomic spacing of the crystal, and, 
therefore, spatial discretization for numerical approximation is constrained to be less than one atomistic distance. However, 
for the description of a near perfect crystal grain, most of what is required to encode the information about the grain is its 
orientation, which often varies on a much longer length scale. In a nutshell, this is the idea behind the amplitude expansion 
framework for the PFC model. The amplitude expansion representation of the PFC model, which we describe in detail below, 
can be obtained through renormalization of the solid PFC amplitudes [3,17,18], or by simpler, heuristic arguments [32]. In the 
amplitude expansion framework, instead of solving the actual number density field, we solve for the envelope function of the density 
variation. These complex envelope functions (amplitudes) carry much more information than just grain orientation; they 
also encode any deformations (not only rotations) and, perhaps more importantly, liquid–solid phase transition, or some 
other information of local symmetry breaking, e.g., stripe-to-hexagonal transitions. The amplitude expansion framework has 
been successfully used for studying heteroepitaxial systems [14,15,26,27] and it can be used to make a connection between 
microscopic and macroscopic descriptions of material allowing for analysis of different time and space scales based on the 
knowledge at the macroscopic level [23].

The numerical study of the phase field crystal amplitude expansion equations, however, is limited. The are existing nu-
merical implementations are based on finite difference, finite volume, or finite element methods [4,15,47]. Adaptive mesh 
refinement techniques can improve the efficiency of these types of approaches tremendously [4], since the amplitude vari-
ables have spatial variation on a wide range of scales. Semi-implicit pseudo-spectral type methods are another popular 
choice for numerical simulations [23,36], but these cannot be extended to an adaptive framework easily. As we will see 
the amplitude equations are fourth-order, coupled, highly nonlinear parabolic equations. Explicit methods, therefore, can 
suffer from severe time step restrictions to avoid numerical instability. Of course, semi-implicit time discretization can help 
to offset the numerical stiffness present in the amplitude expansion equations, though none of the implementations just 
mentioned are accompanied by a rigorous stability analysis. There has been, to our knowledge, no numerical analysis of the 
equations, and we aim to address this deficiency herein.

In this paper we present a semi-implicit, first-order in time, unconditionally energy stable, and unconditionally uniquely 
solvable scheme for PFC amplitude equations based on the convex splitting idea. The framework of convex splitting, popular-
ized by Eyre [16], has been successfully applied to various PFC models [5,20,25,45], but its extension to the present setting 
is, we will see, rather complicated. Another important feature of our scheme is that we perform the spatial discretization on 
hexagonal mesh, which has been employed extensively in global climate models [22,40] and elsewhere [29,50]. The hexag-
onal mesh, which brings the added benefit that it is more ‘isotropic’ than the standard Cartesian mesh [31], allows us to 
create a numerical energy such that our finite difference scheme can be viewed as a discrete variation of this energy, which 
facilitates our theoretical analysis. Also, as a part of this present we, we devise an efficient nonlinear (geometric) multigrid 
algorithm to solve the scheme at each time step. For the sake of brevity, we cannot delve too deeply into the complicated 
convergence analyses of our nonlinear algebraic solver. However, in [50], the author employ a local Fourier analysis to study 
a geometric multigrid algorithm on a hexagonal, hierarchical mesh, which may be useful for analyzing our own multigrid 
solver in the future.

The paper is organized as follows. In section 2 we introduce the amplitude equation and the hexagonal discretization. In 
section 3 the semi- and fully-discrete energy stable schemes are detailed. In section 4 we present numerical experiments 
verifying properties for both the amplitude equation and the proposed algorithms.

2. Phase-field-crystal (PFC) amplitude expansion model

In this section we introduce the two-dimensional phase field crystal (PFC) amplitude equations. We start with some 
basic notations, tools, and terminology from the Fourier analysis on Bravais lattices.
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Fig. 1. A symmetric one-mode expansion with respect to triangular primitive cell. Here we have chosen the characteristic primitive cell size as a0 = 1 for 
simplicity. The primitive cell p is the parallelogram in the upper right of the figure.

2.1. Motivation for and derivation of the amplitude equations

The phase-field-crystal model describes the structure of a system in terms of a coarse-grained atomistic number density 
field ρ . The energy of the system is defined as

Epfc[ρ] =
∫

"

[
B0 + B4

2
ρ2 − B4 |∇ρ|2 + B4

2
(#ρ)2 − τ

3
ρ3 + ν

4
ρ4

]
dx, (2.1)

where B0, B4, τ , and ν are system parameters, and " is a two-dimensional, periodic domain. We will always assume that 
B4, ν > 0. The physical interpretations of the parameters are explained in references [13,28]. The dynamics of the PFC model 
is taken to be a conservative gradient flow, given by

∂tρ = #δρ Epfc = #
[
(B0 + B4)ρ + 2B4#ρ + B4#

2ρ − τρ2 + νρ3
]
, (2.2)

which in turn leads to a dissipation of the energy Epfc .
For suitable parameter choices, the PFC model predicts the existence of a perfect hexagonal crystal for the equilibrium 

solid state in two dimensions [32]. The hexagonal/triangular crystal exists as Bravais lattice with lattice vectors

a1 = a0

2

(√
3e1 + e2

)
and a2 = a0 e2, (2.3)

a0 = 4√
3
π is the “equilibrium” lattice spacing predicted in the PFC model. Associated to these Bravais lattice vectors are the 

so-called reciprocal lattice vectors

g1 = 4π

a0
√

3
e1 and g2 = 2π

a0
√

3

(
−e1 +

√
3e2

)
, (2.4)

which satisfy g1 · a j = 2πδ1, j and g2 · a j = 2πδ2, j , j = 1, 2. It is often convenient to introduce a third reciprocal lattice 
vector:

g3 = 2π

a0
√

3

(
−e1 −

√
3e2

)
= −g1 − g2. (2.5)

The stress-free equilibrium crystal as represented in the PFC model can be approximated succinctly as the number density

ρ(x, t) = ρ0 +
3∑

j=1

Q
4

exp
(
i g j · x

)
+

3∑

j=1

Q
4

exp
(
−i g j · x

)
, (2.6)

where Q ≥ 0 is an amplitude, and ρ0 is the average density. This symmetric, “one-mode” Fourier approximation is plotted 
in Fig. 1 together with the lattice and reciprocal lattice vectors. The hexagonal/triangular primitive cell p is defined as the 
parallelogram whose bases are a1 and a2.

Besides this very simple situation (equilibrium solid state), the PFC model can describe several other phase transfor-
mation phenomena as well, such as grain boundary formation and motion, solidification, and much more. In all cases, 
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a computational grid is required to capture the atomic-scale variation of density ρ , which makes the overall computational 
cost very expensive. To be precise, one must always resolve the lattice spacing a0. (The rule-of-thumb is 5–10 grid points 
per lattice spacing.) On the other hand, we observe that a solid state multi-grain, polycrystalline material, for example, can 
be roughly described by representing each grain using a one-mode approximation (2.6) with a distinct crystal orientation, 
i.e., a rotation angle. The orientation information should only vary with the size of the grain. In other words, to describe 
many of the features of a PFC solution field ρ , one needs information which varies on a larger length scale than the atomic 
spacing.

To derive the PFC amplitude equations, we consider a more general one-mode approximation using the three complex 
amplitudes η1, η2 and η3, which vary in both time and space, and we represent the number density as

ρ(x, t) = ρ0 +
3∑

j=1

η j(x, t)exp
(
i g j · x

)
+

3∑

j=1

η∗
j (x, t)exp

(
−i g j · x

)
. (2.7)

Here ∗ stands for the complex conjugation, and ρ0 is a real constant, which again stands for the average of the density 
field ρ . In a more general model, one can allow ρ0 to be a function of time and space as well, but we leave this general-
ization for future work. For the convenience of further analysis, we present the complex amplitudes in the form of separate 
real and imaginary parts:

η j(x, t) = u j(x, t) + iv j(x, t). (2.8)

Now, roughly speaking, to track the state of a system described by the PFC model, one could track the time and space 
variations of the amplitude variables, rather than ρ . One would expect that the spatial variations of these amplitudes are 
on a much larger scale than a0, and we will see that this is often the case. We only need now to determine what equations 
should describe the evolution of the amplitude variables.

To define the amplitude equations, we need a couple of non-standard operators. Subordinate to the reciprocal vectors 
(2.4)–(2.5), we define the three directional derivatives

D j := g j ·∇, (2.9)

and the complex differential operators

G j := # + 2iD j . (2.10)

Observe that

#φ = 2
3

3∑

j=1

D2
j φ. (2.11)

Then, substituting the one-mode expansion (2.7) into the PFC equation and using a multiple-scale expansion method [32]
or renormalization group method [3], one can derive the following PFC amplitude equations:

u̇ j = −µ j, (2.12)

µ j := B4

(
#2u j − 2#(D j v j) − 2D j(#v j) − 4D2

j u j

)
+ (B0 − 2τρ0 + 3νρ2

0 )u j

+3νp ju j + (6νρ0 − 2τ )(uα j uβ j − vα j vβ j ), (2.13)

v̇ j = −ν j, (2.14)

ν j := B4

(
#2 v j + 2#(D ju j) + 2D j(#u j) − 4D2

j v j

)
+ (B0 − 2τρ0 + 3νρ2

0 )v j

+3νp j v j − (6νρ0 − 2τ )(uα j vβ j + vα j uβ j ), (2.15)

for j = 1, 2, 3, where

p j := 2A2 − |η j|2 = 2A2 − u2
j − v2

j ≥ 0, (2.16)

with

A2 :=
3∑

j=1

∣∣η j
∣∣2

, η j = u j + iv j, (2.17)

and

α j,β j ∈ {1,2,3} \ { j} , α j < β j. (2.18)
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Remark 2.1. For this presentation, we have followed the derivation in [32], which produces the dynamical equations first. We 
still need to supply appropriate boundary conditions for the model, which we do in the next sections. With that task done, 
we can then show that the system has an energy dissipative structure. Specifically, this system is a non-conserved gradient 
flow with respect to the energy (2.29). For an alternate development, one can derive the energy (2.29) by performing 
a multiple-scale expansion analysis directly on the PFC energy (2.1) and, subsequently, derive the dynamical amplitude 
equations (2.12)–(2.15) as the non-conserved gradient flow of (2.29).

Remark 2.2. There are a couple of important features to observe for this new system of equations. First of all, the amplitude 
expansion framework seems to hold much promise as a true multi-spatial-scale modeling framework, as it can connect PFC
(nano meters) to phase field equations. There is a natural coarse-graining mechanism going from the small atomic-scale 
oscillatory solution to its large-scale amplitude envelope. However, in going to the coarse-grained variables, it appears at 
first glance to be all for naught. Indeed, the single sixth-order parabolic PFC equation (2.2) has been exchanged for three 
fourth-order complex parabolic equations for the amplitudes η j . In practical numerical terms, if the exact same uniform 
(spatial) mesh resolution is used to solve both problems on the same ‘square’ 2D domain, this equates to exchanging 
3N2 (real-valued) degrees of freedom for the PFC problem with 12N2 (real-valued) degrees of freedom for the amplitude 
equations (2.12)–(2.15), where N is the number of grid points along one dimension.

However, in many cases, only half the spatial resolution may be required to resolve the amplitude equations as compared 
to the PFC equation. Thus we can adequately resolve the amplitude equations in space using N/2 grid points along one 
dimension, and the total degrees of freedom work out to be exactly the same in this situation, 3N2. But, typically, much 
less resolution is required for the amplitude equations, perhaps only N/4 or N/8 mesh points along one dimension. More 
importantly, as with the classical phase field method, the amplitude equations may only need to be resolved in a narrow 
interfacial band, and thus adaptive mesh techniques are applicable for the complex amplitude equations. On the other hand, 
adaptive mesh techniques are usually never applicable for the PFC equation, since this has spatially oscillatory solutions.

2.2. The amplitude equations in hexagonal domains

We have some flexibility in what type of periodic domain we choose for our computations involving the amplitude 
equations. Notice that our formulation of the amplitude model explicitly contains hexagonally anisotropic derivative oper-
ators D j . In order to construct a finite difference/finite volume method that respects the anisotropies of the problem, we 
will use a hexagonal/triangular mesh and computational domain, the latter denoted D. Incidentally, it turns out that we 
can choose D so that it is possible to obtain the stress-free perfect crystal state as a solution to our system of amplitude 
equations.

Definition 2.3. Let a1 and a2 be the hexagonal/triangular Bravais vectors. We say that p ⊂ R2 is the primitive cell iff it is a 
parallelogram of the form

p =
{
β1a1 + β2a2 ∈ R2

∣∣∣ 0 < βi < 1, i = 1,2
}

. (2.19)

Let g1 and g2 be reciprocal lattice vectors. We say that d ⊂ R2 is the reciprocal cell iff it is a parallelogram of the form

d =
{
β1 g1 − β2 g3 ∈ R2

∣∣∣ 0 < βi < 1, i = 1,2
}

. (2.20)

The computational domain D ⊂ R2 is the set D = σ · d, where σ > 0. We say that a function φ : R2 → C is D-periodic if and 
only if

φ(x + m1σ g1 − m2σ g3) = φ(x), (2.21)

for any integer pair (m1, m2) ∈ Z2 and all points x ∈ R2. We say φ ∈ Hm
per(D) if and only if φ ∈ Hm

loc(R
2) and φ is D-periodic.

We have the following simple result.

Proposition 2.4. Let " := Mp and σ = M
√

3a0 = 4π M in Definition 2.3, where M is a positive integer. Suppose that f : R2 → C is 
"-periodic and g : R2 → C is D-periodic. Then f is D-periodic and therefore f · g is D-periodic.

Proof. Suppose that f : R2 → C is "-periodic. Then, using g3 = −g1 − g2, and ai · g j = 2πδi, j , 1 ≤ i, j ≤ 2, we find, for any 
integers m1, m2,

f (x) = f (x + Mm1a1 + Mm2a2)

= f
(

x + 4π M
(

m1 − m2

3

)
g1 − 4π M

(
m1 + 2m2

3

)
g3

)
. (2.22)
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Fig. 2. The computational domain D for the PFC amplitude equations. D is the larger parallelogram, defined by setting the domain scale factor σ = 4
√

3a0
in Definition 2.3. " = 4 · p is the smaller parallelogram and is exactly as shown in Fig. 3. The unrotated crystal (one-mode expansion) is also plotted, as in 
Fig. 3 (θ = 0). Observe that, with the present choice of σ , the one-mode approximation of ρ (2.6) is periodic with respect to both D and ", which may be 
desirable and/or useful.

For all integers m1 and m2 that have the property that m1−m2
3 and m1+2m2

3 are also integers, we observe a periodicity with 
respect to D. For example, for m1 = 2, m2 = −1, we have m1−m2

3 = 1 and m1+2m2
3 = 0. Since the function 

(
m1−m2

3 , m1+2m2
3

)
:

Z2 → R2 is onto Z2, the result is proven. ✷

One implication of this last proposition is that, if η j(x, t) is D-periodic, with D chosen as in Proposition 2.4, then 
η j(x, t) exp

(
i g j · x

)
is D-periodic, since exp

(
i g j · x

)
is " = Mp-periodic, for any positive integer M . This property may be 

useful in certain physical scenarios. In particular, the stress-free crystal expressed in (2.6) could be a steady-state solution.
With this type of construction, the computational domain D is plotted in Fig. 2 together with the basic one-mode 

approximation given in Eq. (2.6). Notice from Fig. 2 that D is designed such that its discretization into regular “hexagonal” 
cells – which will be congruent to both d and D – will be compatible with the reciprocal lattice vectors and the directional 
derivatives in model. The details for the discretization can be found in section 3.

We will assume in subsequent sections that the amplitudes u j, v j , j = 1, 2, 3, are all D-periodic, without necessarily 
specifying our choice of σ .

2.3. Crystal rotations in the amplitude expansion framework

Complicated arrangements and combinations of the complex amplitudes in (2.7) can be utilized to represent crystals with 
(nearly) arbitrary orientations, grain boundaries, point defects, et cetera, which capture the real power of the PFC formalism. 
Here we show how simple crystal rotations are implemented in the amplitude expansion framework. For example, let us 
introduce a very simple clockwise rotation of a one-mode expansion through an angle θ ∈ [0, 2π), assuming ρ0 = 0:

ρ(x, t) =
3∑

j=1

A
4

exp
(
i g j · (R(θ)x − x)

)
exp

(
i g j · x

)

+
3∑

j=1

A
4

exp
(
−i g j · (R(θ)x − x)

)
exp

(
−i g j · x

)
, (2.23)

where A > 0 and R is a rotation matrix

R(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (2.24)

The effective amplitude functions for the rotated crystal are

η j(x) = A
4

exp
(
i g j · (R(θ)x − x)

)
, j = 1,2,3. (2.25)

Note that we are not claiming here that the amplitudes are D-periodic.
See Figs. 3 and 4, where we have assumed " = 4p. The number density ρ is plotted in Fig. 3 and the amplitude 

u1 = Re(η1) is plotted in Fig. 4 for increasing rotation angles. One important point is that the amplitudes η j and ρ do not 
share the same periodicities/symmetries, in general. Also observe that the spacial variation of the amplitudes occurs on a 
larger space scale than that of the number density ρ .
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Fig. 3. A symmetric triangular one-mode expansion with increasing angles θ = 0, π24 , π12 , π6 , rotated clockwise. The parallelogram is the domain " = 4p, 
which is fixed in space. Clearly, θ = ± π

6 represent the maximum misalignments relative to the unrotated crystal.

Fig. 4. The amplitude u1 for a symmetric triangular one-mode expansion rotated clockwise with increasing angles θ = 0, π24 , π12 , π6 . The other components 
of the amplitudes are similar. The parallelogram is the domain " = 4P. The angles θ = ± θ

6 represent the maximum misalignments relative to the unrotated 
crystal. The variations in the amplitudes are expected to occur on a larger spatial scale than those of φ , and the spatial wavelengths of the amplitudes 
functions η j are not expected to be smaller than the case with θ = π

6 above.

2.4. Energy dissipation and convexity analysis of the amplitude equations

In this section, we show that the amplitude equations dissipate an energy, and we explore some convexity properties of 
the energy that will help us build an energy stable numerical algorithm for approximating the solutions of the PDE’s. First 
we state an integration-by-parts theorem:

Proposition 2.5. Suppose that u, v ∈ H1
per(D). Then

∫

D

D ju(x)v(x)dx = −
∫

D

u(x)D j v(x)dx. (2.26)

More generally, if u, v ∈ Hm
per(D), then

∫

D

Dm
j u(x)v(x)dx = (−1)m

∫

D

u(x)Dm
j v(x)dx. (2.27)
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Specifically, if u, v ∈ H2
per(D), we have

∫

D

#u(x)v(x)dx =
∫

D

u(x)#v(x)dx. (2.28)

The PFC amplitude equations may be realized as the gradient flow with respect to an energy, which we now define: for 
any u, v ∈

[
H2

per(D)
]3, set

E(u, v) :=
∫

D

{
3ν

4

(

2A4 −
3∑

j=1

|η j|4
)

+ ν

8
ρ4

0 + 6νρ0Re(η1η2η3)

− 2τRe(η1η2η3) − τ

6
ρ3

0 +
(

B0

2
+ 3νρ2

0

2
− τρ0

)

A2 + B4

2

3∑

j=1

∣∣G jη j
∣∣2

}

dx. (2.29)

The following dissipation result is valid:

Proposition 2.6. Suppose that u j, v j ∈ C∞ (
[0, T ]; C∞

per(D)
)
, for j = 1, 2, 3, satisfy the PFC amplitude equations (2.12)–(2.15). Then 

we have the energy dissipation law: for any t ∈ [0, T ],

dt E(u, v) = −
3∑

j=1

∫

D

{
µ2

j + ν2
j

}
dx ≤ 0, (2.30)

where µ j = δu j E(u, v) and ν j = δv j E(u, v) are the variational derivatives of the energy. Equivalently, for any s ∈ [0, T ],

E(u(s), v(s)) +
s∫

0

{ 3∑

j=1

∫

D

{
µ2

j + ν2
j

}
dx

}

dt = E(u(0), v(0)). (2.31)

Proof. Variational calculations show that µ j and ν j are the functional derivatives of E with respect to u j and v j , respec-
tively. (We suppress the details for brevity.) The results then follow immediately upon taking the time derivative of the total 
energy and integrating-by-parts:

dt E(u, v) =
3∑

j=1

∫

D

{
B4

(
#2u j − 2#(D j v j) − 2D j(#v j) − 4D2

j u j

)
+ (B0 − 2τρ0 + 3νρ2

0 )u j

+3νp ju j + (6νρ0 − 2τ )(uα j uβ j − vα j vβ j )

}
u̇ jdx

+
3∑

j=1

∫

D

{
B4

(
#2 v j + 2#(D ju j) + 2D j(#u j) − 4D2

j v j

)
+ (B0 − 2τρ0 + 3νρ2

0 )v j

+3νp j v j − (6νρ0 − 2τ )(uα j vβ j + uα j vβ j )

}
v̇ jdx. (2.32)

The proof is complete. ✷

For the numerical approximation of dissipative PDE, like the original PFC model and the PFC amplitude equations we 
examine here, energy stability is an important property, since it often implies norm stabilities that one can use to ulti-
mately bound errors on a theoretical level. The convex splitting paradigm, popularized by Eyre’s work [16], is a well-known 
approach to achieve unconditional numerical energy stability and unconditional unique solvability, at the cost of extra nu-
merical dissipation. The approach has successfully applied to the original PFC equation (2.2) and the modified version; see 
the related references [5,6,10,19,21,25,42,45,48], et cetera. Meanwhile, for the PFC amplitude equations (2.12)–(2.15), there 
has been no theoretical justification of the unique solvability and energy stability in the existing literature. We focus on this 
issue now.

The convexity of the energy has to be analyzed for the numerical stability. First we check the convexity of the gradient 
part.
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Proposition 2.7. Suppose that u j, v j ∈ H2
per(D), for j = 1, 2, 3. Then the “gradient” energy, defined as

EG(u, v) := 1
2

3∑

j=1

∫

D

∣∣G jη j
∣∣2 dx, (2.33)

is convex.

Proof. We write EG(u, v) = EG
u (u, v) + EG

v (u, v), where

EG
u (u, v) := 1

2

3∑

j=1

∫

D

(
#u j − 2D j v j

)2 dx, EG
v (u, v) := 1

2

3∑

j=1

∫

D

(
#v j + 2D ju j

)2 dx. (2.34)

Consider the variations φ j, ψ j ∈ H2
per(D), for j = 1, 2, 3. Then we get

ds EG
u (u + sφ, v + sψ) =

3∑

j=1

(
#(u j + sφ j),#φ j

)
D +

3∑

j=1

4
(
D j(v j + sψ j),D jψ j

)
D

−1
2

3∑

j=1

{
4
(
D jψ j,#(u j + sφ j)

)
D + 4

(
D j(v j + sψ j),#φ j

)
D

}
, (2.35)

and

ds EG
v (u + sφ, v + sψ) =

3∑

j=1

(
#(v j + sψ j),#ψ j

)
D +

3∑

j=1

4
(
D j(u j + sφ j),D jφ j

)
D

+1
2

3∑

j=1

{
4
(
D jφ j,#(v j + sψ j)

)
D + 4

(
D j(u j + sφ j),#ψ j

)
D

}
. (2.36)

As an aside – setting s = 0, assuming the higher regularities u j, v j ∈ H4
per(D), and integrating-by-parts – we have

ds EG
u (u + sφ, v + sψ)

∣∣∣
s=0

=
3∑

j=1

(
#2u j,φ j

)

D
−

3∑

j=1

4
(
D2

j v j,ψ j

)

D

+
3∑

j=1

{
2
(
D j(#u j),ψ j

)
D − 2

(
D j(#v j),φ j

)
D

}
, (2.37)

and

ds EG
v (u + sφ, v + sψ)

∣∣∣
s=0

=
3∑

j=1

(
#2 v j,ψ j

)

D
−

3∑

j=1

4
(
D2

j u j,φ j

)

D

−
3∑

j=1

{
2
(
D j(#v j),φ j

)
D − 2

(
D j(#u j),ψ j

)
D

}
, (2.38)

which, when taken together, yield the correct contributions to the full variational derivatives of the energy.
The second variations are given by

d2
s EG

u (u + sφ, v + sψ) =
3∑

j=1

(
#φ j,#φ j

)
D +

3∑

j=1

4
(
D jψ j,D jψ j

)
D

−1
2

3∑

j=1

{
4
(
D jψ j,#φ j

)
D + 4

(
D jψ j,#φ j

)
D

}

= EG
u (φ,ψ) ≥ 0, (2.39)

and
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d2
s EG

v (u + sφ, v + sψ) =
3∑

j=1

(
#ψ j,#ψ j

)
D +

3∑

j=1

4
(
D jφ j,D jφ j

)
D

+1
2

3∑

j=1

{
4
(
D jφ j,#ψ j

)
D + 4

(
D jφ j,#ψ j

)
D

}

= EG
v (φ,ψ) ≥ 0. (2.40)

Therefore, EG is convex. ✷

Next we discuss the convexity of the non-gradient parts of the energy.

Lemma 2.8. Let β j ∈ R, j = 0, 1, 2. The fourth-order polynomials Fe, Fc : R3 × R3 → R, defined via

Fe(u, v) := β0

4

(
2A4

)
+ β1Re(η1η2η3) + β2

1

β0
A2 (2.41)

and

Fc(u, v) := β0

4

⎛

⎝
3∑

j=1

|η j|4
⎞

⎠ + β2 A2, (2.42)

are convex, for any β1 , provided that β0 > 0 and β2 ≥ 0.

Proof. Consider T4 := 1
4

(
2A4). The second derivatives of T4 become

∂2T4

∂uk∂u j
= 2A2δk, j + 4uku j,

∂2T4

∂vk∂u j
= 4vku j, (2.43)

and

∂2T4

∂vk∂v j
= 2A2δk, j + 4vk v j,

∂2T4

∂vk∂u j
= 4uk v j. (2.44)

The Hessian matrix for this energy density turns out to be

H4 := 2A2diag (1,1,1,1,1,1) + 4wwT , (2.45)

where w := [u, v]T . Setting x = [x1, x2, x3, y1, y2, y3]T and z j = x j + iy j , we have

xT H4x = 2A2
3∑

j=1

(
x2

j + y2
j

)
+ 4

(
wT x

)2
= 2A2

3∑

j=1

∣∣z j
∣∣2 + 4

(
wT x

)2
≥ 0, (2.46)

and it follows that H4 is positive semi-definite.
Now, consider T3 := Re(η1η2η3). The six partials derivatives are

∂T3

∂u1
= u2u3 − v2v3,

∂T3

∂u2
= u1u3 − v1 v3,

∂T3

∂u3
= u1u2 − v1 v2, (2.47)

and

∂T3

∂v1
= −u2 v3 − v2u3,

∂T3

∂v2
= −u1 v3 − v1u3,

∂T3

∂v3
= u1 v2 − v1u2. (2.48)

The Hessian of T3 is precisely

H3 :=

⎡

⎢⎢⎢⎢⎢⎢⎣

0 u3 u2 0 −v3 −v2
u3 0 u1 −v3 0 −v1
u2 u1 0 −v2 −v1 0

0 −v3 −v2 0 −u3 −u2
−v3 0 −v1 −u3 0 −u1
−v2 −v1 0 −u2 −u1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (2.49)
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and a short calculation yields

xT H3x = 2Re(z1z2η3) + 2Re(z1η2z3) + 2Re(η1z2z3), (2.50)

where z j = x j + iy j , j = 1, 2, 3.
The Hessian of T2 := A2 is simply

H2 := 2diag (1,1,1,1,1,1) = 2I6, (2.51)

and

xT H2x = 2
3∑

j=1

(
x2

j + y2
j

)
= 2

3∑

j=1

∣∣z j
∣∣2

. (2.52)

The Hessian for Fc is

Hc := β0H4 + β1H3 + β2
1

β0
H2, (2.53)

and combining the previous calculations together, we have

xT Hcx =
3∑

k=1

2

(

β0 A2 + β2
1

β0

)
|zk|2 + 2β1 (Re(z1z2η3) + Re(z1η2z3) + Re(η1z2z3)) + 4β0

(
wT x

)2

= 2β0|z1|2
(

|η1|2 + |η2|2 + |η3|2 + β2
1

β2
0

)

+2β0|z2|2
(

|η1|2 + |η2|2 + |η3|2 + β2
1

β2
0

)

+2β0|z3|2
(

|η1|2 + |η2|2 + |η3|2 + β2
1

β2
0

)

+2β1 (Re(z1z2η3) + Re(z1η2z3) + Re(η1z2z3)) + 4β0

(
wT x

)2

= 2β0

(
|z1|2 + |z3|2

)
|η2|2 + 2β1Re(z1η2z3) + β2

1

β0

(
|z1|2 + |z3|2

)

+2β0

(
|z1|2 + |z2|2

)
|η3|2 + 2β1Re(z1z2η3) + β2

1

β0

(
|z1|2 + |z2|2

)

+2β0

(
|z2|2 + |z3|2

)
|η1|2 + 2β1Re(η1z2z3) + β2

1

β0

(
|z2|2 + |z3|2

)

+2β0

(
w T x

)2
+ 2β0

3∑

k=1

|ηk|2|zk|2. (2.54)

Consider

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 − y1 y2 + i(y1x2 + x1 y2). (2.55)

The following identity is available:

Re(z1z2) = x1x2 − y1 y2, Im(z1z2) = y1x2 + x1 y2. (2.56)

We now observe the inequality

|z1|2 + |z2|2 ≥ 2 |Re(z1z2)| , (2.57)

which is equivalent to

x2
1 + y2

1 + x2
2 + y2

2 ≥ ±2x1x2 ∓ 2y1 y2. (2.58)

Similarly, we have

|z1|2 + |z2|2 ≥ 2 |Im(z1z2)| , (2.59)
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which comes from an equivalent inequality

x2
1 + y2

1 + x2
2 + y2

2 ≥ ±2x1 y2 ± 2y1x2. (2.60)

Now, observe that

Re(z1z2η3) = Re(z1z2)Re(η3) − Im(z1z2)Im(η3) = Re(z1z2)u3 − Im(z1z2)v3. (2.61)

Putting these facts together, we have

2β0

(
|z1|2 + |z2|2

)
|η3|2 + 2β1Re(z1z2η3) + β2

1

β0

(
|z1|2 + |z2|2

)

= 2β0

(
|z1|2 + |z2|2

)
|η3|2 + 2β1Re(z1z2)u3 − 2β1Im(z1z2)v3 + β2

1

β0

(
|z1|2 + |z2|2

)

≥ 2β0

(
|z1|2 + |z2|2

)
|η3|2 − 2|β1| · |Re(z1z2)| · |u3| − 2|β1| · |Im(z1z2)| · |v3| +

β2
1

β0

(
|z1|2 + |z2|2

)

≥
(
|z1|2 + |z2|2

)(

2β0|η3|2 − 2|β1| · |u3| − 2|β1| · |v3| +
β2

1

β0

)

=
(
|z1|2 + |z2|2

)(

2β0u2
3 + 2β0 v2

3 − 2|β1| · |u3| − 2|β1| · |v3| +
β2

1

2β0
+ β2

1

2β0

)

=
(
|z1|2 + |z2|2

)
⎛

⎜⎝

⎛

⎝
√

2β0|u3| −
√

β2
1

2β0

⎞

⎠
2

+

⎛

⎝
√

2β0|v3| −
√

β2
1

2β0

⎞

⎠
2
⎞

⎟⎠ ≥ 0. (2.62)

The other two terms are treated similarly. Therefore, we arrive at

xT Hcx ≥ 0. (2.63)

The proof for Fe(u, v) similar, in fact, simpler. Observe that

xT Hex = β0

3∑

j=1

[(
u2

j + v2
j

)(
x2

j + y2
j

)
+ 2

(
u jx j + v j y j

)2
]
+ 2β2

3∑

j=1

|z j|2 ≥ 0, (2.64)

where He is the Hessian of Fe . The convexity follows immediately. ✷

With the combination of Proposition 2.7 and Lemma 2.8, the following theorem of convexity can be easily established.

Theorem 2.9. Suppose u j, v j ∈ H4
per(D), j = 1, 2, 3, and define the polynomial energy densities

Tc(u, v) :=3ν

4

(
2A4

)
+ (6νρ0 − 2τ )Re(η1η2η3)

+ max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

A2 (2.65)

and

Te(u, v) := 3ν

4

⎛

⎝
3∑

j=1

|η j|4
⎞

⎠ + max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

A2. (2.66)

Define the energies

Ec(u, v) :=
∫

D

{
Tc(u, v) + B4

2

3∑

j=1

∣∣G jη j
∣∣2

}
dx, Ee(u, v) :=

∫

D

Te(u, v)dx. (2.67)

Then Ec and Ee yield a convex splitting of E, i.e., E = Ec − Ee, and Ec and Ee are convex.

We next establish the following coercivity estimate for the energy.
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Theorem 2.10. For the energy given by (2.29), the following lower bound is valid:

E(u, v) ≥ γ0

3∑

j=1

(∥∥u j
∥∥2

H2 +
∥∥v j

∥∥2
H2

)
− χ0, (2.68)

for any u, v ∈
[

H2
per(D)

]3
, for some positive constants γ0 and χ0 that depend on B, ν , τ , B4 and D.

Proof. For the quadratic diffusion terms, a careful application of the Cauchy inequality shows that

(
#u j − 2D j v j

)2 ≥ 1
2
(#u j)

2 − 4
∣∣∇v j

∣∣2
, 1 ≤ j ≤ 3, (2.69)

at a point-wise level, using the fact that 
∥∥g j

∥∥
2 = 1. This in turn yields

∫

D

(
#u j − 2D j v j

)2 dx ≥ 1
2

∥∥#u j
∥∥2

L2 − 4
∥∥∇v j

∥∥2
L2 , 1 ≤ j ≤ 3. (2.70)

On the other hand, the term 
∥∥∇v j

∥∥2
L2 can be bounded in the following way:

∥∥∇v j
∥∥2

L2 = −
∫

D

v j · #v j dx ≤
∥∥v j

∥∥
L2

∥∥#v j
∥∥

L2 ≤ 1
16

∥∥#v j
∥∥2

L2 + 4
∥∥v j

∥∥2
L2 , 1 ≤ j ≤ 3, (2.71)

with the Cauchy inequality applied at the last step. Consequently, a combination of (2.70) and (2.71) implies that
∫

D

(
#u j − 2D j v j

)2 dx ≥ 1
2

∥∥#u j
∥∥2 − 1

4

∥∥#v j
∥∥2

L2 − 16
∥∥v j

∥∥2
L2 , 1 ≤ j ≤ 3. (2.72)

A similar estimate may be derived for the other diffusion term:
∫

D

(
#v j + 2D ju j

)2 dx ≥ 1
2

∥∥#v j
∥∥2 − 1

4

∥∥#u j
∥∥2

L2 − 16
∥∥u j

∥∥2
L2 , 1 ≤ j ≤ 3. (2.73)

Therefore, we arrive at

B4

2

3∑

j=1

∫

D

((
#u j − 2D j v j

)2 +
(
#v j + 2D ju j

)2
)

dx ≥ B4

8

3∑

j=1

(∥∥#u j
∥∥2

L2 +
∥∥#v j

∥∥2
L2

)

− 8B4

3∑

j=1

(∥∥u j
∥∥2

L2 +
∥∥v j

∥∥2
L2

)
. (2.74)

An application of a simple quadratic inequality gives

8B4u2
j ≤ ν

8
u4

j + C1, 8B4 v2
j ≤ ν

8
v4

j + C1, C1 := 128B2
4

ν
. (2.75)

Integrating the above inequalities, and substituting into (2.74), we get

B4

2

3∑

j=1

∫

D

((
#u j − 2D j v j

)2 +
(
#v j + 2D ju j

)2
)

dx ≥ B4

8

3∑

j=1

(∥∥#u j
∥∥2

L2 +
∥∥#v j

∥∥2
L2

)

− ν

8

3∑

j=1

(∥∥u j
∥∥4

L4 +
∥∥v j

∥∥4
L4

)

− 6C1|D|. (2.76)

For the third-order polynomial terms in (2.29), we apply Young’s inequality and observe that

±|abc| ≤ 1
3

(
|a|3 + |b|3 + |c|3

)
≤ ν

32|6νρ0 − 2τ |
(

a4 + b4 + c4
)

+ C2, (2.77)

where C2 > 0 depends upon ν > 0, ρ0 and τ . Applying this last inequality, we find
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(6νρ0 − 2τ )

∫

D

(u1u2u3 − u1 v2 v3 − v1u2 v3 − v1 v2u3) dx

≥ −ν

8

3∑

j=1

(∥∥u j
∥∥4

L4 +
∥∥v j

∥∥4
L4

)
− 4|6νρ0 − 2τ |C2|D|. (2.78)

Meanwhile, for the fourth order polynomial terms appearing in (2.29), the following estimate is straightforward:

3ν

2

⎛

⎝
3∑

j=1

(u2
j + v2

j )

⎞

⎠
2

− 3ν

4

3∑

j=1

(
u2

j + v2
j

)2
≥ 3ν

4

3∑

j=1

(
u4

j + v4
j

)
, (2.79)

which in turn leads to

∫

D

⎧
⎪⎨

⎪⎩
3ν

2

⎛

⎝
3∑

j=1

(u2
j + v2

j )

⎞

⎠
2

− 3ν

4

3∑

j=1

(
u2

j + v2
j

)2

⎫
⎪⎬

⎪⎭
dx ≥ 3ν

4

3∑

j=1

(∥∥u j
∥∥4

L4 +
∥∥v j

∥∥4
L4

)
. (2.80)

The combination of (2.76), (2.78) and (2.80), as well as the fact that one or both of B0 and τ may be negative, gives the 
following lower bound for the energy:

E(u, v) ≥
(

B0

2
+ 3νρ2

0

2
− τρ0

) 3∑

j=1

(∥∥u j
∥∥2

L2 +
∥∥v j

∥∥2
L2

)
+ B4

8

3∑

j=1

(∥∥#u j
∥∥2

L2 +
∥∥#v j

∥∥2
L2

)

+ ν

2

3∑

j=1

(∥∥u j
∥∥4

L4 +
∥∥v j

∥∥4
L4

)
− (6C1 + 8τC2) |D|

≥ −
∣∣∣∣∣

B0

2
+ 3νρ2

0

2
− τρ0

∣∣∣∣∣

3∑

j=1

(∥∥u j
∥∥2

L2 +
∥∥v j

∥∥2
L2

)
+ B4

8

3∑

j=1

(∥∥#u j
∥∥2

L2 +
∥∥#v j

∥∥2
L2

)

+ ν

2

3∑

j=1

(∥∥u j
∥∥4

L4 +
∥∥v j

∥∥4
L4

)
− (6C1 + 4|6νρ0 − 2τ |C2) |D|. (2.81)

Now, there is a constant C3 ≥ 0 that depends upon the parameters B0, τ , ρ0 ∈ R and B4, ν > 0 such that

ν

2
u4

j −
∣∣∣∣∣

B0

2
+ 3νρ2

0

2
− τρ0

∣∣∣∣∣ u2
j ≥ B4

8
u2

j − C3, j = 1,2,3, (2.82)

and likewise for v j . Therefore,

ν

2

3∑

j=1

(∥∥u j
∥∥4

L4 +
∥∥v j

∥∥4
L4

)
−

∣∣∣∣∣
B0

2
+ 3νρ2

0

2
− τρ0

∣∣∣∣∣

3∑

j=1

(∥∥u j
∥∥2

L2 +
∥∥v j

∥∥2
L2

)

≥ B4

8

3∑

j=1

(∥∥u j
∥∥2

L2 +
∥∥v j

∥∥2
L2

)
− 6C3|D|. (2.83)

Now we need an elliptic regularity result:

∥∥u j
∥∥2

H2 ≤ C4

(∥∥u j
∥∥2 +

∥∥#u j
∥∥2

)
,

∥∥v j
∥∥2

H2 ≤ C4

(∥∥v j
∥∥2 +

∥∥#v j
∥∥2

)
, 1 ≤ j ≤ 3, (2.84)

where C4 > 0 only depends on D. This can be proven using Fourier analysis on the parallelogram D. Therefore,

E(u, v) ≥ B4

8

3∑

j=1

(∥∥u j
∥∥2

L2 +
∥∥#u j

∥∥2
L2 +

∥∥v j
∥∥2

L2 +
∥∥#v j

∥∥2
L2

)
− (6C1 + 6C3 + 4|6νρ0 − 2τ |C2) |D|

≥ B4

8C4

3∑

j=1

(∥∥u j
∥∥2

H2 +
∥∥v j

∥∥2
H2

)
− (6C1 + 6C3 + 4|6νρ0 − 2τ |C2) |D|. (2.85)

The proof for Theorem 2.10 is complete. ✷
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3. Energy stable algorithms for the amplitude equation

In this section we present a first-order accurate (in time) energy stable scheme, in both the space-continuous and fully 
discrete cases.

3.1. A space-continuous energy stable scheme

We begin with a space-continuous (semi-discrete) energy stable scheme for the amplitude equations that takes advantage 
of the convex splitting of the energy that we have introduced. For this purpose, we need an extension of a theorem given 
in [45].

Theorem 3.1. Suppose that φ, ψ ∈
[

H4
per(D)

]6
. Consider a convex splitting of the energy E of the type given in the last result. Then

E(φ) − E(ψ) ≤ (δEc(φ) − δEe(ψ),φ − ψ)L2(D) , (3.1)

where δ denotes the variational derivative.

Proof. Let Ec(φ) =
∫

D ec(φ, φ1, φ2, φ3, #φ)dx, where φ j := D jφ, j = 1, 2, 3. Since ec : R30 → R is smooth and convex in its 
arguments, we have

ec(q) − ec(p) ≥ ∇pec (p) · (q − p) , (3.2)

for any p, q ∈ R30. Setting p = (φ, φ1, φ2, φ3, #φ) and q = (ψ, ψ1, ψ2, ψ3, #ψ), and integrating (3.2), we get

Ec(ψ) − Ec(φ) ≥
∫

D

{
∂

∂φ
ec(φ,φ1,φ2,φ3,#φ) · (ψ − φ)

+ ∂

∂φ1
ec(φ,φ1,φ2,φ3,#φ) · (ψ1 − φ1)

+ ∂

∂φ2
ec(φ,φ1,φ2,φ3,#φ) · (ψ2 − φ2)

+ ∂

∂φ3
ec(φ,φ1,φ2,φ3,#φ) · (ψ3 − φ3)

+ ∂

∂#φ
ec(φ,φ1,φ2,φ3,#φ) · (#ψ − #φ)

}
dx. (3.3)

Integration-by-parts leads to the following inequality

Ec(ψ) − Ec(φ) ≥ (δEc(φ),ψ − φ)L2(D) . (3.4)

By a similar analysis on Ee , but reversing the roles of φ and ψ , we have

Ee(φ) − Ee(ψ) ≥ (δEe(ψ),φ − ψ)L2(D) . (3.5)

Adding (3.4) and (3.5) yields

E(ψ) − E(φ) = Ec(ψ) − Ee(ψ) − (Ec(φ) − Ee(φ))

≥ (δEc(φ),ψ − φ)L2(D) + (δEe(ψ),φ − ψ)L2(D)

= (δEc(φ) − δEe(ψ),ψ − φ)L2(D) . ✷ (3.6)

Based on our preliminary calculations we can formulate the following (first-order in time) energy stable convex splitting 
scheme: for j = 1, 2, 3,

um+1
j − um

j = −sµm+1
j , (3.7)

µm+1
j = B4

(
#2um+1

j − 4D j(#vm+1
j ) − 4D2

j um+1
j

)

+2 max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

um+1
j

+6ν
(

Am+1
)2

um+1
j − 3ν

((
um

j

)2
+

(
vm

j

)2
)

um
j
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+(6νρ0 − 2τ )(um+1
α j

um+1
β j

− vm+1
α j

vm+1
β j

)

−2 max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

um
j , (3.8)

vm+1
j − vm

j = −sνm+1
j , (3.9)

νm+1
j = B4

(
#2 vm+1

j + 4D j(#um+1
j ) − 4D2

j vm+1
j

)

+2 max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

vm+1
j

+6ν
(

Am+1
)2

vm+1
j − 3ν

((
um

j

)2
+

(
vm

j

)2
)

vm
j

−(6νρ0 − 2τ )(um+1
α j

vm+1
β j

+ vm+1
α j

um+1
β j

)

−2 max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

vm
j . (3.10)

Observe that, precisely,

µ j = δu j Ec(um+1, vm+1) − δu j Ee(um, vm), (3.11)

ν j = δv j Ec(um+1, vm+1) − δv j Ee(um, vm). (3.12)

Thus, invoking Theorems 2.9 and 3.1, we have

Theorem 3.2. Let um+1, um, vm+1, vm ∈
[

H4
per(D)

]3
be solutions of the scheme (3.7)–(3.10). Then

E(um+1, vm+1) + s
∥∥∥µm+1

∥∥∥
2

L2
+ s

∥∥∥νm+1
∥∥∥

2

L2
≤ E(um, vm). (3.13)

Using the lower bound for the energy given in Theorem 2.10 and the last result, we conclude that

Corollary 3.3. Let um, vm ∈
[

H4
per(D)

]3
, m = 1, . . . , M, be the solutions of the scheme (3.7)–(3.10) with initial data u0, v0 ∈

[
H2

per(D)
]3

. Then we have

max
1≤m≤M

⎛

⎝γ0

3∑

j=1

(∥∥∥um
j

∥∥∥
2

H2
+

∥∥∥vm
j

∥∥∥
2

H2

)⎞

⎠ + s
M∑

m=1

(∥∥µm
∥∥2

L2 +
∥∥νm

∥∥2
L2

)
≤ E(u0, v0) + χ0. (3.14)

3.2. A fully-discrete convex-splitting scheme

In this section we introduce a finite difference discretization of the spatial derivative operators D j and G j on the par-
allelogram D. The mesh size h is given by h = σ

n , for some positive integer n. We define the set of cell center points 
as

C :=
{

xk,ℓ = (xk, yℓ) = h ·
(

k − 1
2

)
· g1 − h ·

(
ℓ − 1

2

)
· g3

∣∣∣∣ k,ℓ ∈ Z
}

. (3.15)

The points of E1, E2 and E3 are defined, respectively, via

E1 :=
{

xk+ 1
2 ,ℓ =

(
xk+ 1

2
, yℓ

)
= h · k · g1 − h ·

(
ℓ − 1

2

)
· g3

∣∣∣∣ k,ℓ ∈ Z
}

, (3.16)

E2 :=
{

xk+ 1
2 ,ℓ+ 1

2
=

(
xk+ 1

2
, yℓ+ 1

2

)
= h · k · g1 − h · ℓ · g3

∣∣∣ k,ℓ ∈ Z
}

, (3.17)

E3 :=
{

xk,ℓ+ 1
2

=
(

xk, yℓ+ 1
2

)
= h ·

(
k − 1

2

)
· g1 − h · ℓ · g3

∣∣∣∣ k,ℓ ∈ Z
}

. (3.18)

Define the space of cell centered grid functions as C := {φ : C → R}. By Cper ⊂ C we denote the linear subspace of 
D-periodic cell centered functions. Similarly, define the edge centered grid function space E j :=

{
f : E j → R

}
, for j = 1, 2, 3. 
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Fig. 5. Numbering scheme for the cell-centered hexagonal grid. Logically, this numbering method is the same as for a square Cartesian grid, and, therefore, 
in our computations, we can use standard two-dimensional arrays to store the grid variables. The cell centered points are represented with open circles.

By E j
per ⊂ E j we denote the appropriate linear subspace of D-periodic edge centered functions. We use the notation, 

fk+ 1
2 ,ℓ := f

(
xk+ 1

2 ,ℓ

)
, et cetera. Fig. 5 demonstrates such a discretization.

We define the cell-centered inner product as follows: for φ, ψ ∈ Cper,

(φ∥ψ) :=
√

3h2

2

n∑

k=1

n∑

ℓ=1

φk,ℓψk,ℓ. (3.19)

The associated norm is ∥φ∥2 := √
(φ∥φ), defined for any φ ∈ Cper. Furthermore, we need three edge-centered inner products:

[u∥v]1 =
√

3h2

4

n∑

k=1

n∑

ℓ=1

{
uk+ 1

2 ,ℓvk+ 1
2 ,ℓ + uk− 1

2 ,ℓvk− 1
2 ,ℓ

}
, for u, v ∈ E1

per, (3.20)

[u∥v]2 =
√

3h2

4

n∑

k=1

n∑

ℓ=1

{
uk− 1

2 ,ℓ+ 1
2

vk− 1
2 ,ℓ+ 1

2
+ uk+ 1

2 ,ℓ− 1
2

vk+ 1
2 ,ℓ− 1

2

}
, for u, v ∈ E2

per, (3.21)

[u∥v]3 =
√

3h2

4

n∑

k=1

n∑

ℓ=1

{
uk,ℓ− 1

2
vk,ℓ− 1

2
+ uk,ℓ+ 1

2
vk,ℓ+ 1

2

}
, for u, v ∈ E3

per. (3.22)

We define the center-to-edge differences:

D1φk+ 1
2 ,ℓ := φk+1,ℓ − φk,ℓ

h
∈ E1

per, (3.23)

D2φk− 1
2 ,ℓ+ 1

2
:= φk−1,ℓ+1 − φk,ℓ

h
∈ E2

per, (3.24)

D3φk,ℓ− 1
2

:= φk,ℓ−1 − φk,ℓ

h
∈ E3

per, (3.25)

for φ ∈ Cper. In a similar way, we define the edge-to-center differences as follows:

d1uk,ℓ :=
uk+ 1

2 ,ℓ − uk− 1
2 ,ℓ

h
∈ Cper, for u ∈ E1

per (3.26)

d2uk,ℓ :=
uk− 1

2 ,ℓ+ 1
2

− uk+ 1
2 ,ℓ− 1

2

h
∈ Cper, for u ∈ E2

per, (3.27)

d3uk,ℓ :=
uk,ℓ− 1

2
− uk,ℓ+ 1

2

h
∈ Cper, for u ∈ E3

". (3.28)

The edge-to-center averages are defined similarly:

a1uk,ℓ :=
uk+ 1

2 ,ℓ + uk− 1
2 ,ℓ

2
∈ Cper, for u ∈ E1

per, (3.29)

a2uk,ℓ :=
uk− 1

2 ,ℓ+ 1
2

+ uk+ 1
2 ,ℓ− 1

2

2
∈ Cper, for u ∈ E2

per, (3.30)

a3uk,ℓ :=
uk,ℓ− 1

2
+ uk,ℓ+ 1

2

2
∈ Cper, for u ∈ E3

per. (3.31)
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The discrete Laplacian is defined as follows: for u ∈ Cper

#huk,ℓ := 2
3

[
d1(D1u)k,ℓ + d2(D2u)k,ℓ + d3(D3u)k,ℓ

]
∈ Cper. (3.32)

We need the following summation-by-parts results, whose proofs are omitted for the sake of brevity. We note that the 
periodicity of the grid functions are utilized in a fundamental way in the proofs.

Theorem 3.4. Suppose that φ, ψ ∈ Cper("). Then
(
d j(D jφ)

∥∥ψ
)
= −

[
D jφ

∥∥D jψ
]

j , j = 1,2,3, (3.33)
(
a j D j(φ)

∥∥ψ
)
= −

(
φ
∥∥a j D j(ψ)

)
, j = 1,2,3, (3.34)

(#hφ∥ψ) = (φ∥#hψ) . (3.35)

We now have all the tools necessary to introduce the discrete gradient energies: for any system of grid functions u, v ∈[
Cper(")

]3, define

EG
u,h(u, v) := 1

2

3∑

j=1

[(
#hu j

∥∥#hu j
)
− 4

(
a j(D j v j)

∥∥#hu j
)
+ 4

[
D j v j

∥∥D j v j
]

j

]
, (3.36)

and

EG
v,h(u, v) := 1

2

3∑

j=1

[(
#h v j

∥∥#h v j
)
+ 4

(
a j(D ju j)

∥∥#h v j
)
+ 4

[
D ju j

∥∥D ju j
]

j

]
. (3.37)

The following properties are important to our analysis.

Proposition 3.5. The energies EG
u,h(u, v), EG

v,h(u, v) are consistent with their continuous-space counterparts defined in (2.34) to 
second order in h, as h → 0. Moreover, for any system of grid functions u, v ∈

[
Cper(")

]3 , we have

EG
u,h(u, v) ≥ 0, EG

v,h(u, v) ≥ 0. (3.38)

Proof. The first part can be established by Taylor expansions, or even Fourier analysis methods. We suppress the details. 
For the second part, observe, for example, that

(#hu1∥#hu1) − 4 (a1(D1 v1)∥#hu1) + 4 [D1 v1∥D1 v1]1

=
√

3h2

2

n∑

k=1

n∑

ℓ=1

(
#h(u1)k,ℓ − 2a1 D1(v1)k,ℓ

)2 ≥ 0. (3.39)

Similar estimates hold for the other terms, and the result is proved. ✷

We have the following discrete analog of Proposition 2.7.

Proposition 3.6. Suppose that u, v ∈
[
Cper(")

]3 are periodic grid functions. The discrete gradient energy, defined via

EG
h (u, v) := EG

u,h(u, v) + EG
v,h(u, v), (3.40)

is non-negative and convex, and the discrete variations are given by

δu j EG
h = #2

hu j − 4a j D j(#h v j) − 4d j(D ju j) (3.41)

and

δv j EG
h = #2

h v j + 4a j D j(#hu j) − 4d j(D j v j). (3.42)

Proof. The non-negativity follows by simple rearrangements of terms, as indicated above. To prove the other results, we 
need to calculate the discrete variations. To this end, let φ, ψ ∈

[
Cper(")

]3 be periodic grid functions. Then, as in the 
continuous case, the following identities are available:
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ds EG
u,h(u + sφ, v + sψ)

=
3∑

j=1

(
#h(u j + sφ j)

∥∥#hφ j
)
+

3∑

j=1

4
[

D j(v j + sψ j)
∥∥D jψ j

]
j

−1
2

3∑

j=1

{
4
(
a j(D jψ j)

∥∥#h(u j + sφ j)
)
+ 4

(
a j(D j(v j + sψ j))

∥∥#hφ j
)}

, (3.43)

and

ds EG
v,h(u + sφ, v + sψ)

=
3∑

j=1

(
#h(v j + sψ j)

∥∥#hψ j
)
+

3∑

j=1

4
[

D j(u j + sφ j)
∥∥D jφ j

]
j

+1
2

3∑

j=1

{
4
(
a j(D jφ j)

∥∥#h(v j + sψ j)
)
+ 4

(
a j(D j(u j + sφ j))

∥∥#hψ j
)}

. (3.44)

Using the discrete periodicity of the fields with the appropriate summation-by-parts formulas and the fact that the operators 
a j(D j) and #h commute, we find that

ds EG
u,h(u + sφ, v + sψ)

∣∣∣
s=0

=
3∑

j=1

(
#2

hu j

∥∥∥φ j

)
−

3∑

j=1

4
(
d j(D j v j)

∥∥ψ j
)

+
3∑

j=1

{
2
(
a j D j(#hu j)

∥∥ψ j
)
− 2

(
a j D j(#h v j)

∥∥φ j
)}

, (3.45)

and

ds EG
v,h(u + sφ, v + sψ)

∣∣∣
s=0

=
3∑

j=1

(
#2

h v j

∥∥∥ψ j

)
−

3∑

j=1

4
(
d j(D ju j)

∥∥φ j
)

+
3∑

j=1

{
− 2

(
a j D j(#h v j)

∥∥φ j
)
+ 2

(
a j D j(#hu j)

∥∥ψ j
)}

, (3.46)

from which we get the discrete variational derivatives in (3.41) and (3.42).
The convexity of the energy follows upon calculating the second variations, which are given by

d2
s EG

u,h(u + sφ, v + sψ) =
3∑

j=1

(
#hφ j

∥∥#hφ j
)
+

3∑

j=1

4
[

D jψ j
∥∥D jψ j

]
j

−1
2

3∑

j=1

{
4
(
a j(D jψ j)

∥∥#hφ j
)
+ 4

(
a j(D jψ j)

∥∥#hφ j
)}

= EG
u,h(φ,ψ) ≥ 0, (3.47)

and

d2
s EG

v,h(u + sφ, v + sψ) =
3∑

j=1

(
#hψ j

∥∥#hψ j
)
+

3∑

j=1

4
[

D jφ j
∥∥D jφ j

]
j

+1
2

3∑

j=1

{
4
(
a j(D jφ j)

∥∥#hψ j
)
+ 4

(
a j(D jφ j)

∥∥#hψ j
)}

≥ 0

= EG
v,h(φ,ψ) ≥ 0. ✷ (3.48)

Using the last result and Lemma 2.8 again, we have the following.
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Theorem 3.7. Let u, v ∈
[
Cper(")

]3 . Define the discrete energies

Eh,c(u, v) = (Tc(u, v)∥1) + B4 EG
u,h(u, v) + B4 EG

v,h(u, v), Eh,e(u, v) = (Te(u, v)∥1) . (3.49)

Then, Eh,c and Eh,e are convex, and the respective discrete variations are given by

δu j Eh,c = B4

(
#2

hu j − 4a j D j(#h v j) − 4d j(D ju j)
)

+2 max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

u j

+6ν A2u j + (6νρ0 − 2τ )(uα j uβ j − vα j vβ j ), (3.50)

δu j Eh,e = 3ν
(

u2
j + v2

j

)
u j + 2 max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

u j, (3.51)

and

δv j Eh,c = B4

(
#2

h v j + 4a j D j(#hu j) − 4d j(D j v j)
)

+2 max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

v j,

+6ν A2 v j − (6νρ0 − 2τ )(uα j vβ j + vα j uβ j ) (3.52)

δv j Eh,e = 3ν
(

u2
j + v2

j

)
v j + 2 max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

v j. (3.53)

We formulate the following (first-order in time) fully discrete, energy stable convex splitting scheme. Suppose s > 0
is the time step size and that u0, v0 ∈

[
C∞

per(D)
]3. Set u0 = Ph(u0) ∈

[
Cper

]3 and v0 = Ph(v0) ∈
[
Cper

]3, where Ph is the 
standard point-wise projection of a continuous function into Cper . Then, for j = 1, 2, 3, and for m = 0, . . . , M − 1, where 
sM = T , the scheme is given by

um+1
j − um

j = − sµm+1
j , (3.54)

µm+1
j = B4

(
#2

hum+1
j − 4a j D j(#h vm+1

j ) − 4d j(D ju
m+1
j )

)

+ 2 max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

um+1
j

+ 6ν
(

Am+1
)2

um+1
j − 3ν

((
um

j

)2
+

(
vm

j

)2
)

um
j

+ (6νρ0 − 2τ )(um+1
α j

um+1
β j

− vm+1
α j

vm+1
β j

)

− 2 max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

um
j , (3.55)

vm+1
j − vm

j = − sνm+1
j , (3.56)

νm+1
j = B4

(
#2

h vm+1
j + 4a j D j(#hum+1

j ) − 4d j(D j vm+1
j )

)

+ 2 max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

vm+1
j

+ 6ν
(

Am+1
)2

vm+1
j − 3ν

((
um

j

)2
+

(
vm

j

)2
)

vm
j

− (6νρ0 − 2τ )(um+1
α j

vm+1
β j

+ vm+1
α j

um+1
β j

)

− 2 max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

vm
j . (3.57)

Because the scheme respects the convexity of the energy, we have the following solvability result [41,45].

Corollary 3.8. Let um, vm ∈
[
Cper

]3 . The fully discrete scheme (3.54)–(3.57) is uniquely solvable for any step size s > 0.
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Proof. This follows from the strict convexity and coercivity of the functional

G(u, v) = 1
2s

3∑

j=1

(∥∥∥u j − um
j

∥∥∥
2

2
+

∥∥∥v j − vm
j

∥∥∥
2

2

)
+ Eh,c(u, v)

−
3∑

j=1

(
δu j Eh,e(um, vm)

∥∥u j
)
−

3∑

j=1

(
δv j Eh,e(um, vm)

∥∥v j
)
. (3.58)

We address the coercivity of the whole discrete energy Eh below in Theorem 3.11. ✷

We now state the discrete analog of Theorem 3.1, whose proof is omitted for brevity.

Theorem 3.9. Suppose that φ, ψ ∈
[
Cper

]6 . Consider a convex splitting of a discrete energy Eh(u, v) := Eh,c(u, v) − Eh,e(u, v) of the 
type given in Theorem 3.7. Then

Eh(φ) − Eh(ψ) ≤
(
δEh,c(φ) − δEh,e(ψ)

∥∥φ − ψ
)
, (3.59)

where δ now denotes the discrete variational derivative.

Corollary 3.10. Set Eh(u, v) := Eh,c(u, v) − Eh,e(u, v), with Eh,c, Eh,e as in Theorem 3.7. Let um+1, um, vm+1, vm ∈
[
Cper

]3 be the 
unique solutions of the fully discrete scheme (3.54)–(3.57).Then

Eh(um+1, vm+1) + s
3∑

j=1

(
µm+1

j

∥∥∥µm+1
j

)
+ s

3∑

j=1

(
νm+1

j

∥∥∥νm+1
j

)
≤ Eh(um, vm). (3.60)

The proof of the following discrete analog of Theorem 2.10 is similar to that of the continuous version and is omitted 
for brevity.

Theorem 3.11. For the discrete energy Eh(u, v) := Eh,c(u, v) − Eh,e(u, v), with Eh,c, Eh,e as in Theorem 3.7, we have the following 
lower bound

Eh(u, v) ≥ γ1

3∑

j=1

(∥∥#hu j
∥∥2

2 +
∥∥#h v j

∥∥2
2 +

∥∥u j
∥∥2

2 +
∥∥v j

∥∥2
2

)
− χ1, (3.61)

for any u, v ∈
[
Cper

]3 , for some positive constants γ1 and χ1 that depend on B, ν , τ , B4 and D but are independent of h > 0.

A combination of Corollary 3.10 and Theorem 3.11 implies the following result:

Corollary 3.12. Set Eh(u, v) := Eh,c(u, v) − Eh,e(u, v), with Eh,c, Eh,e as in Theorem 3.7. Suppose that u0, v0 ∈
[
C∞

per(D)
]3 . Let 

um, vm ∈
[
Cper

]3 , m = 0, . . . , M, be solutions of the fully scheme (3.54)–(3.57), where u0 = Ph(u0) and v0 = Ph(v0). Then

max
0≤m≤M

[

γ1

3∑

j=1

(∥∥∥#hum
j

∥∥∥
2

2
+

∥∥∥#h vm
j

∥∥∥
2

2
+

∥∥∥um
j

∥∥∥
2

2
+

∥∥∥vm
j

∥∥∥
2

2

)]

+ s
M∑

m=1

⎡

⎣
3∑

j=1

∥∥∥µm
j

∥∥∥
2

2
+

3∑

j=1

∥∥∥νm
j

∥∥∥
2

2

⎤

⎦ ≤ C5, (3.62)

where C5 > 0 is independent of h > 0 and s > 0.

In analogy with the previous results on a square mesh [45], we have the following discrete Sobolev inequality:

Theorem 3.13. For any u ∈ Cper , there is a constant C6 > 0 independent of h > 0, such that

∥u∥∞ ≤ C6

√
∥#hu∥2

2 + ∥u∥2
2. (3.63)

Then it follows that

Corollary 3.14. With the same assumptions as in Corollary 3.12, we have the point-wise stability

max
0≤m≤M
1≤ j≤3

[∥∥∥um
j

∥∥∥
∞

+
∥∥∥vm

j

∥∥∥
∞

]
≤ C7, (3.64)

where C7 > 0 is independent of h > 0 and s > 0.
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Table 1
Numerical Convergence Test using a quadratic refinement path. The parameters for the 
test are given in the text. The results of the test suggest that the scheme is second order 
accurate in space and first order in time, as predicted.

Coarse, hc Fine, h f δ Rate

1/32 1/64 0.009271065152390 –
1/64 1/128 0.002068816022822 2.163929745695177
1/128 1/256 0.000500230455258 2.048140553745060
1/256 1/512 0.000123975086732 2.012542660355964

Using the last stability, together with the consistency of the scheme, we can rigorously prove error estimates, with 
optimal rates of convergence, as in [45]. For the sake of brevity, we skip the error estimates herein.

4. Numerical results

In this section we present the results of three numerical experiments demonstrating the convergence and stability of the 
proposed schemes.

4.1. Numerical convergence test

The first experiment verifies the convergence rate with the following setting: (i) the computation domain D is the scaled 
reciprocal cell with the scalar factor σ = 1; (ii) the initial data are expressed as

u j(x,0) = cos(a1 · x) + cos(a2 · x), v j(x,0) = sin(a1 · x) + sin(a2 · x),

for j = 1, 2, 3, with Bravais lattice vector a1 and a2 defined as in (2.3); (iii) ν = 1, τ = 0, ρ0 = −0.195, B = −0.128150, 
B4 = 1.0; (iv) the time step s and the grid size h are related by the quadratic refinement path s = 0.1h2; (v) in all cases, 
the final time is

T = 10 · 0.1
322 = 40 · 0.1

642 = 160 · 0.1
1282 = 640 · 0.1

2562 = 2560 · 0.1
5122 .

The initial conditions and the results of simulation are presented in Fig. 6 for the case h = 1/128.
Since there is no exact solution with which to compare, we use the difference between results on relative coarse and 

fine grids to quantify convergence, as in [25]. We denote δu j := u
h f
j − uhc

j , where h f is the fine grid spacing and hc is the 
coarse grid spacing. We then set

δ := 1
6

3∑

j=1

[∥∥δu j
∥∥

2 +
∥∥δv j

∥∥
2

]
.

We expect, since we use a quadratic refinement path that numerical “error” will satisfy, as h → 0,

δ = O(h2) + O(s) = O(h2) + O(0.1h2) = O(h2).

The results are given in Table 1, and the convergence order obtained from the test provides evidence that the scheme is 
indeed second order accurate in space and first order in time.

Remark 4.1. Note that we use the quadratic refinement path not for the purposes of stability – indeed the algorithm 
is unconditionally stable – but solely to achieve the quadratic convergence in our test. We are currently developing a 
second-order (in time) numerical scheme for this problem, and, with that in hand, we could use a linear refinement path 
to achieve quadratic convergence.

4.2. Grain rotation and shrinkage

In this section we simulate the rotation and shrinkage of an embedded circular grain in an otherwise perfect two-
dimensional crystal. In particular, a circular grain in the center of a periodic domain is initially rotated by a certain angle 
creating dislocations at the boundary between the grain and the surrounding crystal. We explore the dynamics of the 
system, confirming energy dissipation, for instance, and compare results obtained with different sizes of time step s.

The first numerical experiment uses the following set-up: (i) the computation domain D is the scaled reciprocal cell, with 
the scaling factor σ = 1024; (ii) h = 1024

256 = 4; s = 100; (iii) ν = 1, τ = 0, ρ0 = −0.195, B0 = −0.128150, B4 = 1; (iv) the 
initial condition is a circular rotated grain with radius 256 located in the center of D. Specifically, for x inside the rotated 
grain
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Fig. 6. The initial data and final values of u1 and v1 in the convergence test. Here h = 1/128.

Fig. 7. The rotation and shrinkage of a circular grain in an otherwise perfect crystal. Here we have zoomed in on that portion of the hexagonal computational 
domain showing the embedded, circular grain. Time increases from top to bottom. In columns the following are plotted: (column 1) ∑3

j=1 |η j |; (columns 
2–4) u j , j = 1, 2, 3; (columns 5–7) |η j |, j = 1, 2, 3. The grain rotates slightly as its radius shrinks.

u j(x,0) = α cos
(

g j · R (θ) (x − c)T
)

, (4.1)

v j(x,0) = α sin
(

g j · R (θ) (x − c)T
)

, (4.2)

for j = 1, 2, 3. Here c is the coordinate vector for the center of D, R (θ) is the rotation matrix

R (θ) =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

with θ = 0.0872665 (radians), and α = 0.08859166596650425. Outside the rotated grain, we take u j(x, 0) = α and 
v j(x, 0) = 0, for j = 1, 2, 3. Fig. 7 shows the amplitudes at three different time instances. Time increases from top to bottom. 
In the columns of the figure the following are plotted: (column 1) 

∑3
j=1 |η j|; (columns 2–4) u j , j = 1, 2, 3; (columns 5–7) 

|η j|, j = 1, 2, 3. This simulation indicates that the PFC framework predicts that the grain rotates as it shrinks. This can be 
inferred by the shortening of the wavelengths characterizing the amplitudes. See for comparison, Fig. 4.

As stated in Proposition 2.6, amplitude equations should dissipate energy (2.29). The discrete algorithm preserves such a 
property with respect to the discrete energy (3.49), as proved in Corollary 3.10, no matter how large is the time step size. 
On the other hand, larger time step sizes can lead to increased error. In this next test, we try to quantify the error, at least 
for the present simple case of grain rotation and shrinkage, and show simultaneously, that the algorithm remains stable for 
relatively large time step size variations.

The parameter setup for this next test is identical to the experiment shown in Fig. 7, except that we use four different 
time step sizes, s = 0.1, 1, 10 and 100. The spatial step size is held fixed: h = 1024

256 = 4. We also pick a specific time instant 
from each of the four evolutions, such that the energy is approximately the same. The numerical results of the amplitude 
equations are presented by plotting the energy curves with the four plots of 

∑3
j=1 |η j | in Fig. 8. The numerical energies are 
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Fig. 8. Energy dissipation for the embedded circular grain simulation, using four different time step sizes. The parameters are contained in the text. In 
particular, h = 1024

256 = 4 is held fixed. The plots in the column on the right show the respective outputs for the different runs at roughly the same energy 
value. Note that the sizes of the grains are nearly indistinguishable as might be expected.

Fig. 9. The evolution of the area inside the circular grain with different time step sizes, plotted as functions of time. The parameters are the same as in the 
simulations reported in Fig. 8. The plot on the right has the same information as that on the left, except that (i) the time is on the log scale on the right 
and (ii) we add the data for the case s = 100 on the right, since it fits better on a semi-log plot. From the plot on the left, a linear decrease in the area of 
the grain is observed for three different time step sizes.

decreasing in all cases, which provides evidence of the unconditional stability of the schemes, though the dissipation rates 
are very different. Note that, if we compare the numerical results with different time step sizes and the same energy level, 
it can be observed that the profiles of amplitudes do not differ significantly. In particular, the number of dislocations, 18, is 
invariant.

The classical prediction of grain evolution states that the normal velocity of the grain boundary is proportional to its 
curvature. Thus, we also record the area of the rotated circular grain over time with different sizes of s. These results are 
illustrated in Fig. 9. The paper by Heinonen et al. [23] has reported a linear decrease in the area using a similar model, but 
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Fig. 10. A plot of T0(s), the time at which the energy in the simulations featured in Figs. 8 and 9 reaches the value E0 = 1.716492 × 104, as a function 
of the time step size s. T̃ (s) is the actual computed time to reach the energy E0 for the four time step sizes s = 0.1, 1.0, 10.0 and 100.0. Herein T (s) is 
computed as the linear least squares best fit of the untransformed, computed data. The results agree with the linear approximation (4.3) remarkably well 
and give further evidence of the first-order convergence in time. In particular, our results suggest that the time to reach the energy E0 for the exact PDE 
solution is precisely T0(0) = 4.14096 × 104.

a very different numerical method. The expected linear decrease in the area of the grain is observed in our simulations, 
though the constants of proportionality are quite different, and strongly depend on the time step size, s.

While the results of the test displayed in Figs. 8 and 9 suggest that the accuracy of the simulations is severely degraded 
for large time step sizes, we can at least see that the results are consistent with a first-order in time approximation. Define 
T0(s) to be the time at which the energy in the simulation reaches the value 1.716492 × 104 for a given time step size s. 
Provided h is small enough so that spatial errors can be neglected, and for sufficiently small s, we speculate that the 
following first-order approximation is valid:

T0(s) = T0(0) + a · s, (4.3)

for some positive constant T0(0) and some slope constant a. Our computational results yield the data

T̃0(0.1) = 49,268, T̃0(1.0) = 120,000, T̃0(10) = 827320, T̃0(100) = 7900500,

the tilde indicating the imperfection in the computational values. These values can be gleaned from a careful analysis of the 
data used to construct Fig. 8. To construct T (s), we use a linear least squares best fit of the four untransformed, computed 
data points T̃ (s), obtaining T0(0) = 4.14096 × 104 and a = 7.8591 × 104. In Fig. 10, we plot T̃0(s) − T0(0) and T0(s) − T0(0)
versus s, and we find remarkable agreement, which gives further evidence that the scheme is first order accurate in time.

4.3. Formation of grain boundaries

Amplitude equation is also capable of simulating crystal grain growth. This numerical experiment uses the following 
setting: (i) The computational domain D is defined via scaling factor σ = 512; (ii) h = 512

256 = 2, s = 10; (iii) ν = 1, τ = 0, 
ρ0 = −0.25, B = −0.2, B4 = 1; (iv) the initial condition is defined similar to equation (4.1) in the grain rotation experiment. 
Here we have four small rotation regions located at four quadrants of the computational domain, with different rotation 
angles. These work as the “seeds” of four separate grains. Outside the four seeds, the amplitudes are zero, representing a 
kind of pseudo-liquid phase. The numerical results are presented in Fig. 11. The first column shows the evolution of the 
reconstructed density field ρ , obtained using (2.7). Due to the different resolution required, the grid size of ρ is much 
smaller than the amplitude equations. The second and third columns are plots of 

∑3
j=1 |η j | and u1, respectively. In this 

experiment we observe the formation of grain boundary clearly. We also point out that in order to obtain the similar result, 
the traditional PFC model requires much smaller grid size compared with the amplitude equations.

Remark 4.2. Adaptive time-stepping algorithms are an invaluable tool in the long time simulation of gradient flow pro-
cesses, due to the existence of time-localized events featuring, for example, the merging or dissolution of interfaces or other 
structures coupled with the rapid reduction in energy. There have been quite a few numerical works of the adaptive time-
stepping method in the existing literature, such as the ones for the Cahn–Hilliard equation [49], the molecular beam epitaxy 
(MBE) model [33], and the original PFC model [48], to name a few. The application of adaptive time-stepping algorithms for 
the PFC amplitude model will also be considered in our future work.
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Fig. 11. A simulation of crystal grain formation. Time is increasing from the top to the bottom. The parameters are given in the text. The first column shows 
the reconstructed density field ρ , obtained using (2.7). The second and third columns are plots of ∑3

j=1 |η j | and u1, respectively.

5. Conclusion and future work

In this paper we constructed a first-order accurate in time, second-order accurate in space, unconditionally energy stable 
numerical scheme for 2D PFC amplitude expansion equations. In order to obtain a provable energy stable scheme, the 
problem was recast on a hexagonal domain with respect to the reciprocal lattice vectors. We analyzed the properties of the 
amplitude equations on this domain, and devised semi and fully discrete algorithms based on a hexagonal spatial mesh. 
We proved that our scheme is unconditionally uniquely solvable and unconditionally energy stable. To keep the paper as 
short as possible, a convergence analysis of the scheme was not provided, though this can be straightforwardly done given 
the energy stabilities that have been obtained. The stability and accuracy of the scheme was demonstrated numerically by 
several computational experiments, including grain rotations and crystal grain growth.

An efficient multi-grid solver was devised for this scheme – and is described briefly in the Appendix – but we did not 
explore the convergence analysis nor the practical efficiency of the solver in any detail. We plan to explore this aspect in 
more detail in a future work. Our immediate plans are to modify our scheme so that it can work for the case where the 
average density, ρ0 is a variable in space, as discussed in [47]. This would allow us to explore more realistic simulations of 
melting and solidification. The convexity analysis is expected to easily extend to the variable average density case. We also 
plan to develop adaptive time-stepping schemes where the value of step size s is adjusted at each time iteration to make 
the simulations more accurate. In addition, we also plan to develop a spatially adaptive version of the scheme using our 
adaptive finite difference/multigrid framework, BSAM [44].
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Appendix A. Multigrid solver for the amplitude equations

In this section we discuss the details of an efficient, nonlinear multigrid solver. The main structure of the solver is 
borrowed from those reported in [25,43]. We only modify it slightly to simulate amplitude equations. To simplify the 
writing a bit, let us define

R1 := 2 max

{
(6νρ0 − 2τ )2

3ν
,

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

, (A.1)

R2 := 2 max

{

0,
(6νρ0 − 2τ )2

3ν
−

(
B0

2
+ 3νρ2

0

2
− τρ0

)}

. (A.2)

Then, our convex splitting scheme (3.54)–(3.57) may be expressed as follows: given um, vm, κm, ζm ∈
[
C∞

per(D)
]3 find 

u, v, κ, ζ ∈
[
C∞

per(D)
]3, whose components solve

u j+ sB4
(
#hκ j − 4a j D j(ζ j) − 4d j(D ju j)

)

+ sR1u j + 6sν A2u j + s(6νρ0 − 2τ )(uα j uβ j − vα j vβ j )

= sR2um
j + 3sν

((
um

j

)2
+

(
vm

j

)2
)

um
j + um

j , (A.3)

κ j = #hu j, (A.4)

v j+ sB4
(
#hζ j + 4a j D j(κ j) − 4d j(D j v j)

)

+ sR1 v j + 6sν A2 v j − s(6νρ0 − 2τ )(uα j vβ j + vα j uβ j )

= sR2 vm
j + 3sν

((
um

j

)2
+

(
vm

j

)2
)

vm
j + vm

j , (A.5)

ζ j = #h v j, (A.6)

for j = 1, 2, 3. Observe that, for convenience, we have dropped the superscripted index m + 1 for the unknown variables 
at the implicit time level. We have also represented the equations as a coupled system of 12 second-order finite difference 
equations. Now, we define operator and source terms as follows: for the operators, we set

N1, j(u, v,κ, ζ ) := u j + sB4
(
#hκ j − 4a j D j(ζ j) − 4d j(D ju j)

)

+ sR1u j + 6sν A2u j + s(6νρ0 − 2τ )(uα j uβ j − vα j vβ j ), (A.7)

N2, j(u, v,κ, ζ ) := κ j − #hu j, (A.8)

N3, j(u, v,κ, ζ ) := v j + sB4
(
#hζ j + 4a j D j(κ j) − 4d j(D j v j)

)

+ sR1 v j + 6sν A2 v j − s(6νρ0 − 2τ )(uα j vβ j + vα j uβ j ), (A.9)

N4, j(u, v,κ, ζ ) := ζ j − #h v j. (A.10)

For the source terms, we define

S1, j := sR2um
j + 3sν

((
um

j

)2
+

(
vm

j

)2
)

um
j + um

j , (A.11)

S2, j := 0, (A.12)

S3, j := sR2 vm
j + 3sν

((
um

j

)2
+

(
vm

j

)2
)

vm
j + vm

j , (A.13)

S4, j := 0. (A.14)

The scheme (A.3)–(A.6) is equivalent to N (u, v,κ, ζ ) = S. Readers are referred to [43] for details of the FAS multigrid 
scheme. Here we only discuss the nonlinear smoothing scheme for the operator N , and the interpolation operators for 
communications between different grids.

For the smoothing process we use a nonlinear Gauss–Seidel method with Red–Black ordering. In what follows, to sim-
plify the discussion, we give the details of the smoothing process using the simpler lexicographic ordering. Let p be the 
index for the lexicographic Gauss–Seidel, and the smoothing scheme is constructed as follows: for every (k, ℓ), stepping 
lexicographically from (1, 1) to (n, n), we solve the following linear systems:



Z. Guan et al. / Journal of Computational Physics 321 (2016) 1026–1054 1053

Fig. 12. A schematic showing the prolongation and restriction operation on the hexagonal grid. We use simple four-point averaging for the restriction 
operation, and piecewise-constant interpolation for the prolongation operation. These operations are logically equivalent to those we use in the standard 
square Cartesian cell-centered mesh.

up+1
j,k,ℓ − 4sB4

h2 κ p+1
j,k,ℓ + 6sν

(
Ap

k,ℓ

)2
up+1

j,k,ℓ + sR1up+1
j,k,ℓ

= − 2sB4

3h2

(
κ p

j,k+1,ℓ + κ p+1
j,k−1,ℓ + κ p

j,k,ℓ+1 + κ p+1
j,k,ℓ−1 + κ p

j,k−1,ℓ+1 + κ p+1
j,k+1,ℓ−1

)

+ 4sB4a j D j(ζ
p
j,k,ℓ) + 4sB4d j(D ju

p
j,k,ℓ)

− s(6νρ0 − 2τ )(up
α j ,k,ℓup

β j ,k,ℓ − v p
α j,k,ℓv p

β j ,k,ℓ) + S1, j
k,ℓ, (A.15)

κ p+1
j,k,ℓ − 4

h2 up+1
j,k,ℓ

= 2
3h2

(
up

j,k+1,ℓ + up+1
j,k−1,ℓ + up

j,k,ℓ+1 + up+1
j,k,ℓ−1 + up

j,k−1,ℓ+1 + up+1
j,k+1,ℓ−1

)
+ S2, j

k,ℓ, (A.16)

v p+1
j,k,ℓ − 4sB4

h2 ζ
p+1
j,k,ℓ + 6sν

(
Ap

k,ℓ

)2
v p+1

j,k,ℓ + sR1 v p+1
j,k,ℓ

= − 2sB4

3h2

(
ζ

p
j,k+1,ℓ + ζ

p+1
j,k−1,ℓ + ζ

p
j,k,ℓ+1 + ζ

p+1
j,k,ℓ−1 + ζ

p
j,k−1,ℓ+1 + ζ

p+1
j,k+1,ℓ−1

)

− 4sB4a j D j(κ
p
j,k,ℓ) + 4sB4d j(D j v p

j,k,ℓ)

+ s(6νρ0 − 2τ )(up
α j ,k,ℓv p

β j,k,ℓ + v p
α j,k,ℓup

β j ,k,ℓ) + S3, j
k,ℓ, (A.17)

ζ
p+1
j,k,ℓ − 4

h2 v p+1
j,k,ℓ

= 2
3h2

(
v p

j,k+1,ℓ + v p+1
j,k−1,ℓ + v p

j,k,ℓ+1 + v p+1
j,k,ℓ−1 + v p

j,k−1,ℓ+1 + v p+1
j,k+1,ℓ−1

)
+ S4, j

k,ℓ . (A.18)

Note that we lag the quadratic nonlinear and directional (anisotropic) derivative terms to the pth iteration level. We use a 
local Picard linearization on the cubic terms. For example,

(
Ap+1

k,ℓ

)2
up+1

j,k,ℓ ≈
(

Ap
k,ℓ

)2
up+1

j,k,ℓ.

Otherwise, this is a standard vector Gauss–Seidel smoothing. The linear system, which clearly decouples into six 2 × 2 linear 
sub-systems, is solved efficiently at each grid point using Cramer’s rule.

Finally, since our hexagonal grid has the same logical structure as a square Cartesian grid, the standard prolongation and 
restriction operations can be utilized, as suggested in Fig. 12. Alternatively, we could use a weighted average that better 
respects the hexagonal symmetry of the problem, but we found that this was unnecessary.
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