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Abstract—The propagation characteristics of twisted hollow
waveguides are considered, and various analysis methods are
proposed. It is shown that a twisted hollow waveguide can support
waves that travel at a speed slower than the speed of light .
These modes are of particular interest, as slow wave structures
have many potential applications in accelerators and electron
traveling wave tubes. Since there is no exact closed form solution
for the electromagnetic fields within a twisted waveguide or cavity,
several previously proposed approximate methods are examined.
It is found that the existing perturbation theory methods yield
adequate results for slowly twisted structures; however, our efforts
here are geared toward analyzing rapidly twisted structures using
newly developed finite-difference methods. To validate the results
of the theory and simulations, rapidly twisted cavity prototypes
have been designed, fabricated, and measured. These measure-
ment results are compared to simulated results, and very good
agreement has been demonstrated.

Index Terms—Finite difference frequency domain (FDFD), finite
difference time domain (FDTD), guided waves, slow wave struc-
tures.

I. INTRODUCTION

I T IS a well known fact that straight hollow waveguides
with a uniform cross section will only support modes whose

phase velocity is greater than . At the same time, many useful
microwave devices depend on the interaction of charged parti-
cles with an electromagnetic (EM) wave. This is one reason why
there has been interest in slow wave EM structures, which sup-
port waves traveling at speeds slower than .

We consider a twisted waveguide, formed by extruding any
cross section along a straight line while twisting. Such a wave-
guide is unique in that, like a straight guide, the cross section is
uniform along the axis of the guide, yet unlike a straight guide, it
has the capacity to support both slow and fast modes. As a result,
twisted or helical structures have been considered for their appli-
cation in traveling wave tubes and particle accelerators [1],[2].
Such twisted structures could potentially be easier to manufac-
ture than other types of slow wave structures (such as dielectric
loaded structures).
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Analysis of twisted rectangular waveguides has been carried
out before by Lewin [3] and by Yabe and Mushiake [4] and
Yabe et al. [5]. In each of these papers, perturbation theory is
used to analyze the propagation characteristics of the dominant
quasi-TE mode in the waveguide. The perturbation theory ap-
proach is very well suited for analyzing the dominant TE mode
in infinite twisted guides with small twist rates. However, this
model is not well suited for rapidly twisted waveguides. This is
because perturbation theory assumes

(1)

for some twist rate , where all higher terms past order are
dropped from the expansion. In this paper, when we speak of
“slow twist rates,” we refer to those cases where perturbation
theory is valid, generally meaning that the product of the twist
rate and the largest cross-sectional dimension is less than 1.

At high twist rates, it then becomes necessary to look be-
yond perturbation methods to arrive at the correct solution. In
many cases, the case of rapid twist rate is of more interest in
slow wave applications since rapidly twisted guides can pro-
duce more slowing of the EM wave. The perturbation theory
approach also cannot take end effects into account in a twisted
cavity of finite length. This could lead to errors in the calcula-
tion of the fields near the end walls of the cavity.

Therefore, it is imperative to develop new methods to ana-
lyze rapidly twisted guides. For example, it has been recently
pointed out by Shyroki [6] that there exists an exact equivalent
for twisted and bent waveguide structures, based on the co-
ordinate transformation properties discussed by Nicolet et al.
[7], [8]. Working independently of Shyroki, the authors have
developed similar techniques to address this problem, and an
addition to this method is presented allowing the analysis of
arbitrary cross sections without the need for a staircase-type
mesh. This is achieved through the use of a boundary-fitted
nonorthogonal mesh [9], [10]. We also introduce a new stable
2-D nonorthogonal finite-difference time-domain (FDTD)
method for solving twisted guides and present experimental
verification of the results.

In this paper, we will present an overview and a mathemat-
ical description of helical geometries. From there, a coordinate
transform is applied to derive three numerical methods for the
solution of twisted guides: a 3-D time-domain method for sim-
ulation of twisted cavities of finite length, a 2-D time-domain
method for efficient simultaneous simulation of multiple modes
in an infinite twisted structure, and a 2-D frequency-domain
method for individual eigenmode calculations. It is shown how
these methods can be used to easily solve twisted guides of ar-
bitrary cross section. Finally, experimental data are presented
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and compared to our methods and the predictions of perturba-
tion theory.

II. OVERVIEW OF TWISTED STRUCTURES

Twisted structures are a special case of the more general
class of periodic structures. However, twisted waveguides and
cavities possess certain additional properties which are not true
of other periodic structures such as disk-loaded waveguides
or other periodically loaded straight guides. These properties
allow the transformation of the twisted structure into an equiv-
alent straight structure with uniform cross section. The essence
of the transformation is to replace the twisted (or bent) empty
waveguide with a straight waveguide whose cross section is the
same, but whose volume is filled with a nonuniform anisotropic
material [6]. The fact that the equivalent guide is straight
greatly simplifies the implementation of boundary conditions.
For uniformly twisted structures, it can also be shown that the
anisotropic permeability and permittivity do not involve the
coordinate. This allows much of the same machinery previously
used to solve 2-D propagation problems to be brought to bear
on twisted waveguide problems.

A. Defining a Twisted Geometry

Let us assume that we have a 2-D cross section defined by
some implicit function of and . An arbitrary straight cavity
can be constructed by specifying a volume

(2)

for some constant . It is assumed that the boundaries of the
structure are perfectly conducting walls.

Now, we introduce the twisted (or helicoidal) coordinate
transform employed by Lewin [3]

(3)

Here, is some constant twist rate, usually expressed in radians
per meter (Rad/m). A twisted cavity can now be defined simply
by

(4)

It should be noted that the transverse cross section of such a
helical waveguide or cavity (i.e., cut across a constant
boundary) will always yield the same shape, although rotated
about the line , . In this sense, the structure has a uni-
form cross section. Fig. 1 shows an arbitrary twisted waveguide,
and its corresponding straight equivalent after applying the co-
ordinate transformation. We will first focus on twisted waveg-
uides and cavities of rectangular cross section, and later extend
the theory to arbitrary cross sections.

Fig. 1. Straight equivalent (left) to an arbitrary uniformly twisted waveguide
(right).

B. Twisted Coordinate System

As discussed in [4], the coordinate transformation (3) is
not orthogonal. Its analysis will require the covariant and
contravariant basis vectors to be defined. In keeping with the
conventional notation of differential geometry, we will some-
times refer to the coordinate as , as , and as .
The corresponding contravariant basis vectors will be denoted
as , , and , and the covariant vectors as , , and .
Following the usual convention, superscripts are used to refer to
contravariant quantities, whereas subscripts are used to refer to
covariant quantities. Since the coordinate system of interest is
nonorthogonal, there should be no expectation that .
Instead, the covariant metric tensor must be defined

(5)

For the twisted coordinate system of (3), it can be shown from
basic differential geometry that

(6)

from which we note that , the transformed longitudinal coor-
dinate, does not appear in the metric tensor. Note that as tends
to 0, becomes the identity matrix, which is expected since
in this case, the original Cartesian coordinate system is recov-
ered. Following Shyroki [6] and Nicolet et al. [7], [8], we define
a straight equivalent waveguide by loading with a nonuniform
material dictated by the metric tensor

(7)

Here, is the determinant of the metric tensor. is also the
contravariant metric tensor, which is related to (6) by an inverse
relationship

(8)

In this way, the problem becomes one of solving Maxwell’s
equations in ordinary Cartesian coordinates in a nontwisted
structure, but subject to an anisotropic and nonuniform per-
mittivity and permeability. For (6), the value of turns out to
be 1, which can often be used to simplify many expressions
involving the material loading.
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In the transformed (straight waveguide) problem, the com-
ponents and are equal to the co-
variant components and in the phys-
ical problem. Note that this permittivity and permeability vary
with position, but do not involve , the transformed longitudinal
coordinate. Assuming the fields can be solved in this manner,
the results can be converted back into Cartesian coordinates
by multiplying the appropriate Jacobian. For a detailed discus-
sion of the mathematical foundations of the “equivalent wave-
guide” concept, the reader is directed to the works of Shyroki
[6], Nicolet et al. [7], [8]and Chandezon et al. [11]. (Ward and
Pendry [12] also made use of a similar transformation to sim-
plify calculation of photonic Green’s functions.)

III. 3-D FDTD ANALYSIS

In this section, we will apply the transformation discussed in
the previous section to develop a 3-D FDTD solver. The ability
to transform a twisted structure into a straight rectangular do-
main indicates that a finite-difference technique over a struc-
tured grid is well-suited to solve the problem, since the boundary
conditions can be very simple. We developed an accurate and
stable method that could be used for twisted guides. Unfortu-
nately, a standard implementation of the FDTD technique is
impossible here because, for example, in order to calculate
at any point, it is necessary to know all three components of

at that point due to the material anisotropy. In a staggered
mesh this is very difficult. However, Holland [13] proposed a
remedy for this situation by spatially interpolating the neces-
sary field components. Unfortunately, this approach was found
to have late-time instability problems. Schuhmann and Weiland
[14] showed that this problem was due to the asymmetric eval-
uation of the metric tensor matrix. Their solution was to retain
the spatial interpolation, but change the way the metric tensor
was evaluated.

Around the same time, Thoma and Weiland [15] offered a
mathematical proof for the stability of the spatial discretization
method for a domain loaded with anisotropic material. Assume
that the field vectors have been vectorized, and the curl operators
have been appropriately discretized, leading to the well-known
Maxwell grid equations (MGEs) used in the finite-integration
technique [16]

(9)

where , , , and are the discrete vectorized representations
of the fields. As mentioned in [15], the fact that the curl operator
acting on the electric field is the transpose of the curl operator
acting on the magnetic field is essential to the demonstration of
stability. The corresponding discrete material relations are

(10)

where and are matrix operators corresponding to the dis-
cretized permittivity and permeability of the material, respec-
tively. It was shown [15] that the spatial discretization scheme
is stable if the curl operators were related by a transpose as in

(9) (as mentioned earlier), and the material operators were sym-
metric. The late-time stability of the scheme was demonstrated
theoretically (and numerically) by proving nonincreasing total
field energy.

An alternative to this approach is to use the uniform unstag-
gered colocated mesh developed by Liu [17] and Janaswamy
and Liu [18]. Forward differences are employed for the electric
field, while backward differences are employed for the magnetic
field. For a classic second-order scheme,

(11)

Liu [17] demonstrated that the dissipative errors from the
forward and backward difference operators cancel each other
out in such a way that the resulting wave operator is accu-
rate to second order and has no dissipative error. It is easily
demonstrated that for this mesh structure, the material opera-
tors are symmetric if the metric tensor is symmetric at every
point, which is guaranteed from the definition of the metric
tensor. However, a challenge presents itself around a perfectly
conducting boundary since enforcing the transpose condition
on the curl operators is nontrivial. This condition requires,
for example, that if the computation of
involves a term for some constant , then
the computation of must have a term

. For interior points, where (11) applies, this con-
dition is satisfied automatically. Near a perfectly conducting
boundary, the computation of is typically altered to en-
force the boundary condition on the electric field. If a perfectly
conducting boundary exists at ,

(12)

Since involves a term
, but does

not have a term, the transpose condition
is not satisfied, and there is no guarantee of stability around
the boundary. Clearly, another method for enforcing the
boundary conditions must be implemented. To do this, a
careful examination of the boundary condition is necessary
around a conducting boundary, namely,

(13)

for an constant boundary, leading to the updating formula

(14)
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Using this relation, the material parameters can be modified
along the boundary

(15)

Since the covariant components are normally computed at
each mesh point, we can express by calculating the
component of and simplifying by making use of the
symmetry of the metric tensor

(16)

In practice, a very small number is used for the zero elements
of this matrix in order to ensure that the material operator
remains invertible. Now, since the boundary condition around
the boundary is satisfied implicitly, the expression for the curl
of around the boundary can be

(17)

satisfying the transpose condition and ensuring stability. This
modification of the material parameters around a conducting
boundary in an unstaggered collocated nonorthogonal FDTD
scheme to ensure stability is novel to this approach, and has not
been done by others.

With the material matrices derived in this fashion and using
the normal Cartesian curl operators, the grid equations of (9) can
be updated at each time step using an appropriate time integrator
(such as leap frog for a second-order scheme). The result is a
scheme rather similar to the nonorthogonal FDTD method [13],
but not subject to the troubling late-time instability phenomena.
The Courant stability criteria for the time step cannot be ex-
pressed by a simple formula, as was the case for rectangular
grids. However, an upper bound can be set using formulas given
in [19]. The authors have designed both second-order schemes
(employing classic second-order spatial differences and leap
frog time integration) and fourth-order schemes (employing a
fourth-order spatial difference operator and RK4 based time in-
tegration). In both cases, stable and efficient operation has been
achieved.

To check the late-time numerical stability, the total cavity en-
ergy was computed over time for a simulation of a twisted rect-
angular cavity (the one discussed later in this paper). The results
can be shown in Fig. 2 for up to 8 10 time steps. Although the
total energy can be seen to fluctuate over time, no late-time in-
stability has ever been observed with this technique, either with
a second- or fourth-order implementation. The energy fluctu-
ations are due to the inherent error of the time integrator, as

Fig. 2. Cavity energy versus time showing late time stability of the proposed
3-D scheme.

evidenced by the fact that the fluctuations can be reduced ar-
bitrarily by decreasing the time step and/or using a higher order
integrator such as RK4.

The 3-D solver is excellent for solving twisted cavities of fi-
nite length. However, for solving infinite twisted guides (or even
very long twisted cavities where end effects can be neglected),
the algorithm can be made much more efficient by using a 2-D
mesh, rather than a 3-D one.

IV. 2-D FINITE-DIFFERENCE ANALYSIS

As mentioned previously, the twisted structure is a specific
type of periodic structure so it is natural to turn to solvers that
use periodic boundary conditions. However, for the twisted
guide, the algorithm can be simplified much further since the
period can essentially be reduced to zero if the appropriate
coordinate system is chosen, giving a 2-D mesh in the limiting
case.

A 2-D finite-element solver for TE modes in twisted waveg-
uides was proposed by Igarashi and Honma [20]. This solver
works well for slowly twisted guides, where the modes can
still be regarded as basically TE or TM independently. Strictly
speaking, however, TE and TM modes do not exist in a twisted
waveguide (as shown by Yabe and Mushiake [4]). A hybrid
mode is needed to satisfy the boundary conditions, and this be-
comes particularly critical as the twist rate becomes relatively
large and there is significant deviation from the straight wave-
guide case. Therefore, we applied finite-difference techniques
to the straight waveguide equivalent problem. (A finite element
approach also using the straight equivalent can be found in [21].)

A 2-D FDTD algorithm for the efficient solution of straight
waveguide propagation problems was proposed by Xiao et al.
[22]. This should not be confused with the conventional 2-D
FDTD method where the fields are assumed to be uniform in
one direction. Here, the idea is to assume a complex solution of
the form

(18)
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Fig. 3. Sample spectrum obtained by 2-D time-domain simulation of a twisted
rectangular guide.

Here, we are solving only one traveling wave mode solution of
the twisted guide problem at a time. Any such modes can exist
independently since they perfectly satisfy the boundary condi-
tions. Instead of the derivatives being calculated in the con-
ventional sense using finite differences, they are calculated by
multiplying that field component by . In this manner, the
quantities and can be updated using a time integrator. Al-
though this means that the computations will now involve com-
plex quantities rather than the purely real computations of the
classical FDTD method, the mesh can be reduced from three di-
mensions to two. A simple uniform mesh can be used if the ma-
terial properties are modified around the conducting boundary
surface, as discussed above.

A. Time-Domain Implementation

Assuming field solutions of the form (18), a time-domain
solver can easily be derived using the same uniform mesh con-
cept employed for the 3-D case, but reduced to two dimensions.
The real time-domain fields at any point in the equiva-
lent straight structure can be recovered from the complex solu-
tion using

(19)

represents the real part. The value of is a running vari-
able from 0 to . Each value of will result in a number of
modes with different frequencies. This technique allows dis-
persion curves to be obtained efficiently for a large number of
modes. We do this by running a number of simulations while
sweeping the value of . A multimode initial condition is used,
and a fast Fourier transform (FFT) is performed on the output
fields of each simulation to obtain the frequencies of the modes.

A sample spectrum obtained by 2-D time-domain analysis of
a twisted rectangular waveguide is shown in Fig. 3. As previ-
ously mentioned, a mixed-mode initial condition was purpose-
fully chosen to produce a broad spectrum of excited modes. Like
the 3-D method we developed, there was no late-time instability
observed in the results produced by this method. The mode with
the lowest frequency is the dominant TE-like mode that is inves-
tigated experimentally later in this paper.

We demonstrated that a 2-D time-domain method can be used
to solve for the fields and the frequencies of many modes in a
rapidly twisted structure over a wide range of frequencies si-
multaneously. However, the time-domain solver is not capable
of directly extracting the eigenmodes of the twisted waveguide,
so we also discuss an implementation in the frequency domain.

B. Frequency-Domain Implementation

The finite-difference frequency-domain (FDFD) method has
been discussed by Lui and Chen [23]. In it, the fields are as-
sumed to be harmonic in time and in the direction so the
explicit time updating scheme of the FDTD method is elimi-
nated completely and replaced by an eigenvalue problem. In it,
all six field components are solved for directly. Later, it was
found that the number of actual solved field components and
the number of nonzero matrix elements could be reduced sig-
nificantly [24], [25]. The solution of curved waveguides using
2-D FDFD has previously been attempted by Lavranos and Kyr-
iacou [26]. However, their formulation depended on an orthog-
onal coordinate system and the ability to separate the field into
axial and transverse components, which was mentioned in [26]
to be invalid for high curvature rates (or small curvature radii).
Thus, the extension of their work to rapidly twisted waveguides
is problematic.

By contrast, this research proposes to solve the twisted struc-
ture in nonorthogonal coordinates which is based on an exact
equivalent, and does not make any simplifying assumptions that
would be invalid for high twist rates. To use this method to solve
the Maxwell equations for a twisted waveguide structure, the
vector Helmholtz equation in general curvilinear coordinates is
derived. Upon substitution of (7) into the Maxwell curl equa-
tions, we have

(20)

(21)

which leads to the eigensystem

(22)

In this scheme, three vector components have to be computed
at each grid point. For example, if a 20 20 grid was em-
ployed to solve a twisted square waveguide, the dimension of
the system would be , and the total number
of matrix elements would be . Fortunately,
the use of finite differences assures us that the matrix will likely
be sparse. If the sparsity of the matrix is taken into account, it
can drastically reduce memory and calculation time. If the field
components are vectorized as in the MGEs, the same matrix op-
erators can be used to calculate both the frequency- and time-do-
main solutions. It is difficult to give a definitive rule regarding
how many mesh points are needed for a good simulation. In gen-
eral, it will depend greatly on the judicious choice of a structured
mesh. In practice, one should run several cases with varying de-
grees of mesh refinement to determine when convergence has
been achieved.
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Fig. 4. Cascaded coordinate transformation used to analyze arbitrary twisted
structures.

V. TWISTED GUIDES OF ARBITRARY CROSS SECTION

Thus far, we have only considered twisted waveguides of rect-
angular cross section. Fortunately, our choice of a twisted coor-
dinate system allows a simple cascaded coordinate transform
that permits a solution to arbitrary twisted guides. The coordi-
nate transform of (3) is combined with a planar transform

(23)

The coordinates are arranged in a Cartesian grid. This
cascaded transform is illustrated in Fig. 4. The functions and

can be derived using finite differences from any commer-
cial or freeware software package capable of generating 2-D
structured planar meshes. The authors have made use of a free
utility called UNAMALLA to generate such meshes [27]. The
covariant metric tensor for this cascaded transform can be ob-
tained using the rule

(24)

Here, is the metric tensor for the transform from Carte-
sian coordinates to the primed coordinates [in this case, (3)], and
the labels correspond to . Under this transformation,

(25)
Also, note again that the longitudinal coordinate does not appear
in the metric tensor, allowing 2-D methods to be used. Since typ-
ical mesh generation programs output the coordinates of each
point on the grid, and are known at each mesh point. The
derivatives , , , and are calculated using finite differ-
ences. From here, the relations of (7) can be used to calculate
the material properties of the transformed guide.

One particular case of interest in slow wave applications is the
twisted “keyhole” structure, whose longitudinal cross section is
identical to a disk loaded waveguide. The cross section, along
with the generated UNAMALLA mesh, is shown in Fig. 5. This
twisted structure is similar to the “helical groove waveguide”
discussed by Flouds and Mansell [28], which has application in
traveling wave tubes. (In fact, the present theory also provides
a method for accurately solving that structure as well.)

VI. COMPARISON AND DISCUSSION

In this section, an example twisted rectangular waveguide is
considered. The waveguide has cross-sectional dimensions of

Fig. 5. Keyhole cross section and corresponding mesh.

Fig. 6. Cutoff frequencies predicted for 8.16 cm� 3.63 cm rectangular wave-
guide.

8.16 cm 3.63 cm. We will use this case to discuss the re-
sults of the present numerical methods in light of the findings of
Lewin, Yabe, Nishio, and Mushiake. To determine at what value
of twist rate there is significant deviation, we calculate the ex-
pressions given in [5] for Lewin’s theory and that presented by
Yabe et al. The cutoff frequencies predicted by these two per-
turbation methods are compared to the results of the developed
2-D FDFD method, employing a 50 50 grid. The finite-differ-
ence calculation was done using MATLAB on a 1.86-GHz Intel
Core 2 CPU. Calculating the first five eigenmodes took 14 s and
used roughly 55 MB of memory. The comparison to perturba-
tion theory is shown in Fig. 6.

For low values of twist rate, all three theories are found to be
in excellent agreement. As the twist rate increases, however, the
results of Lewin begin to be less accurate than those of Yabe
et al. This is because Lewin formulated his theory assuming
simple TE waveguide modes, whereas the more accurate theory
presented by Yabe et al. assumes a hybrid mode which satis-
fies the boundary conditions of the twisted guide. Measurement
results were given in [5], and these showed good experimental
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agreement at low twist rates. If the waveguide structures mea-
sured in Yabe’s paper are scaled up to the same physical size as
the waveguides investigated here, the twist rates are all below
13 Rad/m. Fig. 6 shows that at this twist rate, the theory of [5]
is still in close agreement with the finite-difference method pre-
sented here.

However, as the twist rate becomes even more rapid, all per-
turbation methods appear to be inadequate. This phenomenon
explains the drastic difference between the perturbation theory
predictions and our measured results for the rapidly twisted rect-
angular cavity. This result is to be expected since perturbation
theory neglects higher order correction terms for rapid twists.
In order to verify the accuracy of the methods applied to rapidly
twisted structures, it becomes necessary to turn to commercial
software (such as HFSS or CST) or experimental validation.

VII. EXPERIMENTAL VERIFICATION

To validate the developed 3-D finite-difference method, a
twisted rectangular cavity prototype with the same cross-sec-
tional dimensions as in the previous section was designed to
work near 2.8 GHz. The cavity has two complete twists over
a length of 22.7 cm. For this case, Rad/m , Fig. 6
shows that perturbation methods clearly will not suffice. The
prototype was printed using a stereolithography apparatus
(SLA) technique and then copper plated on the inside. This
method can allow the rectangular cross section to be accurately
preserved even for large twist rates. Fig. 7 shows the completed
prototype. This particular prototype was selected because of
its moderately high twist rate, enabling the accuracy of the
newly proposed methods to be compared with the existing
perturbation theory method.

Measurements were taken on this prototype by placing a
copper plate on each end of the waveguide, effectively turning
it into a resonant cavity. Two small probes were inserted in
the end plates, and a vector network analyzer was used to
measure the transmission coefficient over a wide range of
frequencies. The maxima of correspond to the resonant
modes of the cavity structure. Fig. 8 shows over the range
of frequencies spanning the first four TE-like modes of the
resonant cavity. The frequencies and values for these modes
are shown in Table I.

Since the cavity is rather electrically short, end effects were
found to limit the effectiveness of the 2-D code for this case. A
straight rectangular waveguide can be converted into a cavity
by introducing shorting plates without affecting the eigen-
modes (since the tangential electric field of TE modes in the
waveguide naturally vanishes each half cycle). Unfortunately
the same cannot be said of a twisted rectangular guide so some
perturbation in the mode will be introduced by the metal wall.

An 18 8 50 grid was employed for the 3-D solver, and
the simulation was allowed to run to 50 ns. The phase constant
was selected by establishing an initial condition that contained a
particular number of half-cycle variations in the longitudinal di-
rection. The frequency of the resonant mode was then obtained
through the use of an FFT. These frequencies were then com-
pared to the measured frequencies and found to be within 0.5%
of each other. By comparison, the error using the perturbation

Fig. 7. Twisted rectangular waveguide prototype.

Fig. 8. Measured �� � for the short twisted rectangular prototype showing
resonances.

theory equations given by Yabe et al. in [5] was more than 8%
for each of the modes.

For the 2-D method, using a 72 32 2-D mesh, the code
yielded up to 1.8% frequency deviation from experiment. Again,
the 2-D code solves the structure as if it were infinite. There-
fore, to further validate the effectiveness of the 2-D code, an-
other prototype was constructed that was identical to the first,
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TABLE I
EXPERIMENTALLY MEASURED FIRST FOUR TE-LIKE MODES FOR THE SHORT TWISTED

RECTANGULAR PROTOTYPE COMPARED TO 3-D SIMULATION RESULTS

TABLE II
SHORT AND LONG PROTOTYPE RESONANT FREQUENCIES

COMPARED TO 2-D SIMULATION METHOD RESULTS

Fig. 9. Dispersion curves showing measured and predicted resonant frequen-
cies for twisted rectangular cavity (beta is the phase constant).

except twice as long, now with four complete twists. The mea-
surement results for the short and long cavities as well as the
2-D NFDTD and 2-D NFDFD results are shown in Table II.

The trend in the experimental results of Table II indicates
that as the cavity gets physically longer, the measured resonant
frequency approaches the predictions of the 2-D methods, as
expected. In the limiting case of an infinite structure, end effects
should become negligible, and it is expected that the 2-D method
will perform quite well.

The experimental cavity results were used to generate dis-
persion curves. These are compared to the various simulation
methods we developed in Fig. 9.

To test the 2-D methods for twisted guides of arbitrary cross
section, a keyhole cross section was defined in the transverse
plane, as in Fig. 5. Since this structure has potential application
for particle acceleration purposes, a TM mode near 2.8 GHz
was chosen for analysis. A prototype was constructed with three
complete twists over a length of 21 cm. This particular design
was chosen so that the phase velocity of the wave would be ex-
actly , which is necessary for most electron accelerators and

Fig. 10. Bead-pull measurement of a 2.8-GHz TM mode of the “keyhole”
twisted structure.

traveling wave tubes in which particles move at relativistic ve-
locities extremely close to the speed of light. The measured fre-
quency was 2.8135 GHz. For a 25 25 grid, the 2-D frequency-
domain method yielded a resonant frequency of 2.8159 GHz,
while the 2-D time-domain method gave 2.8158 GHz. The fact
that the measured results are very close to prediction indicates
that for this TM mode, the perturbations caused by the end walls
are small (at least for that value of twist rate).

In order to ensure that the mode measured was indeed the
mode predicted by the model, the phase constant was measured
and compared with the value used in the simulation. Here,
the mode of interest has two complete cycles over the length of
the cavity for an expected Rad/m. To experimentally
measure , a bead-pull measurement was performed to mea-
sure the magnitude of the electric field on the axis of the guide.
In this perturbational technique, a probe is placed at each end
of the cavity. The transmission is measured at the resonant fre-
quency while a small metallic bead is passed along the cavity
axis. The very small shift in resonant frequency (measured as a
change in the phase of the transmission) is proportional to the
square of the magnitude of the electric field at the bead position.
The interested reader is directed to [29] and [30] for a detailed
discussion of this well-known method.

The results of the bead pull are shown in Fig. 10. The hor-
izontal axis shows the bead position along the axis. The plot
reveals four distinct minima in the phase of the transmission
(corresponding to maxima in the electric field strength). This is
consistent with the expectation that the resonant mode has two
complete cycles over the cavity length. The small difference be-
tween the two middle peaks is likely due to measurement error.

The cavity was also simulated in CST Microwave Studio (ver-
sion 2006) [31] (a commercial EM simulation tool which can
perform well for slow to moderate twist rates). The predicted
resonant frequency was 2.817 GHz, very close to the measured
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Fig. 11. CST simulation of the “keyhole” twisted structure.

Fig. 12. Predicted dispersion curves of the “keyhole” twisted structure using
the 2-D frequency-domain method for varying twist rates.

resonant frequency. The electric field is shown in Fig. 11, which
indicates four maxima in the magnitude of the electric field
along the cavity axis, just as measured in the bead pull. The
measured phase velocity, calculated from the measured resonant
frequency and phase constant, is 2.95 10 m/ s. This offers
great practical promise since many disk loaded structures with
similar longitudinal cross section to this twisted structure are
designed to accelerate electrons at near relativistic velocities.
Both the CST results and the bead-pull measurements indicate
that the intensity of the electric field increases close to the end
walls of the cavity. This is to be expected since these walls will
cause a perturbation of the mode that would otherwise exist in
an infinite twisted waveguide. The 3-D method must be used if
the effects of the end walls cannot be neglected. Analysis of the
TM accelerating mode using the proposed techniques is very
efficient. For example, using the 2-D frequency-domain tech-
nique, calculation of each mode for a 25 25 grid takes less
than 1 s on a 1.86-GHz Intel processor running MATLAB. This
allows detailed studies to be performed regarding the dispersion
characteristics of a twisted guide, among other things. For this
“keyhole” design, the dispersion curves for a variety of twist
rates is shown in Fig. 12. It is interesting to note that unlike a
TE mode in a twisted rectangular guide, the cutoff frequency is
seen to decrease as the twist rate increases. Perturbation theory

applied to the dominant mode of a twisted rectangular guide pre-
dicts the opposite effect (i.e., an increase of the cutoff frequency
with increasing twist rate) [5]. This gives one example of how
the present method can be readily applied to do very rapid de-
sign and optimization of twisted slow wave structures. In addi-
tion to dispersion information, other useful figures of merit can
be extracted from the eigenmodes of the 2-D frequency-domain
solutions.

VIII. CONCLUSION

The problem of rapidly twisted structures has been analyzed
in detail. The existing perturbation theory methods were found
to be quite accurate for low twist rates, but faster twist rates re-
quired new models to be developed. Efficient 3-D and 2-D nu-
merical techniques have been proposed to solve this problem.
These methods are based on an exact straight equivalent wave-
guide with anisotropic permittivity and permeability that do not
vary along the longitudinal direction. This uniformity along the
axis of the twisted guide enables the use of conventional 2-D
nonorthogonal FDTD and FDFD solvers.

This work expands the previous work done by Shyroki [6]
by treating arbitrary cross sections without the need for a
staircase-type mesh and developing a stable 2-D (and 3-D)
nonorthogonal FDTD method to solve twisted guides. Arbitrary
cross sections can be analyzed simply using these techniques
if a 2-D structured grid can be created. In addition, good
agreement with experimental measurements has been achieved.
Moreover, the contributions of end effects to the twisted cavi-
ties are investigated experimentally by constructing both long
and short twisted prototypes. The experimental data suggests
that the 2-D methods in both the time and frequency domain
become accurate when the twisted structure is very long.

The accuracy and efficiency of these methods will provide an
attractive way of designing slow wave structures for accelera-
tors and traveling wave tubes. It is possible to predict accurately
the slowing of the EM wave, the dispersion relationship, mode
characteristics, and higher order modes for such devices. The re-
duced complexity of these methods circumvents meshing prob-
lems associated with existing numerical solvers for very rapidly
twisted geometries. As a result, the solutions are obtained in a
very efficient fashion.
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