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Summary. The convergence of a fourth order finite difference method for

the 2-D unsteady, viscous incompressible Boussinesq equations, based on the

vorticity-stream function formulation, is established in this article. A com-

pact fourth order scheme is used to discretize the momentum equation, and

long-stencil fourth order operators are applied to discretize the temperature

transport equation. A local vorticity boundary condition is used to enforce

the no-slip boundary condition for the velocity. One-sided extrapolation is

used near the boundary, dependent on the type of boundary condition for the

temperature, to prescribe the temperature at “ghost” points lying outside of

the computational domain. Theoretical results of the stability and accuracy of

the method are also provided. In numerical experiments the method has been

shown to be capable of producing highly resolved solutions at a reasonable

computational cost.

Mathematics Subject Classification (1991): 35Q35, 65M06, 76M20

1 Introduction

The 2-D incompressible Navier-Stokes equations under the Boussinesq as-

sumption, in the vorticity-stream function formulation, can be written as
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∂tω + (u · ∇)ω = ν�ω + g∂xθ ,

∂tθ + (u·∇)θ = κ�θ ,

�ψ = ω ,

u = −∂yψ , v = ∂xψ ,

(1.1)

where ω is the vorticity, ψ the stream function, u = (u, v)T the velocity

field, and θ the temperature. The parameter ν represents the kinematic vis-

cosity, κ the heat conductivity, and g the product of the gravity constant with

the thermal expansion coefficient. We consider (1.1) on a domain 	 whose

boundary is denoted by Ŵ.

We assume that the computational domain is simply connected and note

that the usual no-flow, no-slip boundary conditions for the velocity field,

u |Ŵ= 0, can be written in terms of the stream function ψ as

ψ |Ŵ= 0 and
∂ψ

∂n

∣∣∣
Ŵ
= 0 .(1.2)

For the temperature θ , either a Dirichlet boundary condition

θ |Ŵ= θb ,(1.3)

where θb is a given distribution for the temperature on the boundary, or a

Neumann boundary condition

∂θ

∂n

∣∣∣
Ŵ
= θf ,(1.4)

where θf is a given heat flux on the boundary, can be imposed. The latter

would apply when an insulated (adiabatic) boundary condition is imposed,

in which case θf = 0.

This paper presents analysis of a fourth order computational method for

the Boussinesq equations (1.1) that was recently proposed by the authors in

[16]. A description of the overall scheme is given in section 2, which we

briefly outline here. A fourth order compact discretization is used for the

momentum equation in (1.1). The no-slip boundary condition
∂ψ

∂n

∣∣∣
Ŵ
= 0 is

converted into a local vorticity boundary condition, such as Briley’s fourth

order formula or the new fourth order formula discussed in [16]. The no-flow

boundary condition ψ |Ŵ= 0 is reserved as a Dirichlet boundary condition

in the Poisson equation for ψ . We emphasize that a compact approach is

crucial here for it avoids the need of prescribing values of the vorticity at

computational points outside of the flow domain (“ghost” points). Generally,

such values would be computed using extrapolation, which for the vorticity

can be troublesome due to the presence of sharp gradients in this variable at

the boundary. This is especially true in the case of large Reynolds number
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flow. In contrast, a compact approach is not indicated for the temperature

transport equation. Indeed, the temperature is generally well behaved near

the boundary and the prescribed boundary condition, (1.3) or (1.4), allows for

the discretization of the temperature equation to fourth order using long-sten-

cil approximations. Moreover, this avoids the additional computational cost

of solving a Poisson-like equation involving an auxiliary temperature vari-

able that would be required by a compact approach. However, we now must

prescribe temperature data at “ghost” points outside of the computational

domain, which are derived using one-sided extrapolation. Additionally, the

number of interior points in these formulas is reduced by applying informa-

tion obtained from the temperature equation at the boundary. Similar ideas

can be found in [10].

Detailed numerical experiments have been performed to show that this

approach is indeed very accurate and efficient. Benchmark quality simula-

tions of a differentially-heated cavity problem using this method is presented

in [13,16]. This flow was the focus of a special session at the first MIT con-

ference on Computational Fluid and Solid Mechanics in June 2001 [1]. A

detailed description of the problem setup, as well as a summary of the overall

results can be found in [6]. Submissions to the session included simulations

computed using finite difference, finite element, finite volume, and spectral

methods. The reference benchmark simulation was computed using a spec-

tral code, which was used to rank the submissions to the special session. In

all there were six composite metrics on which submissions were judged. The

simulation computed by our method received three first place rankings and

one second place ranking. In particular, with respect to numerical accuracy

and efficiency our method performed extremely well. See [6,13] for a detailed

description.

As noted above, the purpose of this paper is to provide a theoretical analy-

sis for the numerical method presented in [16]. As is generally the case when

high order discretizations are used in conjunction with high order one-sided

extrapolation, stability of the resulting scheme becomes a crucial issue. In

what follows, we demonstrate the stability and full accuracy of the method.

To facilitate the description, we choose the computational domain as 	 =
[0, 1]×[0, 1] with grid size �x = �y = h = 1

N
. The following two theorems

are the main results:

Theorem 1.1 Let ue ∈ L∞([0, T ]; C7,α(	) ), θe ∈ L∞([0, T ]; C6(	) ) be

the exact solution of the Boussinesq equations (1.1)–(1.2) with the Dirichlet

boundary condition (1.3), and uh, θh the approximate solution of the fourth

order numerical method, namely (2.7), (2.16), and (2.20) below. Then

‖ue − uh‖L∞([0,T ],L2) + ‖θe − θh‖L∞([0,T ],L2) ≤ C(ue, θe)h
4 ,(1.6a)
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where the constant is determined from the exact solution ue, θe by

C(ue, θe) = C
(
‖ue‖C7,α (1 + ‖ue‖C5) + ‖θe‖C5‖ue‖C5 + ‖θe‖C6

)

· exp

{
CT

ν
(1 + ‖ue‖C1)2 +

CT

κ
(1 + ‖ue‖C0)2

}
.

(1.6b)

Theorem 1.2 Let ue ∈ L∞([0, T ]; C7,α(	) ), θe ∈ L∞([0, T ]; C8,α(	) ) be

the exact solution of the Boussinesq equations (1.1)–(1.2) with the Neumann

boundary condition (1.4), and uh, θh the approximate solution of the fourth

order numerical method, namely (2.7), (2.16), and (2.26) below. Then

‖ue − uh‖L∞([0,T ],L2) + ‖θe − θh‖L∞([0,T ],L2) ≤ C(ue, θe)h
4 ,(1.7a)

where the constant is determined from the exact solution ue, θe by

C(ue, θe) = C
(
‖ue‖C7,α (1 + ‖ue‖C5) + ‖θe‖C7,α‖ue‖C6,α + ‖θe‖C8,α

)

·exp

{
CT

ν
(1 + ‖ue‖C1)2 +

CT

κ
(1 + ‖ue‖C0)2

}
.

(1.7b)

Remark 1.3 To simplify the analysis of a numerical method, one usually con-

siders the semi-discrete scheme, with spatial discretization and continuous

derivative in time. This is the so called “method of lines” approach, as it is

composed of a system of ODEs. If the spatially discrete scheme is proven to be

convergent, the full accuracy for the fully discrete scheme can be established

as long as the temporal discretization is consistent and stable. For the numer-

ical scheme proposed in this article, we choose a high order Runge-Kutta

method, an explicit multi-stage method, to update the dynamic equations

in time. Full order convergence analysis is valid for either the forward Euler

method or the classical RK4 method. Since the proof of this standard approach

is long due to many technical considerations, we choose to omit it.

We note that the constants C appearing above depend on ν and κ . The

details of the discrete L2 norms for different variables will be provided in

section 3. For simplicity, we use ‖ · ‖Cm,α to denote the L∞([0, T ]; Cm,α)

norm. It should be noted that the exact solution does not generally satisfy the

regularity assumption of the above theorems in a square domain, which is a

shortcoming of all convergence proofs for finite difference methods. Never-

theless, in many cases, such as periodic channel flow or Taylor-Couette flow

in an annular domain, the solution does possess the required regularity. We

note that in the finite difference setting, the regularity assumption in Theorem

1.1 and Theorem 1.2 is almost optimal.

In section 3 we first illustrate the techniques used in proving the theorems

above by analyzing the stability of the long stencil operators and one-sided
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approximations of the temperature near the boundary using a simple one-

dimensional heat equation model. The convergence proof of the fourth order

method with the Dirichlet or Neumann boundary condition for the temper-

ature is then established in sections 4 and 5, respectively. In both cases,

approximate solutions for the velocity, vorticity, and temperature are con-

structed and shown to be consistent up to O(h4) with solutions of the finite

difference scheme. Fourth order convergence then results from an estimate

for the error between the approximate solution and the numerical solution.

A crucial point in the stability analysis for the error functions is that both

the compact and the long-stencil operators have negative eigenvalues, hence-

forth are well-posed. In addition, careful treatment of the boundary terms is

required to recover an energy estimate. Here, discrete elliptic regularity is

applied to control the boundary terms of the vorticity equation, while a can-

cellation analysis is used to deal with the boundary terms of the temperature

equation.

2 Description of the scheme

In this section we describe in detail the fourth order finite difference method

for (1.1) proposed by the authors in [16]. First, a fourth order compact

approach for the momentum equation is outlined in section 2.1. Then in

section 2.2 the temperature transport equation is approximated by long-stencil

operators, along with one-sided extrapolation to obtain “ghost” point values

for the temperature outside of the computational domain.

In this article, D̃x , D̃y , D2
x and D2

y are the standard centered difference

operators for ∂x , ∂y , ∂2
x and ∂2

y , respectively. Similar definitions can be applied

to D̃y and D2
y .

2.1 Momentum equation

The momentum equation is solved by the Essentially Compact Fourth order

scheme (EC4) proposed by E & Liu in [8] for the two-dimensional Navier-

Stokes equations. The starting point of the scheme is a compact fourth order

approximation of the Laplacian � given by

� =
�h + h2

6
D2

xD
2
y

1 + h2

12
�h

+ O(h4) ,(2.1)

where �h = D2
x + D2

y . Substituting the difference operator in (2.1) for the

Laplacian in the momentum equation and then multiplying the result by the
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denominator of the difference operator (2.1) gives the O(h4) approximation

(
1 +

h2

12
�h

)
∂tω +

(
1 +

h2

12
�h

)
∇·(uω) − g

(
1 +

h2

12
�h

)
∂xθ

=
(
�h +

h2

6
D2

xD
2
y

)
ω .(2.2)

The same procedure applied to the kinematic equation results in the O(h4)

approximation

(
�h +

h2

6
D2

xD
2
y

)
ψ =

(
1 +

h2

12
�h

)
ω .(2.3)

As in [8], the nonlinear convection term in the momentum equation is fully

discretized as

(
1 +

h2

12
�h

)
∇·(uω) = D̃x

(
1 +

h2

6
D2

y

)
(uω) + D̃y

(
1 +

h2

6
D2

x

)
(vω)

−
h2

12
�h

(
uD̃xω + vD̃yω

)
+ O(h4) .(2.4)

The first and the second terms in (2.4) are compact. The third term is not, yet it

does not cause any problem in actual computations since unD̃xω
n +vnD̃yω

n

can be taken as 0 on the boundary. The gravity term (1 +
h2

12
�h)∂xθ is dealt

with similarly. A formal Taylor expansion gives

(
1 +

h2

12
�h

)
∂x = D̃x

(
1 +

h2

12
D2

y −
h2

12
D2

x

)
+ O(h4)

= D̃x +
h2

12
D̃xD

2
y −

h2

12
D̃xD

2
x + O(h4) .(2.5)

Note that at a horizontal computational boundary the third term on the right-

hand side of (2.5) requires values of θ at “ghost” points lying outside of the

computational domain. The prescription of these will be discussed below.

Finally, by the introduction of an intermediate variable ω

ω =
(

1 +
h2

12
�h

)
ω ,(2.6)

the momentum equation is approximated to O(h4) by

∂tω + D̃x

(
1 +

h2

6
D2

y

)
(uω) + D̃y

(
1 +

h2

6
D2

x

)
(vω)

−
h2

12
�h

(
uD̃xω + vD̃yω

)
− gD̃x

(
1 +

h2

12
(D2

y − D2
x)

)
θ

= ν
(
�h +

h2

6
D2

xD
2
y

)
ω .(2.7)
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The stream function is solved using (2.3) (the right-hand side of which is

ω) with the Dirichlet boundary condition ψ |Ŵ= 0. The velocity u = ∇⊤ψ =
(−∂yψ, ∂xψ) is then obtained by long-stencil approximations to ∂x and ∂y ,

namely

u = −D̃y

(
1 −

h2

6
D2

y

)
ψ , v = D̃x

(
1 −

h2

6
D2

x

)
ψ .(2.8)

Note that (2.8) requires values of ψ at “ghost” points. This is discussed below,

along with the boundary condition for the vorticity, which when given ω is

required in order to determine ω from (2.6).

We now turn to the fourth order boundary condition for the vorticity,

focusing our discussion on the boundary Ŵx where j = 0. The main point

in deriving a boundary condition for the vorticity is to convert the bound-

ary condition
∂ψ

∂n = 0 into a boundary condition for ω using the kinematic

relation �ψ = ω. One possibility is Briley’s formula

ωi,0 =
1

18h2
(108ψi,1 − 27ψi,2 + 4ψi,3) ,(2.9)

which results from a centered fourth order discretization of �ψ = ω at the

boundary along with the one-sided Taylor expansions of the stream function

ψi,−1 = 6ψi,1 − 2ψi,2 +
1

3
ψi,3 − 4h

(
∂ψ

∂y

)

i,0

+ O(h5) ,(2.10)

and

ψi,−2 = 40ψi,1 − 15ψi,2 +
8

3
ψi,3 − 12h

(
∂ψ

∂y

)

i,0

+ O(h5) .(2.11)

Alternatively, we can use a new fourth order formula for the vorticity,

ωi,0 =
1

h2

(
8ψi,1 − 3ψi,2 +

8

9
ψi,3 −

1

8
ψi,4

)
+ O(h4) ,(2.12)

which is derived in the same manner as (2.9), but instead of (2.10)–(2.11) we

now estimate the stream function at the “ghost” points using

ψi,−1 = 10ψi,1 − 5ψi,2 +
5

3
ψi,3 −

1

4
ψi,4 − 5h

(
∂ψ

∂y

)

i,0

+ O(h6) ,

(2.13)

and

ψi,−2 = 80ψi,1 − 45ψi,2 + 16ψi,3 −
5

2
ψi,4 − 30h

(
∂ψ

∂y

)

i,0

+ O
(
h6

)
.

(2.14)
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The latter boundary formula (2.12) gives fourth order accuracy for the

vorticity on the boundary, while the Briley’s formula indicates a third order

accuracy, by formal Taylor expansion.Yet, the numerical evidence shows that

both (2.9) and (2.12) result in full fourth order accuracy for the two-dimen-

sional Navier-Stokes equations, with compact difference operators applied

at the interior points. See a relevant discussion in [16]. For computational

convenience, we suggest using Briley’s formula along with (2.10)–(2.11).

However, for conciseness of the analysis of the Boussinesq equations in

the present article we use (2.12). We note that the philosophy of local vor-

ticity boundary conditions can been extended, in particular, to derive local

pressure boundary conditions for the velocity-pressure formulation of the

Navier-Stokes equations. Moreover, unlike the vorticity-stream function for-

mulation, the local pressure boundary condition approach is easily extended

to three-dimensional flows; see [14].

2.2 Temperature transport equation

To solve the temperature transport equation ∂tθ +u·∇θ = κ�θ , we discretize

∂x , ∂y , and � using standard fourth order long-stencil operators:

∂x = D̃x

(
1 −

h2

6
D2

x

)
+ O(h4) , ∂y = D̃y

(
1 −

h2

6
D2

y

)
+ O(h4) ,

� = �h −
h2

12

(
D4

x + D4
y

)
+ O(h4) .

(2.15)

Thus an O(h4) approximation for the temperature equation is given by

∂tθ + uD̃x

(
1 −

h2

6
D2

x

)
θ + vD̃y

(
1 −

h2

6
D2

y

)
θ =κ

(
�h −

h2

12
(D4

x + D4
y)

)
θ.

(2.16)

Because of the use of long-stencil operators in (2.16) we must prescribe

θ at “ghost” points lying outside of the computational domain. We discuss

this issue next for the two boundary conditions considered herein, namely

Dirichlet and Neumann.

2.2.1 Dirichlet boundary condition for temperature. In the case of a Dirichlet

boundary condition θ is given on the boundary by θb (see (1.3)), hence we

only need to update (2.16) at the interior grid points (xi, yj ), 1 ≤ i, j ≤ N−1.

Thus, only one “ghost” point value must be prescribed, e.g. θi,−1 along the

boundary Ŵx . Local Taylor expansion at the boundary gives

θi,−1 =
20

11
θi,0−

6

11
θi,1−

4

11
θi,2+

1

11
θi,3+

12

11
h2∂2

yθi,0 + O(h5).(2.17)
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Using standard finite difference stencils, approximation of h2∂2
yθi,0 to high

order would necessarily increase the size of the stencil in (2.17).Alternatively,

we will use the PDE and its derivatives (see the detailed discussion in [16]).

Since the velocity u vanishes on the boundary, the temperature transport

equation along Ŵx reads

∂tθ |Ŵx
= κ�θ |Ŵx

= κ(∂2
x + ∂2

y )θ |Ŵx
= κ(∂2

xθb + ∂2
yθ |Ŵx

) .(2.18)

The above evaluation leads to

∂2
yθ |Ŵx

=
1

κ
∂tθb − ∂2

xθb ,(2.19)

where the right hand side is a known function since θ is given by θb on the

boundary. The combination of (2.19) and (2.17) gives

θi,−1 =
20

11
θi,0−

6

11
θi,1 −

4

11
θi,2 +

1

11
θi,3 +

12

11
h2

( 1

κ
∂tθb − ∂2

xθb

)
+ O(h5).

(2.20)

Similar arguments follow along the other three boundaries of 	. It will be

shown in later sections that this formula gives full 4-th order accuracy.

Alternatively, a fourth order Taylor expansion near the boundary results

in only one interior point in the formula for θi,−1, namely

θi,−1 = 2θi,0 − θi,1 + h2∂2
yθi,0 + O(h4) ,(2.21)

which along with (2.19) gives

θi,−1 = 2θi,0 − θi,1 + h2
( 1

κ
∂tθb − ∂2

xθb

)
+ O(h4) .(2.22)

This is a O(h4) formula analogous to (2.20). Our numerical experiments

indicate that both (2.20) and (2.22) are stable and full accuracy is achieved.

Since (2.22) only requires one interior point, we suggest its use in actual

computations.

2.2.2 Neumann boundary condition for temperature. For the Neumann

boundary condition (1.4) the temperature on the boundary is not known

explicitly, only its normal derivative. Thus, (2.16) is applied at every compu-

tational point (xi, yj ), 0 ≤ i, j ≤ N requiring us to determine two “ghost”

point values, e.g. θi,−1 and θi,−2 along Ŵx . As in the Dirichlet case above we

begin by deriving one-sided approximations. Local Taylor expansion near

the boundary gives

θi,−1 = θi,1 − 2h∂yθi,0 −
h3

3
∂3
yθi,0 + O(h5) ,

θi,−2 = θi,2 − 4h∂yθi,0 −
8h3

3
∂3
yθi,0 + O(h5) .

(2.23)
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The term ∂yθi,0 in (2.23) is known from the flux boundary condition (1.4).

It remains to determine ∂3
yθi,0, for which we again use information from the

PDE and its derivatives. Applying ∂y to the temperature equation along Ŵx

gives

θyt + uyθx + uθxy + vyθy + vθyy = κ(θyxx + ∂3
yθ) .(2.24)

Since θy is given along Ŵx , the first term on the left-hand side as well as

the first term on the right-hand side of (2.24) are known functions, θf t and

θf xx , respectively. The third and fifth terms on the left-hand side are zero

since u |Ŵ= 0. The fourth term on the left-hand side is also zero due to the

no-slip boundary condition and incompressibility, i.e. vy = −ux = 0 on Ŵx .

It remains to evaluate the second term on the left-hand side. Since vx = 0

along Ŵx it follows that uy = −(vx −uy) = −ω along Ŵx . Moreover, since in

the Neumann case (2.16) is updated at all grid points including the boundary

points, θx on Ŵx can be calculated by the standard fourth order long-stencil

formula (2.15). Combining these arguments, ∂3
yθ is approximated along Ŵx

by

∂3
yθi,0 =

1

κ

(
θf t − ωi,0D̃x(1 −

h2

6
D2

x)θi,0

)
− θf xx .(2.25)

Substitution of (2.25) in (2.23) gives

θi,−1 = θi,1 − 2hθf −
h3

3

( 1

κ
θf t −

1

κ
ωi,0D̃x(1 −

h2

6
D2

x)θi,0 − θf xx

)
,

θi,−2 = θi,2 − 4hθf −
8h3

3

( 1

κ
θf t −

1

κ
ωi,0D̃x(1 −

h2

6
D2

x)θi,0 − θf xx

)
.

(2.26)

We note that in the no-flux (or fixed-flux) case we have θf t = θf xx = 0, and

(2.26) reduces to

θi,−1 = θi,1 +
h3

3

ωi,0

κ
D̃x

(
1 −

h2

6
D2

x

)
θi,0 ,

θi,−2 = θi,2 +
8h3

3

ωi,0

κ
D̃x

(
1 −

h2

6
D2

x

)
θi,0 .

(2.27)

Analogous formulas follow for the remaining three boundaries.

3 Stability of long-stencil operators and one-sided approximation

In this section we study a simple model, the one-dimensional heat equation,

to explain why long-stencil operators coupled with one-sided approximation

are stable. The approach used here will be applied to the convergence proof
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of the full nonlinear two-dimensional equations in sections 4 and 5. The

one-dimensional heat equation is given by

∂tθ = κ∂2
xθ .(3.1)

Applying the fourth order spatial approximation (2.15) to (3.1) gives

∂tθ = κ
(
D2

x −
h2

12
D4

x

)
θ .(3.2)

Note that both the second and fourth order difference operators that appear

on the right-hand side of (3.2) are well-posed. It is this very important fact

that allows us to prove stability.

3.1 Dirichlet boundary condition for θ

For conciseness of presentation, we take θb = 0 in (1.3). In this case, we have

θ0 = θN = 0 and the one-sided approximation for θ−1 analogous to (2.20)

can be written as

θ−1 =
20

11
θ0 −

6

11
θ1 −

4

11
θ2 +

1

11
θ3 + O(h5) .(3.3)

We use the discrete L2-norm and the discrete L2-inner product defined

by

‖u‖1 = 〈u , u〉1/2
1 , 〈u , v〉1 = h

∑

1≤i≤N−1

ui vi ,(3.4)

and introduce ‖∇hu‖2 defined by

‖∇hu‖2
2 =

∑

0≤i≤N−1

(D+
x ui)

2 h , where D+
x ui =

ui+1 − ui

h
.(3.5)

We note that a two-dimensional version of the corresponding inner product

and L2 norm can be defined in a straightforward way.

Multiplying (3.2) by 2θ at interior grid points 1 ≤ i ≤ N−1, and applying

standard energy estimates gives

∂t‖θ‖2
1 + 2κ‖∇hθ‖2

2 +
κh2

6

(
‖D2

xθ‖2
1 +

1

h
(θ1D

2
xθ0 + θN−1D

2
xθN )

)
= 0 .

(3.6)

An estimate of the boundary term θ1D
2
xθ0 (and θN−1D

2
xθN ) requires some sub-

tlety since the term D2
xθ0 involves the one-sided “ghost” boundary condition

(3.3), namely

D2
xθ0 =

1

h2

(
5

11
θ1 −

4

11
θ2 +

1

11
θ3

)
.(3.7)
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Since we have assumed that θ vanishes on the boundary, (3.7) can be rewritten

as

D2
xθ0 = −

2

11
D2

xθ1 +
1

11
D2

xθ2 .(3.8)

As we will see below, the purpose of the form of (3.8) is to control local terms

by global terms. Application of Cauchy’s inequality gives the estimate

1

h
θ1D

2
xθ0 ≥ −

22

4·112 ·h3
θ2

1 − h(D2
xθ1)

2 −
12

4·112 ·h3
θ2

1 − h(D2
xθ2)

2

= −
5

4·112 ·h3
θ2

1 − h(D2
xθ1)

2 − h(D2
xθ2)

2 .(3.9)

The first term on the right-hand side of (3.9) can be controlled by one of

the terms in 2κ‖∇hθ‖2
2 appearing in (3.6), and the last two terms controlled

by ‖D2
xθ‖2

1 appearing in (3.7). The term θN−1D
2
xθN is handled in a similar

fashion. Combing these estimates gives

∂t‖θ‖2
1 + κ‖∇hθ‖2

2 ≤ 0 .(3.10)

This proves stability of the fourth order long-stencil operator together with

one-sided approximations near the boundary.

Remark 3.1 Alternatively, we can couple (3.2) with one-dimensional fourth

order extrapolation corresponding to (2.22), namely

θ−1 = 2θ0 − θ1 .(3.11)

Stability of (3.2) with (3.11) is more direct. Indeed, D2
xθ0 is in fact 0 by (3.11).

Therefore, (3.10) can be obtained immediately. Thus the fourth order scheme

with either (3.3) or (3.11) is stable.

3.2 Neumann boundary condition for θ

We assume θf = 0 in (1.4). In this case equation (3.2) is updated at all grid

points 0 ≤ i ≤ N . The corresponding one-sided approximations for θ−1 and

θ−2, analogous to (2.26), are given by

θ−1 = θ1 , θ−2 = θ2 ,(3.12)

since ∂3
xθ(0) = ∂3

xθ(1) = 0, which follows from derivations similar to

(2.24)–(2.25).
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Since θ does not necessarily vanish on the boundary, we introduce the

following discrete L2-norm and L2-inner product

‖u‖3 = 〈u , u〉1/2
3 , 〈u , v〉3 = h

(1

2
u0v0 +

∑

1≤i≤N−1

ui vi +
1

2
uNvN

)
.

(3.13)

The two-dimensional versions can be similarly defined.

An energy estimate is accomplished by taking the 〈 , 〉3 inner product of

the equation (3.2) with 2θ . It is straightforward to verify

〈 θ , D2
xθ〉3 = −‖∇hθ‖2

2 , 〈 θ , D4
xθ〉3 = ‖D2

xθ‖2
3 ,(3.14)

assuming the “ghost” point prescription (3.12). Moreover, observe that (3.14)

is a discrete version of integration by parts in the case of the symmetric pre-

scription (3.12). This is a crucial reason for the choice of symmetric extrapola-

tion for the temperature as presented in section 2 when a Neumann boundary

condition is imposed. As a result of (3.14), we have

∂t‖θ‖2
3 + 2κ‖∇hθ‖2

2 +
κh2

6
‖D2

xθ‖2
3 = 0 ,(3.15)

which indicates stability of the fourth order long-stencil operator and one-

sided approximation (3.12) near the boundary.

4 Convergence proof of Theorem 1.1

The convergence proof of the fourth order method for (1.1) proposed by the

authors in [16] is composed of technical consistency analysis for the approxi-

mated solutions and the corresponding error estimate.A typical difficulty that

arises in the analysis of finite difference methods is that if a direct truncation

error estimate is performed, an apparent loss of accuracy near the boundary

results, as can be seen by formal observation; see [11,12,21]. Instead, we

construct an approximate velocity field and vorticity from the exact stream

function. An approximate temperature can then be chosen as either an exact

solution or the one which includes an O(h4) correction term, depending on

the boundary condition for the temperature. The constructed velocity field,

vorticity, and temperature are then proven to satisfy the momentum equation

up to an O(h4) truncation error, including the vorticity boundary condition.

Similarly, the temperature transport equation is also shown to be satisfied

up to an O(h4) truncation error. This gives the consistency of our discret-

izations of the Boussinesq equations (1.1). The error analysis is based on

energy estimates. In the error estimate of the temperature transport equation,

we apply the stability analysis of the long-stencil operators and one-sided

approximations near the boundary, which was outlined in section 3.
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The fourth order method with Dirichlet boundary condition (1.3) for the

temperature is considered in this section. The corresponding analysis with the

Neumann boundary condition (1.4) is provided in section 5. For simplicity

of presentation we assume θb = 0.

4.1 Consistency analysis

Denote by ψe, ue, ωe, and θe the exact solutions of (1.1)-(1.3), and extend

ψe, θe smoothly to [−δ, 1 + δ]2, and let i,j = ψe(xi, yj ), �i,j = θe(xi, yj )

for −2 ≤ i, j ≤ N + 2. Approximates for U and V are constructed via

Ui,j = −D̃y

(
1 −

h2

6
D2

y

)
 , Vi,j = D̃x

(
1 −

h2

6
D2

x

)
 , for 0 ≤ i, j ≤ N .

(4.1)

We next construct an approximate vorticity. First define

	i,j =
(
�h +

h2

6
D2

xD
2
y

)
 , for 1 ≤ i, j ≤ N − 1 .(4.2)

Then 	 is recovered by solving the system

(
1 +

h2

12
�h

)
	i,j = 	i,j ,(4.3)

with boundary condition (say on Ŵx , j = 0)

	i,0 = (ωe)i,0 + h4ω̂i,0 , 0 ≤ i ≤ N ,(4.4)

where the function ω̂ is defined by

ω̂ =
(
−

1

240
∂4
x −

1

240
∂4
y +

1

90
∂2
x∂2

y

)
ωe .(4.5)

Note that h4ω̂ is exactly the O(h4) truncation error of
(
�h+

h2

6
D2

xD
2
y

)
ψe

−
(

1 +
h2

12
�h

)
ωe. The purpose of the introduction of h4ω̂ is to maintain

higher order consistency needed in the truncation error estimate for the dis-

crete derivatives of the constructed vorticity, as we will see in the following

lemma.

Lemma 4.1 For grid points 0 ≤ i, j ≤ N we have that

	 = ωe + h4ω̂ + O(h6)‖ψe‖C8 .(4.6)
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Proof. The construction of 	 and , and a Taylor expansion of ψe and ωe

shows that at each grid point (xi, yj ), 1 ≤ i, j ≤ N − 1,

(
1 +

h2

12
�h

)
	 =

(
�h +

h2

6
D2

xD
2
y

)
ψe(4.7)

=
(

1 +
h2

12
�h

)
ωe + h4ω̂ + O(h6)‖ψe‖C8 ,

where ω̂ was introduced in (4.5). The approximation (4.7) gives

(
1 +

h2

12
�h

)
(	 − ωe − h4ω̂)=−

h6

12
�hω̂ + O(h6)‖ψe‖C8 =O(h6)‖ψe‖C8,

(4.8)

since the second order differences of ω̂ is bounded by ‖ψe‖C8 . The combina-

tion of (4.8) and (4.4), and the property that the matrix I +
h2

12
�h is uniformly

diagonally dominant, results in (4.6). �

The analysis of the approximate velocities U and V is more straightforward.

From the definitions of U and V , and a Taylor expansion of ψe, we have at

grid points (xi, yj ), 0 ≤ i, j ≤ N ,

U = ue +
1

30
h4∂5

yψe + O(h5)‖ψe‖C6 ,(4.9)

V = ve −
1

30
h4∂5

xψe + O(h5)‖ψe‖C6 .

(4.6) and (4.9) provide estimates of the differences between the approxi-

mate U , V , and 	 and the exact solution. We must now carry out an analysis

of the finite difference operators applied to U , V , and 	. The results for

the convection and diffusion terms of the momentum equation are stated in

the following lemma, for which we only provide a brief description of the

analysis.

Lemma 4.2 For interior grid points (xi, yj ), 1 ≤ i, j ≤ N − 1, we have

that

D̃x(1 +
h2

6
D2

y)(U	) =
(

1 +
h2

6
�

)
∂x(ueωe) + O(h4)‖ψe‖C6‖ψe‖C8 .

(4.10)

D̃y

(
1 +

h2

6
D2

x

)
(V 	) =

(
1 +

h2

6
�

)
∂y(veωe) + O(h4)‖ψe‖C6‖ψe‖C8 ,

(4.11)
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h2

12
�h(UD̃x	 + V D̃y	)

=
h2

12
�(ue∂xωe + ve∂yωe) + O(h4)‖ψe‖C6‖ψe‖C8 ,(4.12)

(
�h +

h2

6
D2

xD
2
y

)
	 =

(
1 +

h2

12
�

)
�ωe + O(h4)‖ψe‖C8 .(4.13)

Proof. The verification of the above lemma relies on the estimates (4.6) and

(4.9). (4.13) is a direct consequence of (4.6) along with a Taylor expansion

of ωe. (4.10) results from the combination of (4.9) and (4.6), along with a

Taylor expansion of ueωe. The derivation of (4.11)–(4.12) is similar. �

Next we examine the time marching term. At the interior grid points

(xi, yj ), 1 ≤ i, j ≤ N − 1,

∂t

(
1 +

h2

12
�h

)
	 =

(
�h +

h2

6
D2

xD
2
y

)
∂tψe

=
(
� +

h2

12
(∂4

x + ∂4
y ) +

h2

6
∂2
x∂2

y

)
∂tψe + O(h4)‖∂tψe‖C6 .

(4.15)

The first term on the right-hand side is exactly (1 +
h2

12
�)∂tωe. For an esti-

mate of the second term consider the following Poisson equation satisfied by

∂tψe:
{

�(∂tψe) = ∂tωe , in 	 ,

∂tψe = 0 , on Ŵ .
(4.16)

A Schauder estimate of (4.16) gives

‖∂tψe‖C6,α ≤ C‖∂tωe‖C4,α ≤ C(‖ψe‖C8,α + ‖ψe‖C7,α‖ψe‖C5,α + ‖θe‖C5,α ) ,

(4.17)

where C depends on ν and κ , and in the second step we have applied the

original momentum equation. Therefore

∂t

(
1 +

h2

12
�h

)
	 =

(
1 +

h2

12
�

)
∂tωe

+O(h4)(‖ψe‖C8,α + ‖ψe‖C7,α‖ψe‖C5,α ) .(4.18)

Next, a Taylor expansion of θe shows that for the gravity term we have

D̃x

(
1 +

h2

12
(D2

y − D2
x)

)
� = (1 +

h2

12
�)∂xθe + O(h4)‖θe‖C5 .(4.19)
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The combination of (4.18)–(4.19) and Lemma 4.2, along with the original

PDE which implies that
(

1 +
h2

12
�

)
(∂tωe + ue·∇ωe − g∂xθe − ν�ωe) = 0,

results in

∂t	 + D̃x

(
1 +

h2

6
D2

y

)
(U	) + D̃y

(
1 +

h2

6
D2

x

)
(V 	)(4.20)

−
h2

12
�h(UD̃x	 + V D̃y	) − gD̃x

(
1 +

h2

12
(D2

y − D2
x)

)
�

= ν
(
�h +

h2

6
D2

xD
2
y

)
	 + f ,

where |f | ≤ Ch4‖ue‖C7,α (1 + ‖ue‖C5) + Ch4‖θe‖C5,α .

We note that the constructed vorticity 	 satisfies the fourth order for-

mula (2.12) up to O(h4) on the boundary. To see this, consider the following

one-sided Taylor expansion of ψe on the boundary applied to the kinematic

equation relating ωe and ψe,

(ωe)i,0 =
1

h2
(8i,1 − 3i,2 +

8

9
i,3 −

1

8
i,4) + O(h4)‖ψe‖C6 ,(4.21)

which in combination with the definition of 	i,0 in (4.4) and the fact that

|ω̂i,0| ≤ C‖ψe‖C6 , show that the vorticity boundary condition is satisfied up

to O(h4). In particular,

	i,0 =
1

h2
(8i,1 − 3i,2 +

8

9
i,3 −

1

8
i,4) + O(h4)‖ψe‖C6 .(4.22)

The truncation error analysis for the temperature equation is more direct.

A local Taylor expansion of θe gives

D̃x

(
1 −

h2

6
D2

x

)
� = ∂xθe + O(h4)‖θe‖C5 ,

D̃y

(
1 −

h2

6
D2

y

)
� = ∂yθe + O(h4)‖θe‖C5 ,(4.23)

(
�h −

h2

12
(D4

x + D4
y)

)
� = �θe + O(h4)‖θe‖C6 .

It can be seen from (4.9) and (4.23) that

UD̃x

(
1 −

h2

6
D2

x

)
� = ue∂xθe + O(h4)(‖ue‖C0‖θe‖C5 + ‖ue‖C5‖θe‖C1) ,

(4.24)

and a similar result follows for V D̃y

(
1 −

h2

6
D2

y

)
�. An estimate for the



572 C. Wang et al.

convection term in the temperature equation is then given by

UD̃x

(
1 −

h2

6
D2

x

)
� + V D̃y

(
1 −

h2

6
D2

y

)
� = ue ·∇θe(4.25)

+ O(h4)(‖ue‖C0‖θe‖C5 + ‖ue‖C5‖θe‖C1) .

Finally, from (4.23) and (4.25), along with the original temperature equation

∂tθe + ue ·∇θe = κ�θe, we have that

∂t� + UD̃x

(
1 −

h2

6
D2

x

)
� + V D̃y

(
1 −

h2

6
D2

y

)
�(4.26)

= κ
(
�h −

h2

12
(D4

x + D4
y)

)
� + g ,

where |g| ≤ Ch4(‖θe‖C5‖ue‖C0 + ‖θe‖C1‖ue‖C5 + ‖θe‖C6).

In addition, it should be mentioned that

�i,−1 =
20

11
�i,0 −

6

11
�i,1 −

4

11
�i,2 +

1

11
�i,3(4.27)

+
12

11
h2

( 1

κ
∂tθb − ∂2

xθb

)
+ ei,0 ,

where |ei,0| ≤ Ch5‖θe‖C5 , as discussed in section 2. The approximation

(4.27) will be used in the estimates of error functions in the next subsection.

This completes the consistency analysis.

4.2 Proof of Theorem 1.1

We now prove Theorem 1.1, and begin by defining the following error func-

tions at all grid points (xi, yj ), 0 ≤ i, j ≤ N ,

ψ̃ = ψ −  , ω̃ = ω − 	 , ũ = u − U ,

ṽ = v − V , θ̃ = θ − � , ω̃ = ω − 	 .(4.28)

Subtracting (4.20) and (4.26) from the numerical scheme (2.7), (2.16),
and (2.8) we have





∂t θ̃ + L1 = κ
(
�h −

h2

12
(D4

x + D4
y)

)
θ̃ − g , θ̃ |Ŵ= 0 ,

(
1 +

h2

12
�h

)
∂t ω̃ + L2 − gD̃x

(
1 +

h2

12
(D2

y − D2
x)

)
θ̃ = ν

(
�h +

h2

6
D2

xD
2
y

)
ω̃ − f ,

(
�h +

h2

6
D2

xD
2
y

)
ψ̃ =

(
1 +

h2

12
�h

)
ω̃ , ψ̃ |Ŵ= 0 ,

ũ = −D̃y

(
1 −

h2

6
D2

y

)
ψ̃ , ṽ = D̃x

(
1 −

h2

6
D2

x

)
ψ̃ ,

(4.29)
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where the linearized convection error terms L1 and L2 appearing in the tem-

perature and vorticity equation, respectively, can be represented as

L1 = ũD̃x

(
1 −

h2

6
D2

x

)
� + uD̃x

(
1 −

h2

6
D2

x

)
θ̃

+ṽD̃y

(
1 −

h2

6
D2

y

)
� + vD̃y

(
1 −

h2

6
D2

y

)
θ̃ ,

L2 = D̃x

(
1 +

h2

6
D2

y

)
(̃u	 + uω̃) + D̃y

(
1 +

h2

6
D2

x

)
(̃v	 + vω̃)

−
h2

12
�h(uD̃xω̃ + vD̃yω̃ + ũD̃x	 + ṽD̃y	) .

(4.30)

The local truncation error terms satisfy |g| ≤ Ch4(‖θe‖C6 +‖θe‖C5‖ue‖C0 +
‖θe‖C1‖ue‖C5) and |f | ≤ Ch4‖ue‖C7,α (1 + ‖ue‖C5) + Ch4‖θe‖C5 . Along

the boundary (say on Ŵx, j = 0) we have

ψ̃i,−1 = 10ψ̃i,1 − 5ψ̃i,2 +
5

3
ψ̃i,3 −

1

4
ψ̃i,4 ,

ω̃i,0 =
1

h2

(
8ψ̃i,1 − 3ψ̃i,2 +

8

9
ψ̃i,3 −

1

8
ψ̃i,4

)
+ hi,0 ,

θ̃i,−1 = −
6

11
θ̃i,1 −

4

11
θ̃i,2 +

1

11
θ̃i,3 + ei,0 ,

(4.31)

where |hi,0| ≤ Ch4‖ue‖C5 and |ei,0| ≤ Ch5‖θe‖C5 .

We now derive estimates of the error functions for the closed system

(4.29) along with the boundary conditions (4.31). Multiplying the vorticity

error equation by −(1 +
h2

12
�h)ψ̃ , and the temperature error equation by θ̃

at the interior grid points 1 ≤ i, j ≤ N − 1, we have

−
〈(

1 +
h2

12
�h

)
ψ̃,

(
1 +

h2

12
�h

)
∂t ω̃

〉

1

+
〈(

1 +
h2

12
�h

)
ψ̃,

(
�h +

h2

6
D2

xD
2
y

)
ω̃

〉

1

=
〈(

1 +
h2

12
�h

)
ψ̃,L2

〉

1

− g

〈(
1 +

h2

12
�h

)
ψ̃ , D̃x

(
1 +

h2

12
(D2

y − D2
x)

)
θ̃

〉

1

+
〈(

1 +
h2

12
�h

)
ψ̃ , f

〉

1

,

(4.32)
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and

1

2

d

dt
‖θ̃‖2

1 + 〈θ̃ ,L1〉1 = κ

〈
θ̃ ,

(
�h −

h2

12
(D4

x + D4
y)

)
θ̃

〉

1

− 〈θ̃ , g〉1 .(4.33)

First we focus on the vorticity equation (4.32). Summing by parts and

using the discrete kinematic relationship between ψ̃ and ω̃ gives

−
〈(

1 +
h2

12
�h

)
ψ̃,

(
1 +

h2

12
�h

)
∂t ω̃

〉

1

= −
〈(

1 +
h2

12
�h

)
ψ̃,

(
�h +

h2

6
D2

xD
2
y

)
∂t ψ̃

〉

1

=
1

2

dẼ

dt
,(4.34)

with

Ẽ = ‖∇hψ̃‖2
2 −

h2

12
‖�hψ̃‖2

1 −
h2

6
‖DxDyψ̃‖2

1

+
h4

72

(
‖DxD

2
yψ̃‖2

1 + ‖DyD
2
xψ̃‖2

1

)
,(4.35)

in which the vanishing boundary condition for ψ̃ was utilized.

For the diffusion term in (4.32) we have the following estimate.

Proposition 4.3 The following inequality holds

〈(
1 +

h2

12
�h

)
ψ̃,

(
�h +

h2

6
D2

xD
2
y

)
ω̃

〉

1

≥
1

8
‖ω̃‖2

1 − h8 .(4.36)

Proof. Summing by parts and keeping in mind that ψ̃ |Ŵ= 0, we have

〈(
1 +

h2

12
�h

)
ψ̃ ,

(
�h +

h2

6
D2

xD
2
y

)
ω̃

〉

1

=
〈(

�h +
h2

6
D2

xD
2
y

)
ψ̃ ,

(
1 +

h2

12
�h

)
ω̃

〉

1

+ B .(4.37)

The first term on the right-hand side of (4.37) is exactly ‖ω̃‖2 since

(
�h +

h2

6
D2

xD
2
y

)
ψ̃ =

(
1 +

h2

12
�h

)
ω̃ = ω̃ ,
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and the boundary term B can be decomposed as B = B1 + B2 + B3 where

B1 =
N−1∑

i=1

((
1 +

h2

6
D2

x

)
ψ̃i,1 ·ω̃i,0 +

(
1 +

h2

6
D2

x

)
ψ̃i,N−1 ·ω̃i,N )

)

+
N−1∑

j=1

((
1 +

h2

6
D2

y

)
ψ̃1,j ·ω̃0,j +

(
1 +

h2

6
D2

y

)
ψ̃N−1,j ·ω̃N,j )

)

B2 =
h4

72

N−1∑

i=1

(D2
xψ̃i,1D

2
xω̃i,0 + D2

xψ̃i,N−1D
2
xω̃i,N )

+
h4

72

N−1∑

j=1

D2
yψ̃1,jD

2
yω̃0,j + D2

yψ̃N−1,jD
2
yω̃N,j )

B3 =
1

6
(ψ̃1,1ω̃0,0 + ψ̃1,N−1ω̃0,N + ψ̃N−1,1ω̃N,0 + ψ̃N−1,N−1ω̃N,N ) .

(4.38)

To complete the proof we estimate the three boundary terms separately in the

following Lemmas.

Lemma 4.4 We have the estimate

B1 ≥
1

3h2
Bψ −

3

4

(
‖
(

1 +
h2

6
D2

y

)
D2

xψ̃‖2
1 + ‖

(
1 +

h2

6
D2

x

)
D2

yψ̃‖2
1

)
− Ch9 ,

(4.39)

where Bψ is given by

Bψ =
N−1∑

i=1

(ψ̃2
i,1 + ψ̃2

i,N−1) +
N−1∑

j=1

(ψ̃2
1,j + ψ̃2

N−1,j ) .(4.40)

Proof. The boundary condition (4.31) for ω̃ implies that

N−1∑

i=1

(
1+

h2

6
D2

x

)
ψ̃i,1

ω̃i,0 can be written in two parts, I1 and I2, where

I1 =
1

h2

N−1∑

i=1

(1 +
h2

6
D2

x)ψ̃i,1

(
8ψ̃i,1 − 3ψ̃i,2 +

8

9
ψ̃i,3 −

1

8
ψ̃i,4

)
,

I2 =
N−1∑

i=1

(1 +
h2

6
D2

x)ψ̃i,1 · hi,0 .

(4.41)

The term I2 can be controlled by Cauchy’s inequality directly. First, re-

call the definition of hi,0 in (4.31). Then summing by parts gives I2
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=
N−1∑

i=1

ψ̃i,1(1 +
h2

6
D2

x)hi,0, and we have

I2 ≥ −
1

36

N−1∑

i=1

ψ̃2
i,1

h2
− 9

N−1∑

i=1

h2
(
(1 +

h2

6
D2

x)hi,0

)2

≥ −
1

36

N−1∑

i=1

ψ̃2
i,1

h2
− Ch9 ,

(4.42)

since |hi,0| ≤ Ch4‖ue‖C5 . As for I1, since ψ̃ vanishes on the boundary, the

term 8ψ̃i,1 − 3ψ̃i,2 +
8

9
ψ̃i,3 −

1

8
ψ̃i,4 can be rewritten as

8ψ̃i,1 − 3ψ̃i,2 +
8

9
ψ̃i,3 −

1

8
ψ̃i,4 =

25

6
ψ̃i,1 −

115

72
h2(D2

yψ̃)i,1

+
23

36
h2(D2

yψ̃)i,2 −
1

8
h2(D2

yψ̃)i,3 ,(4.43)

which implies that I1 can be, after summing by parts, expressed as

I1 =
25

6h2

N−1∑

i=1

(ψ̃2
i,1 +

h2

6
ψ̃i,1D

2
xψ̃i,1) −

115

72

N−1∑

i=1

ψ̃i,1

(
1 +

h2

6
D2

x

)
(D2

yψ̃)i,1

+
23

36

N−1∑

i=1

ψ̃i,1

(
1 +

h2

6
D2

x

)
(D2

yψ̃)i,2−
1

8

N−1∑

i=1

ψ̃i,1

(
1 +

h2

6
D2

x

)
(D2

yψ̃)i,3.

(4.44)

The first term on the right-hand side of (4.44) is estimated directly, while for

the remaining terms we apply Cauchy’s inequality, giving

25

6h2

N−1∑

i=1

(ψ̃2
i,1 +

h2

6
ψ̃i,1D

2
xψ̃i,1) ≥

1

3

25

6h2

N−1∑

i=1

ψ̃2
i,1 ,(4.45)

−
115

72

N−1∑

i=1

ψ̃i,1

(
1 +

h2

6
D2

x

)
(D2

yψ̃)i,1

≥ −
N−1∑

i=1

( 1

3h2

1152

722
|ψ̃i,1|2 +

3

4
h2

∣∣∣∣
(

1 +
h2

6
D2

x

)
(D2

yψ̃)i,1

∣∣∣∣
2)

,

23

36

N−1∑

i=1

ψ̃i,1

(
1 +

h2

6
D2

x

)
(D2

yψ̃)i,2

≥ −
N−1∑

i=1

( 1

3h2

232

362
|ψ̃i,1|2 +

3

4
h2

∣∣∣∣
(

1 +
h2

6
D2

x

)
(D2

yψ̃)i,2

∣∣∣∣
2)

,
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−
1

8

N−1∑

i=1

ψ̃i,1

(
1 +

h2

6
D2

x

)
(D2

yψ̃)i,3

≥ −
N−1∑

i=1

( 1

3h2

12

82
|ψ̃i,1|2 −

3

4
h2

∣∣∣∣
(

1 +
h2

6
D2

x

)
(D2

yψ̃)i,3

∣∣∣∣
2)

.

Since
1

3
·
25

6
−

1

3

(
1152

722
+

232

362
+

12

82

)
≥

13

36
, we have

I1 ≥
13

36h2

N−1∑

i=1

|ψ̃i,1|2 −
3

4
h2

N−1∑

i=1

∑

j=1,2,3

∣∣∣∣
(

1 +
h2

6
D2

x

)
D2

yψ̃i,j

∣∣∣∣
2

.(4.46)

The combination of I1 and I2 then gives

N−1∑

i=1

(
1 +

h2

6
D2

x

)
ψ̃i,1ω̃i,0

≥
1

3h2

N−1∑

i=1

|ψ̃i,1|2 −
3

4

N−1∑

i=1

∑

j=1,2,3

∣∣∣∣
(

1 +
h2

6
D2

x

)
D2

yψ̃i,j

∣∣∣∣
2

h2 − Ch9 .(4.47)

Finally, we obtain

B1 ≥
1

3h2
Bψ −

3

4
h2

N−1∑

i=1

N−1∑

j=1

∣∣∣∣
(

1 +
h2

6
D2

y

)
D2

xψ̃i,j

∣∣∣∣
2

−
3

4
h2

N−1∑

i=1

N−1∑

j=1

∣∣∣∣
(

1 +
h2

6
D2

x

)
D2

yψ̃i,j

∣∣∣∣
2

− Ch9 ,(4.48)

where Bψ was defined in (4.40). Moreover, (4.39) is a direct consequence of

(4.48). The treatment of the other three boundary terms is exactly the same.

This completes the proof of Lemma 4.4. �

To complete the estimate of B1 we need to control ‖
(

1 + h2

6
D2

y

)
D2

xψ̃‖1

and ‖
(

1 + h2

6
D2

x

)
D2

yψ̃‖1. However, standard local estimates do not work in

this case. The methodology we adopt here is similar to that used in [21], i.e.,

control the local terms by global terms via elliptic regularity.

Lemma 4.5 For any ψ̃ that vanishes on the boundary, we have
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‖D2
xψ̃‖2

1 + ‖D2
yψ̃‖2

1 ≤
9

8
‖ω̃‖2

1 ,(4.49)

‖
(

1 +
h2

6
D2

y

)
D2

xψ̃‖2
1 + ‖

(
1 +

h2

6
D2

x

)
D2

yψ̃‖2
1 ≤ ‖ω̃‖2

1 .(4.50)

Proof. Given the homogeneous boundary condition ψ̃i,j |Ŵ= 0, we perform

a Sine transformation of {ψ̃i,j } in both the x and y directions, i.e.,

ψ̃i,j =
N−1∑

k,ℓ=1

( 2
√

2N

)2̂̃ψk,ℓ sin(kπxi) sin(ℓπyj ) .(4.51)

Parseval’s equality gives

N−1∑

i,j=1

(ψ̃i,j )
2 =

N−1∑

k,ℓ=1

∣∣∣̂̃ψk,ℓ

∣∣∣
2

.(4.52)

If we introduce

fk = −
4

h2
sin2

(kπh

2

)
, gℓ = −

4

h2
sin2

(ℓπh

2

)
,(4.53)

then the Fourier Sine expansions of D2
xψ̃ and D2

yψ̃ are given by, respectively,

D2
xψ̃i,j =

N−1∑

k,l=1

( 2
√

2N

)2

fk
̂̃ψk,l sin(kπxi) sin(ℓπyj ) ,

D2
yψ̃i,j =

N−1∑

k,l=1

( 2
√

2N

)2

gℓ
̂̃ψk,l sin(kπxi) sin(ℓπyj ) ,

(4.54)

which in turn implies that

N−1∑

i,j=1

|ω̃i,j |2 =
N−1∑

i,j=1

∣∣∣∣
(
�h +

h2

6
D2

xD
2
y

)
ψ̃i,j

∣∣∣∣
2

=
N−1∑

k,ℓ=1

(
fk + gℓ +

h2

6
fkgℓ

)2 ∣∣∣̂̃ψk,ℓ

∣∣∣
2

.(4.55)

Similarly, we have

N−1∑

i,j=1

|
(

1 +
h2

6
D2

y

)
D2

xψ̃i,j |2 =
N−1∑

k,ℓ=1

|
(

1 +
h2

6
gℓ

)
fk|2

∣∣∣̂̃ψk,ℓ

∣∣∣
2

,

N−1∑

i,j=1

|
(

1 +
h2

6
D2

x

)
D2

yψ̃i,j |2 =
N−1∑

k,ℓ=1

|
(

1 +
h2

6
fk

)
gℓ|2

∣∣∣̂̃ψk,ℓ

∣∣∣
2

.

(4.56)
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On the other hand, direct calculation along with the fact that −
4

h2
≤ fk, gℓ ≤

0 shows that

|fk + gℓ +
h2

6
fkgℓ|2 ≥ |

(
1 +

h2

6
gℓ

)
fk|2 + |

(
1 +

h2

6
fk

)
gℓ|2 ,(4.57)

|fk + gℓ +
h2

6
fkgℓ|2 ≥

(
f 2

k + g2
ℓ −

2

9
fkgℓ

)
≥

8

9
(f 2

k + g2
ℓ ) .(4.58)

Combining (4.55)–(4.57) gives (4.50). Estimate (4.49) can be argued in a

similar fashion. Lemma 4.5 is proven. �

The combination of Lemmas 4.4 and 4.5 results in the estimate

B1 ≥
1

3h2
Bψ −

3

4
‖ω̃‖2

1 − Ch9 .(4.59)

An estimate for B2 can be derived in a similar fashion, which we only

briefly outline. Consider first the expression
∑

i D
2
xψ̃i,1D

2
xω̃i,0 in B2. Once

again the boundary condition (4.31) for ω̃ leads to examining
∑

i D
2
xψ̃i,1

D2
xω̃i,0 in two parts, I3 and I4, given by

I3 =
1

h2

N−1∑

i=1

D2
xψ̃i,1

(
8D2

xψ̃i,1 − 3D2
xψ̃i,2 +

8

9
D2

xψ̃i,3 −
1

8
D2

xψ̃i,4

)
,

I4 =
N−1∑

i=1

D2
xψ̃i,1D

2
xhi,0 .

(4.60)

The estimate of I3 and I4 is similar to that of I1 and I2, respectively. Repeating

the arguments in the proof of Lemma 4.4, we arrive at (omitting the details)

B2 ≥ −
1

144
h4‖D2

yD
2
xψ̃‖2

1 − Ch9 .(4.61)

On the other hand, the fact that ‖D2
yD

2
xψ̃‖1 ≤

4

h2
‖D2

xψ̃‖1 and ‖D2
yD

2
xψ̃‖1 ≤

4

h2
‖D2

yψ̃‖1 implies

‖D2
yD

2
xψ̃‖2

1 =
1

2
(‖D2

yD
2
xψ̃‖2

1 + ‖D2
yD

2
xψ̃‖2

1) ≤
8

h4
‖D2

xψ̃‖2
1 +

8

h4
‖D2

yψ̃‖2
1

≤
9

h4
‖ω̃‖2

1 ,(4.62)
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where in the last step we applied (4.49) in Lemma 4.5. Substituting (4.62)

into (4.61), we arrive at

B2 ≥ −
1

16
‖ω̃‖2

1 − Ch9 .(4.63)

Finally, B3 can be controlled by applying Cauchy’s inequality (we only

consider here the term
1

6
ψ̃1,1ω̃0,0)

1

6
ψ̃1,1ω̃0,0 ≥ −

1

12

ψ̃2
1,1

h2
−

1

12
h2ω̃2

0,0 ≥ −
1

12

ψ̃2
1,1

h2
− Ch10‖ψe‖2

C8 ,(4.64)

where in the last step we used the fact that |ω̃0,0| ≤ Ch4‖ψe‖C8 by our con-

struction of 	 in section 3.1. The first term on the right-hand side of (4.64)

can be absorbed into the Bψ term, giving

B3 ≥ −
1

12h2
Bψ − Ch9 .(4.65)

The combination of (4.63), (4.65), and Lemma 4.4 shows that B ≥

−
13

16
‖ω̃‖2

1 − h8, whose substitution into (4.37) is exactly (4.36). This com-

pletes the proof of Proposition 4.3. �

The estimates for the linearized convection terms in (4.32) are given in

the following proposition. The proof is similar to that of Proposition 4.3 and

the details are left to interested readers.

Proposition 4.6 Assume a-priori that the error functions for the velocity

field and temperature satisfy

‖ũ‖L∞ ≤ h2 , ‖θ̃‖L∞ ≤ h2 .(4.66)

Then we have
〈(

1 +
h2

12
�h

)
ψ̃ , L2

〉

1

≤ C̃1‖∇hψ̃‖2
2 +

ν

8
‖ω̃‖2

1 + h8 ,(4.67)

where C̃1 =
C(1 + ‖ue‖C0)2

ν
+ C(2 + ‖ue‖C1)2 + C‖ue‖C5 .

In addition, by Cauchy’s inequality and the boundary condition for the

temperature error function θ̃ in (4.31), we have the estimate of the gravity

term
∣∣∣∣
〈(

1 +
h2

12
�h

)
ψ̃ , D̃x

(
1 −

h2

12
(D2

y − D2
x)

)
θ̃

〉

1

∣∣∣∣
≤ C(‖ψ̃‖2

1 + ‖∇hθ̃‖2
2) + Ch10 ,(4.68)
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In (4.33), the local truncation error term −〈θ̃ , g〉1 can be controlled by

Cauchy’s inequality. The technique used in Lemma 4.6 can be applied here for

the estimate of the linearized temperature convection term, i.e., the assumed

a-priori assumption (4.66) leads to

∣∣∣∣〈θ̃ ,L1〉1

∣∣∣∣ ≤ C̃2‖θ̃‖2
1 +

1

2
κ‖∇hθ̃‖2

2 + h8 ,(4.69)

where C̃2 =
C(1 + ‖ue‖C0)2

κ
.

Next, we apply the technique demonstrated in section 3.1 for the sta-

bility analysis of the long-stencil discretization of the one-dimensional heat

equation to the temperature diffusion term.

Proposition 4.7 We have

−
〈
θ̃ ,

(
�h −

h2

12
(D4

x + D4
y)

)
θ̃

〉

1

≥
1

2
‖∇hθ̃‖2

2 − h8 .(4.70)

Proof. The proof of (4.70) is just the two-dimensional version of the stability

analysis in section 3. Since θ̃ vanishes on the boundary, we have

−
〈
θ̃ ,

(
�h −

h2

12
(D4

x + D4
y)

)
θ̃

〉

1

= ‖∇hθ̃‖2
2 +

h2

12
‖D2

x θ̃‖2
1 +

h2

12
‖D2

y θ̃‖2
1 +

h2

12
B ,(4.71)

where B arises from the boundary terms, which after summation by parts,

can be written as

B =
N−1∑

i=1

θ̃i,1(D
2
y θ̃ )i,0 +

N−1∑

i=1

θ̃i,N−1(D
2
y θ̃ )i,N +

N−1∑

j=1

θ̃1,j (D
2
x θ̃ )0,j

+
N−1∑

j=1

θ̃N−1,j (D
2
x θ̃ )N,j .(4.72)

We focus on the first term appearing on the right-hand side of (4.72); the

other three boundary terms can be treated similarly. Applying the boundary

condition for θ̃ at the “ghost points” as in (4.31), (D2
y θ̃ )i,0 can be written as

(D2
y θ̃ )i,0 =

1

h2

( 5

11
θ̃i,1 −

4

11
θ̃i,2 +

3

11
θ̃i,3 + ei,0

)
,(4.73)

which is analogous to (3.7) except for the local error term ei,0 (defined in

(4.31)), whose product with θ̃i,1 can be controlled by Cauchy’s inequality.
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Alternatively, we can rewrite the right-hand side of (4.73), as we did in sec-

tion 3, as

(D2
y θ̃ )i,0 = −

2

11
(D2

y θ̃ )i,1 +
1

11
(D2

y θ̃ )i,2 +
ei,0

h2
.(4.74)

The aim here is the control of local terms by global terms. Applying Cauchy’s

inequality to each term in (4.74) leads to

θ̃i,1(D
2
y θ̃ )i,0 ≥ −

22

4·112 ·h2
θ̃2
i,1 − h2(D2

y θ̃i,1)
2 −

12

4·112 ·h2
θ̃2
i,1 − h2(D2

y θ̃i,2)
2

−
1

4h2
θ̃2
i,1 −

e2
i,0

h2

≥ −
1

2h2
θ̃2
i,1 − h2(D2

y θ̃i,1)
2 − h2(D2

y θ̃i,2)
2 −

e2
i,0

h2
.

(4.75)

Here the arguments in section 4 can be repeated: the first term appearing above

can be controlled by ‖∇hθ̃‖2
2, since it will be multiplied by

h2

12
, resulting in a

term greater than
1

2
‖∇hθ̃‖2

2; the second and third terms can be controlled by

‖D2
y θ̃‖2

2; while the last term can be controlled by

h2

12

N−1∑

i=1

e2
i,0

h2
≤ Nh2 ·Ch10‖θe‖2

C6 ·
1

h2
≤ Ch9‖θe‖2

C6 ,(4.76)

where we used the fact that h =
1

N
. (4.70) then follows. �

Finally, the combination of (4.32)–(4.37), and (4.67)–(4.70) gives us

1

2

dẼ

dt
+

1

2

d

dt
‖θ̃‖2

1 ≤ Ch8 + C‖f ‖2
1 + C‖g‖2

1 + C̃1‖∇hψ̃‖2
2

+C̃2‖θ̃‖2
1 −

κ

2
‖∇hθ̃‖2

2 .(4.77)

Integrating in time results in

Ẽ + ‖θ̃‖2
1 ≤ C

∫ T

0

(‖f ‖2
1 + ‖g‖2

1) dt + 2C̃2

∫ T

0

‖θ̃‖2
1 dt

+2C̃1

∫ T

0

‖∇hψ̃‖2
2 dt + CT h8 .(4.78)

It can be seen that

‖∇hψ̃‖2
2 ≤ 3(‖∇hψ̃‖2

2 −
h2

12
‖�hψ̃‖2

1 −
h2

6
‖DxDyψ̃‖2

1) ,(4.79)
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since ψ̃ vanishes on the boundary, which along with (4.78) implies that

‖∇hψ̃‖2
2 + ‖θ̃‖2

1 ≤ C

∫ T

0

(‖f ‖2
1 + ‖g‖2

1) dt + CC̃1

∫ T

0

‖∇hψ̃‖2
2 dt

+CC̃2

∫ T

0

‖θ̃‖2
1 dt + CT h8 .(4.80)

By Gronwall’s inequality we then have

‖∇hψ̃‖2
2 + ‖θ̃‖2

1 ≤ Cexp
{
CC̃1T + CC̃2T

}

(∫ T

0

‖f (·, s)‖2
1 + ‖g(·, s)‖2

1 ds + CT h8
)

≤ CT h8exp
{
CC̃1T + CC̃2T

}
(4.81)

(
‖ue‖2

C7,α (1 + ‖ue‖C5)2 + ‖θe‖2
C5‖ue‖2

C5

+‖θe‖2
C6 + CT h8

)
.

Thus, we have proven

‖u(·, t) − ue(t)‖L2 + ‖θ(·, t) − θe(t)‖L2

≤ Ch4
(
‖ue‖C7,α (1 + ‖ue‖C5) + ‖θe‖C5‖ue‖C5 + ‖θe‖C6

)

·exp

{
CT

ν
(1 + ‖ue‖C1)2 +

CT

κ
(1 + ‖ue‖C0)2

}
.

(4.82)

Using the inverse inequality, we have

‖ũ‖L∞ ≤ Ch3 .(4.83)

At this point, we can introduce a standard concept which asserts that (4.66)

will never be violated if h is small enough, and Theorem 1.1 is proven. ⊓⊔

5 Convergence proof of Theorem 1.2

The numerical scheme with the Neumann boundary condition (1.4), namely

(2.7), (2.16), and (2.26), is analyzed in this section. For simplicity of pre-

sentation we set θf = 0 in which case the one-sided extrapolation of the

temperature at the boundary is given by (2.27).

The consistency analysis of the momentum equation is the same as that

presented in section 4. We denote by ψe, ue, and ωe the exact solutions of

(1.1)–(1.2), and (1.4), and extend ψe smoothly to [−δ, 1 + δ]2. Then let

i,j = ψe(xi, yj ) for −2 ≤ i, j ≤ N + 2. The approximated velocity pro-

files U and V , and the vorticity profile 	 are given by (4.1) and (4.2)–(4.5),
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respectively. Lemmas 4.1 and 4.2, along with the estimate for the time march-

ing term in (4.18), remain valid. The fourth order approximation (4.22) for

the constructed vorticity 	 on the boundary is also preserved.

Regarding the temperature variable, instead of substituting the exact solu-

tion into the numerical scheme, a careful construction of an approximated

temperature profile is performed by adding an O(h4) correction term to θe

to satisfy the truncation error fully to fourth order. The reason for this proce-

dure is to avoid the loss of accuracy near the boundary which would result

from a direct truncation error estimate. To be more precise, we construct the

approximate temperature field � as

� = θe + h4θ̂ ,(5.1)

in which the correction function θ̂ satisfies the Poisson equation

�θ̂ = C1 ,(5.2a)

with the Neumann boundary condition

∂y θ̂ (x, 0) =
1

80
∂5
yθe(x, 0) , ∂y θ̂ (x, 1) =

1

80
∂5
yθe(x, 1) ,

∂x θ̂ (0, y) =
1

80
∂5
xθe(0, y) , ∂x θ̂ (1, y) =

1

80
∂5
xθe(1, y) .

(5.2b)

The scalar C1 (a function of time t) is chosen as

∫

	

C1 dx =
∫

∂	

∂θ̂

∂n
dn

in order to maintain consistency with the Neumann boundary condition, i.e.,

C1 =
1

|	|

(∫ 1

0

−
1

80
∂5
yθe(x, 0) +

1

80
∂5
yθe(x, 1) dx

+
∫ 1

0

−
1

80
∂5
xθe(0, y) +

1

80
∂5
xθe(1, y) dy

)
.(5.3)

A Schauder estimate applied to the Poisson equation (5.2) gives

‖θ̂‖Cm,α ≤ C‖θe‖Cm+4,α , for m ≥ 2 .(5.4)

The reason for taking the boundary condition for θ̂ in (5.2b) will become

apparent later. A local Taylor expansion for the exact temperature field θe at
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points near the boundary y = 0 gives

(θe)i,−1 = (θe)i,1 −
h3

3
∂3
yθe(xi, 0) −

h5

60
∂5
yθe(xi, 0) + O(h7)‖θe‖C7

= (θe)i,1 +
h3

3 κ
(ωe)i,0(∂xθe)i,0 −

h5

60
∂5
yθe(xi, 0) + O(h7)‖θe‖C7 ,

(θe)i,−2 = (θe)i,2 −
8h3

3
∂3
yθe(xi, 0) −

32h5

60
∂5
yθe(xi, 0) + O(h7)‖θe‖C7

= (θe)i,2 +
8h3

3 κ
(ωe)i,0(∂xθe)i,0 −

32h5

60
∂5
yθe(xi, 0) + O(h7)‖θe‖C7,

(5.5)

due to the no-flux boundary condition for θe and the derivation for ∂3
yθe as

given in (2.25) by applying the original PDE on the boundary. The insertion

of the boundary conditions given by (5.2b) into a Taylor expansion of θ̂ , along

with the Schauder estimate ‖θ̂‖C3 ≤ C‖θe‖C7,α given by (5.4), gives

θ̂i,−1 = θ̂i,1 − 2h∂y θ̂i,0 + O(h3)∂3
y θ̂i,0

= θ̂i,1 − h
40

∂5
yθe(xi, 0) + O(h3)‖θe‖C7,α ,

θ̂i,−2 = θ̂i,2 − 4h∂y θ̂i,0 + O(h3)∂3
y θ̂i,0

= θ̂i,2 − h
20

∂5
yθe(xi, 0) + O(h3)‖θe‖C7,α .

(5.6)

The combination of (5.5) and (5.6) results in an estimate for � = θe + h4θ̂

given by

�i,−1 = �i,1 +
h3

3 κ
(ωe)i,0(∂xθe)i,0 −

h5

24
∂5
yθe(xi, 0) + O(h7)‖θe‖C7,α ,

�i,−2 = �i,2 +
8h3

3 κ
(ωe)i,0(∂xθe)i,0 −

7h5

12
∂5
yθe(xi, 0) + O(h7)‖θe‖C7,α .

(5.7)

Similar results can be obtained at the other three boundary segments, namely

y = 1, x = 0, and x = 1. Note that the O(h5) coefficients of �i,−1 and �i,−2

have the ratio 1 : 14. This will be needed for the error analysis of the inner

product of the temperature with the diffusion term in the temperature equa-

tion. This crucial point is the reason for the choice of the boundary condition

for θ̂ in (5.2b).

A direct consequence of the Schauder estimate (5.4) is given by

‖θ̂‖W 2,∞(	) ≤ C‖θ̂‖C2,α ≤ C‖θe‖C6,α ,(5.8)
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in which ‖ · ‖Wm,∞(	) represents the maximum value, at grids points, of the

given function up to m-th order finite-difference, over the domain 	. As a

result, we have

‖� − θe‖W 2,∞(	) = h4‖θ̂‖W 2,∞(	) ≤ Ch4‖θe‖C6,α .(5.9)

The combination of (5.9) and a local Taylor expansion for θe gives the esti-

mates

D̃x

(
1 +

h2

12
(D2

y − D2
x)

)
� = D̃x

(
1 +

h2

12
(D2

y − D2
x)

)
θe + O(h4)‖θe‖C6,α

=
(

1 +
h2

12
�

)
∂xθe + O(h4)‖θe‖C6,α ,

(5.10)

D̃x

(
1 −

h2

6
D2

x

)
� = ∂xθe + O(h4)‖θe‖C6,α ,

D̃y

(
1 −

h2

6
D2

y

)
� = ∂yθe + O(h4)‖θe‖C6,α ,(5.11)

(
�h −

h2

12
(D4

x + D4
y)

)
� = �θe + O(h4)‖θe‖C6,α ,

UD̃x

(
1 −

h2

6
D2

x

)
� = ue∂xθe + O(h4)‖ue‖C5‖θe‖C6,α ,(5.12)

V D̃x

(
1 −

h2

6
D2

x

)
� = ve∂yθe + O(h4)‖ue‖C5‖θe‖C6,α .(5.13)

Moreover, taking the time derivative of (5.2) leads to a Poisson equation

for ∂t θ̂ , namely

�(∂t θ̂ ) = ∂tC
1 ,(5.14a)

with the Neumann boundary conditions

∂y(∂t θ̂ )(x, 0) =
1

80
(∂t∂

5
yθe)(x, 0) , ∂y(∂t θ̂ )(x, 1) =

1

80
(∂t∂

5
yθe)(x, 1) ,

∂x(∂t θ̂ )(0, y) =
1

80
(∂t∂

5
xθe)(0, y) , ∂x(∂t θ̂ )(1, y) =

1

80
(∂t∂

5
xθe)(1, y) .

(5.14b)
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Similarly, the value of ∂tC
1 is given by

∂tC
1 =

1

|	|

(
−

∫ 1

0

1

80
(∂t∂

5
yθe)(x, 0) +

1

80
(∂t∂

5
yθe)(x, 1) dx

+
∫ 1

0

−
1

80
(∂t∂

5
xθe)(0, y) +

1

80
(∂t∂

5
xθe)(1, y) dy

)
.

(5.15)

A Schauder estimate applied to the Poisson equation (5.14) reads

‖∂t θ̂‖Cm,α ≤ C‖∂tθe‖Cm+4,α ≤ C
(
‖ue‖Cm+4,α‖θe‖Cm+5,α + ‖θe‖Cm+6,α

)
,

for m ≥ 2 ,(5.16)

in which the original temperature transport equation ∂tθe+(ue ·∇)θe = κ�θe

was used. It can be seen that (5.16) amounts to

∂t� = ∂tθe + O(h4)
(
‖ue‖C6,α‖θe‖C7,α + ‖θe‖C8,α

)
.(5.17)

The combination of (4.10)–(4.13), (4.18)–(4.19), (5.10), and the original

momentum equation results in

∂t	 + D̃x

(
1 +

h2

6
D2

y

)
(U	) + D̃y

(
1 +

h2

6
D2

x

)
(V 	)

−
h2

12
�h(UD̃x	 + V D̃y	) − gD̃x

(
1 +

h2

12
(D2

y − D2
x)

)
�

= ν
(
�h +

h2

6
D2

xD
2
y

)
	 + f ,(5.18)

where |f | ≤ Ch4‖ue‖C7,α (1 + ‖ue‖C5) + Ch4‖θe‖C6,α . Similarly, the com-

bination of (5.11)–(5.13), (5.17), and the original temperature equation gives

∂t� + UD̃x

(
1 −

h2

6
D2

x

)
� + V D̃y

(
1 −

h2

6
D2

y

)
�

= κ
(
�h −

h2

12
(D4

x + D4
y)

)
� + g ,(5.19)

where |g| ≤ Ch4(‖ue‖C6,α‖θe‖C7,α + ‖θe‖C8,α ).

The error functions at the computational grid points (xi, yj ), 0 ≤ i, j ≤ N
are defined in the same way as in (4.28). Subtracting (5.18)–(5.19) from the
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numerical scheme (2.7), (2.16), and (2.27), gives





∂t θ̃ + L1 = κ
(
�h −

h2

12
(D4

x + D4
y)

)
θ̃ − g , θ̃ |Ŵ= 0 ,

(
1 +

h2

12
�h

)
∂t ω̃ + L2 − gD̃x

(
1 +

h2

12
(D2

y − D2
x)

)
θ̃ = ν

(
�h +

h2

6
D2

xD
2
y

)
ω̃ − f ,

(
�h +

h2

6
D2

xD
2
y

)
ψ̃ =

(
1 +

h2

12
�h

)
ω̃ , ψ̃ |Ŵ= 0 ,

ũ = −D̃y

(
1 −

h2

6
D2

y

)
ψ̃ , ṽ = D̃x

(
1 −

h2

6
D2

x

)
ψ̃ ,

(5.20)

in which the linearized convection error terms L1 and L2 are given by (4.31),

and the local truncation error terms satisfy

|g| ≤ Ch4(‖ue‖C6,α‖θe‖C7,α + ‖θe‖C8,α ) ,

|f | ≤ Ch4‖ue‖C7,α (1 + ‖ue‖C5) + Ch4‖θe‖C6,α .(5.21)

On the boundary, (say on Ŵx, j = 0), we have

ψ̃i,−1 = 10ψ̃i,1 − 5ψ̃i,2 +
5

3
ψ̃i,3 −

1

4
ψ̃i,4 ,

ω̃i,0 =
1

h2

(
8ψ̃i,1 − 3ψ̃i,2 +

8

9
ψ̃i,3 −

1

8
ψ̃i,4

)
+ hi,0 ,(5.22)

with |hi,0| ≤ Ch4‖ue‖C5 , which is the same as in (4.31). We then conclude

from (5.7), and using the approximations (4.22) and (5.11), that for the tem-

perature field

�i,−1 = �i,1 +
h3

3 κ
	i,0D̃x

(
1 −

h2

6
D2

x

)
�i,0 −

h5

24
∂5
yθe(xi, 0)

+ O(h7)
(
‖θe‖C7,α + ‖ue‖C5‖θe‖C6,α

)
,

�i,−2 = �i,2 +
8h3

3 κ
	i,0D̃x

(
1 −

h2

6
D2

x

)
�i,0 −

7h5

12
∂5
yθe(xi, 0)

+ O(h7)
(
‖θe‖C7,α + ‖ue‖C5‖θe‖C6,α

)
.

(5.23)

Subtracting (5.23) from (2.27), we arrive at

θ̃i,−1 = θ̃i,1 +
h3

3 κ
qb

i −
h5

24
rb

i + eb1
i ,

θ̃i,−2 = θ̃i,2 +
8h3

3 κ
q i −

7h5

12
r i + eb2

i ,

(5.24a)
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where

qb
i = ω̃i,0D̃x(1 −

h2

6
D2

x)θi,0 + 	i,0D̃x(1 −
h2

6
D2

x)θ̃i,0 , rb
i = ∂5

yθe(xi, 0) ,

|eb1
i | , |eb2

i | ≤ Ch7
(
‖θe‖C7,α + ‖ue‖C5‖θe‖C6,α

)
.

(5.24b)

Once again, we observe that the O(h5) coefficients of θ̃i,−1 and θ̃i,−2 have

the ratio 1 : 14. Such a ratio is a crucial point in the error analysis of the

temperature diffusion term in (5.20), which will be established in detail in

Proposition 5.1.

The estimate of the error functions in the system (5.20)–(5.22) and (5.24)

is similar to that in section 4. Multiplying the vorticity error equation by

−
(

1 +
h2

12
�h

)
ψ̃ at interior grid points 1 ≤ i, j ≤ N − 1 gives the same

identity as in (4.32)

(5.25)

−
〈(

1 +
h2

12
�h

)
ψ̃ ,

(
1 +

h2

12
�h

)
∂t ω̃

〉

1

+
〈(

1 +
h2

12
�h

)
ψ̃ ,

(
�h +

h2

6
D2

xD
2
y

)
ω̃

〉

1

=
〈(

1 +
h2

12
�h

)
ψ̃,L2

〉

1

−g

〈(
1 +

h2

12
�h

)
ψ̃ , D̃x

(
1 +

h2

12
(D2

y − D2
x)

)
θ̃

〉

1

+
〈(

1 +
h2

12
�h

)
ψ̃ , f

〉

1

.

The energy estimate of the temperature error is different from the Dirichlet

boundary condition case since the temperature field is updated at every grid

point 0 ≤ i, j ≤ N . Taking the 〈 , 〉3 inner product (see the definition in

(3.13)) of the temperature error equation with θ̃ gives

1

2

d

dt
‖θ̃‖2

3 + 〈θ̃ ,L1〉3 = κ

〈
θ̃ ,

(
�h −

h2

12
(D4

x + D4
y)

)
θ̃

〉

3

− 〈θ̃ , g〉3 ,

(5.26)

which is also the same as (4.33) except for the difference of inner product and

L2 norms. Again, this is due to the fact that the temperature field is updated

at every grid points 0 ≤ i, j ≤ N .

An estimate for (5.25) is the same as that for (4.32). The identities (4.34)–

(4.35), Propositions 4.3 and 4.6, and (4.68) are still valid. More precisely,



590 C. Wang et al.

−
〈(

1 +
h2

12
�h

)
ψ̃,

(
1 +

h2

12
�h

)
∂t ω̃

〉

= −
〈(

1 +
h2

12
�h

)
ψ̃,

(
�h +

h2

6
D2

xD
2
y

)
∂t ψ̃

〉
=

1

2

dẼ

dt
,(5.27)

with

Ẽ = ‖∇hψ̃‖2
2 −

h2

12
‖�hψ̃‖2

1 −
h2

6
‖DxDyψ̃‖2

1

+
h4

72

(
‖DxD

2
yψ̃‖2

1 + ‖DyD
2
xψ̃‖2

1

)
,

〈(
1 +

h2

12
�h

)
ψ̃,

(
�h +

h2

6
D2

xD
2
y

)
ω̃

〉

1

≥
1

8
‖ω̃‖2

1 − h8 ,(5.28)

〈(
1 +

h2

12
�h

)
ψ̃ , L2

〉

1

≤ C̃1‖∇hψ̃‖2
2 +

ν

8
‖ω̃‖2

1 + h8 ,(5.29)

∣∣∣∣
〈(

1 +
h2

12
�h

)
ψ̃ , D̃x

(
1 −

h2

12
(D2

y − D2
x

)
θ̃

〉

1

∣∣∣∣ ≤ C(‖ψ̃‖2
1 + ‖∇hθ̃‖2

2)

+Ch10 ,(5.30)

provided the a-priori assumption (4.66) is satisfied, along with C̃1 as intro-

duced after (4.67).

Similar to (4.69), the linearized temperature convection term can be

controlled by

∣∣∣∣〈θ̃ ,L1〉3

∣∣∣∣ ≤ C̃2‖θ̃‖2
3 +

1

2
κ‖∇hθ̃‖2

2 + h8 ,(5.31)

with C̃2 = C(1+‖ue‖C0 )2

κ
.

An estimate of the temperature diffusion term in (4.69) is outlined below.

Its proof relies on the stability analysis given in section 3.2 and some error

estimates.

Proposition 5.1 We have

−
〈
θ̃ ,

(
�h −

h2

12
(D4

x + D4
y)

)
θ̃

〉

3

≥
3

4
‖∇hθ̃‖2

2 − C(‖θe‖C6,α + 1)

× (‖∇hψ̃‖2
2 + ‖θ̃‖2

3) −
1

2
h8 .(5.32)
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Proof. Summing by parts under the inner product 〈 , 〉3 and using the

boundary extrapolation (5.24) gives

〈
θ̃ ,

(
�h

h2

12
(D4

x + D4
y)

)
θ̃

〉

3

= −‖∇hθ̃‖2
2 −

h2

12
‖D2

x θ̃‖2
3 −

h2

12
‖D2

y θ̃‖2
3 + B .

(5.33)

The boundary term B can be decomposed as

B = B
1 + B

2 + B
3 + B

4 ,(5.34a)

in which B1, corresponding to the boundary term along y = 0, reads

B
1 =

1

12

N−1∑

i=1

(
θ̃i,1(θ̃i,−1 − θ̃i,1) +

1

2
θ̃i,0

[
(θ̃i,−2 − θ̃i,2) − 16(θ̃i,−1 − θ̃i,1)

])

=
1

12

N−1∑

i=1

(
θ̃i,1

[ h3

3 κ
qb

i −
h5

24
rb

i + eb1
i

]

+
1

2
θ̃i,0

[8h3

3 κ
qb

i −
7h5

12
rb

i + eb2
i − 16(

h3

3 κ
qb

i −
h5

24
rb

i + eb1
i )

])
.

(5.34b)

It should be noted that the derivation of (5.34b) comes from the formula for

θ̃i,−1 and θ̃i,−2 in (5.24a). The definitions of qb
i , rb

i , eb1
i , eb2

i were given in

(5.24b). The boundary terms along y = 1, x = 0, and x = 1 can be similarly

presented. In more detail, B1 can be simplified as

B
1 =

h3

36 κ

N−1∑

i=1

qb
i (θ̃i,1 − 4θ̃i,0) +

1

12

N−1∑

i=1

(
eb1

i (θ̃i,1 − 8θ̃i,0) +
1

2
eb2

i θ̃i,0

)

+
h5

288

N−1∑

i=1

rb
i (θ̃i,0 − θ̃i,1)

≡ I b
1 + I b

2 + I b
3 .

(5.35)
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The first term I b
1 can be controlled by using the form of qb

i as in (5.24b),

namely

h3

N−1∑

i=1

qb
i θ̃i,1 = h3

N−1∑

i=1

θ̃i,1ω̃i,0D̃x(1 −
h2

6
D2

x)θ̃i,0

+h3

N−1∑

i=1

θ̃i,1	i,0D̃x(1 −
h2

6
D2

x)θ̃i,0

≤ C‖θ‖W 1,∞‖∇hψ̃‖2‖θ̃‖3 + Ch‖	‖L∞‖θ̃‖3‖∇hθ̃‖2 + Ch10(5.36)

≤ C(‖θe‖C6,α + 1)(‖∇hψ̃‖2
2 + ‖θ̃‖2

3) + Ch(‖ue‖C5 + 1)

(‖θ̃‖2
3‖ + ‖∇hθ̃‖2

2) + Ch10 ,

in which the first inequality comes from the boundary formula for ω̃i,0 in

(5.22). The second inequality results from the estimate (5.9), (4.6), and the

a-priori assumption (4.66). A similar result can be obtained for h3
∑N−1

i=1 qb
i

θ̃i,0. Then we arrive at

I b
1 ≤ C(‖θe‖C6,α + 1)(‖∇hψ̃‖2

2 + ‖θ̃‖2
3) + Ch(‖ue‖C5 + 1)

(‖θ̃‖2
3‖ + ‖∇hθ̃‖2

2) + Ch10 .(5.37)

The term I b
2 can be controlled by Cauchy’s inequality and the estimate (5.24b),

giving

I b
2 ≤ C

∣∣∣∣
N−1∑

i=1

eb1
i θ̃i,1

∣∣∣∣ + C

∣∣∣∣
N−1∑

i=1

eb1
i θ̃i,0

∣∣∣∣ ≤ C‖θ̃‖2
3 + Ch10 .(5.38)

What remains is the estimate of I b
3 . As can be seen, the detailed esti-

mates for θ̃i,−1 and θ̃i,−2 in (5.24), which shows that the O(h5) coefficients

of θ̃i,−1, θ̃i,−2 have the ratio 1 : 14, allows the term I b
3 to be written as

h5

288

∑N−1
i=1 rb

i (θ̃i,0−θ̃i,1). That is crucial to implement the error analysis below.

An application of Cauchy’s inequality shows that

I b
3 =

h5

288

N−1∑

i=1

rb
i (θ̃i,0 − θ̃i,1) ≤

1

288
h2

N−1∑

i=1

(θ̃i,0 − θ̃i,1)
2

h2

+
1

288
h10

N−1∑

i=1

r2
i .(5.39)

It is observed that the first term appearing above can be absorbed into ‖∇hθ̃‖2
2.

Meanwhile, we note that rb
i = ∂5

yθe(xi, 0), which is a bounded quantity on

y = 0. Then we get

I b
3 =

h5

288

N−1∑

i=1

rb
i (θ̃i,0 − θ̃i,1) ≤

1

288
‖∇hθ̃‖2

2 + Ch9 .(5.40)
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The combination of (5.37)–(5.38) and (5.40) leads to

B
1 ≤ C(‖θe‖C6,α + 1)(‖∇hψ̃‖2

2 + ‖θ̃‖2
3) +

1

288
‖∇hθ̃‖2

2 +
1

8
h8 .(5.41)

The other three boundary terms B2, B3, B4 can be treated similarly. As a

result, we arrive at

B ≤ C(‖θe‖C6,α + 1)(‖∇hψ̃‖2
2 + ‖θ̃‖2

3) +
1

72
‖∇hθ̃‖2

2 +
1

2
h8 .(5.42)

The insertion of (5.42) into (5.33) implies (5.32). Proposition 5.1 is proven.

�

By the combination of (5.25)–(5.32) we have the following inequality

1

2

dẼ

dt
+

1

2

d

dt
‖θ̃‖2

3 ≤ Ch8 + C(‖f ‖2
3 + ‖g‖2

3) + C̃1‖∇hψ̃‖2
2 + C̃2‖θ̃‖2

3

−
κ

8
‖∇hθ̃‖2

2 .(5.43)

The proof of Theorem 1.2 can be carried out by using a similar argument as

in (4.78)–(4.83). The details are left to the interested reader. �
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