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Abstract. Numerical methods for the primitive equations (PEs) of oceanic flow are presented in
this paper. First, a two-dimensional Poisson equation with a suitable boundary condition is derived to
solve the surface pressure. Consequently, we derive a new formulation of the PEs in which the surface
pressure Poisson equation replaces the nonlocal incompressibility constraint, which is known to be
inconvenient to implement. Based on this new formulation, backward Euler and Crank–Nicolson
schemes are presented. The marker and cell scheme, which gives values of physical variables on
staggered mesh grid points, are chosen as spatial discretization. The convergence analysis of the
fully discretized scheme is established in detail. The accuracy check for the scheme is also shown.
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Introduction. The primary purpose of this paper is to propose and analyze
numerical methods for the three-dimensional (3-D) primitive equations (PEs) of large
scale oceanic flow using the surface pressure Poisson equation with a suitable boundary
condition.

The hydrostatic balance results in the decomposition of the total pressure field
into two parts: the integral of the density variable in the vertical direction, and the
pressure field at surface level z = 0, i.e., the surface pressure. It was shown by Li-
ons, Temam, and Wang [13] that the surface pressure is the Lagrange multiplier of
an incompressibility constraint (namely, the vertically averaged horizontal velocity is
divergence-free). Based on this remark, they introduced a new mathematical formu-
lation of the PEs in which the surface pressure disappears by projecting the PEs onto
the function space of the divergence-free averaged horizontal velocity field.

In this paper, the preoccupations are different: we want to develop numerical
algorithms for the solution of the PEs. Contrary to the approach in [13], the surface
pressure will play a central role in the algorithm; it is dynamically updated in the
momentum equation, instead of being treated as a Lagrange multiplier. In particular,
we will display a Poisson equation for the surface pressure and derive an approximate
boundary condition for this Poisson equation. As a result, the surface pressure Poisson
equation replaces the nonlocal constraint for the horizontal velocity field. The vertical
velocity is calculated by integrating the horizontal divergence of the horizontal velocity
field, due to the 3-D incompressibility.

Numerical methods are then proposed for the PEs formulated in the surface pres-
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sure Poisson equation. At each time step, the surface pressure field is determined
by a two-dimensional (2-D) Poisson solver after the data of the horizontal velocity
field and the density field are updated by the momentum equations and the density
equations. In turn, the gradient of the surface pressure is updated at the next time
step. The temporal discretization is implemented by either the backward Euler or the
Crank–Nicolson method. For the spatial discretization, we adopt the idea of the 3-D
marker and cell (MAC) grid. Different variables in the PEs are evaluated on different
staggered grids. The derivatives are replaced by second order centered-difference oper-
ators, while the integration in the vertical direction is implemented by the trapezoidal
rule. Following the approach related to the development of a local vorticity boundary
condition, we derive a consistent and second order accurate boundary condition for
the surface pressure at the discrete level. The main advantage of the MAC scheme can
be seen in the fact that the computed horizontal velocity field has exactly zero mean-
divergence in a discrete level. Because of such a property, the 3-D calculated velocity
field is orthogonal to the horizontal and vertical gradients of the total pressure field in
a discrete L2 space, which plays an important role in the convergence analysis. The
idea is similar to that of the finite element approach, yet it dramatically simplifies
the computation. To our knowledge, this is the first theoretical analysis of the PEs
on the MAC grid (which is usually referred to as a “C grid” in the geophysical fluid
dynamics (GFD) literature). It should be possible to use similar methods to analyze
other related GFD models.

The paper is organized as follows. In section 1 we recall the formulation of the
PEs and introduce the alternate formulation using the surface pressure Poisson equa-
tion. Backward Euler and Crank–Nicolson schemes (in temporal discretization) are
presented in section 2. The description of the 3-D MAC scheme is given in section 3,
and the detailed convergence analysis of the backward Euler method combined with
the MAC staggered grid is provided in section 4. Finally, a numerical accuracy check is
given in section 5, using a set of exact solutions to compare with the profiles computed
by our scheme.

1. The PEs and the surface pressure Poisson equation. We start with
the nondimensional PEs with proper scaling:

(1.1)


































vt + (v ·∇)v + w
∂v

∂z
+

f

Ro
k × v +

1

Ro

(
∫ 0

z

∇ρ(x, y, s) ds+∇ps

)

= L1v,

ρt + (v ·∇)ρ+ w
∂ρ

∂z
= L2ρ,

∇·

∫ 0

−H0

v dz = 0.

See, e.g., Pedlosky [19] and Lions, Temam, and Wang [12, 13] for a detailed derivation.
In the above system, u = (v, w) = (u, v, w) is the 3-D velocity vector field, v = (u, v)
the horizontal velocity, w = W(v) the vertical velocity in which the operator W
will be introduced in (1.7), ρ the density field, ps the surface pressure, and Ro a
Rossby number. The term fk × v corresponds to the Coriolis force in its β-plane
approximation, with the parameter f = f0 + βy. The operators ∇, ∇·, △ represent
the gradient, divergence, and Laplacian in the (x, y)-plane, respectively. The diffusion
operators are given by L1 = ( 1

Re1
△+ 1

Re2
∂2
z ) and L2 = ( 1

Rt1
△+ 1

Rt2
∂2
z ). For simplicity,

we denote ν1 = 1
Re1

, ν2 = 1
Re1

, κ1 = 1
Rt1

, κ2 = 1
Rt1

. The computational domain is
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taken as M = M0 × [−H0, 0], where M0 is the surface part of the ocean. The
boundary condition for (1.1) is given by

ν2
∂v

∂z
= τ0, κ2

∂ρ

∂z
= ρf at z = 0,

ν2
∂v

∂z
= 0, κ2

∂ρ

∂z
= 0 at z = −H0,

(1.2)

v = 0 and
∂ρ

∂n
= 0 on ∂M0 × [−H0, 0],(1.3)

in which the term τ0 represents the wind stress force and ρf represents the heat flux
at the surface of the ocean.

Furthermore, the PEs (1.1) are supplemented with the following initial data:

v(x, y, z, 0) = v0(x, y, z), ρ(x, y, z, 0) = ρ0(x, y, z),(1.4)

in which v0 satisfies the mean divergence-free property as will be stated below.
The momentum equation for the horizontal velocity v comes from its original

form

vt + (v ·∇)v + w
∂v

∂z
+

1

Ro

(

fk × v +∇p
)

=
(

ν1△+ ν2∂
2
z

)

v,(1.5)

combined with the hydrostatic balance

∂p

∂z
= −ρ, which implies p(x, y, z) =

∫ 0

z

ρ(x, y, s) ds+ ps(x, y).(1.6)

We note that p denotes the total pressure field; the surface pressure ps(x, y) =
p(x, y, 0) is a 2-D field in the horizontal plane. We refer the readers to [3, 20, 24]
for other physical and numerical considerations related to surface pressure.

The representation formula for the vertical velocity w comes from the vertical
integration of the continuity equation ∇·v + ∂zw = 0, using the vanishing boundary
condition for w at the top (z = 0) and at the bottom (z = −H0):

w(x, y, z) = −∇·

∫ z

−H0

v(x, y, s) ds ≡ W(v).(1.7)

It was first observed by Lions, Temam, and Wang in [13] that the surface pressure

appears to be the Lagrange multiplier of the nonlocal constraint ∇·
∫ 0

−H0
v dz = 0.

For instance, in view of studying the balance of energy of the system, we multiply the
first equation in (1.1) by v; then the integral

∫

M
v ·∇ps dx vanishes.

1.1. Determination of the surface pressure variable. A major difficulty in
the numerical approximation of the PEs is the absence of a time evolution equation for
the surface pressure field. The main objective in this section is to derive an alternate
formulation equivalent to the usual formulation (1.1) such that the surface pressure
variable ps can be determined by the horizontal velocity field v and the density field ρ,
which can be updated by the momentum equations and the density equations. Some
earlier work on this issue can be found in [1, 2, 4, 5, 7, 8, 11, 14, 15, 16, 18, 21, 22,
23, 25, 26].
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1.1.1. Surface pressure Poisson equation. We now derive an equation for
the surface pressure function ps(x, y). The starting point is the nonlocal constraint

∇·
∫ 0

−H0
v dz = 0. By taking the horizontal divergence of the momentum equation

in (1.1), integrating over (−H0, 0) in the z-direction, dividing by H0, and keeping in
mind that ps is a variable in the (x, y) plane, we arrive at the following equation:

(∂t − ν1△)
(

∇·v
)

− ν2

(

∂2
z (∇·v)

)

+
1

H0

∫ 0

−H0

∇·
(

(v ·∇)v + w
∂v

∂z

)

dz

+
1

Ro
∇·

(

fk × v
)

+
1

H0

1

Ro

∫ 0

−H0

∫ 0

z

△ρ(x, y, s) ds dz +
1

Ro
△ps = 0,

(1.8)

where f represents the average of the variable f in the z-direction. The first term in
(1.8) vanishes, since ∇·v is identically 0 in the horizontal domain. The second term
turns out to be

ν2

(

∂2
z (∇·v)

)

=
ν2

H0

∫ 0

−H0

∂2
z (ux + vy) dz =

ν2

H0

(

uzx + vzy

)

∣

∣

∣

∣

0

−H0

.(1.9)

The boundary condition in (1.2) indicates that (uzx + vzy) =
1
ν2
(∂x(τ0)1 + ∂y(τ0)2)

at z = 0 and (uzx + vzy) = 0 at z = −H0. Inserting (1.9) into (1.8) and setting
τd = ∇·τ0) at z = 0, which is a known function, we conclude that the surface pressure
ps solves the following Poisson equation:

△ps =
Ro

H0
∇·τ0 −

Ro

H0

∫ 0

−H0

∇·
(

(v ·∇)v + w
∂v

∂z
+

1

Ro
(fk × v)

)

dz

−
1

H0

∫ 0

−H0

∫ 0

z

△ρ(x, y, s) ds dz.

(1.10)

The Poisson equation (1.10), together with the boundary condition described below,
determines the surface pressure field by the velocity field and the density field without
involving time derivative profiles.

1.1.2. Boundary condition for the surface pressure. Another point we
have to emphasize is that there should be a boundary condition imposed for the
surface pressure Poisson equation (1.10) if the Dirichlet boundary condition (1.3) for
horizontal velocity field v is imposed on the lateral boundary section ∂M0× [−H0, 0].

Integrating the momentum equation in (1.1) over (−H0, 0) in the z-direction and
dividing by H0 gives

vt +
(

(v ·∇)v + w
∂v

∂z

)

+
1

Ro
fk × v +

1

H0

1

Ro

∫ 0

−H0

∫ 0

z

∇ρ(·, s) ds dz

+
1

Ro
∇ps = ν1△v + ν2∂2

zv,

(1.11)

assuming that ps is independent of the z-variable. On the lateral boundary ∂M0 ×
[−H0, 0], the time marching term vt and all the convection terms vanish because of the
no-penetration, no-slip boundary condition (the term w ∂v

∂z disappears since ∂v

∂z is zero

on the boundary). The term ∂2
zv also vanishes, since ∂2

zv is also 0 on ∂M0× [−H0, 0].
Therefore, by taking the inner product of (1.11) with the unit normal vector field on
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the boundary ∂M0 (of the 2-D domain M0), we arrive at the following boundary
condition for the surface pressure:

∂ps
∂n

= ν1 Ro△v ·n on ∂M0.(1.12)

1.2. Alternate formulation of the PEs. We then have the following formu-

lation, in which the nonlocal constraint ∇·
∫ 0

−H0
v dz = 0 is replaced by the surface

pressure Poisson equation and a mean divergence-free boundary condition for the
horizontal velocity:

vt+(v·∇)v+W(v)
∂v

∂z
+

f

Ro
k×v+

1

Ro

(
∫ 0

z

∇ρ(x, y, s) ds+∇ps

)

= L1v,(1.13a)

ρt + (v ·∇)ρ+W(v)
∂ρ

∂z
= L2ρ,(1.13b)

△ps =
Ro

H0
τd −

Ro

H0

∫ 0

−H0

∇·
(

(v ·∇)v +W(v)
∂v

∂z
+

1

Ro
(fk × v)

)

dz

−
1

H0

∫ 0

−H0

∫ 0

z

△ρ(x, y, s) ds dz,

(1.13c)

∂v

∂z
=

τ0

ν2
at z = 0,

∂v

∂z
= 0 at z = −H0,

∂ρ

∂z
=

ρf
κ2

at z = 0,
∂ρ

∂z
= 0 at z = −H0,

v = 0 and
∂ρ

∂n
= 0 on ∂M0 × [−H0, 0],

(1.13d)

(∇·v) = 0 on ∂M0.(1.13e)

Proposition 1.1. For v, ρ ∈ L∞([0, T ], H3), ∂tv, ∂tρ ∈ L∞([0, T ], H1), the

original formulation (1.1)–(1.3) of the PEs is equivalent to the alternate formulation

(1.13a)–(1.13e).
Proof. Assume (v, ρ, ps) is a solution of (1.1)–(1.3). We observe that ps satisfies

the Poisson equation (1.13b), which can be obtained by taking the horizontal diver-
gence of the momentum equation in (1.1) and averaging in the vertical direction as
shown in the above derivation. In addition, taking the vertical derivative of the repre-
sentation formula for the vertical velocity in (1.1) indicates that the horizontal velocity
v satisfies the constraint ∇·v = 0. The usage of the regularity for v ∈ L∞([0, T ], H3)
shows that v satisfies the additional boundary condition (1.13e). This concludes that
(v, ρ, ps) is also a solution of (1.13).

Conversely, assume (v, ρ, ps) is a solution of (1.13). We need to show that ∇·v =
0. Taking the divergence of (1.13a) and integrating in the vertical direction leads to

∂t(∇·v)− ν1△(∇·v) = 0,(1.14a)
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since all the other terms are canceled by the surface pressure Poisson equation. Hence
the heat equation (1.14a) for the scalar quantity ∇·v, together with the homogeneous
initial data

(∇·v)(x, y, t = 0) = 0,(1.14b)

and the additional mean divergence-free boundary condition for the horizontal velocity
imposed by (1.13e),

(∇·v) = 0 on ∂M0,(1.14c)

show that (∇·v) = 0; namely, the third equation in (1.1) is satisfied for all t > 0.
Therefore, (v, ρ, ps) is also a solution of (1.1)–(1.3). That completes the proof of
Proposition 1.1.

Remark 1.2. The above arguments show that the system (1.13a)–(1.13e) implies
the original system of PEs (1.1)–(1.3), and therefore it implies (1.12), a Neumann-
type boundary condition for the surface pressure ps, since (1.12) is derived from the
momentum equation in (1.1). In other words, the boundary condition (1.12) must
be satisfied by any solution of the system (1.13a)–(1.13e). For the computations, the
additional boundary condition (1.13e), a mean divergence-free boundary condition for
the horizontal velocity, is not convenient to use. Instead, we will replace it by (1.12), a
boundary condition for the surface pressure, to solve for the Poisson equation (1.13b);
note that we are not claiming that the systems are equivalent if we replace (1.13e)
by (1.12), leaving (1.13a)–(1.13d) unchanged. However, as we show below, such an
equivalence occurs in the case of the MAC scheme, the spatially discrete scheme that
will be studied in section 3.

1.3. Analogy with the 2-D Navier–Stokes equations. It could be observed
that the boundary condition (1.13e) is coupled with the surface pressure Poisson
equation (1.13b) and the momentum equation (1.13a), (1.13d). In more detail, in the
derived formulation (1.13), four boundary conditions are prescribed for the horizontal
velocity field: ∂v

∂z = τ0
ν2

on z = 0, ∂v

∂z = 0 on z = −H0, v = 0 on ∂M0 × [−H0, 0],

and (∇·v) = 0 on ∂M0, while there is no boundary condition for the surface pressure
ps. This subtle fact appears in a similar way for the formulations of incompressible
fluid equations, such as the Navier–Stokes equation (NSE). For example, the vorticity-
stream function formulation of the 2-D NSE in a simply connected domain, which is
also a derived formulation, can be written as







∂tω + (v ·∇)ω = ν△ω,
△ψ = ω,
u = −∂yψ, v = ∂xψ,

(1.15)

where v = (u, v) denotes the 2-D velocity field, ω = ∇×u = −∂yu+ ∂xv denotes the
vorticity, and the no-penetration, no-slip boundary condition can be written in terms
of the stream function ψ:

ψ = 0,
∂ψ

∂n
= 0 on ∂M0.(1.16)

Similar to our derived formulation (1.13), in the coupled system (1.15) and (1.16),
there are two boundary conditions for the stream function ψ (both Dirichlet and
Neumann) and no explicit boundary condition for the vorticity ω. On the other
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hand, updating the dynamic equation in (1.15) requires the vorticity boundary val-
ues; see [6, 10, 17, 18, 27, 28] for detailed description, derivation, and analysis of
vorticity boundary conditions. A similar difficulty arises in the formulation (1.13):
what boundary condition should be imposed to solve surface pressure ps? Of course,
the Neumann boundary condition (1.12) is a good choice to replace (1.13e); their
equivalence is not claimed at the PDE level, as noted in Remark 1.2. However, in the
MAC spatial discretization with a staggered grid described in section 3, the boundary
condition (∇·v) |∂M0

= 0 is converted by a second order accurate realization into
the surface pressure boundary condition. Furthermore, in such a staggered grid, the
equivalence between the derived boundary condition and the nonlocal constraint on
the boundary as in (1.13e) can be fully proven.

Remark 1.3. The precise approximation of the pressure field via the pressure
Poisson equation is a well-known difficulty in the incompressible flow calculation if
the physical boundary condition is presented. The approach for solving the 2-D and
3-D NSEs by utilizing a local pressure boundary condition was recently introduced
by Johnston and Liu in [11]. Some ideas in their paper can be adapted in our work.

Remark 1.4. The PEs with general boundary conditions or noncylindric domains
were investigated in earlier literatures by Lions, Temam, and Wang [12, 13, 14, 15, 16]
in a PDE level. The corresponding numerical methods can be accordingly derived
using finite element approaches. We hope to report that issue in a future paper.

2. Temporal discretization. Two computational methods for the PEs in sur-
face pressure Poisson equation formulation (1.13) are proposed in this section. The
horizontal velocity field and the density field are updated by the momentum equation
(1.13a) and the density equation (1.13b). The surface pressure field, which is essen-
tially a Lagrange multiplier in a horizontal plane, is determined by a 2-D Poisson
solver, using the information of the velocity field and the density field at the same
time step (stage). Henceforth, the surface pressure gradient is treated as a force term
in the dynamic evolution of the momentum equation in the next time step (the stage).
As a result, the surface pressure term is decoupled from the diffusion term; thus the
Stokes solver is avoided. That dramatically simplifies the computation.

For simplicity, we use implicit treatment of the diffusion terms in the momentum
equation and the density equation, which makes the stability and convergence analysis
of the numerical scheme easier to handle. The backward Euler scheme is chosen as the
example of the first order method (in temporal discretization) and the Crank–Nicolson
scheme as the second order version.

2.1. Backward Euler method. Given the velocity field un, surface pressure
field pns , and density field ρn at time tn, we update all the profiles at the time step
tn+1 through the following procedure.

Step 1. The semi-implicit scheme for the momentum equation and the density
equation is given, leaving the convection term and the surface pressure gradient ex-
plicit:







































vn+1 − vn

△t
+ (vn ·∇)vn +W(vn)

∂vn

∂z
+

f

Ro
k × vn

+
1

Ro

∫ 0

z

∇ρn(x, y, s) d+
1

Ro
∇pns (x, y) =

(

ν1△+ ν2∂
2
z

)

vn+1,

ρn+1 − ρn

△t
+ (vn ·∇)ρn + wn ∂ρn

∂z
=

(

κ1△+ κ2∂
2
z

)

ρn+1,

(2.1a)
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which are three standard Poisson-like equations, with the boundary condition

∂vn+1

∂z
=

τ0

ν2
,

∂ρn+1

∂z
=

ρf
κ2

at z = 0,

∂vn+1

∂z
= 0,

∂ρn+1

∂z
= 0 at z = −H0,

vn+1 = 0 and
∂ρn+1

∂n
= 0 on ∂M0 × [−H0, 0].

(2.1b)

Step 2. With all the velocity field vn+1, wn+1 at hand, we can solve for the surface
pressure field at the time step tn+1 by the 2-D Poisson equation

(2.2a)

△pn+1
s =

Ro

H0
τn+1
d −

1

H0

∫ 0

−H0

∫ 0

z

△ρn+1(x, y, s) ds dz

−
Ro

H0

∫ 0

−H0

∇·
(

(vn+1 ·∇)vn+1 +W(vn+1)
∂vn+1

∂z
+

1

Ro
(fk × vn+1)

)

dz,

supplemented with the derived boundary condition (1.12), as argued in Remark 1.2
and section 1.3:

∂pn+1
s

∂n
= ν1 Ro△vn+1 ·n on ∂M0.(2.2b)

2.2. Crank–Nicolson method. The updating from time step tn to tn+1 is
carried out by the following steps.

Step 1. Solve for the momentum equations and the density equations


















vn+1 − vn

△t
+RHS1n+ 1

2 +
1

Ro
∇p

n+ 1
2

s =
1

2

(

ν1△+ ν2∂
2
z

)

(vn + vn+1),

ρn+1 − ρn

△t
+RHS2n+ 1

2 =
1

2

(

κ1△+ κ2∂
2
z

)

(ρn + ρn+1),
(2.3)

using the boundary condition (2.1b), where

RHS1n+ 1
2 = (vn+ 1

2 ·∇)vn+ 1
2 +W(vn+ 1

2 )
∂vn+ 1

2

∂z
+

f

Ro
k × vn+ 1

2

+
1

Ro

∫ 0

z

∇ρn+ 1
2 (x, y, s) ds,

RHS2n+ 1
2 = (vn+ 1

2 ·∇)ρn+ 1
2 +W(vn+ 1

2 )
∂ρn+ 1

2

∂z
.

(2.4)

The velocity and the density profiles (u, ρ) = (v, w, ρ), along with the surface pressure

ps, at the time step tn+ 1
2 are evaluated by second order explicit extrapolation in time

un+ 1
2 =

3

2
un −

1

2
un−1, ρn+ 1

2 =
3

2
ρn −

1

2
ρn−1, p

n+ 1
2

s =
3

2
pns −

1

2
pn−1
s .(2.5)

Note that the system (2.3) is also composed of three standard Poisson-like equa-
tions.

Step 2. The surface pressure field at the time step tn+1 is solved by the 2-D
Poisson equation (2.2a) with the derived boundary condition (2.2b), as in the second
step of the backward Euler scheme.
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3. Spatial discretization: MAC scheme. We consider hereafter the oceanic
basin given by M0 = [0, 1]2 and assume for simplicity that △x = △y = △z = h.
The analysis of the spatial discretization with regular grids is quite difficult. In this
paper, we consider the MAC staggered grid as spatial discretization. Some well-
known difficulties in the numerical simulation of NSE, such as enforcement of the
incompressibility condition and lack of proper evolutionary equation for the pressure
and associate boundary condition, were elegantly resolved in the celebrated MAC
scheme, which was first proposed by Harlow and Welch in [9]. For the system of the
PEs, the 3-D MAC staggered grid is used in the computational method.

An illustration of the MAC mesh on the section zk = (k + 1/2)△z is given
in Figure 3.1. The surface pressure variable ps is evaluated at the square points
(i±1/2, j±1/2), the velocity u is evaluated at the triangle points (i, j±1/2, k±1/2),
the velocity v is evaluated at the circle points (i± 1/2, j, k ± 1/2), and the velocity w
and the density function ρ are evaluated at the dot points (i ± 1/2, j ± 1/2, k). The
advantage of such a staggered grid is the convenience to assure the divergence-free
property of the numerical velocity field, which can be observed later.

The following centered differences using different stencils at different grid points
is introduced to facilitate the description below:

Dxg(x) =
g(x+ 1

2h)− g(x − 1
2h)

h
, D̃xg(x) =

g(x+ h)− g(x − h)

2h
,

D2
xg(x) =

g(x − h)− 2g(x) + g(x+ h)

h2
,

(3.1)

which are second order approximations to ∂x, ∂2
x, respectively. The corresponding

operators in y- and z-directions, such as Dy, D̃y, D2
y, Dz, D̃z, D2

z , can be defined in
the same fashion.

The discrete divergence of the total velocity field u is evaluated at the square
points:

(∇h ·u)i+1/2,j+1/2,k+1/2 =
(

Dxu+Dyv +Dzw
)

i+1/2,j+1/2,k+1/2
.(3.2)

i−1 i i+1

j−1

j

j+1

pi+1/2,j+1/2ui,j+1/2

vi+1/2,j

△ △ △ △

△ △ △ △

△ △ △ △

© © © ©

© © © ©

© © © ©

Fig. 3.1. MAC mesh at zk = (k + 1/2)△z; Harlow and Welch [9].
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The diffusion term for the velocity u is approximated by

(

ν1△+ ν2∂
2
z

)

u =
(

ν1△h + ν2D
2
z

)

u =
(

ν1(D
2
x +D2

y) + ν2D
2
z

)

u(3.3)

at (i, j + 1/2, k + 1/2). The other diffusion terms, △hv, D2
zv, at the mesh point

(i + 1/2, j, k + 1/2), and △hρ, D2
zρ, at the mesh point (i + 1/2, j + 1/2, k), can be

given in the same way. The gradient of density and the surface pressure appearing in
the momentum equation is discretized by (Dxρ)i,j+1/2,k+1/2, (Dyρ)i,j+1/2,k+1/2 (and
(Dxps)i,j+1/2, (Dyps)i+1/2,j), respectively.

The approximation to the nonlinear convection term (v·∇)v+w ∂v

∂z , (v·∇)ρ+w ∂ρ
∂z

at the corresponding mesh points for u, v, ρ relies on the introduction of average value
of u, v, w at the staggered grid. For example, at the mesh point (i, j + 1/2, k + 1/2)
where u is located, the average v, w can be introduced as

vi,j+1/2,k+1/2 =
1

4
(vi−1/2,j,k+1/2 + vi+1/2,j,k+1/2

+ vi−1/2,j+1,k+1/2 + vi+1/2,j+1,k+1/2),
(3.4a)

wi,j+1/2,k+1/2 =
1

4
(wi−1/2,j+1/2,k + wi+1/2,j+1/2,k

+ wi−1/2,j+1/2,k+1 + wi+1/2,j+1/2,k+1),
(3.4b)

and the corresponding convection term for u: uux + vuy + wuz can be defined as

Nh(u, u) = uD̃xu+ vD̃yu+ wD̃zu at (i, j + 1/2, k + 1/2).(3.5)

The two other convection terms, Nh(u, v)i+1/2,j,k+1/2, Nh(u, ρ)i+1/2,j+1/2,k, which
are approximations to uvx + vvy + wvz, uρx + vρy + wρz at the corresponding mesh
points, can be similarly defined. In addition, the Coriolis force term fk × v =
(−fv, fu) is evaluated at the mesh points for u, v, respectively, by taking the av-
erage of v and u at the required grid points as in (5.4):

(−fv)i,j+1/2,k+1/2 = −fi,j+1/2vi,j+1/2,k+1/2,

(fu)i+1/2,j,k+1/2 = fi+1/2,jui+1/2,j,k+1/2.
(3.6)

Clearly, the truncation errors of these approximations are of second order. The
momentum equation for u is implemented at triangle points, the second momentum
equation is implemented at circle points, and the density equation is implemented at

the mesh points (i+1/2, j+1/2, k). The discrete version of the term
∫ 0

z
∇ρ(x, y, s) ds

appearing in the momentum equation is a discrete integral of D̃xρ, D̃yρ (which are
defined at mesh points (i, j + 1/2, k), (i + 1/2, j, k), respectively, as given in (3.3)),
in the z-direction. More accurately, PNRX is defined as the discrete version of
∫ 0

z
ρx(x, y, s) ds:

(3.7a)

PNRXi,j+1/2,N−1/2 =
1

2
△z (Dxρ)i,j+1/2,N ,

PNRXi,j+1/2,k−1/2 = PNRXi,j+1/2,k+1/2 +△z (Dxρ)i,j+1/2,k, k ≤ Nz − 1,
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and PNRY can be given in a similar way:

(3.7b)

PNRY i+1/2,j,N−1/2 =
1

2
△z (Dyρ)i+1/2,j,N ,

PNRY i+1/2,j,k−1/2 = PNRY i+1/2,j,k+1/2 +△z (Dyρ)i+1/2,j,k, k ≤ Nz − 1.

Both formulae are second order approximation to the integral of the density gradient
from zk to 0.

The 2-D discrete Poisson equation for surface pressure ps is implemented at square
points. In more detail, we denote

FU = −Nh(u, u) +
1

Ro
(fv)−

1

Ro
PNRX at (i, j + 1/2, k + 1/2),

FV = −Nh(u, v)−
1

Ro
(fu)−

1

Ro
PNRY at (i+ 1/2, j, k + 1/2)

(3.8)

as the convection terms (including the Coriolis force term) for the momentum equa-
tion; therefore, the Poisson equation for surface pressure ps can be written as

(3.9)

(△hps)i+1/2,j+1/2 =
Ro

H0

(

Dxτ0,1 +Dyτ0,2

)

i+1/2,j+1/2
+RoFP i+1/2,j+1/2, where

FP i+1/2,j+1/2,k+1/2 = (DxFU)i+1/2,j+1/2,k+1/2 + (DyFV )i+1/2,j+1/2,k+1/2,

on the mesh points (i + 1/2, j + 1/2) in the 2-D region M0 = [0, 1]2. The average of
FP , which is evaluated at the same numerical mesh grid as p, is defined as

FP i+1/2,j+1/2 =
1

H0

nz−1
∑

k=0

(△zFP i+1/2,j+1/2,k+1/2),(3.10)

which is a second order approximation to the integral of FP in the z-direction. Such
an evaluation of the discrete integral in the z-direction can be applied to any variable
whose z-direction grid is indexed as k ± 1/2.

It should be remarked that some suitable boundary condition is needed to solve
the 2-D Poisson equation (3.9). Such a choice of the boundary condition assures the
discrete divergence (∇h·v) has mean zero (in the z-direction) on the boundary ∂M0.
Details will be discussed in a later section.

On the physical boundary section i = 0, the no-penetration, no-slip boundary
condition v = 0 is translated by the reflection rule, whose application in the case of
the 2-D NSE can be found in earlier work [4, 6, 7, 9],

u0,j+1/2,k+1/2 = 0, v−1/2,j,k+1/2 + v1/2,j,k+1/2 = 0,(3.11)

and the no-flux boundary condition for the density function is imposed by

(Dxρ)0,j+1/2,k = 0, which implies ρ−1/2,j+1/2,k = ρ1/2,j+1/2,k.(3.12)

Similarly, on the boundary section j = 0, the boundary condition v = 0 is imposed
by vi+1/2,0,k+1/2 = 0, ui,−1/2,k+1/2 + ui,1/2,k+1/2 = 0, and the boundary condition
∂ρ
∂n

= 0 is imposed by ρi+1/2,−1/2,k = ρi+1/2,1/2,k.
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On the bottom boundary z = −H0, i.e., k = 0, the boundary condition ∂v

∂z = 0,
∂ρ
∂z = 0 can be written as

ui,j+1/2,−1/2 = ui,j+1/2,1/2, vi+1/2,j,−1/2 = vi+1/2,j,1/2,

ρi+1/2,j+1/2,−1 = ρi+1/2,j+1/2,1,
(3.13)

using a similar argument as in (3.12).

3.1. Boundary condition for surface pressure ps. The derived boundary
condition (1.12) is needed to solve the surface pressure Poisson equation (3.9). As
assumed earlier, in the case that M0 = [0, 1]2, we concentrate on the left boundary
x = 0 for simplicity of presentation. The other three boundary sections x = 1, y = 0, 1
can be dealt with in the same manner. In PDE formulation, on the left boundary
section x = 0, (1.12) indicates that

∂ps
∂x

= ν1 Ro△u = ν1 Ro∂2
xu,(3.14)

where the second step is based on the fact that the velocity u vanishes; henceforth u
vanishes on the boundary, too. The MAC mesh grid near the left boundary is shown
in Figure 3.1.

Our methodology for approximating ∂2
xu as in (3.14) follows the approach taken

by numerical methods for the 2-D NSE formulated in the vorticity-stream function,
as given in (1.15), (1.16), based on local vorticity boundary conditions. The earliest
work in this direction is due to Thom [27]. The more recent works [6], [10], [28]
revived interest in the use of local formulae for vorticity on the boundary and analyzed
the stability and convergence of a class of such formulae. The key point in these
approaches is to convert the Neumann boundary condition for the stream function ψ,
which states the no-slip velocity boundary condition, into a local vorticity boundary
condition, such as Thom’s formula.

A similar idea can be used in the approximation to ∂2
xu as in (3.14). In our scheme,

the mean divergence-free boundary condition for the horizontal velocity, (∇·v) |∂M0
=

0, can be converted into an approximation of the Neumann boundary condition for
the surface pressure as derived in (1.12). In more detail, the following finite-difference
method is applied on the boundary grid point (0, j ± 1/2):

∂2
xu0,j+1/2 =

u−1,j+1/2 − 2u0,j+1/2 + u1,j+1/2

△x2 +O(h2)

=
u−1,j+1/2 + u1,j+1/2

△x2 +O(h2),

(3.15)

where the second step is based on the fact that the velocity field v vanishes on the
boundary. The second-order approximation (5.15) requires a value for u at grid point
(−1, j+1/2), which is a “ghost” point outside the computational domain. A consistent
prescription of the value for u−1,j+1/2 relies on a second order centered difference of

the mean divergence-free boundary condition ∇·v |x=0= 0,

0 = (∂xu+ ∂yv) |x=0= 0 + ∂yv |x=0=
u1,j+1/2 − u−1,j+1/2

2△x
+O(h2),(3.16)
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where the second step is due to the boundary condition v = 0 on ∂M0. The finite-
difference identity (3.16) directs us to take

u−1,j+1/2 = u1,j+1/2,(3.17)

whose substitution into (3.15), (3.14) gives a second order approximation of the de-
rived Neumann boundary condition (1.12),

∂ps
∂n

|0,yj+1/2
=

∂ps
∂x

|0,yj+1/2
= Ro

2ν1

△x2 u1,j+1/2. (ASPBC)(3.18)

The evaluation of ∂ps
∂n

at three other boundary sections can be derived in the same
fashion. We refer to the above formula as the accurate surface pressure boundary
condition (ASPBC). A similar derivation for the local pressure boundary condition in
the spatially discrete level of the incompressible NSE can be found in a recent paper
of Johnston and Liu [11]. Therefore, we have the following set of boundary conditions
for ps in the discrete version:

(ps)−1/2,j+1/2 = (ps)1/2,j+1/2 − Ro
2ν1

△x
u1,j+1/2,

(ps)i+1/2,−1/2 = (ps)i+1/2,1/2 − Ro
2ν1

△y
vi+1/2,1.

(3.19)

3.2. The MAC scheme for the PEs. Thus the system of MAC spatial dis-
cretization of the PEs can be written as







































ut +Nh(u, u) +
1

Ro

(

−fv + PNRX +Dxps

)

= L1,hu at △,

vt +Nh(u, v) +
1

Ro

(

fu+ PNRY +Dyps

)

= L1,hv at ©,

Dzv |z=−H0
= 0, Dzv |z=0=

τ0

ν2
,

v ·n = 0, v ·τ = 0 on ∂M0 × [−H0, 0],

(3.20a)











(△hps)i+1/2,j+1/2 = RoFP i+1,j+1/2,

∂ps
∂n

= Roν1 (△hv)·n,
(3.20b)

wi+1/2,j+1/2,k = −△z

k−1
∑

l=0

(

(Dxu)i+1/2,j+1/2,l+1/2 + (Dyv)i+1/2,j+1/2,l+1/2

)

,(3.20c)























ρt +Nh(u, ρ) = L2,hρ at (i+ 1/2, j + 1/2, k),

D̃zρ |z=0=
ρf
κ2

, D̃zρ |z=−H0
= 0,

∂ρ

∂n
= 0 on ∂M0 × [−H0, 0].

(3.20d)

Hereafter we denote L1,h = (ν1△h + ν2D
2
z), L2,h = (κ1△h + κ2D

2
z) for simplicity

of presentation.
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3.3. Mean divergence-free property. In this section, we argue that the nu-
merical velocity field vh, the solution of the system (3.20), has free mean-divergence
in a discrete level; i.e.,

Dxu+Dyv = 0 on mesh point (i+ 1/2, j + 1/2),(3.21)

where u, v are defined in the same way as in (3.10). To see this, we use a similar
argument as in (1.14a), (1.14b), and (1.14c). Taking the discrete divergence of the two
momentum equations in (3.20a) at mesh points (i+1/2, j+1/2, k+1/2), summing in
the z-direction, and keeping in mind the discrete Poisson equation for ps as in (3.8),
(3.9), we have

(∇h ·v)t = ν1△h∇h ·v at (i+ 1/2, j + 1/2).(3.22)

In the derivation of (3.22), we used the fact that the composition of discrete divergence
and discrete gradient (Dx, Dy) gives exactly the five-point Laplacian in the context of
the MAC spatial discretization. Another important fact we used in the derivation of
(3.22) is that, on MAC grids, the Laplacian operator △h and the divergence operator
are commutative. These two points represents a crucial advantage of the MAC grid.

The homogeneous initial data for ∇h ·v is obvious:

(

(∇h ·v)(·, t = 0)
)

i+1/2,j+1/2
= 0.(3.23)

It remains to make sure it vanishes on the lateral boundary ∂M0. We concentrate on
the boundary section x = 0. The discrete divergence of v on x = 0 can be evaluated
as

(∇h ·v)0,j+1/2 =
1

2

(

(∇h ·v)−1/2,j+1/2 + (∇h ·v)1/2,j+1/2

)

=
1

2

(u0,j+1/2 − u−1,j+1/2

△x
+

v−1/2,j+1 − v−1/2,j

△y

+
u1,j+1/2 − u0,j+1/2

△x
+

v1/2,j+1 − v1/2,j

△y

)

,

=
u1,j+1/2 − u−1,j+1/2

2△x
+

1

2

(v−1/2,j+1 − v−1/2,j

△y
+

v1/2,j+1 − v1/2,j

△y

)

,

(3.24)

where u−1,j+1/2, v−1/2,j are “ghost” point computational values for u, v. Meanwhile,
the reflection rule (3.11) (due to the no-slip boundary condition for v) gives that the
last two terms in (3.12) vanish, i.e.,

(∇h ·v)0,j+1/2 =
u1,j+1/2 − u−1,j+1/2

2△x
.(3.25)

By the identity (3.17) that u−1,j+1/2 = u1,j+1/2, which is used for the derivation
of the Neumann boundary condition for the surface pressure ps, we conclude that
the mean discrete divergence of v vanishes on the boundary x = 0. In other words,
the ASPBC (3.18) conversely indicates the choice for u−1,j+1/2 as in (3.17). The
substitution of (3.17) into (3.25) gives

(∇h ·v)0,j+1/2 = 0.(3.26)
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The combination of (3.26), (3.22), (3.23) indicates (3.21), which states that the
numerical solution vh of the system (3.20) has exactly zero discrete mean-divergence.
Henceforth, the formula (3.20c) for the determination of vertical velocity is consistent
with the combination of divergence-free property of the numerical velocity uh:

∇h ·vh +Dzw = 0,(3.27)

and the boundary condition for the vertical velocity w at z = 0 and z = −H0:

wi+1/2,j+1/2,0 = wi+1/2,j+1/2,N = 0.(3.28)

4. Convergence analysis of the fully discretized scheme using the back-

ward Euler method combined with the MAC grid. The MAC spatial dis-
cretization can be easily implemented in practical computations, combined with ei-
ther backward Euler or Crank–Nicolson schemes as outlined in section 2. For technical
simplicity, the periodic boundary condition is assumed in the horizontal (x, y)-plane
so that only the top and bottom boundary sections need to be taken into consider-
ation in the convergence analysis below. The scheme with physical lateral boundary
conditions can be dealt with in a similar fashion, with more technical details involved
in the consistency analysis. We skip it for the sake of brevity.

The fully discretized scheme using backward Euler temporal discretization is for-
mulated as below. The corresponding Crank–Nicolson method can be similarly pro-
posed and analyzed. We omit it in this article.



















































un+1 − un

△t
+Nh(u

n, un) +
1

Ro

(

−fv
n
+ PNRXn +Dxp

n
s

)

= L1,hu
n+1 at △,

vn+1 − vn

△t
+Nh(u

n, vn) +
1

Ro

(

fu
n
+ PNRY n +Dyp

n
s

)

= L1,hv
n+1 at ©,

Dzv |z=−H0
= 0, Dzv |z=0= 0,

(4.1a)

(△hps)
n+1
i+1/2,j+1/2 = RoFP

n+1

i+1,j+1/2,(4.1b)

wn+1
i+1/2,j+1/2,k = −△z

k−1
∑

l=0

(

(Dxu)
n+1
i+1/2,j+1/2,l+1/2 + (Dyv)

n+1
i+1/2,j+1/2,l+1/2

)

,(4.1c)











ρn+1 − ρn

△t
+Nh(u

n, ρn) = L2,hρ
n+1 at •,

D̃zρ |z=0= 0, D̃zρ |z=−H0
= 0.

(4.1d)

4.1. Main theorem and some notations. The following notations of L2

norms in a discrete level need to be introduced.
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Notation 4.1. For any pair of variables ua, ub which are defined at the mesh points
(i, j + 1/2, k + 1/2) (such as u, D̃xu, D̃yu, D̃zu, etc.), the discrete L2-inner product
is given by

〈ua, ub〉1 =
N−1
∑

k=0

N−1
∑

j=0

N−1
∑

i=0

uai,j+1/2,k+1/2 ubi,j+1/2,k+1/2 h3.(4.2a)

For any pair of variables va, vb which are defined at the mesh points (i+1/2, j, k+1/2)
(such as v, D̃xv, D̃yv, D̃zv, etc.), the discrete L2-inner product is given by

〈va, vb〉2 =
N−1
∑

k=0

N−1
∑

j=0

N−1
∑

i=0

vai+1/2,j,k+1/2 vbi+1/2,j,k+1/2 h3.(4.2b)

For any pair of variables ρa, ρb defined at the mesh points (i+ 1/2, j + 1/2, k) (such
as ρ, w, D̃xρ, D̃yρ, D̃zρ, etc.), the discrete L2-inner product is given by

(4.2c)

〈ρa, ρb〉3 =
N−1
∑

j=0

N−1
∑

i=0

(

N−1
∑

k=1

ρai+1/2,j+1/2,k ρbi+1/2,j+1/2,k

+
1

2
ρai+1/2,j+1/2,0 ρbi+1/2,j+1/2,0 +

1

2
ρai+1/2,j+1/2,N ρbi+1/2,j+1/2,N

)

h3.

Finally, for any pair of variables pa, pb defined at the mesh points (i+1/2, j+1/2, k+
1/2) (such as p, Dxu, Dyv, Dzw), the discrete L2-inner product is defined by

〈pa, pb〉4 =
N−1
∑

k=0

N−1
∑

j=0

N−1
∑

i=0

pai+1/2,j+1/2,k+1/2 pbi+1/2,j+1/2,k+1/2 h3.(4.2d)

Clearly, all the discrete L2-inner products defined above are second order accurate.
The corresponding L2

h norms can be defined accordingly. In addition, we set a vector
norm for the horizontal velocity as ‖v‖2

L2
h

= ‖u‖2
1 + ‖v‖2

2, where ‖u‖2
1 = 〈u, u〉1,

‖v‖2
2 = 〈v, v〉2.
The following is the main theorem of this paper.
Theorem 4.1. Let ue = (ve, we), pe, ρe be the exact solution of the PEs

(1.1), (1.2), with periodic boundary condition in the horizontal (x, y)-plane, and let

(v△t,h, w△t,h, ρ△t,h) be the numerical solution of the backward Euler coupled with the

MAC grid in (4.1). We assume that △t ≤ Ch, in which C is an arbitrary fixed

constant. Then the following convergence result holds as △t and h go to zero:

‖ve − v△t,h‖L∞(0,T ;L2
h
) + ‖ρe − ρ△t,h‖L∞(0,T ;L2

h
) ≤ C(△t+ h2),(4.3a)

where the constant C depends only on the regularity of the exact solution

(4.3b)

C = C
(

‖ue‖L∞(0,T ;C7,α), ‖ρe‖L∞(0,T ;C7,α), ‖ue‖C4(0,T ;C2,α), ‖ρe‖C4(0,T ;C2,α)

)

.
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The rest of the paper is devoted to the proof of Theorem 4.1. The main steps
include the following: 1. The numerical horizontal velocity is shown to have vanishing
averaged divergence. 2. The leading order consistency analysis, which gives a con-
struction of approximate velocity and density profiles satisfying the numerical scheme
up to an O(△t + h2) error. Moreover, the constructed horizontal velocity satisfies
zero mean-divergence property at the discrete level. 3. Higher order expansion, up to
O(△t3+h4) expansion, of the numerical scheme. That makes the recovery of the L∞

a priori assumption possible, for both the horizontal and the vertical velocity fields
in the full nonlinear system of the PEs, by the usage of inverse inequalities. 4. The
energy estimate for the error functions. The four steps will be presented in sections
4.2–4.5 below, respectively.

4.2. Evolution for the mean divergence of v. To facilitate the proof of
Theorem 4.1, we show that the calculated horizontal velocity at each time step has
free mean-divergence at the discrete level; i.e., (3.21) is satisfied for v at each time
step. The argument is similar to the one in section 3.3. Taking the discrete divergence
of the momentum equations in (4.1a) at mesh points (i + 1/2, j + 1/2, k + 1/2) and
summing in the z-direction gives

∇h ·vn+1 −∇h ·vn

△t
= ν1△h(∇h ·vn+1) at (i+ 1/2, j + 1/2),(4.4a)

since all other terms at the time step tn were canceled by the surface pressure Poisson
equation (4.1b) at the same time step. The combination of the evolution equation in
(4.4a) and the homogeneous initial data,

∇h ·v0 = 0,(4.4b)

shows that the numerical solution vh,△t of the scheme (4.1) has exactly zero discrete
mean-divergence. As a result, the combined system (3.27), (3.28) is valid for vn, wn

at any time step tn.
Furthermore, the numerical scheme (4.1a) for the momentum equation and the

discrete Poisson equation (4.1b) can also be reformulated in a form similar to that of
(1.5), (1.6) in the PDE level, for the sake of simplicity of the convergence analysis given
below. We denote the total pressure variable p at mesh points (i+1/2, j+1/2, k+1/2)
as

pi+1/2,j+1/2,k+1/2 = PRi+1/2,j+1/2,k+1/2 + (ps)i+1/2,j+1/2,(4.5a)

where PR, a discrete realization of
∫ 0

z
ρ(x, y, s) ds, is defined in a similar way as in

(3.7):

PRi+1/2,j+1/2,N−1/2 =
1

2
△z ρi+1/2,j+1/2,N ,

PRi+1/2,j+1/2,k−1/2 = PRi+1/2,j,k+1/2 +△z ρi+1/2,j+1/2,k.
(4.5b)

Clearly, (4.5) is a discrete version of the hydrostatic equation. One obvious fact is
that

Dzp = ρ at the mesh point (i+ 1/2, j + 1/2, k).(4.6)
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Therefore the scheme (4.1) can be rewritten as the following system:



























un+1 − un

△t
+Nh(u

n, un) +
1

Ro

(

−fv
n
+Dxp

n
)

= L1,hu
n+1 at △,

vn+1 − vn

△t
+Nh(u

n, vn) +
1

Ro

(

fu
n
+Dyp

n
)

= L1,hv
n+1 at ©,

Dzv
n+1 |z=−H0

= 0, Dzv
n+1 |z=0= 0,

(4.7a)

Dzp
n+1 = ρn+1 at (i+ 1/2, j + 1/2, k),(4.7b)







∇h ·v
n+1 +Dzw

n+1 = 0,

wn+1
i+1/2,j+1/2,0 = wn+1

i+1/2,j+1/2,N = 0,
(4.7c)











ρn+1 − ρn

△t
+Nh(u

n, ρn) = L2,hρ
n+1 at •,

D̃zρ |z=0= 0, D̃zρ |z=−H0
= 0.

(4.7d)

We remark that the mean divergence-free property for the numerical horizontal
velocity field and the corresponding identities (3.27), (3.28) assure that the 3-D ve-
locity field is orthogonal to the horizontal and vertical gradients of the total pressure
field p in the staggered L2 space introduced in (4.2), i.e.,

〈u,Dxp〉1 + 〈v,Dyp〉2 + 〈w,Dzp〉3 = −〈(∇h ·v +Dzw), p〉4 = 0,(4.8)

by usage of summing by parts in the MAC grid and of the boundary condition for
the velocity field. This crucial point makes possible the convergence analysis of the
whole numerical scheme using the MAC spatial discretization.

4.3. Leading order consistency analysis. Our goal is to construct approxi-
mate velocity profiles V 0 = (U0, V 0), W 0 and approximate density profile Θ0, and
to show that their combination with exact pressure profile pe satisfies the numerical
scheme (4.7) up to an O(△t+ h2) error. Furthermore, the constructed V 0 has to be
assured to have zero mean-divergence in the discrete sense, i.e.,

∇h ·V
0 = 0 at (i+ 1/2, j + 1/2),(4.9)

so that the vertical velocity W 0 can be determined by the formula in the same way
as in (4.7c) consistent with its boundary condition:

W 0
i+1/2,j+1/2,k = −△z

k−1
∑

l=0

(

(DxU
0)i+1/2,j+1/2,l + (DyV

0)i+1/2,j+1/2,l

)

.(4.10)

In other words, the combination of (4.9) and (4.10) gives

{

∇h ·V
0 +DzW

0 = 0,

W 0
i+1/2,j+1/2,0 = W 0

i+1/2,j+1/2,N = 0,
(4.11)

which is analogous to (4.7c).
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The construction of the leading term for the horizontal velocity field V 0 relies on
the fact that any C1 function g in M can be uniquely recovered from its average in
the z-direction and its derivative with respect to z by

g(x, y, z) =

∫ z

−H0

gz(x, y, s) ds+ g(x, y)−
1

H0

∫ 0

−H0

∫ z′

−H0

gz(x, y, s) ds dz′.(4.12)

As a result, the exact horizontal velocity field ve can be represented as

(4.13)

ue(x, y, z) =

∫ z

−H0

∂zue(x, y, s) ds+ ue(x, y)−
1

H0

∫ 0

−H0

∫ z

−H0

∂zue(x, y, s) ds dz,

ve(x, y, z) =

∫ z

−H0

∂zve(x, y, s) ds+ ve(x, y)−
1

H0

∫ 0

−H0

∫ z

−H0

∂zve(x, y, s) ds dz.

The discrete form of the recovery formula (4.13) applied to U0, V 0 can be written
as follows:

U0
i,j+1/2,k+1/2 = −PUZ0

i,j+1/2,k+1/2 + U0
i,j+1/2 + PUZ

0

i,j+1/2,

V 0
i+1/2,j,k+1/2 = −PV Z0

i+1/2,j,k+1/2 + V 0
i+1/2,j + PV Z

0

i+1/2,j ,
(4.14)

the construction of the mean velocity field U
0
, V

0
will be given later, and PUZ0,

PV Z0 represents the discrete integral of ∂zue, ∂zve from −H0 up to zk = (k+ 1
2 )△z,

respectively. Keeping in mind that ∂zue, ∂zve are defined on the numerical grids
(i, j ± 1/2, k), (i ± 1/2, j, k), respectively, we express such integrals as

PUZ0
i,j+1/2,−1/2 = −

1

2
△z (∂zue)i,j+1/2,0,

PUZ0
i,j+1/2,k+1/2 = PUZ0

i,j+1/2,k−1/2 +△z (∂zue)i,j+1/2,k,
(4.15a)

PV Z0
i+1/2,j,−1/2 = −

1

2
△z (∂zve)i+1/2,j,0,

PV Z0
i+1/2,j,k+1/2 = PV Z0

i+1/2,j,k−1/2 +△z (∂zve)i+1/2,j,k.
(4.15b)

Obviously, the combination of (4.14) and (4.15) gives

Nz−1
∑

k=0

(△z U0
i,j+1/2,k+1/2) = U0

i,j+1/2, (DzU
0)i,j+1/2,k = (∂zue)i,j+1/2,k,

Nz−1
∑

k=0

(△z V 0
i+1/2,j,k+1/2) = V 0

i+1/2,j , (DzV
0)i+1/2,j,k = (∂zve)i+1/2,j,k.

(4.16)

We use the “mean stream function” corresponding to the exact velocity solution

ve to construct the mean velocity field V 0 appearing in the construction formula
(4.14). Since the average of the exact velocity field ve is divergence-free in the 2-D
domain M0, as shown in (1.4), there exists a mean stream function ψe such that

ve = ∇⊥ψe = (−∂yψe, ∂xψe).(4.17)
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Subsequently, the average of V 0 (in the z-direction) can be determined via second
order finite-difference of the exact “mean stream function”

U0 = −Dyψe = −
ψei,j+1 − ψei,j

△y
at (i, j + 1/2),

V 0 = Dxψe =
ψei+1,j − ψei,j

△x
at (i+ 1/2, j).

(4.18)

It should be remarked that the mean stream function is evaluated at regular mesh
points (i, j), 0 ≤ i, j ≤ N . Obviously, (4.18) gives

DxU0 +DyV 0 = −Dx(Dyψe) +Dy(Dxψe) = 0,(4.19)

which along with the identity (4.16) assures that the mean divergence-free property
is automatically satisfied for the constructed leading velocity field

∇h ·V
0 = 0 at (i+ 1/2, j + 1/2).(4.20)

Accordingly, the recovery formula analogous to (4.2) is used to construct the leading
vertical velocity

(4.21)

W 0
i+1/2,j+1/2,k = −△z

k−1
∑

l=0

(

(DxU
0)i+1/2,j+1/2,l+1/2 + (DyV

0)i+1/2,j+1/2,l+1/2

)

,

which is compatible with the boundary condition W 0
i+1/2,j+1/2,0 = W 0

i+1/2,j+1/2,N =
0.

The proposition below states that the constructed leading velocity profile, to-
gether with its temporal derivative, is within O(h2) difference with the exact velocity
ue = (ve, we). Its verification is omitted in this paper for brevity and will appear
elsewhere.

Proposition 4.2. The following estimates for V 0, W 0 hold:

‖V 0 − ve‖Wm,∞(M) ≤ Ch2‖ve‖Cm+3 for m = 0, 1, 2 . . . ,(4.22a)

‖W 0 − we‖Wm,∞(M) ≤ Ch2‖ve‖Cm+4 .(4.22b)

Here ‖ · ‖Wm,∞(M) represents the maximum value at the corresponding mesh points

of the given function up to mth order finite-difference over the 3-D domain M. Fur-

thermore, the difference between the time derivatives of V 0 and ve can be controlled

by

∂mt V 0 = ∂mt ve +O(h2)‖∂mt ve‖C3 for m ≥ 1.(4.23)

In addition, we observe that V 0 exactly satisfies the boundary condition in the
discrete form as given in (4.7) at the top z = 0 and at the bottom z = −H0:

(DzU
0)i,j+1/2,0 = 0, (DzV

0)i+1/2,j,0 = 0,

(DzU
0)i,j+1/2,N = 0, (DzV

0)i+1/2,j,N = 0,
(4.24)
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due to its construction in (4.15) and the fact that ∂zve = 0 at the two boundary
sections.

The leading order density profile is composed of the exact density and a correction
term

Θ0 = ρe + h2Θ1.(4.25)

The addition of the O(h2) correction terms h2Θ1 is due to the higher order consistency
of the approximate profile Θ with the boundary condition given in the numerical
scheme (4.7d), which is required in the error analysis presented later. The correction
function Θ1 is constructed as the solution of the Poisson equation with Neumann
boundary condition

(4.26)














△Θ1 = C1 ≡
1

|M|

(
∫

M0

1

6
∂3
zρe(x, y,−H0) dx −

∫

M0

1

6
∂3
zρe(x, y, 0) dx

)

,

∂zΘ
1(x, y,−H0) = −

1

6
∂3
zρe(x, y,−H0), ∂zΘ

1(x, y, 0) = −
1

6
∂3
zρe(x, y, 0).

Note that the number C1 (a function of time t) is chosen so that
∫

M
C1 dx dz =

∫

∂M
∂Θ1

∂n
dn to maintain the consistency. The Schauder’s estimate applied to the

Poisson equation (4.26) gives that

‖Θ1‖Cm,α ≤ ‖ρe‖Cm+2,α , ‖∂kt Θ
1‖Cm,α ≤ ‖∂kt ρe‖Cm+2,α for m ≥ 2.(4.27)

The choice of the boundary condition for Θ1 in (4.26) implies that the approx-
imated density Θ as given in the expansion (4.25) satisfies the discrete boundary
condition in (4.7d) to an O(h5) order. It can be seen by local Taylor expansion for
the exact density field ρe around the bottom boundary that

(4.28)

(ρe)i+1/2,j+1/2,−1 = (ρe)i+1/2,j+1/2,1−
△z3

3
∂3
zρe(xi+1/2, yj+1/2,−H0)+O(h5)‖ρe‖C5 ,

in which the no-flux boundary condition is used. The insertion of the boundary
condition given by (4.26) into the Taylor expansion of Θ1, along with Schauder’s
estimate ‖Θ1‖C2 ≤ C‖ρe‖C5,α given by (4.27), leads to

(4.29)

Θ1
i+1/2,j+1/2,−1 = Θ1

i+1/2,j+1/2,1 +
△z

3
∂3
zρe(xi+1/2, yj+1/2,−H0) +O(h3)‖ρe‖C5,α .

The combination of (4.28) and (4.29) results in the following estimate for Θ0 = ρe +
h2Θ1:

Θ0
i+1/2,j+1/2,−1 = Θ0

i+1/2,j+1/2,1 +O(h5)‖ρe‖C5,α ,(4.30)

which proves our claim. The top boundary z = 0 can be dealt with in the same
manner.
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It is straightforward to verify the following local truncation estimates:























































(U0)n+1 − (U0)n

△t
+Nh((U

0)n, (U0)n) +
1

Ro

(

−f(V 0)n +Dxp
n
e

)

= L1,h(U
0)n+1 +△tE

u(0),n
△t + h2E

u(0),n
h at △,

(V 0)n+1 − (V 0)n

△t
+Nh((U

0)n, (V 0)n) +
1

Ro

(

f(U0)n +Dyp
n
e

)

= L1,h(V
0)n+1 +△tE

v(0),n
△t + h2E

v(0),n
h at ©,

(U0)n+1
i,j+1/2,−1/2 = (U0)n+1

i,j+1/2,1/2, (V 0)n+1
i+1/2,j,−1/2 = (V 0)n+1

i+1/2,j,1/2,

(4.31a)

Dzp
n+1
e = (Θ0)n+1 + h2E

p(0),n
h at (i+ 1/2, j + 1/2, k),(4.31b)







∇h ·(V
0)n+1 +Dz(W

0)n+1 = 0,

(W 0)n+1
i+1/2,j+1/2,0 = (W 0)n+1

i+1/2,j+1/2,N = 0,
(4.31c)























(Θ0)n+1 − (Θ0)n

△t
+Nh((U

0)n, (Θ0)n)

= L2,h(Θ
0)n+1 + (△t+ h2)Eρ(0),n at •,

(Θ0)n+1
i+1/2,j+1/2,−1 = (Θ0)n+1

i+1/2,j+1/2,1 + h5eρb,

(4.31d)

via high order Taylor expansion of the constructed solution V 0, W 0, Θ0, along with
the usage of Proposition 4.2. The local error terms satisfy

(4.32)

|Eu(0)|, |Ev(0)| ≤ C
(

‖∂tve‖C2 + ‖∂2
t ve‖C2 + ‖ue‖C6(1 + ‖ue‖C3) + ‖pe‖C4

)

,

|Ep(0)| ≤ C‖ρe‖C2 , |Eρ(0)| ≤ C
(

‖∂tρe‖C2 + ‖∂2
t ρe‖C2 + ‖ρe‖C5(1 + ‖ue‖C4)

)

.

4.4. Higher order expansion of the numerical scheme. The consistency
analysis (4.31) is not enough to recover the L∞ a priori estimates for the approximate
velocity field in the full nonlinear system of the PEs. We need to construct further
fields, (V 1

h,W
1
h,Θ

1
h, P

1
h ), (V

1
△t,W

1
△t,Θ

1
△t, P

1
△t), (V

2
△t,W

2
△t,Θ

2
△t, P

2
△t), and to in-

troduce, for the error analysis, the fields V , W , Θ, P defined by

V = V 0 + h2V 1
h +△tV 1

△t +△t2V 2
△t,

W = W 0 + h2W 1
h +△tW 1

△t +△t2W 2
△t,

Θ = Θ0 + h2Θ1
h +△tΘ1

△t +△t2Θ2
△t, P = pe + h2P 1

h +△tP 1
△t +△t2P 2

△t.

(4.33)

These new fields depend solely on (V 0,W 0,Θ0, pe), namely, on the exact solution.
Their construction is straightforward but lengthy; we omit the details. The expanded
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profiles satisfy the backward Euler scheme combined with the MAC grid up to order
O(△t3 + h4):

(4.34a)


















































Un+1 − Un

△t
+Nh(U

n, Un) +
1

Ro

(

−fV n +DxP
n
)

= L1,hU
n+1 + (△t3 + h4)Eu,n,

V n+1 − V n

△t
+Nh(U

n, V n) +
1

Ro

(

fUn +DyP
n
)

= L1,hV
n+1 + (△t3 + h4)Ev,n,

Un+1
i,j+1/2,−1/2 = Un+1

i,j+1/2,1/2 + h5eub, V n+1
i+1/2,j,−1/2 = V n+1

i+1/2,j,1/2 + h5eub,

DzP
n+1 = Θn+1 + h4Ep,n,(4.34b)







∇h ·V
n+1 +DzW

n+1 = 0,

W n+1
i+1/2,j+1/2,0 = W n+1

i+1/2,j+1/2,N = 0,
(4.34c)











Θn+1 −Θn

△t
+Nh(U

n,Θn) = L2,hΘ
n+1 + (△t3 + h4)Eρ,n,

Θn+1
i+1/2,j+1/2,−1 = Θn+1

i+1/2,j+1/2,1 + h5eρb,
(4.34d)

in which the local truncation error and the boundary error terms are bounded in the
L∞ norm

|Eu|, |Ev|, |Ep|, |Eρ||eub|, |evb|, |eρb| ≤ C∗,(4.34e)

with the constant C∗ depending on the exact solution. This completes the consistency
analysis.

Remark 4.3. As stated earlier, the purpose of the higher order expansion (4.33)
is to obtain the L∞ estimate of the error function via its L2 norm in higher order
accuracy by utilizing an inverse inequality in spatial discretization, which will be
shown below. Such expansion is always possible under suitable regularity assumption
of the exact solution. A detailed analysis shows that

|ve − V |+ |we − W |+ |ρe −Θ| ≤ C(△t+ h2),(4.35)

with C introduced in Theorem 4.1. This estimate will be used later.
Remark 4.4. We note that there is no O(h3) term in the higher order expansion

(4.33). This is due to the centered difference we used in the spatial discretization,
which gives local truncation errors with only even order, etc., O(h2), O(h4).

4.5. Proof of Theorem 4.1. We consider the following error functions:

ṽ = (ũ, ṽ) = V −v = (U−u, V −v), w̃ = W −w, p̃ = P −p, ρ̃ = Θ−ρ.(4.36)
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Subtracting (4.7) from (4.34), we obtain the following system for the error functions:

(4.37a)






























ũn+1 − ũn

△t
+ ENLUn +

1

Ro

(

−fṽ
n
+Dxp̃

n
)

= L1,hũ
n+1 + (△t3 + h4)Eu,n,

ṽn+1 − ṽn

△t
+ ENLV n +

1

Ro

(

fũ
n
+Dyp̃

n
)

= L1,hṽ
n+1 + (△t3 + h4)Ev,n,

ũn+1
i,j+1/2,−1/2 = ũn+1

i,j+1/2,1/2 + h5eub, ṽn+1
i+1/2,j,−1/2 = ṽn+1

i+1/2,j,1/2 + h5eub,

Dz p̃
n+1 = ρ̃n+1 + h4Ep,n,(4.37b)







∇h ·ṽ
n+1 + D̃zw̃

n+1 = 0,

w̃n+1
i+1/2,j+1/2,0 = w̃n+1

i+1/2,j+1/2,N = 0,
(4.37c)











ρ̃n+1 − ρ̃n

△t
+ ENLRn = L2,hρ̃

n+1 + (△t3 + h4)Eρ,n,

ρ̃n+1
i+1/2,j+1/2,−1 = ρ̃n+1

i+1/2,j+1/2,1 + h5eρb ;
(4.37d)

the nonlinear error terms corresponding to the convection have the following decom-
position:

ENLU = Nh(U , U)−Nh(u, u) = Nh(ũ, U) +Nh(u, ũ),

ENLV = Nh(U , V )−Nh(u, v) = Nh(ũ, V ) +Nh(u, ṽ),

ENLR = Nh(U ,Θ)−Nh(u, ρ) = Nh(ũ,Θ) +Nh(u, ρ̃).

(4.37e)

4.5.1. Preliminary results. The following preliminary results will be needed
in the energy estimate of the system (4.37). The proofs are straightforward so that
we omit the detail.

Lemma 4.5. We have the following:

(i) Inverse inequality in 3-D:

‖f‖L∞ ≤
C

h
3
2

‖f‖L2 .(4.38a)

(ii) Suppose wi+1/2,j+1/2,0 = wi+1/2,j+1/2,N ; then

‖u‖2 ≤ ‖u‖1, ‖v‖1 ≤ ‖v‖2, ‖w‖1 ≤ ‖w‖3, ‖w‖2 ≤ ‖w‖3.(4.38b)

(iii) For w̃ determined by (4.37c), we have

‖w̃‖3 ≤ ‖D+
x ũ‖1 + ‖D+

y ṽ‖2.(4.38c)

(iv) Suppose ṽ = (ũ, ṽ) and ρ̃ satisfy the boundary condition in (4.37); then

(4.38d)

‖D̃xũ‖1 ≤ ‖D+
x ũ‖1, ‖D̃yũ‖1 ≤ ‖D+

y ũ‖1, ‖D̃zũ‖1 ≤ ‖D+
z ũ‖1 + h4,

‖D̃y ṽ‖2 ≤ ‖D+
y ṽ‖2, ‖D̃xṽ‖2 ≤ ‖D+

x ṽ‖2, ‖D̃z ṽ‖2 ≤ ‖D+
z ṽ‖+ h4,

‖D̃xρ̃‖3 ≤ ‖D+
x ρ̃‖3, ‖D̃z ρ̃‖3 ≤ ‖D+

z ρ̃‖3, ‖D̃yρ̃‖3 ≤ ‖D+
y ρ̃‖+ h4.
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(v) Suppose wi+1/2,j+1/2,0 = wi+1/2,j+1/2,N = 0; then

〈u, D̃xp〉1 + 〈v, D̃yp〉2 + 〈w, D̃zp〉3 = −〈(∇h ·v + D̃zw), p〉4.(4.38e)

4.5.2. Energy estimate for the error functions. Assume a priori that

‖ṽ‖L∞ + ‖w̃‖L∞ ≤
1

2
.(4.39)

Such a priori assumption will be verified later using the inverse inequality (4.38a).
Taking the inner product of the first momentum error equation in (4.37a) with

ũn+1 at the mesh point (i, j + 1/2, k + 1/2), the second momentum error equation

with ṽn+1 at the mesh point (i + 1/2, j, k + 1/2), the equation in (4.37b) with w̃n+1

Ro
at the mesh point (i+ 1/2, j + 1/2, k), and summing up gives

(4.40)

1

2
·
1

△t

(

‖ũn+1‖2
1 − ‖ũn‖2

1 + ‖ũn+1 − ũn‖2
1 + ‖ṽn+1‖2

2 − ‖ṽn‖2
2 + ‖ṽn+1 − ṽn‖2

2

)

+

〈

ũn+1, ENLUn

〉

1

+

〈

ṽn+1, ENLV n

〉

2

+
1

Ro

(

〈ũn+1,−fṽ
n
〉1 + 〈ṽn+1, f ũ

n
〉2
)

+
1

Ro

(

〈ũn+1, Dxp̃
n〉1 + 〈ṽn+1, Dyp̃

n〉2 + 〈w̃n+1, Dz p̃
n〉3

)

−

〈

ũn+1, (ν1△h + ν2D
2
z)ũ

n+1

〉

1

−

〈

ṽn+1, (ν1△h + ν2D
2
z)ṽ

n+1

〉

2

=
1

2
·
1

△t

(

‖ũn+1‖2
1 − ‖ũn‖2

1 + ‖ũn+1 − ũn‖2
1 + ‖ṽn+1‖2

2 − ‖ṽn‖2
2

+ ‖ṽn+1 − ṽn‖2
2

)

+ Incu + Incv +
1

Ro
Incg +

1

Ro
Inp + In+1

du + In+1
dv

= 〈ũn+1, (△t3 + h4)Eu,n〉1 + 〈ṽn+1, (△t3 + h4)Ev,n〉2

−
1

Ro
〈w̃n+1, ρ̃n〉3 +

h4

Ro
〈w̃n+1, Ep,n〉3.

A direct application of part (v) in Lemma 4.5 gives that Inp appearing in (4.40)
vanishes indeed:

Inp = 〈ũn+1, Dxp̃
n〉1 + 〈ṽn+1, Dyp̃

n〉2 + 〈w̃n+1, Dz p̃
n〉3

= −〈(∇h ·ṽ
n+1 +Dzw̃

n+1), p̃n〉4 = 0,
(4.41)

due to the fact that ũ = (ũ, ṽ, w̃) is identically divergence-free at the discrete level
and the vertical velocity vanishes on the top and bottom boundaries. The identity
(4.41) is analogous to (4.8), which shows that the 3-D velocity field is orthogonal to
the pressure gradient in the staggered L2 space. This represents the main advantage
of the MAC grid.

The term Incg, which corresponds to the Coriolis force, can be controlled directly
by the Cauchy inequality and the application of part (ii) in Lemma 4.5:

(4.42)

|Incg| =

∣

∣

∣

∣

〈ũn+1,−fṽ
n
〉1+〈ṽn+1, f ũ

n
〉2

∣

∣

∣

∣

≤
f0 + β

2

(

‖ũn+1‖2
1+‖ũn‖2

1+‖ṽn+1‖2
2+‖ṽn‖2

2

)

.
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Next we consider the terms In+1
du , In+1

dv corresponding to the diffusion of ũ and ṽ.
A direct calculation shows that

−〈ũn+1, D2
xũ

n+1〉1 = ‖D+
x ũn+1‖2

1, −〈ũn+1, D2
yũ

n+1〉1 = ‖D+
y ũn+1‖2

1,(4.43a)

−〈ũn+1, D2
z ũ

n+1〉1 = ‖Dzũ
n+1‖2

1 + Bn+1
uz ,

Bn+1
uz = h3

N−1
∑

j=0

N−1
∑

i=1

(

h3ũn+1
i,j+1/2,1/2eub + h3ũn+1

i,j+1/2,N−1/2eut

)

,
(4.43b)

by utilizing the boundary condition for ũn+1 given in (4.37a). The boundary error
term Bn+1

uz can be bounded from below as follows:

(4.44)

Bn+1
uz ≥ h3

N−1
∑

j=0

N−1
∑

i=1

(

−
1

2
(ũn+1

i,j+1/2,1/2)
2 −

1

2
h6e2

ub −
1

2
(ũn+1

i,j+1/2,N−1/2)
2 −

1

2
h6e2

ut

)

≥ −
1

2
‖ũn+1‖2

1 −
1

2
h9

N−1
∑

j=0

N−1
∑

i=1

(e2
ub + e2

ut) ≥ −
1

2
‖ũn+1‖2

1 −
1

2
h6 ;

in the second step we absorbed the terms ũ2
i,j+1/2,1/2 and ũ2

i,j+1/2,N−1/2 into ‖ũ‖2
1 by

its definition. Then we obtain

(4.45)

In+1
du ≥ ν0(‖D

+
x ũn+1‖2

1 + ‖D+
y ũn+1‖2

1 + ‖D+
z ũn+1‖2

1)−
1

2
ν2‖ũ

n+1‖2
1 −

1

2
ν2h

6,

in which ν0 = min(ν1, ν2, κ1, κ2). Similar estimates can be obtained for In+1
dv :

In+1
dv ≥ ν0(‖D

+
x ṽn+1‖2

2 + ‖D+
y ṽn+1‖2

2 + ‖D+
z ṽn+1‖2

2)−
1

2
ν2‖ṽ

n+1‖2
2 −

1

2
ν2h

6.(4.46)

It remains to estimate Incu and Incv corresponding to the nonlinear convection
terms. Using the decomposition for ENLU as shown in (4.37e) yields

Incu =

〈

ũn+1, ENLUn

〉

1

=

〈

ũn+1,Nh(ũ
n, Un)

〉

1

+

〈

ũn+1,Nh(u
n, ũn)

〉

1

.(4.47)

The application of the Cauchy inequality to the first integral appearing on the right-
hand side of (4.47) indicates

(4.48)

−

〈

ũn+1,Nh(ũ
n, Un)

〉

1

≤ C̃1

(

‖ũn+1‖2
1+‖ũn‖2

1+‖ṽ
n
‖2
1

)

+
2C̃2

1

ν0
‖ũn+1‖2

1+
1

8
ν0‖w̃

n
‖2
1,

where C̃1 = ‖U‖W 1,∞ . The consistency analysis (4.35) shows that C̃1 ≤ ‖ve‖C1 + 1.
Meanwhile, the combination of parts (ii) and (iii) in Lemma 4.5 gives

‖w̃
n
‖2
1 ≤ ‖w̃n‖2

3 ≤ 2(‖D+
x ũn‖2 + ‖D+

y ṽn‖2), ‖ṽ
n
‖2
1 ≤ ‖ṽn‖2

2,(4.49)
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whose insertion into (4.48) leads to

−

〈

ũn+1,Nh(ũ
n, Un)

〉

1

≤
3C̃2

1

ν0
‖ũn+1‖2

1 + C̃1(‖ũ
n‖2

1 + ‖ṽn‖2
2)

+
1

4
ν0(‖D

+
x ũn‖2

1 + ‖D+
y ṽn‖2

2).

(4.50)

The second inner product appearing on the right-hand side of (4.47) can be controlled
in a similar way:

(4.51)

−

〈

ũn+1,Nh(u
n, ũn)

〉

1

≤ 2 ·
C̃2

2

ν0
‖ũn+1‖2

1 +
1

4
ν0

(

‖D+
x ũn‖2

1 + ‖D+
y ũn‖2

1 + ‖D+
z ũn‖2

1

)

,

where C̃2 = ‖u‖L∞ . The a priori assumption (4.39) and the consistency analysis
(4.35) assures that

C̃2 ≤ ‖V ‖L∞ + ‖W ‖L∞ +
1

2
≤ ‖ue‖C0 + C(△t+ h2) +

1

2
≤ ‖ue‖C0 + 1,(4.52)

provided that △t and h are small enough. Applying part (iv) of Lemma 4.5 into
(4.52) results in

−

〈

ũn+1,Nh(u
n, ũn)

〉

1

≤
2C̃2

2

ν0
‖ũn+1‖2

1 +
1

4
ν0

(

‖D+
x ũn‖2

1 + ‖D+
y ũn‖2 + ‖D+

z ũn‖2
1 + 2h6

)

.

(4.53)

Thus the combination of (4.51) and (4.53) gives

Incu ≥ −
(3C̃2

1

ν0
+

2C̃2
2

ν0

)

‖ũn+1‖2
1 − C̃1(‖ũ

n‖2
1 + ‖ṽn‖2

2)

−
1

2
ν0

(

‖D+
x ũn‖2

1 + ‖D+
y ũn‖2

1 + ‖D+
z ũn‖2

1

)

− h6,

(4.54)

where C̃1 ≤ ‖ve‖C1+1, C̃2 ≤ ‖ue‖C0+1. The bound for Incv can be similarly obtained:

Incv ≥ −
(3C̃2

1

ν0
+

2C̃2
2

ν0

)

‖ṽn+1‖2
2 − C̃1(‖ũ

n‖2
1 + ‖ṽn‖2

2)

−
1

2
ν0

(

‖D+
x ṽn‖2

2 + ‖D+
y ṽn‖2

2 + ‖D+
z ṽn‖2

2

)

− h6.

(4.55)

The four terms appearing on the right-hand side of (4.40) can be controlled by
the Cauchy inequality, together with the application of part (iii) of Lemma 4.5:

〈ũn+1, (△t3 + h4)Eu,n〉1 ≤
1

2
‖ũn+1‖2

1 + (△t6 + h8)‖Eu,n‖2
1,

〈ṽn+1, (△t3 + h4)Ev,n〉2 ≤
1

2
‖ṽn+1‖2

2 + (△t6 + h8)‖Ev,n‖2
2,

−
1

Ro
〈w̃n+1, ρ̃n〉3 ≤

1

8
ν0(‖D

+
x ũn+1‖2 + ‖D+

y ṽn+1‖2) +
C

ν0
‖ρ̃n‖2

3,

h4

Ro
〈w̃n+1, Ep,n〉3 ≤

1

8
ν0(‖D

+
x ũn+1‖2

1 + ‖D+
y ṽn+1‖2

2) +
C

ν0
h8 ‖Ep,n‖2

3.

(4.56)
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Substituting (4.56), (4.55), (4.54), (4.46), (4.45), (4.42), and (4.41) into (4.40),
and denoting

IEV = ‖D+
x ũ‖2

1 + ‖D+
y ũ‖2

1 + ‖D+
z ũ‖2

1 + ‖D+
x ṽ‖2

2 + ‖D+
y ṽ‖2

2 + ‖D+
z ṽ‖2

2,

IER = ‖D+
x ρ̃‖2

3 + ‖D+
y ρ̃‖2

3 + ‖D+
z ρ̃‖2

3,
(4.57)

we have the energy estimate for ṽ

1

2
·
1

△t

(

‖ũn+1‖2
1 − ‖ũn‖2

1 + ‖ṽn+1‖2
2 − ‖ṽn‖2

2

)

+
3

4
ν0IEV n+1

≤
(4C̃2

1

ν0
+

4C̃2
2

ν0
+ C

)

‖ṽ‖2 +
C

ν0
‖ρ̃‖2

3 +
1

2
ν0IEV n + Ẽn

u ,
(4.58a)

in which C̃1 ≤ ‖ve‖C1 + 1, C̃2 ≤ ‖ue‖C0 + 1, and the error term satisfies

Ẽn
u ≤

1

2
(△t6 + h8)

(

‖Eu,n‖2
1 + ‖Ev,n‖2

2) +
‖Ep,n‖2

3

ν0

)

+ Ch6.(4.58b)

The energy estimate for the density error function can be carried out in a similar way
(we omit the details):

(4.59)

1

2
·
1

△t

(

‖ρ̃n+1‖2
3 − ‖ρ̃n‖2

3

)

+
3

4
ν0IERn+1 ≤

( C̃2
3

ν0
+

4C̃2
2

ν0
+ C

)

‖ρ̃‖2
3 +

1

2
‖ṽ‖2

+
1

8
ν0(‖D

+
x ũn‖2

1 + ‖D+
y ṽn‖2

2) +
1

2
ν0IERn + C(△t6 + h8) ‖Eρ,n‖2

3,

in which C̃3 = ‖Θ‖W 1,∞ ≤ ‖ρe‖C1 + 1. By setting ‖ṽ‖2 = ‖ũ‖2
1 + ‖ṽ‖2

2, we arrive at

(4.60)

1

2
·
1

△t

(

‖ṽn+1‖2 − ‖ṽn‖2 + ‖ρ̃n+1‖2
3 − ‖ρ̃n‖2

3

)

+
3

4
ν0 IEV n+1 +

3

4
ν0 IERn+1

≤
(4C̃2

1

ν0
+

4C̃2
2

ν0
+

C̃2
3

ν0
+ C

)

(‖ṽ‖2 + ‖ρ̃‖2
3) +

5

8
ν0 IEV n +

1

2
ν0 IERn + Ẽn, with

Ẽn ≤ C(△t6 + h8)
(

‖Eu,n‖2
1 + ‖Ev,n‖2

2 + ‖Eρ,n‖2
3) +

‖Ep,n‖2
3

ν0

)

+ Ch6,

since the term (‖D+
x ũn‖2

1+‖D+
y ṽn‖2

2) appearing on the right-hand side of (4.59) can be
absorbed into IEV n. Summing (4.60) in time and applying the Gronwall inequality
yield

‖ṽn‖2 + ‖ρ̃n‖2
3 ≤ C · exp

(Ct

ν0

)(

△t6 + h8
)

(C∗)2 + CTh6,(4.61)

where C was given in Theorem 4.1 and C∗ depends only on the exact solution. In
the derivation of (4.61), we drop the gradient terms since the coefficients of IEV ,
IER on the right-hand side of (4.60) are less than those on the left-hand side. The
inequality (4.61) amounts to saying

‖v△t,h − V ‖L∞(0,T ;L2
h
) + ‖ρ△t,h −Θ‖L∞(0,T ;L2

h
)

≤ CC∗
(

exp

{

CT

ν0

}

+ T
)(

△t3 + h3
)

,
(4.62)
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whose combination with the estimate (4.35) gives the convergence result (4.3a). The
inverse inequality in three dimensions as given in Lemma 4.5 shows that

‖ṽ‖L∞ ≤ C
△t3 + h3

h
3
2

,(4.63)

and this is bounded by Ch3/2, since we impose to △t a CFL-like condition △t ≤ Ch.
Moreover, we have

‖w̃‖L∞ ≤
C

h
‖ṽ‖L∞ ≤ Ch1/2,(4.64)

which comes from the determination identity for w̃ in (4.37). As a result, the a priori
assumption (4.39) is satisfied if h is small enough. Thus Theorem 4.1 is proven.

Remark 4.6. The inverse inequality (4.38a) recovers the L∞ a priori assumption
(4.39) for the velocity field. This is the main advantage in the analysis of the fully
discretized system. Since the vertical velocity is formulated as the integration of the
divergence for the horizontal velocity, the O(h

5
2 ) estimate for the L2 norm of ṽ is

required. This is the reason for the higher order consistency analysis in section 4.4.
Remark 4.7. The stability constraint in Theorem 4.1 is △t ≤ Ch. We in-

fer from (4.62) that the backward Euler scheme is unconditionally stable for the
L2(0, T ;L2) norm, as expected from a scheme with implicit treatment of the diffusion
term. The stability constraint △t ≤ Ch is introduced after (4.63), (4.64) to recover
the L∞([0, T ]×M) stability, and C is an arbitrary fixed constant; note that the usual
CFL constraint has the same form with C = |u|−1

L∞ , but in the present case C is
arbitrary, since the CFL condition is needed only to ensure additional stability.

5. Numerical accuracy check. In this section we check the numerical accuracy
of the computational scheme. The exact velocity and density are chosen to be

ue(x, y, z, t) =
1

π2
sin(πx)sin(πy)cos(πz)cost,

ve(x, y, z, t) =
1

π2
sin(πx)sin(πy)cos(πz)cost,

ρe(x, y, z, t) =
1

π2
cos(πx)cos(πy)cos(πz)cost.

(5.1)

The corresponding exact vertical velocity we and exact pressure variable pe are de-
termined by the incompressibility ∇·ve + ∂zwe and hydrostatic balance ∂pe

∂z = −ρe,
respectively:

we(x, y, z, t) = −
1

π2

(

cos(πx)sin(πy) + sin(πx)cos(πy)
)

sin(πz)cost,

pe(x, y, z, t) =
1

π3
cos(πx)cos(πy)

(

1− sin(πz)
)

cost,
(5.2)

in which we set the exact surface pressure as

pse(x, y, t) = pe(x, y, 0, t) =
1

π3
cos(πx)cos(πy)cost.(5.3)
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Table 5.1

Error and order of accuracy for velocity and density at t = 1 when the Crank–Nicolson scheme
using MAC spatial discretization is used. △t = 1

4
△x. The physical parameters: Rossby number

Ro = 0.5, Coriolis force f = 0.5 + y.

N L1 error L1 order L2 error L2 order L∞ error L∞ order

16 6.67e-05 9.15e-05 3.50e-04
32 1.66e-05 2.00 2.29e-05 1.99 9.06e-05 1.95

u 64 4.15e-06 2.00 5.71e-06 2.00 2.29e-05 1.98
128 1.03e-07 2.01 1.43e-06 2.00 5.73e-06 2.00

16 2.56e-04 3.78e-04 1.28e-03
32 6.40e-05 2.00 9.46e-05 1.99 3.23e-04 1.99

v 64 1.60e-06 2.00 2.37e-05 2.00 8.10e-05 2.00
128 4.01e-06 2.00 5.93e-06 2.00 2.03e-05 2.00

16 4.78e-05 6.17e-05 2.01e-04
32 1.19e-05 2.00 1.54e-05 2.00 5.22e-05 1.95

ρ 64 2.98e-06 2.00 3.68e-06 2.00 1.32e-05 1.98
128 7.48e-07 1.99 9.68e-07 2.00 3.30e-06 2.00

Then we arrive at the following system of PEs with force terms f , g in the
momentum equation and the density equation

(5.4a)






































∂tve + (ve ·∇)ve + we
∂ve

∂z
+

1

Ro

(

fk × ve +∇pe

)

=
(

ν1△+ ν1∂
2
z

)

ve + f ,

∂pe
∂z

= −ρe,

∇·ve + ∂zwe = 0,

∂tρe + (ve ·∇)ρe + we
∂ρe
∂z

=
(

κ1△+ κ2∂
2
z

)

ρe + g,

with the boundary condition

∂ve

∂z
= 0, we = 0,

∂ρe
∂z

= 0 at z = 0,−H0,

ve = 0,
∂ρe
∂n

= 0 on ∂M0 × [−H0, 0].
(5.4b)

The computational domain is chosen as M = M0 × [−H0, 0], where M0 = [0, 1]2,
H0 = 1. The viscosity parameters are given by ν1 = ν2 = 0.005, κ1 = κ2 = 0.005.
In a usual GFD model, the Rossby number ranges from O(1) to O(10−3). We choose
Ro = 0.5 in the numerical experiment. The Coriolis force parameter is set to be
f0 = 0.5, β = 1.

The system (5.4) can be formulated in the same fashion as (1.13) such that the
surface pressure Poisson equation replaces the nonlocal incompressibility constraint
for the horizontal velocity. Note that a force term ∇ · f appears in the Poisson
equation. Based on such formulation, we apply the Crank–Nicolson method, a second
order numerical scheme with implicit diffusion terms, using the MAC spatial grid, to
solve the PEs (5.4). The force terms f , g and ∇ · f are added when we update the
momentum equation and the density equation and solve the surface pressure Poisson
equation. The final time is taken to be t = 1.0. Table 5.1 lists the absolute errors
between the numerical and exact solutions for velocity and density. All the error
functions are measured in L1, L2, and L∞ norms in a discrete level similar to that
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Fig. 5.1. The contour plot of the surface pressure at t = 1 with N = 128.

in the notation (4.2). As can be seen, exactly second order accuracy for the velocity
field v = (u, v) and the density field ρ, in both L1, L2, and L∞ norms, is obtained.

The contour plot of the surface pressure at the final time t = 1.0 (calculated
by the resolution N = 128) is also presented in Figure 5.1, which shows a smooth
numerical profile and verifies the robustness of the computational method. Such a
plot gives an accurate approximation to the exact surface pressure given by (5.3).
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comments.
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