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A FAST FINITE DIFFERENCE METHOD FOR SOLVING

NAVIER-STOKES EQUATIONS ON IRREGULAR DOMAINS∗
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Abstract. A fast finite difference method is proposed to solve the incompressible Navier-Stokes

equations defined on a general domain. The method is based on the vorticity stream-function formu-

lation and a fast Poisson solver defined on a general domain using the immersed interface method.

The key to the new method is the fast Poisson solver for general domains and the interpolation

scheme for the boundary condition of the stream function. Numerical examples that show second

order accuracy of the computed solution are also provided.

Key words. Navier-Stokes equations, irregular domains, vorticity stream-function formulation,

vorticity boundary condition, immersed interface method

AMS subject classifications. 65M06, 65M12, 76T05

1. Introduction

In this paper, we consider non-dimensional incompressible Navier-Stokes equa-

tions (NSE) in a general and bounded domain Ω:
(

∂u

∂t
+ (u · ∇)u

)

+ ∇p = ν∆u, x ∈ Ω, (1.1)

∇ · u = 0, (1.2)

u|∂Ω = 0, BC, (1.3)

u(x, 0) = u0, IC, (1.4)

where u = (u, v) is the velocity, p is the pressure, ν is the viscosity. We assume that

the boundary of the domain, denoted as ∂Ω is piecewise smooth. We wish to solve

the NSE numerically using a Cartesian grid that encloses the domain Ω.

Traditionally, finite element methods with a body-fitted grid are used to solve

such problems defined on irregular geometries. The use of Cartesian grids for solving

problems with complex geometry, moving interface, and free boundary problems has

become quite popular recently, especially since popular Cartesian grid methods such

as Peskin’s immersed boundary (IB) method, see [24] for an overview, the level set

method, see the original paper [23], the Clawpack [17], and others have been devel-

oped. One of advantages of Cartesian grid methods is that there is almost no cost in

the grid generation. This is quite significant for moving interface and free boundary

problems.

Depending on the magnitude of the Reynolds number 1/ν, numerical methods can

be divided into two categories for two-dimensional problems: (1) numerical methods
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182 NAVIER-STOKES EQUATIONS ON IRREGULAR DOMAINS

based on the primitive variables formulation for problems with small to medium-sized

Reynolds numbers, such as the projection method, see [3, 5, 26]. Usually an implicit

or semi-implicit discretization in time is needed to take a reasonable time step; (2)

the vorticity stream-function formulation for problems with large Reynolds numbers,

see, for example, [10, 13] and the references therein.

There are a few articles in the literature that use projection-type methods based

on Cartesian grids for interface problems or for problems with irregular geometries us-

ing an embedding technique. Among them are, just to name a few, Peskin’s immersed

boundary method with numerous applications [7, 8, 11, 24, 28]; the ghost fluid method

[15]; the immersed interface method [16]; the finite volume method [2, 26, 29, 32], etc.

However, there has been little work about solving the full incompressible Navier-

Stokes equations defined on complex domains using the vorticity stream-function for-

mulation based on Cartesian grids except the very recent work by Calhoun [6]. In [6],

a finite volume method coupled with the software package Clawpack [17] is used to

solve the Navier-Stokes equations on irregular domains.

In this paper, we use a more direct finite difference approach based on a Cartesian

grid and the vorticity stream-function formulation to solve the incompressible Navier-

Stokes equations defined on an irregular domain. We believe that our method is

simpler than the one developed in [6]. The computed vorticity and velocity from our

method are nearly second order accurate, see Section 5.

The paper is organized as follows. In Section 2, we introduce the computational

frame of the vorticity stream-function formulation and an outline of our algorithm.

The fast Poisson solver for complex domains is explained in Section 3. In Section 4,

we explain how to deal with the vorticity boundary condition. Numerical examples

and conclusion are presented in Section 5 and Section 6 respectively.

2. The Computational Frame of the Vorticity Stream-Function Formu-

lation for NSE on Irregular Domains

We use a rectangular box R = [a, b] × [c, d] to enclose the physical domain Ω.

For simplicity of presentation, we use a uniform Cartesian grid

xi = a + ih, i = 0, 1, · · · ,M, yj = c + jh, j = 0, 1, · · · , N, (2.1)

where h = (b − a)/M = (d − c)/N . Usually we choose R in such a way that the

distance between the boundaries ∂Ω and ∂R is at least 2h apart.

The boundary of Ω is expressed as the zero-level set of a two-dimensional function

ϕ(x, y):

ϕ(x, y)















< 0, if (x, y) is in the inside of Ω,

= 0, if (x, y) is on the boundary of Ω,

> 0, if (x, y) is in the outside of Ω.

(2.2)

Since ∂Ω is piecewise smooth, the level set function ϕ should be chosen to be at least

Lipschitz continuous in the neighborhood of ∂Ω. Usually ϕ is chosen as the signed

distance function. Note that the level set function can be easily defined at grid points.



ZHILIN LI AND CHENG WANG 183

Let

ϕmax
i,j = max{ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1},

ϕmin
i,j = min{ϕi−1,j , ϕi,j , ϕi+1,j , ϕi,j−1, ϕi,j+1}.

(2.3)

We define (xi, yj) as an irregular grid point if ϕmax
i,j ϕmin

i,j ≤ 0. Otherwise the grid

point is a regular grid point.

The two-dimensional Navier-Stokes equation in vorticity stream-function formu-

lation is

∂tω + uωx + vωy = ν∆ω, (2.4)

∆ψ = ω, ψ|∂Ω = 0, (2.5)

u = −ψy, v = ψx, (2.6)

where ω = ∇×u = −uy + vx is the vorticity, ψ is the stream-function which satisfies

the nonslip boundary condition

ψn|∂Ω =
∂ψ

∂n

∣

∣

∣

∣

∂Ω

= 0, (2.7)

in addition to the no-penetration boundary condition ψ|∂Ω = 0, where n is the unit

normal vector of the boundary ∂Ω pointing outward.

We define the standard central finite difference operators applied to the grid

function uij below

Dxui,j =
ui+1,j − ui−1,j

2h
, Dyui,j =

ui,j+1 − ui,j−1

2h
, (2.8)

∆hui,j =
(

D2
x + D2

y

)

ui,j =
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
. (2.9)

With these notations, the semidiscretized Navier-Stokes equations in vorticity stream-

function formulation is

∂tω + uDxω + vDyω = ν∆hω. (2.10)

2.1. An Outline of the Vorticity Stream-Function Formulation for NSE

Defined on Irregular Domains We use the classical fourth-order Runge-Kutta

method, which is a multistage explicit time-stepping procedure to treat the semi-

discretized equations (2.10). The explicit treatment of the convection and diffusion

terms appearing in the momentum equations makes the whole scheme very easy to

implement. Such explicit treatment can avoid any stability concern caused by the

cell-Reynolds number constraint if a high order Runge-Kutta method, such as the

classical RK4, is applied. This observation was first made by E and Liu in [10]. As a

result, only one Poisson solver, which will be explained in detail in the next section, is

required at each Runge-Kutta time stage. That makes the method extremely efficient.

We refer the readers to [10, 30] for the discussion of the method of the vorticity stream-

function formulation for rectangular domains.
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We present the following outline for the explicit Euler method from time level tk

to tk+1 to demonstrate the essence of our algorithm. The extension to Runge-Kutta

method is straightforward.

1. Solve the Poisson equation

∆ψk+1 = ωk, ψk+1
∣

∣

∂Ω
= 0,

to get the stream-function ψk+1.

2. Update the velocity using

uk+1 = −Dyψk+1, vk+1 = Dxψk+1.

3. Update the vorticity from

ωk+1 − ωk

∆t
= ν∆hωk − uk+1Dxωk − vk+1Dyωk, ωk+1

∣

∣

∂Ω
= ∆hψk+1.

In our implementation, we actually use a fourth-order Runge-Kutta method to

update the vorticity from tk to tk+1 so that global second-order accuracy can be

obtained.

There are two crucial components in our algorithm described above. The first one

is how to solve the Poisson equation on an irregular domain, which will be explained

in the next section. The second one is the treatment of the boundary condition since

there are two boundary conditions for ψ. The Dirichlet boundary condition ψ = 0 on

∂Ω is used to solve for the stream-function via the vorticity computed from (2.10).

Yet the normal boundary condition, ∂ψ
∂n

= 0 in (2.7), cannot be enforced directly.

The way to overcome this difficulty is to convert it into the boundary condition for

the vorticity. The detailed process of vorticity boundary condition will be given in

Section 4.

3. The Fast Poisson Solver on Irregular Domains

Using the vorticity stream-function formulation to solve the Navier-Stokes equa-

tions, we need to solve the Poisson equation ∆ψ = ω on the irregular domain Ω. In

this section, we outline our fast Poisson solver for irregular domains. We refer the

readers to the references [12, 18, 20] for the theoretical analysis and the details of

the implementation. The two-dimensional fast Poisson solver is also available to the

public [19].

Our Poisson solver on irregular domains is based on the fast immersed interface

method (IIM) for interface problems. The main idea is to extend the Poisson equation

from Ω to a rectangular domain R. This procedure allows us to use fast Poisson solvers

such as FFT on a fixed Cartesian grid independent of the shape of the irregular

domain.

We extend the source term of the Poisson equation by zero outside Ω but inside

R. We require the normal derivative of the solution ψ to be continuous across the

immersed boundary ∂Ω. The solution itself is allowed to have a finite jump g. In the
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language of potential theory this requirement is equivalent to introducing a double-

layer source on ∂Ω. This extension leads to the following interface problem:

∆ψ =

{

ω(x, y), if (x, y) ∈ Ω,

0, if (x, y) ∈ R − Ω,

[

∂ψ

∂n

]

= 0, [ψ] = g, on ∂Ω, (3.1)

ψ = 0, on ∂R,

where [·] denotes the jump across ∂Ω. We need to determine the particular g, which

is defined along the boundary ∂Ω, so that the solution ψ of (3.1) satisfies the Dirichlet

boundary condition

ψ− = 0, on ∂Ω, (3.2)

where ψ− is the limiting value of the solution on the boundary from within the domain

Ω. Note that the solution of the interface problem above is a functional of g. There

is a unique solution ψ(g) which is in piecewise H2(R) space if ω and g are in L2

space, and the interface ∂Ω is Lipschitz continuous. We refer the readers to [4] for

the discussion of the regularity of the interface problem.

To numerically compute the solution of (3.1)–(3.2) for ψ and g, we use the stan-

dard central finite difference

∆hψij = ωij (3.3)

at regular grid points, inside and outside of R. At irregular grid points, the finite

difference scheme is

∆hψij = ωij + Cij , (3.4)

where Cij is a correction term that depends on the jump g. Therefore, the solution

to (3.1) satisfies a linear system of equations of the form

AΨ + BG = F1, (3.5)

where A is the matrix obtained from the discrete Laplacian, Ψ is the approximate

solution ψ at grid points, and G is the discrete value of g defined on a set of points on

the boundary ∂Ω, BG is the correction terms at irregular grid points, and F1 is the

source term inside Ω and zero outside Ω. The dimension of G is much smaller than

the dimension of Ψ.

We use the least squares interpolation scheme [18] to discretize the boundary

condition (3.2) for a given Ψ. At a given point x∗ = (x∗, y∗) ∈ ∂Ω where G is defined,

the interpolation scheme has the form

∑

|xij−x
∗|≤ǫ

γijψij = 0, (3.6)
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where xi,j = (xi, yj), ǫ is taken between 2h ∼ 3h meaning that we use the information

of the grid function ψij in the neighborhood of x∗. We refer the readers to [18] about

how to find the coefficients γij in the interpolation scheme. The interpolation scheme

in the matrix-vector form can be written as

CΨ + DG = F2. (3.7)

Thus we obtain the following system of equations for the solution Ψ and the interme-

diate discrete jump G on the boundary

[

A B

C D

][

Ψ

G

]

=

[

F1

F2

]

. (3.8)

The Schur complement of (3.8) for G is

(D − CA−1B)G = Q, (3.9)

where

Q = F2 − CA−1F1.

The dimension of equation (3.9) for G is a much smaller system than that of equation

(3.8) for Ψ. We use the generalized minimum residue (GMRES) method to solve the

Schur complement system. Each iteration of the GMRES method involves one matrix-

vector multiplication, which is (D − CA−1B)G with a specified G. This involves a

fast Poisson solver for computing A−1BG on the rectangular domain R, and the

interpolation scheme to compute the residual of (3.9). The dominant cost in each

iteration is the fast Poisson solver from the Fishpack [1].

This Poisson solver that we outlined above for irregular domains is second-order

accurate. The number of calls to the fast Poisson solver on the rectangular domain

is the same as the number of GMRES iterations, and it is almost independent of the

mesh size but depends only on the geometry of the domain.

There are other elliptic solvers for irregular domains using embedding or fictitious

domain techniques. The earlier ones include the capacitance matrix method [25], the

integral equation approach [21, 22], and the recent finite volume method [14]. The

similarity of all embedding methods is that the standard finite difference/volume

schemes are used away from the interface. The difference is the way to deal with the

boundary condition. The capacitance matrix method works through manipulating

the structure of the coefficient matrix. In the integral equation approach, the integral

equation is discretized and the dense system is solved before a fast Poisson solver is

called, see [21]. Note that the integral equation is a second kind, and therefore it is well

conditioned. We believe that the Schur complement (3.9) is equivalent to the discrete

integral equation. In our approach, we do not solve the dense system using a direct

method, but use the GMRES iterative method instead since the Schur complement

is well conditioned, and the condition number is almost a constant independent of

the size of system. This has also been confirmed in [31]. The number of iterations of

the GMRES iteration is typically between 5 ∼ 20 independent of the mesh size; see
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Table 3.1 for an example. The number of iterations depends only on the geometry

of ∂Ω. Theoretically, the GMRES method converges to the solution, or the least

squares solution if the system is singular, at most N1 steps, where N1 is the number

of unknowns, see [27].

In our implementation, the matrices and vectors are never explicitly formed. The

fast solvers with examples for Poisson/Helmholtz equations on irregular domains are

available to the public through anonymous ftp at ftp.ncsu.edu under the directory

/pub/math/zhilin/Packages.

We illustrate the efficiency of the fast Poisson solver on irregular domains through

a numerical example. We solve the Poisson equation

− ∆ψ = 4, in Ω, (3.10)

ψ = x2 + y2 + ex cos y, on ∂Ω,

on an ellipse

Ω =
{

(x, y) : x2/a2 + y2/b2 < 1
}

. (3.11)

The exact solution is

ψ(x, y) = x2 + y2 + ex cos y.

In Table 3.1, we show the error E(N) of the numerical solution in the maximum

norm on an N ×N grid (i.e. M = N) for various values of N . In the table, N1 is the

number of unknowns of the Schur complement. We also show the number of GMRES

iterations k. The order of convergence is measured by

O =
log [E(N)/E(2N)]

log 2
. (3.12)

The order in Table 3.1 approaches number 2 as N → ∞, which indicates second-order

convergence. The number of GMRES iterations decreases slightly as N increases. The

stopping criteria for GMRES iteration is tol = 10−8. From Table 3.1, we can clearly

see second-order convergence and the number of iterations is almost a constant as we

refine the mesh.

4. The Vorticity Boundary Condition

To solve the momentum equation (2.10), we need a boundary condition for the

vorticity. Physically, the vorticity boundary condition enforces the no-slip boundary

condition for the velocity. The no-penetration boundary condition, which can be

converted into the Dirichlet boundary condition for ψ: ψ|∂Ω = 0, is used in the

Poisson equation (2.5) for ψ. Therefore we only need the information of the vorticity

at interior grid points to solve the stream-function ψ with the homogeneous boundary

condition. On the other hand, the no-slip boundary condition ∂ψ
∂n |∂Ω = 0, along with

the one-sided approximation of ω = ∆ψ, is converted into a local vorticity boundary

condition.



188 NAVIER-STOKES EQUATIONS ON IRREGULAR DOMAINS

Table 3.1. Results of a grid refinement study for the numerical solution of (3.10) on the domain

(3.11) with a = 0.5 and b = 0.15. Here, N is the number of gridlines in the x and y directions,

E is the error of the numerical solution in the maximum norm, O is the order of convergence as

we refine the grid, N1 is the number of unknowns of the Schur complement, and k is the number

of GMRES iterations. We see second-order convergence, and the number of iterations is almost a

constant as we refine the mesh.

N E O N1 k

32 4.21465 10−3 36 9

64 8.1371 10−4 2.3728 68 7

128 1.7614 10−4 2.2078 136 6

256 3.8196 10−5 2.2053 268 6

512 8.5548 10−6 2.1586 538 5

4.1. A Review of Local Vorticity Boundary Formula in a Rectangu-

lar Domain Let us assume that Ω is a rectangle for the moment. The Dirichlet

boundary condition ψ = 0 on ∂Ω is used to solve the stream-function via the vor-

ticity obtained from (2.10). Yet the normal boundary condition, ∂ψ
∂n = 0, cannot

be enforced directly. The way to overcome this difficulty is to convert it into the

boundary condition for the vorticity. We use ψ|∂Ω = 0 and ∂ψ
∂n = 0 to approximate

the vorticity on the boundary. Take the bottom part of ∂Ω, where the subscript j

is zero, for example, we use the central finite difference scheme to approximate the

Laplacian, which is simply D2
yψ since D2

xψ = 0 from the boundary condition ψ = 0.

The second-order finite difference approximation yields

ωi,0 = D2
yψi,0 =

ψi,1 + ψi,−1 − 2ψi,0

h2
=

2ψi,1

h2
−

2

h

ψi,1 − ψi,−1

2h
, (4.1)

where ψi,0 = 0 and (i,−1) refers to a “ghost” grid point outside of the computational

domain. Since

ψi,1 − ψi,−1

2h
≈

∂ψ

∂n
+ O(h2) = O(h2),

we have ψi,−1 = ψi,1 + O(h3) which leads to Thom’s formula

ωi,0 =
2ψi,1

h2
. (4.2)

We should mention here that by formal Taylor expansion, one can prove that Thom’s

formula is only first-order approximation to the boundary condition for ω. How-

ever, more sophisticated consistency analysis shows that the scheme actually is indeed

second-order accurate. The result was first proved in [13].

The vorticity on the boundary can also be determined by other approximations

to ψi,−1. For example, using a third-order one-sided finite difference scheme to ap-

proximate the normal boundary condition ∂ψ
∂n = 0, we can write

(∂yψ)i,0 =
−ψi,−1 + 3ψi,1 −

1
2ψi,2

3h
= 0 + O(h3) , which leads to

ψi,−1 = 3ψi,1 −
1
2ψi,2 + O(h4).

(4.3)



ZHILIN LI AND CHENG WANG 189

Plugging this back to the difference vorticity formula ωi,0 =
1

h2
(ψi,1 +ψi,−1) in (4.1),

we have Wilkes-Pearson’s formula

ωi,0 =
1

h2
(4ψi,1 −

1

2
ψi,2) . (4.4)

This formula is second-order accurate for the vorticity on the boundary.

From the descriptions above, we see that the vorticity boundary condition can be

derived from the combination of the no-slip boundary condition ∂ψ
∂n |∂Ω = 0 and some

one-sided approximations to ω = ∆ψ.

4.2. The Extension to a Curved Domain The extension of the above

methodology to a domain with a curved boundary is similar but a little more compli-

cated.

G

F 

D

C A

B

E

Fig. 4.1. A diagram of the geometry near the boundary.

We use Fig. 4.1 as an illustration. Fig. 4.1 shows several grid points near the

boundary ∂Ω. In Fig. 4.1, D,E, F,G are regular grid points, AB is an arc section on

the boundary. Special attention is needed at the grid points close to the boundary,

such as the point C. We denote a = |AC|/h, b = |BC|/h. Note that 0 < a, b < 1.

We explain how to determine the vorticity value on the boundary points like A

and B from the combined information of the no-slip boundary condition ∂ψ
∂n |∂Ω= 0

and the one-sided approximation of ω = ∆ψ. We will derive a simple local formula

analogous to (4.2) or (4.4) to obtain a vorticity boundary value at A, which is an

intersection of the gridline and the boundary ∂Ω. The discussion for the point B is

similar. We need the vorticity value at those points when we solve the vorticity via

(2.10) and the stream function ψ in (2.5).

The combination of the Dirichlet boundary condition ψ |∂Ω= 0 and the Neumann

boundary condition ∂ψ
∂n = 0 implies that

∇ψ = 0 , at A . (4.5)
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In other words, the partial derivative of the stream function along any direction is

zero on the boundary. This can also be seen by the fact that both u = −∂yψ and

v = ∂xψ vanish on the boundary.

The local Taylor expansion at the boundary point A gives

ψC =
a2h2

2
(∂2

xψA) −
a3h3

6
(∂3

xψA) + O(h4) , (4.6)

ψD =
(1 + a)2h2

2
(∂2

xψA) −
(1 + a)3h3

6
(∂3

xψA) + O(h4) , (4.7)

where the information of ψ = 0 and ∂xψ = 0 at point A was used in the derivation

for (4.6) and (4.7).

The Taylor expansion (4.6) gives a first order approximation to ∂2
xψ at the bound-

ary point A

(∂2
xψ)A =

2

a2h2
ψC + O(h) , (4.8)

which corresponds to the Thom’s formula (4.2). Or the combination of (4.6) and (4.7)

gives a second-order approximation to ∂2
xψ at point A

(∂2
xψ)A =

2

a2h2

(

(1 + a)ψC −
a3

(1 + a)2
ψD

)

+ O(h2) , (4.9)

which corresponds to the Wilkes’ formula (4.4).

Remark 4.1. In the case of a = 1, i.e., the boundary point A happens to be on

regular grid, the formula (4.8) becomes

(∂2
xψ)A =

2

h2
ψC , (4.10)

and (4.9) becomes

(∂2
xψ)A =

4ψC − 1
2ψD

h2
, (4.11)

which are exactly the same as Thom’s formula and the Wilkes’ formula for rectangular

domain, as in (4.2), (4.4), respectively.

However, in a domain with a curved boundary, the value of ∂2
xψ on the boundary

point like A is not enough to determine ω = ∆ψ = (∂2
x + ∂2

y)ψ, due to the fact that

∂2
yψ cannot be determined in the same way as we did for ψA and ψB . To deal with this

difficulty, we need to use the information of the stream function around the boundary

point A and the relation between ∆ψ and ∂2
xψ.

Let θ be the angle between the tangential direction of the boundary ∂Ω passing

through A and the horizontal line, i.e., tan θ is the slope of the tangent line for the

boundary curve at A. Some simple manipulations indicate

∂xψ = cos θ ∂τψ + sin θ ∂nψ , ∂yψ = − sin θ ∂τψ + cos θ ∂nψ , (4.12)
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where τ is the unit vector along the tangential direction. It is easy to show that

∂2
x + ∂2

y = ∂2
τ + ∂2

n , (4.13)

from (4.12). In other words, the Laplacian operator is invariant with respect to

orthogonal coordinate systems.

We also can verify that

∂2
xψ = cos2 θ ∂2

τψ + sin2 θ ∂2
nψ + 2 cos θ sin θ (∂τ∂nψ) (4.14)

from (4.12). Meanwhile, we have ∂τ∂nψ = 0, due to the fact that ∂nψ is identically

zero on the boundary because of the no-slip boundary condition. Thus we arrive at

∂2
xψ = cos2 θ ∂2

τψ + sin2 θ ∂2
nψ . (4.15)

It is obvious that

∂2
τψ = 0 , on ∂Ω , (4.16)

because of no penetration boundary condition ψ|∂Ω = 0. Therefore, we get the

following identity on the boundary:

∂2
xψ = sin2 θ ∂2

nψ , (4.17)

which results in

∂2
nψ = csc2 θ ∂2

xψ , at A . (4.18)

The combination of (4.13) and (4.18), along with the argument in (4.16), gives

ωA = (∂2
x + ∂2

y)ψ = ∂2
nψ = csc2 θ ∂2

xψ , at A . (4.19)

Thus we obtain the relationship between ω and ∂2
xψ on the boundary.

Plugging (4.8), which is a first-order approximation of ∂2
xψ at A, into the identity

(4.19), we get

ωA = csc2 θ ·
2

a2h2
ψC , (4.20)

which can be regarded as Thom’s formula for a curved boundary. We can get an

analogue of Wilkes’ formula below for a curved boundary by plugging (4.9), which is

a second-order approximation to ∂2
xψ at A, into the identity (4.19):

ωA = csc2 θ ·
2(1 + a)ψC − a3

(1+a)2 ψD

a2h2
. (4.21)

The derivation of the vorticity value at the projected boundary point B is similar

to that of A. As shown in Fig. 4.1, we assume that CF = FG = ∆y = h, and

b = |BC|/h, (note that 0 < b < 1). By repeating a similar arguments as in (4.5)–

(4.19), the vorticity value at point B can be approximated as

ωB = sec2 θ ∂2
yψ . (4.22)
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The corresponding Thom’s formula for ωB turns out to be

ωB = sec2 θ ·
2

b2h2
ψC , (4.23)

and the corresponding Wilkes’ formula for ωB turns out to be

ωB = sec2 θ ·
2(1 + b)ψC − b3/(1 + b)2ψF

b2h2
. (4.24)

5. Numerical Examples

In this section, we present two numerical experiments for solving the Navier-

Stokes equations using our algorithm. The first one is a constructed example in

which we know the exact solution. The grid refinement analysis is given. The second

test is a physical relevant example, the vortex flow inside a disk.

5.1. A Grid Refinement Analysis In this example, the computational do-

main Ω is an elliptic disk whose boundary (4x2 +16y2 = 1) is the zero level set of the

following function ϕ(x, y):

ϕ(x, y) =
√

4x2 + 16y2 − 1 , (5.1)

inside the square [−1, 1] × [−1, 1]. The exact mean stream function is chosen to be

ψe(x, y, t) =











(

r(x, y) − 0.25
)2

, if ϕ(x, y) ≤ 0,

0, otherwise.

(5.2)

where r(x, y) = x2 +4y2. It is straightforward to verify that the exact stream function

is smooth inside the elliptic domain Ω and

ψ = 0 ,
∂ψ

∂n
= 0 , on ∂Ω , (5.3)

so that the no-penetration, no-slip boundary condition is satisfied for the velocity

field. The corresponding exact velocity and vorticity functions turn out to be

ue(x, y, t) = −∂yψe(x, y, t) = −16y
(

r(x, y) − 0.25
)

cost ,

ve(x, y, t) = ∂xψe(x, y, t) = 4x
(

r(x, y) − 0.25
)

cost ,

ωe(x, y, t) = ∆ψe(x, y, t) =
[

20
(

r(x, y) − 0.25
)

+ 8(x2 + 16y2)
]

cost ,

(5.4)

inside the elliptic region Ω and zero outside.

The force term f can be calculated exactly from the vorticity transport equation































∂tωe + (ve ·∇)ωe = ν∆ωe + f ,

∆ψe = ωe ,

ψe = 0 ,
∂ψe

∂n
= 0 , on ∂Ω ,

ve = ∇⊥ψe = (−∂yψe, ∂xψe) .

(5.5)
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Table 5.1. The errors of the computed velocity and stream function in different norms, and

the order of accuracy, at t = 0.5. The viscosity is ν = 0.001, and the CFL condition ∆t

h
= 0.5. The

Wilkes’ formulae for a curved boundary is used.

N L1 error L1 order L2 error L2 order L∞ error L∞ order

32 5.07e-05 1.01e-04 3.40e-04

64 1.49e-05 1.77 2.84e-05 1.83 1.06e-04 1.68

u 128 4.00e-06 1.90 7.55e-06 1.91 3.18e-05 1.74

256 1.05e-06 1.93 2.05e-06 1.88 1.59e-05 1.00

32 5.66e-06 1.09e-05 3.20e-05

64 1.51e-06 1.91 2.90e-06 1.91 8.30e-06 1.95

ψ 128 4.08e-07 1.89 7.71e-07 1.91 2.17e-06 1.95

256 9.56e-08 2.09 1.81e-07 2.09 5.16e-07 2.07

The second-order accurate numerical method proposed in this paper is used to

solve the above system (5.5). The viscosity is chosen to be ν = 0.001 so the Reynolds

number is Re = 1000. The final time is taken to be t = 0.5.

Table 5.1 shows the grid refinement analysis for the velocity u and stream-function

ψ using the Wilkes’ formulae. Note that the errors are quite small. The error obtained

from a very coarse grid 32 by 32 is 10−4 ∼ 10−5 already. Second-order convergence

can be clearly seen for L1, L2, and L∞ norms. Therefore, the whole scheme leads to

very good approximations to both the velocity and the stream function that we are

concerned.

5.2. The Simulation of the Vortex Flow Inside a Disk In this case, we

choose the domain as a disk x2 + y2 ≤ 1
4 . The square used to enclose the disk is

R = [− 3
4 , 3

4 ] × [− 3
4 , 3

4 ]. The initial vortex is set to be confined into an ellipse region

x2 + 4y2 ≤ 1
4 .

The initial stream-function profile inside the ellipse is given by

ψ(x, y, 0) = 2

(

x2 + 4y2 −
1

4

)2

(5.6)

which vanishes outside the ellipse, see Fig. 5.1.

It is straightforward to verify that the initial stream function satisfies the no-

penetration, and noslip boundary conditions. Accordingly, the initial data for the

vorticity field is chosen as

ω(x, y, 0) = ∆ψ(x, y, 0)=

{

40
(

x2 + 4y2 − 1
4

)

+ 16
(

x2 + 16y2
)

, if x2 + 4y2 ≤ 1
4 ,

0, otherwise.
(5.7)

The contour plots for the initial stream function and vorticity are shown in Fig. 5.1.

In our computation, Wilkes’ formulae (4.21) and (4.23) were used as the boundary

condition for the vorticity. The Reynolds number was chosen to be Re = 104, which

is quite high over an irregular domain. We use a 384 × 384 grid to carry out the

simulation.
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Fig. 5.1. The contour plot of the initial vorticity and stream function.

In Fig. 5.2 we show the computed stream function at different time: t1 = 0.5,

t2 = 1, t3 = 1.5, t4 = 2, respectively. The vortex flow inside the ellipse x2 + 4y2 ≤ 1
4

interacts with the flow in the disk but outside the ellipse. The vortex structure

spreads over the whole domain. Meanwhile, the vortex dynamics drive the flow to

rotate clockwise. The rolling up structure due to the high Reynolds number can also

be observed. The flow keeps symmetry, with generation and separation of bubbles as

time goes on. The detailed evolution of the flow structure is clearly presented in the

figure.

In Fig. 5.3, we show the contour plot of the x component of the velocity at the

same time sequences t = 0.5, 1, 1.5, 2. Similar flow behavior can be observed. The y

component of the velocity has similar behavior and is not shown here.

6. Conclusions

In this paper, a new second order finite difference method based on the vorticity
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(a) (b)

(c) (d)

Fig. 5.2. The contour plots of the stream function at different time t = 0.5, 1, 1.5, 2 with the

Reynolds number Re = 104. The computation is done using a 384× 384 grid.

stream-function formulation is developed for the incompressible Navier-Stokes equa-

tions defined on irregular domains. The key to the new method is the fast Poisson

solver on irregular domains and the corresponding Thom’s and Wilkes’ formulae on

curved boundaries.
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