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Abstract. The long-time stability properties of a few multistep numerical schemes for the
two-dimensional incompressible Navier–Stokes equations (formulated in vorticity-stream function)
are investigated in this article. These semi-implicit numerical schemes use a combination of explicit
Adams–Bashforth extrapolation for the nonlinear convection term and implicit Adams–Moulton
interpolation for the viscous diffusion term, up to fourth order accuracy in time. As a result, only
two Poisson solvers are needed at each time step to achieve the desired temporal accuracy. The fully
discrete schemes, with Fourier pseudospectral approximation in space, are analyzed in detail. With
the help of a priori analysis and aliasing error control techniques, we prove uniform in time bounds
for these high order schemes in both L2 and Hm norms, for m ≥ 1, provided that the time step
is bounded by a given constant. Such a long time stability is also demonstrated by the numerical
experiments.
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1. Introduction. The two-dimensional (2D) incompressible Navier–Stokes equa-
tion (NSE) in the vorticity-stream function formulation takes the form

∂tω + u·∇ω = ν∆ω + f ,(1)

∆ψ = ω,(2)

u = ∇⊥ψ = (−∂yψ, ∂xψ) .(3)

Here u = (u, v)T is the velocity field, ω = −uy + vx is the scalar vorticity, ψ is the
scalar stream function, and f represents (given) external forcing. For simplicity we
assume periodic boundary condition, i.e., the domain is a 2D torus T2, and that all
functions have mean zero over the torus. We also assume that f ∈ L∞(0, T ;Hm)
uniformly for any t > 0 and ‖f(·, t)‖Hm ≤M (m).

The 2D incompressible flows may become very complicated in long time behav-
ior [9, 16, 18, 33, 34, 40]. As a result, long time stability and accuracy are extremely
important for a given numerical method to obtain a better understanding of these
complicated phenomena. In particular, a well-known long time stable (uniformly
bounded in time) quantity for the NSE (1)–(3) is the enstrophy variable, 1

2‖ω‖
2
L2 , so

that the dynamics possesses a global attractor and invariant measures [9, 16, 40]. As
a consequence, one would naturally require that the numerical scheme preserve the
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3124 KELONG CHENG AND CHENG WANG

long time stability of certain physical variables in the numerical simulation of NSE,
in order to capture the long time dynamics in a correct way.

On the numerical side, there has been a long list of works on time discretization
of the dissipative systems that preserve the dissipativity in various forms [8, 14, 15,
28, 29, 36, 37, 38, 41, 42]; the long time statistical convergence properties have also
been addressed in [44, 45]. For the 2D NSE (1)–(3), the simplest example is the
following semi-implicit numerical scheme, which treats the viscous term implicitly
and the nonlinear advection term explicitly:

(4)
ωn+1 − ωn

∆t
+∇⊥ψn · ∇ωn − ν∆ωn+1 = fn,

in which ∆t is the time step size, and ωk corresponds to the approximation of the
vorticity at tk; see the related references [1, 5, 35]. The efficiency of this scheme comes
from the fact that only two Poisson solvers are needed at each time step, one for the
vorticity and one for the stream function. The convergence of this scheme on any fixed
time interval is standard; see the derivations in earlier literature [22, 23, 24, 25, 27, 39].
The long time stability of the above scheme (4) was analyzed in a recent article [20];
it was proven that (4) is long time stable in L2 and H1 and that the global attractor
as well as the invariant measures of the scheme converge to those of the NSE at a
vanishing time step.

For the spatial discretization, the Fourier spectral approach is an obvious choice [5,
35], due to the fact that the NSE solution is analytic in space (in fact, Gevrey class
regular [17]). The uniform in time L2 and H1 bound for the fully discrete scheme,
with pseudospectral approximation in space, was also established in [20], so that
a statistical convergence could be derived as a consequence. Also see the related
reference works [11, 26, 32] on the spectral schemes for incompressible NSEs.

Of course, the first order temporal accuracy of the scheme (4) is not satisfactory
in practical computations; instead, higher order accurate, long time stable numerical
algorithms are highly desired in scientific computing. For example, the second order
two-step method

(5)
3
2ω

n+1 − 2ωn + 1
2ω

n−1

∆t
+∇⊥(2ψn−ψn−1) ·∇(2ωn−ωn−1)−ν∆ωn+1 = fn+1/2

was analyzed in a more recent article [46]. This scheme falls into the category of
implicit-explicit schemes (IMEX) [1, 10], which combine a second order backward-
differentiation for the diffusion term and an explicit second order Adams–Bashforth
treatment for the nonlinear convection part. A uniform in time L2, H1, and H2 bound
of the numerical solution was established in [46], so that a statistical convergence
becomes available.

In turn, the third and fourth order schemes of the IMEX family have been applied
to the incompressible NSEs with various spatial approximations [2, 3, 30, 31]. How-
ever, only the linear stability analysis was covered in these existing works, and the
nonlinear analysis is not available, even for local in time estimates; see the relevant
discussions in [35].

In this work we provide a novel long time stability analysis for a family of multi-
step numerical schemes, up to fourth order temporal accuracy, combined with Fourier
pseudospectral approximation in space, applied to 2D NSE (1)–(3). These multistep
schemes adopt an explicit Adams–Bashforth approach for the nonlinear convection
term and an implicit Adams–Moulton method for the diffusion term; as a result,
the nonlinear terms are treated in an inexpensive way and the stability is preserved
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HIGH ORDER MULTISTEP SCHEME FOR 2D NAVIER–STOKES 3125

associated with implicit methods. More importantly, a necessary condition on the
Adams–Moulton coefficients has to be satisfied for the nonlinear numerical stability.
This necessary condition was first reported in a recent article [21], and a local in time
convergence was proven for its application to the 3D viscous Burgers’ equation. In
this article, we apply this multistep approach to 2D NSE (1)–(3) and establish the
uniform in time L2 and Hm bounds of the fully discrete pseudospectral numerical
solution for m ≥ 1.

This paper is organized as follows. A general description of Fourier pseudo-
spectral differentiation is recalled in section 2. The fully discrete multistep schemes
(up to fourth order temporal accuracy) are outlined in section 3, and the main results
are stated there. A detailed analyses is presented in section 4. Some numerical results
are provided in section 5, which verifies the stability and convergence analysis for the
proposed third and fourth order schemes. Finally, some concluding remarks are given
by section 6.

2. Review of Fourier pseudospectral differentiation. We review Fourier
collocation spectral differentiation in this section. Assume that Lx = Nx · hx, Ly =
Ny · hy for some mesh sizes hx, hy > 0 and some positive integers Nx and Ny. For
simplicity of presentation, a uniform mesh size hx = hy = h, Nx = Ny = 2N + 1
is taken. All the variables are evaluated at the regular numerical grid (xi, yj) with
xi = ih, yj = jh, 0 ≤ i, j ≤ 2N + 1.

Without loss of generality, we assume that Lx = Ly = 1. For a periodic func-
tion f over the given 2D numerical grid, we assume its discrete Fourier collocation
expansion as

(6) fi,j =

N∑
k1,l1=−N

f̂ ck1,l1e2πi(k1xi+l1yj),

in which the collocation coefficients are given by the following backward transforma-
tion formula:

(7) f̂ ck1,l1 =
1

(2N + 1)2

2N∑
i,j=0

fi,je
−2πi(k1xi+l1yj).

In turn, the collocation Fourier spectral approximations to first and second order
partial derivatives become

(DNxf)i,j =

N∑
k1,l1=−N

(2k1πi) f̂ ck1,l1e2πi(k1xi+l1yj),(8)

(
D2
Nxf

)
i,j

=

N∑
k1,l1=−N

(
−4π2k2

1

)
f̂ ck1,l1e2πi(k1xi+l1yj).(9)

The differentiation operators DNy and D2
Ny could be defined in the same fashion. In

turn, the discrete Laplacian, gradient, and divergence become

∆Nf =
(
D2
Nx +D2

Ny

)
f,

∇Nf =

(
DNxf
DNyf

)
, ∇N ·

(
f1

f2

)
= DNxf1 +DNyf2(10)

at the pointwise level. It is also straightforward to verify that ∇N ·∇Nf = ∆Nf . See
the derivations in the related references [4, 6, 19], etc.
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3126 KELONG CHENG AND CHENG WANG

Moreover, given any periodic grid functions f and g (over the 2D numerical grid),
the spectral approximations to the L2 inner product and L2 norm are introduced as

‖f‖2 =
√
〈f, f〉 with 〈f, g〉 = h2

2N∑
i,j=0

fi,jgi,j .(11)

A detailed calculation reveals that the following formulas of summation by parts are
also valid at the discrete level (see the related discussions [7, 21]):〈

f,∇N ·
(
g1

g2

)〉
= −

〈
∇Nf,

(
g1

g2

)〉
, 〈f,∆Ng〉 = −〈∇Nf,∇Ng〉 ,(12) 〈

f,∆2
Ng
〉

= 〈∆Nf,∆Ng〉 .(13)

To facilitate the long time stability analysis, we introduce the following notation
for differential operators, at both the continuous and discrete levels:

∇mf =

{
∆kf if m = 2k,
∇∆kf if m = 2k + 1,

∇mNf =

{
∆k
Nf if m = 2k,
∇N∆k

Nf if m = 2k + 1.
(14)

Also, we denote ‖ · ‖ as the standard L2 norm for a continuous function.

2.1. A preliminary estimate in Fourier collocation spectral space. It is
well-known that the existence of an aliasing error in the nonlinear term poses a seri-
ous challenge in the numerical analysis of Fourier pseudospectral scheme. We intro-
duce a continuous extension of a grid function and a Fourier collocation interpolation
operator.

Definition 1. For any periodic grid function f defined over a uniform 2D nu-
merical grid, we denote fN as its continuous extension. In more detail, assume that
the grid function f has a discrete Fourier expansion as (6); its continuous extension
(projection) into the trigonometric polynomial space PN (with trigonometric polyno-
mial up to degree N) is given by

(15) fN (x, y) =

N∑
k1,l1=−N

f̂ ck1,l1e2πi(k1x+l1y).

Moreover, for any periodic continuous function f , which may contain larger wave
length, we define its collocation interpolation operator as

PNc f(x, y) =

N∑
k1,l1=−N

(f̂c)k1,l1e2πi(k1x+l1y)(16)

with the Fourier collocation coefficients given by the following discrete expansion:

(f̂c)k1,l1 =
1

(2N + 1)2

2N∑
i,j=0

f i,je
−2πi(k1xi+l1yj)

so that f i,j =

N∑
k1,l1=−N

(f̂c)k1,l1e2πi(k1xi+l1yj).(17)

Note that f̂c may not be the Fourier coefficients of f , due to the truncation and
aliasing errors.
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To overcome a key difficulty associated with the Hm bound of the nonlinear term
obtained by collocation interpolation, the following lemma is introduced. In fact, the
case of k0 = 0 was proven in E’s earlier works [12, 13]. The case of k0 ≥ 1 was
analyzed in a recent article by Gottlieb and Wang [21]; we cite the result here.

Lemma 1. For any ϕ ∈ P 2N in dimension d, we have

(18)
∥∥PNc ϕ∥∥Hk0 ≤ (√2

)d
‖ϕ‖Hk0 ∀k0 ∈ Z, k0 ≥ 0.

3. The formulation of the high order multistep schemes and the main
results.

3.1. Description of the fully discrete schemes. For the 2D incompress-
ible NSEs (1)–(3), we treat the nonlinear convection term explicitly for the sake of
convenience and the diffusion term implicitly to preserve a numerical stability. This
semi-implicit approach leads to a Poisson-like equation at each time step, which makes
the numerical algorithm extremely efficient. After the scalar vorticity is updated, the
stream function can be determined through the kinematic equation, a Poisson equa-
tion. In turn, the velocity is computed as the perpendicular gradient of the stream
function.

This semi-implicit idea can be applied to derive a second order in time method
for (1)–(3). The nonlinear convection term is updated explicitly, using a standard
second order Adams–Bashforth extrapolation formula, which involves the numerical
solutions at time node points tn, tn−1, with well-known coefficients 3/2 and −1/2.
Meanwhile, an implicit treatment of the diffusion term is based on a second order
Adams–Moulton interpolation. However, the standard second order formula yields
the Crank–Nicholson scheme for the diffusion term, which leads to a difficulty in the
stability analysis if the nonlinear convection term is taken into consideration. Instead,
we look for an Adams–Moulton interpolation so that the diffusion term is more focused
on the time step tn+1, i.e., the coefficient at time step tn+1 dominates the sum of the
rest of diffusion coefficients. It is discovered that the Adams–Moulton interpolation
which involves the time node points tn+1 and tn−1 gives the corresponding coeffi-
cients as 3/4, 1/4, respectively, which satisfies the unconditional stability condition.
Therefore, the fully discrete scheme is formulated as

ωn+1 − ωn

∆t
+

3

4
(un ·∇Nωn +∇N · (unωn))

− 1

4

(
un−1 ·∇Nωn−1 +∇N · (un−1ωn−1)

)
= ν∆N

(
3

4
ωn+1 +

1

4
ωn−1

)
+ fn+1/2,(19)

∆Nψ
n+1 = ωn+1,(20)

un+1 = ∇⊥Nψn+1 =
(
−DNyψn+1,DNxψn+1

)
.(21)

Similar ideas can be applied to derive third and fourth order in time schemes for
(1)–(3). The nonlinear convection term is updated by an explicit Adams–Bashforth
extrapolation formula, with the time node points tn, tn−1, . . . , tn−k+1 involved and an
order of accuracy k. The diffusion term is computed by an implicit Adams–Moulton
interpolation with the given accuracy order in time. To ensure an unconditional
numerical stability for a fixed time, we have to derive an Adams–Moulton formula
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3128 KELONG CHENG AND CHENG WANG

so that the coefficient at time step tn+1 dominates the sum of the other diffusion
coefficients. In more detail, a kth order (in time) scheme takes the form of

ωn+1 − ωn

∆t
+

1

2

k−1∑
i=0

Bi
(
un−i ·∇Nωn−i +∇N · (un−iωn−i)

)
= ν∆N

(
D0ω

n+1 +

k−1∑
i=0

Dj(i)ω
n−j(i)

)
+ f̃

n
,(22)

in which Bi |k−1
i=0 are the standard Adams–Bashforth coefficients with extrapolation

points tn, tn−1, . . . , tn−k+1, j(i) |k−1
i=0 are a set of (distinct) indices with j(i) ≥ 0, and

D0, Dj(i) |k−1
i=0 correspond to the Adams–Moulton coefficients to achieve kth order

accuracy. A necessary condition for unconditional numerical stability is given by [21]

D0 >

k−1∑
i=0

∣∣Dj(i)

∣∣ .(23)

In other words, a stretched stencil is needed to satisfy this condition. For the
third order scheme, a careful calculation shows that a stencil comprising the node
points tn+1, tn−1, and tn−3 is adequate. The fully discrete scheme can be formulated
as

ωn+1 − ωn

∆t
+

23

24
(un ·∇Nωn +∇N · (unωn))

− 2

3

(
un−1 ·∇Nωn−1 +∇N · (un−1ωn−1)

)
+

5

24

(
un−2 ·∇Nωn−2 +∇N · (un−2ωn−2)

)
= ν∆N

(
2

3
ωn+1 +

5

12
ωn−1 − 1

12
ωn−3

)
+ f̃

n
,(24)

∆Nψ
n+1 = ωn+1,(25)

un+1 = ∇⊥Nψn+1 =
(
−DNyψn+1,DNxψn+1

)
(26)

with f̃
n

= 1
∆t

∫ tn+1

tn
f(·, τ)dτ . For the fourth order scheme, we use an Adams–Moulton

interpolation at node points tn+1, tn−1, tn−5, and tn−7 for the diffusion term. Com-
bined with the Adams–Bashforth extrapolation for the nonlinear convection term, the
scheme is given by

ωn+1 − ωn

∆t
+

55

48
(un ·∇Nωn +∇N · (unωn))

− 59

48

(
un−1 ·∇Nωn−1 +∇N · (un−1ωn−1)

)
+

37

48

(
un−2 ·∇Nωn−2+∇N · (un−2ωn−2)

)
− 3

16

(
un−3 ·∇Nωn−3+∇N · (un−3ωn−3)

)
= ν∆N

(
757

1152
ωn+1 +

470

1152
ωn−1 − 118

1152
ωn−5 +

43

1152
ωn−7

)
+ f̃

n
,(27)

∆Nψ
n+1 = ωn+1,(28)

un+1 = ∇⊥Nψn+1 =
(
−DNyψn+1,DNxψn+1

)
.(29)
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Remark 1. The second order scheme (19)–(21) is a two-step method, so that an
initial guess for ω−1 is needed. Similarly, the third order scheme (24)–(26) is a four-
step method, so that an initial guess for ω−j , 1 ≤ j ≤ 3, is needed; the fourth order
scheme (27)–(29) is an eight-step method, so that an initial guess for ω−j , 1 ≤ j ≤ 7,
is needed.

Note that the nonlinear term at time step tk is a spectral approximation to
1
2 (u·∇ω +∇ · (uω)) at the same time step. Also, only two Poisson type equations
need to be solved at each time step.

Meanwhile, it is observed that the numerical velocity uk = ∇⊥Nψk is automatically
divergence-free at any time step:

∇N · uk = DNxuk +DNyvk = −DNx(DNyψk) +DNy(DNxψk) = 0.(30)

Moreover, a careful application of summation by parts formula (12) implies that

〈ω,u·∇Nω +∇N · (uω)〉 = 〈ω,u·∇Nω〉 − 〈∇Nω,uω〉 = 0.(31)

In other words, the nonlinear convection term appearing in the numerical scheme,
the so-called Temam technique, makes the nonlinear term orthogonal to the vorticity
field in the discrete L2 space, without considering the temporal discretization. This
property is crucial in the stability analysis for the Fourier collocation spectral scheme;
see the related references [20, 46].

In addition, we denote Uk = (Uk, V k), ωk, and ψk as the continuous projection
of uk, ωk, and ψk, respectively, with the projection formula given by (6), (15). It is
clear that Uk,ωk,ψk ∈ PN and the kinematic equation ∆ψk = ωk, Uk = ∇⊥ψk is
satisfied at the continuous level. Because of these kinematic equations, an application
of elliptic regularity shows that

‖ψk‖Hm+2
h
≤ C‖ωk‖Hmh , ‖ψk‖Hm+2+α

h
≤ C‖ωk‖Hm+α

h
,

‖ψk‖Hm+2 ≤ C‖ωk‖Hm , ‖ψk‖Hm+2+α ≤ C‖ωk‖Hm+α ,(32)

in which we normalize the stream function with
∫

Ω
ψkdx = 0. Meanwhile, since all

the profiles have mean zero over the domain,

ψk = 0, uk =
(
−DNyψk,DNxψk

)
= 0, ωk = ∆Nψk = 0,

ψk = 0, Uk =
(
−∂yψk, ∂xψk

)
= 0, ωk = ∆ψk = 0,(33)

all the Poincaré inequality and elliptic regularity can be applied.

3.2. The main results. The multistep schemes (22) were proposed and ana-
lyzed in [21]; the local in time convergence analysis (up to the fourth order temporal
accuracy) of its application to the 3D viscous Burgers’ equation, combined with pseu-
dospectral spatial approximation, was provided. A similar estimate of this multistep
approach was presented in a more recent work [43], with the local discontinuous
Galerkin algorithm in space.

Using similar techniques, we are able to derive the following convergence results
for the proposed multistep methods applied to the 2D NSEs; the details are skipped
for the sake of brevity.

Theorem 1. For any final time T ∗ > 0, assume the exact solution (ωe, ψe) to
the 2D NSE (1)–(2) has a regularity of ωe ∈ Hk(0, T ∗;Hm+3) with m ≥ 2. Denote
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3130 KELONG CHENG AND CHENG WANG

ω∆t,h as the continuous (in space) extension of the fully discrete numerical solution
given by the kth order multistep scheme, either the second order one (19)–(21), the
third order one (24)–(26), or the fourth order one (27)–(29). As ∆t, h → 0, we have
the following convergence result:

‖ω∆t,h − ωe‖l∞(0,T∗;L2) +
√
ν ‖ω∆t,h − ωe‖l2(0,T∗;H1) ≤ C

(
∆tk + hm

)
(34)

with k the order of temporal accuracy, provided that the time step ∆t and the space
grid size h are independently bounded by given constants which depend only on T ∗

and ν.

For the long time stability analysis of these multistep algorithms, we focus on the
third order scheme (24)–(26); the second and fourth order ones could be analyzed in
the same manner. Here is the main result.

Theorem 2. Let ω0 ∈ H2 and let ωn be the discrete solution of the fully discrete
third order numerical scheme (24)–(26), with initial guess data ω−j being bounded in
H2 norm (1 ≤ j ≤ 3). Denote ωn as the continuous extension of ωn in space, given
by (16). Also, let f ∈ L∞(R+;L2) and set ‖f‖∞ := ‖f‖L∞(R+;L2) = M . Then there
exists M0 = M0(‖ω0‖H2 , ν, ‖f‖∞) such that if

(35) ∆t ≤ ν

CwM2
0

, Cw is a constant only dependent on Ω,

then

(36) ‖ωn‖H1 ≤M1 ∀n ≥ 0,

with M1 a uniform in time constant. In more detail, we have

‖ωn‖ ≤ (1 + γ0ν∆t)
−n+1

2 (Ẽ0
0)1/2 +Q(0) ∀n ≥ 0,(37)

‖∇ωn‖ ≤ (1 + γ1ν∆t)
−n+1

2 (Ẽ0
1)1/2 +Q(1) ∀n ≥ 0,(38)

Ẽ0
j = ‖∇jNω

0‖22 +

(
1

4
+B0

)
‖∇jN (ω0 − ω−1)‖22 +

1

4
‖∇jN (ω−1 − ω−2)‖22

+ β0ν∆t‖∇j+1
N ω0‖22 +

(
5

12
+ β1

)
ν∆t‖∇j+1

N ω−1‖22

+ β2ν∆t‖∇j+1
N ω−2‖22 +

1

12
ν∆t‖∇j+1

N ω−3‖22,(39)

in which γ0 and γ1 are constants associated with elliptic regularity, Q(0) and Q(1)

are uniform in time constants only dependent on ‖ω0‖H2 , ‖f‖∞, Ω, and ν, and the
coefficients β1, β2, and B0 satisfy condition (68), which will be specified below.

In addition, if we assume that ω0 ∈ Hm+1, the initial guess data ω−j are bounded

in Hm+1 (1 ≤ j ≤ 3), f ∈ L∞(R+;Hm−1) and set ‖f‖(m−1)
∞ := ‖f‖L∞(R+;Hm−1) =

M (m−1). Then there exists M
(m)
0 = M0(‖ω0‖Hm+1 , ν, ‖f‖(m−1)

∞ ) such that if

(40) ∆t ≤ ν

Cw(M
(m)
0 )2

, Cw is a constant only dependent on Ω,

then

(41) ‖ωn‖Hm ≤M (m)
1 ∀n ≥ 0,
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with M
(m)
1 a uniform in time constant. In more detail, we have

‖∇mωn‖ ≤ (1 + γmν∆t)
−n+1

2 (Ẽ0
m)1/2 +Q(m) ∀n ≥ 0,(42)

in which γm is a constant associated with elliptic regularity, and Q(m) is a uniform

in time constant only dependent on ‖ω0‖Hm+1 , ‖f‖(m−1)
∞ , Ω, and ν.

Remark 2. To the authors’ knowledge, the third and fourth order (local in time)
convergence analysis reported in [21] (for the viscous Burgers’ equation) is the first
theoretical result for third order time numerical stepping (or higher order) applied
to nonlinear PDEs, and Theorem 2 is the first long time stability analysis for such
schemes.

4. Proof of Theorem 2: Long time stability analysis for the third order
multistep scheme (24)–(26). Motivated by the techniques used in recent works [21,
46], we organize the proof of Theorem 2 in the following way. First, an Hδ a priori
assumption for the continuous version of the numerical solution is made. Subsequently,
a uniform in time L2 bound could be derived based on this assumption, with repeated
applications of Sobolev embedding and Hölder’s inequality. On the other hand, this
L2 bound is not sufficient to recover the a priori assumption, due to the fact that Hδ

is a norm stronger than the standard L2 one. To remedy this analysis, we derive a
uniform in time H1 estimate for the numerical solution, with the help of the leading
L2 bound. More importantly, both the global in time L2 and H1 bound constants
are independent of the a priori constant. Therefore, the a priori assumption can be
recovered so that an induction can be applied to establish the desired result.

4.1. Leading estimate: `∞(0, T ;L2) ∩ `2(0, T ;H1) estimate for ω. To
deal with the multistep method (24)–(26), an Hδ a priori bound is assumed for the
numerical solution at all previous time steps:

(43) ‖ωn‖Hδ ≤ C̃1 ∀1 ≤ k ≤ n

for some δ > 0. Note that C̃1 is a global constant in time. We are going to prove
that such a bound for the numerical solution is also available at time step tn+1.
Consequently, an application of induction could justify the a priori estimate.

Taking a discrete inner product with (24) by 2ωn+1 gives

‖ωn+1‖22 − ‖ωn‖22 + ‖ωn+1 − ωn‖22

+ν∆t

〈
∇N

(
4

3
ωn+1 +

5

6
ωn−1 − 1

6
ωn−3

)
,∇Nωn+1

〉
= −23

12
∆t
〈
un ·∇Nωn +∇N · (unωn) , ωn+1

〉
+

4

3
∆t
〈
un−1 ·∇Nωn−1 +∇N ·

(
un−1ωn−1

)
, ωn+1

〉
− 5

12
∆t
〈
un−2 ·∇Nωn−2 +∇N ·

(
un−2ωn−2

)
, ωn+1

〉
+ 2∆t

〈
f̃
n
, ωn+1

〉
(44)

with the summation by parts formula (12) applied to the diffusion term. A bound for
the external force term is straightforward:

2
〈
f̃
n
, ωn+1

〉
≤ 2

∥∥∥f̃n∥∥∥
2
·
∥∥ωn+1

∥∥
2
≤ 2C2

∥∥∥f̃n∥∥∥
2
·
∥∥∇Nωn+1

∥∥
2

≤ 1

24
ν
∥∥∇Nωn+1

∥∥2

2
+

24C2
2

ν

∥∥∥f̃n∥∥∥2

2
≤ 1

24
ν
∥∥∇Nωn+1

∥∥2

2
+

24C2
2M

2

ν
,(45)
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in which the Poincaré inequality

(46)
∥∥ωn+1

∥∥
2
≤ C2

∥∥∇Nωn+1
∥∥

2

was used in the third step. Since the diffusion coefficient at tn+1 dominates the other
ones, the viscosity term can be analyzed as follows:〈

∇N
(

4

3
ωn+1 +

5

6
ωn−1 − 1

6
ωn−3

)
,∇Nωn+1

〉
=

4

3

∥∥∇Nωn+1
∥∥2

2
+

5

6

〈
∇Nωn−1,∇Nωn+1

〉
− 1

6

〈
∇Nωn−3,∇Nωn+1

〉
≥ 5

6

∥∥∇Nωn+1
∥∥2

2
− 5

12

∥∥∇Nωn−1
∥∥2

2
− 1

12

∥∥∇Nωn−3
∥∥2

2
.(47)

More details have to be involved in the treatment of the nonlinear terms. For the
one at time step tn, we start with the following rewritten form:

−∆t
〈
un ·∇Nωn +∇N · (unωn) , ωn+1

〉
= −∆t

〈
un ·∇Nωn+1 +∇N ·

(
unωn+1

)
, ωn+1

〉
+∆t

〈
un ·∇N (ωn+1 − ωn) +∇N ·

(
un(ωn+1 − ωn)

)
, ωn+1

〉
.(48)

The first term disappears on the right-hand side, using a similar estimate as (31):〈
un ·∇Nωn+1 +∇N ·

(
unωn+1

)
, ωn+1

〉
=
〈
ωn+1,un ·∇Nωn+1

〉
−
〈
∇Nωn+1,unωn+1

〉
= 0.(49)

The summation by parts formula (12) can be applied to the second term:〈
un ·∇N (ωn+1 − ωn), ωn+1

〉
= −

〈
ωn+1 − ωn,∇N · (unωn+1)

〉
,(50) 〈

∇N ·
(
un(ωn+1 − ωn)

〉
, ωn+1

〉
= −

〈
ωn+1 − ωn,un · ∇Nωn+1

〉
.(51)

Furthermore, the term ∇N ·(unωn+1) cannot be expanded as un ·∇Nωn+1, due to the
aliasing error in the pseudospectral approximation, even though un is divergence-free
at the discrete level (30). In the Fourier collocation space, the following expansion
has to be applied:

(52) ∇N · (unωn+1) = DNx(unωn+1) +DNy(vnωn+1).

To obtain an estimate of these nonlinear expansions, we recall Un = (Un, V n), ωn+1,
and ψn+1 as the continuous projection of un, ωn+1, and ψn+1, respectively. Since
Un,ωn+1 ∈ PN , we have Unωn+1 ∈ P 2N and an application of Lemma 1 indicates
that ∥∥DNx(unωn+1)

∥∥
2

=
∥∥∂xPNc (Unωn+1)

∥∥ ≤ 2
∥∥∂x(Unωn+1)

∥∥ ,∥∥DNy(vnωn+1)
∥∥

2
=
∥∥∂yPNc (V nωn+1)

∥∥ ≤ 2
∥∥∂y(V nωn+1)

∥∥ .(53)

A detailed expansion in the continuous space and application of Hölder’s inequality
show that∥∥∂x(Unωn+1)

∥∥ =
∥∥Unxωn+1 + Unωn+1

x

∥∥ ≤ ∥∥Unxωn+1
∥∥+

∥∥Unωn+1
x

∥∥
≤ ‖Unx ‖L2/(1−δ) ·

∥∥ωn+1
∥∥
L2/δ + ‖Un‖L∞ ·

∥∥ωn+1
x

∥∥
≤ C(‖Unx ‖Hδ ·

∥∥ωn+1
∥∥
H1 + ‖Un‖H1+δ ·

∥∥∇ωn+1
∥∥)

≤ C ‖ωn‖Hδ ·
∥∥∇ωn+1

∥∥ ,(54)
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in which the elliptic regularity (32) and Poincaré inequality have been repeatedly
utilized in the derivation. Similar estimates can be derived for

∥∥∂y(V nωn+1)
∥∥. Going

back to (52), we arrive at∥∥∇N · (unωn+1)
∥∥

2
≤ C ‖ωn‖Hδ ·

∥∥∇ωn+1
∥∥
L2 ≤ C ‖ωn‖Hδ ·

∥∥∇Nωn+1
∥∥

2
,(55)

in which the second step is based on the fact that ‖∇ωn+1‖ = ‖∇Nωn+1‖2 (since
ωn+1 ∈ PN ). In addition, the nonlinear term in (51) can be controlled in a similar
way: ∥∥un · ∇Nωn+1

∥∥
2
≤ ‖un‖∞ ·

∥∥∇Nωn+1
∥∥

2
≤ C ‖ωn‖Hδ ·

∥∥∇Nωn+1
∥∥

2
.(56)

Therefore, a substitution of (55)–(56) into (48), (49), (50)–(51) results in

− 23

12
∆t
〈
un ·∇Nωn +∇N · (unωn) , ωn+1

〉
≤ C∆t‖ωn‖Hδ ·

∥∥ωn+1 − ωn
∥∥

2
·
∥∥∇Nωn+1

∥∥
2

≤ CC̃1∆t
∥∥ωn+1 − ωn

∥∥
2
·
∥∥∇Nωn+1

∥∥
2

≤ 1

24
ν∆t

∥∥∇Nωn+1
∥∥2

2
+
C3C̃

2
1

ν
∆t
∥∥ωn+1 − ωn

∥∥2

2
.(57)

The nonlinear term at time step tn−1 could be treated in a similar fashion. We start
from the equality

∆t
〈
un−1 ·∇Nωn−1 +∇N ·

(
un−1ωn−1

)
, ωn+1

〉
= ∆t

〈
un−1 ·∇Nωn+1 +∇N ·

(
un−1ωn+1

)
, ωn+1

〉
−∆t

〈
un−1 ·∇N (ωn+1 − ωn−1) +∇N ·

(
un−1(ωn+1 − ωn−1)

)
, ωn+1

〉
= −∆t

〈
un−1 ·∇N (ωn+1 − ωn−1) +∇N ·

(
un−1(ωn+1 − ωn−1)

)
, ωn+1

〉
,

= ∆t
(〈
ωn+1 − ωn−1,∇N · (un−1ωn+1)

〉
+
〈
ωn+1 − ωn−1,un−1 · ∇Nωn+1

〉)
(58)

with the summation by parts formula applied in the last step. Using similar deriva-
tions as in (52)–(56), we obtain the following estimates:∥∥∇N · (un−1ωn+1)

∥∥
2
≤ C

∥∥ωn−1
∥∥
Hδ
·
∥∥∇Nωn+1

∥∥
2
,∥∥un−1 · ∇Nωn+1

∥∥
2
≤ C

∥∥ωn−1
∥∥
Hδ
·
∥∥∇Nωn+1

∥∥
2
.(59)

This in turn implies that

4

3
∆t
〈
un−1 ·∇Nωn−1 +∇N ·

(
un−1ωn−1

)
, ωn+1

〉
≤ C∆t‖ωn−1‖Hδ ·

∥∥ωn+1 − ωn−1
∥∥

2
·
∥∥∇Nωn+1

∥∥
2

≤ CC̃1∆t
∥∥ωn+1 − ωn−1

∥∥
2
·
∥∥∇Nωn+1

∥∥
2

≤ 1

24
ν∆t

∥∥∇Nωn+1
∥∥2

2
+
C4C̃

2
1

ν
∆t
∥∥ωn+1 − ωn−1

∥∥2

2

≤ 1

24
ν∆t

∥∥∇Nωn+1
∥∥2

2
+

2C4C̃
2
1

ν
∆t
(∥∥ωn+1 − ωn

∥∥2

2
+
∥∥ωn − ωn−1

∥∥2

2

)
,(60)

in which the Hδ a priori assumption (43) was applied in the second step and the last
step comes from the following inequality:

(61)
∥∥ωn+1 − ωn−1

∥∥2

2
≤ 2

(∥∥ωn+1 − ωn
∥∥2

2
+
∥∥ωn − ωn−1

∥∥2

2

)
.
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Similar bounds can be derived for the nonlinear convection term at time step tn−2:〈
un−2 ·∇Nωn−2 +∇N ·

(
un−2ωn−2

)
, ωn+1

〉
=
(〈
ωn+1 − ωn−2,∇N · (un−2ωn+1)

〉
+
〈
ωn+1 − ωn−2,un−2 · ∇Nωn+1

〉)
,(62) ∥∥∇N · (un−2ωn+1)

∥∥
2
,
∥∥un−2 · ∇Nωn+1

∥∥
2
≤ C

∥∥ωn−2
∥∥
Hδ
·
∥∥∇Nωn+1

∥∥
2
,(63)

− 5

12
∆t
〈
un−2 ·∇Nωn−2 +∇N ·

(
un−2ωn−2

)
, ωn+1

〉
≤ 1

24
ν∆t

∥∥∇Nωn+1
∥∥2

2
+
C5C̃

2
1

ν
∆t
∥∥ωn+1 − ωn−2

∥∥2

2

≤ 1

24
ν∆t

∥∥∇Nωn+1
∥∥2

2
+

3C5C̃
2
1

ν
∆t
(∥∥ωn+1 − ωn

∥∥2

2
+
∥∥ωn − ωn−1

∥∥2

2

+
∥∥ωn−1 − ωn−2

∥∥2

2

)
.(64)

As a result, a substitution of (45), (47), (57), (60), and (64) into (44) leads to

‖ωn+1‖22 − ‖ωn‖22 +

(
1− (C3 + 2C4 + 3C5)C̃2

1

ν
∆t

)
‖ωn+1 − ωn‖22

− (2C4 + 3C5)C̃2
1

ν
∆t‖ωn − ωn−1‖22 −

3C5C̃
2
1

ν
∆t‖ωn−1 − ωn−2‖22

+
2

3
ν∆t‖∇Nωn+1‖22

≤ 24C2
2M

2

ν
∆t+

5

12
ν∆t‖∇Nωn−1‖22 +

1

12
ν∆t‖∇Nωn−3‖22.(65)

Under a constraint for the time step

(66)
(C3 + 2C4 + 3C5)C̃2

1

ν
∆t ≤ 1

4
, i.e., ∆t ≤ ν

4(C3 + 2C4 + 3C5)C̃2
1

,

we arrive at

‖ωn+1‖22 +
3

4
‖ωn+1 − ωn‖22 +

2

3
ν∆t‖∇Nωn+1‖22

≤ ‖ωn‖22 +
1

4
‖ωn − ωn−1‖22 +

1

4
‖ωn−1 − ωn−2‖22

+
5

12
ν∆t‖∇Nωn−1‖22 +

1

12
ν∆t‖∇Nωn−3‖22 + C6∆t(67)

with C6 =
24C2

2M
2

ν . Next, we choose three positive values β0, β1, β2, and one more
value B0, which satisfy

1

12
< β2 < β1,

5

12
+ β1 < β0 <

2

3
,

1

4
< B0 <

1

2
.(68)

Since 1
12 + 5

12 = 1
2 <

2
3 , so condition (68) is possible. This in turn shows the key point

of the unconditional stability analysis: the diffusion term coefficient at time step tn+1

dominates the sum of the other diffusion coefficients. Subsequently, an additional
term β0ν∆t‖∇Nωn‖22 + β1ν∆t‖∇Nωn−1‖22 + β2ν∆t‖∇Nωn−2‖22 +B0‖ωn−ωn−1‖22 is
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added to both sides of (67):
(69)

‖ωn+1‖22 +
3

4
‖ωn+1 − ωn‖22 +B0‖ωn − ωn−1‖22

+
2

3
ν∆t‖∇Nωn+1‖22 + β0ν∆t‖∇Nωn‖22 + β1ν∆t‖∇Nωn−1‖22 + β2ν∆t‖∇Nωn−2‖22

≤ ‖ωn‖22 +

(
1

4
+B0

)
‖ωn − ωn−1‖22 +

1

4
‖ωn−1 − ωn−2‖22 + β0ν∆t‖∇Nωn‖22

+

(
5

12
+ β1

)
ν∆t‖∇Nωn−1‖22 + β2ν∆t‖∇Nωn−2‖22 +

1

12
ν∆t‖∇Nωn−3‖22 + C6∆t.

The following modified energy is defined:

Ẽnj = ‖∇jNω
n‖22 +

(
1

4
+B0

)
‖∇jN (ωn − ωn−1)‖22 +

1

4
‖∇jN (ωn−1 − ωn−2)‖22

+β0ν∆t‖∇j+1
N ωn)‖22

+

(
5

12
+ β1

)
ν∆t‖∇j+1

N ωn−1‖22 + β2ν∆t‖∇j+1
N ωn−2‖22 +

1

12
ν∆t‖∇j+1

N ωn−3‖22.(70)

Note that this definition is compatible with the initial energy quantity E0
j given by

(39). Then we arrive at

Ẽn+1
0 +

(
1

2
−B0

)
‖ωn+1 − ωn‖22 + (B0 −

1

4
)‖ωn − ωn−1‖22

+

(
2

3
− β0

)
ν∆t‖∇Nωn+1‖22 + (β0 −

5

12
− β1)ν∆t‖∇Nωn‖22

+(β1 − β2)ν∆t‖∇Nωn−1‖22 + (β2 −
1

12
)ν∆t‖∇Nωn−2‖22 ≤ Ẽn0 + C6∆t.(71)

Furthermore, because of condition (68), there exists a constant C7 with

C7ν∆t

(
1

4
+B0

)
≤ 1

2
−B0,

1

4
C7ν∆t ≤ B0 −

1

4
,

β0 −
5

12
− β1 ≥ C7

(
5

12
+ β1

)
, β1 − β2 ≥ C7β2, β2 −

1

12
≥ C7

12
,(

2

3
− β0

)
‖∇Nωn+1‖22 ≥ C7

(
‖ωn+1‖22 + β0ν∆t‖∇Nωn+1‖22

)
(72)

with the Poincaré inequality applied. Therefore, we arrive at

(1 + C7ν∆t) Ẽn+1
0 ≤ Ẽn0 + C6∆t.(73)

Applying an induction to the above inequality yields
(74)

‖ωn+1‖22 ≤ Ẽn+1
0 ≤ (1 + C7ν∆t)

−(n+1)
Ẽ0

0 +
C6

C7ν
,

i.e., ‖ωn+1‖2 ≤ (1 + C7ν∆t)
−n+1

2 (Ẽ0
0)1/2 +

√
C6

C7ν
≤ C8 := (Ẽ0

0)1/2 +

√
C6

C7ν
,

so that the leading L2 estimate (37) is available, by taking γ0 = C7, Q(0) =
√

C6

C7ν
.

Note that C8 is a time-independent value; and also, this constant is independent on
the a priori constant C̃1 in (43).
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3136 KELONG CHENG AND CHENG WANG

Taking a summation (in time) of (71), we get the `2(0, T ;H1) bound for the
numerical solution:

(75) ν∆t

Nk∑
k=1

∥∥∇Nωk∥∥2

2
≤ C(Ẽ0

0 + C6 T
∗).

However, it is observed that the a priori estimate (74) is not sufficient to bound
the Hδ norm (43) of the vorticity field. In turn, we perform a higher order energy
estimate `∞(0, T ;H1) ∩ `2(0, T ;H2) for the numerical solution of vorticity field.

4.2. `∞(0, T ;H1) ∩ `2(0, T ;H2) estimate for ω. Taking a discrete inner
product with (24) by −2∆Nω

n+1 gives
(76)
‖∇Nωn+1‖22 − ‖∇Nωn‖22 + ‖∇N

(
ωn+1 − ωn

)
‖22

+ ν∆t

〈
∆N

(
4

3
ωn+1 +

5

6
ωn−1 − 1

6
ωn−3

)
,∆Nω

n+1

〉
=

23

12
∆t
〈
un ·∇Nωn +∇N · (unωn) ,∆Nω

n+1
〉

− 4

3
∆t
〈
un−1 ·∇Nωn−1 +∇N ·

(
un−1ωn−1

)
,∆Nω

n+1
〉

+
5

12
∆t
〈
un−2 ·∇Nωn−2 +∇N ·

(
un−2ωn−2

)
,∆Nω

n+1
〉
− 2∆t

〈
f̃
n
,∆Nω

n+1
〉
.

The external force term is bounded by the standard Cauchy inequality:

−2
〈
fn,∆Nω

n+1
〉
≤ 1

24
ν
∥∥∆Nω

n+1
∥∥2

2
+

24

ν
‖fn‖22

≤ 1

24
ν
∥∥∆Nω

n+1
∥∥2

2
+

24M2

ν
.(77)

The diffusion term can be analyzed in the same way as (47):〈
∆N

(
4

3
ωn+1 +

5

6
ωn−1 − 1

6
ωn−3

)
,∆Nω

n+1

〉
≥ 5

6

∥∥∆Nω
n+1
∥∥2

2
− 5

12

∥∥∆Nω
n−1
∥∥2

2
− 1

12

∥∥∆Nω
n−3
∥∥2

2
.(78)

For the nonlinear term at tn, we have the following decomposition:

un ·∇Nωn = −un ·∇N
(
ωn+1 − ωn

)
−
(
un+1 − un

)
·∇Nωn+1 + un+1 ·∇Nωn+1,

(79)

∇N · (unωn) = ∇N ·
(
−un(ωn+1 − ωn)− (un+1 − un)ωn+1 + un+1ωn+1

)
.

(80)

The following estimates have been derived in section 4.4, proof of Lemma 4.2, in
the recent article [20]. We recall these estimates; the details are skipped for simplicity
of presentation.

Lemma 2. We have

23

12
∆t
〈
−un ·∇N (ωn+1 − ωn)−∇N ·

(
un(ωn+1 − ωn)

)
,∆Nω

n+1
〉

≤ 1

72
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+
CC̃2

1

ν
∆t
∥∥∇N (ωn+1 − ωn

)∥∥2

2
,(81)
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23

12
∆t
〈
−
(
un+1 − un

)
·∇Nωn+1 −∇N ·

(
(un+1 − un)ωn+1

)
,∆Nω

n+1
〉

≤ ∆t
∥∥∇N (ωn+1 − ωn

)∥∥2

2
+

1

72
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+ C9∆t,(82)

23

12
∆t
〈
un+1 ·∇Nωn+1 +∇N ·

(
un+1ωn+1

)
,∆Nω

n+1
〉

≤ 1

72
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+ C10∆t(83)

with C9 and C10 only dependent on C8, ν, δ and a few constants associated with
the Poincaré inequality and 2D Sobolev embedding, independent on C̃1 and the final
time T .

These bounds in turn indicate that

23

12
∆t
〈
un ·∇Nωn +∇N · (unωn) ,∆Nω

n+1
〉

≤ 1

24
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+

(
CC̃2

1

ν
+ 1

)
∆t
∥∥∇N (ωn+1 − ωn

)∥∥2

2
+ C11∆t(84)

with C11 = C9 + C10.
The nonlinear term at time step tn−1 can be treated in a similar way. For sim-

plicity of presentation, we only give the main estimates.

un−1 ·∇Nωn−1 = −un−1 ·∇N
(
ωn+1 − ωn−1

)
−
(
un+1 − un−1

)
·∇Nωn+1 + un+1 ·∇Nωn+1,(85)

∇N ·
(
un−1ωn−1

)
= ∇N ·

(
−un−1(ωn+1 − ωn−1)− (un+1 − un−1)ωn+1

+un+1ωn+1
)
,(86)

4

3
∆t
〈
un−1 ·∇N (ωn+1 − ωn−1) +∇N ·

(
un−1(ωn+1 − ωn−1)

)
,∆Nω

n+1
〉

≤ 1

72
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+
CC̃2

1

ν
∆t
∥∥∇N (ωn+1 − ωn−1

)∥∥2

2

≤ 1

72
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+
CC̃2

1

ν
∆t
(∥∥∇N (ωn+1 − ωn

)∥∥2

2

+
∥∥∇N (ωn − ωn−1

)∥∥2

2

)
,(87)

4

3
∆t
〈(
un+1 − un−1

)
·∇Nωn+1 +∇N ·

(
(un+1 − un−1)ωn+1

)
,∆Nω

n+1
〉

≤ ∆t
∥∥∇N (ωn+1 − ωn−1

)∥∥2

2
+

1

72
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+ C12∆t

≤ 2∆t
(∥∥∇N (ωn+1 − ωn

)∥∥2

2
+
∥∥∇N (ωn − ωn−1

)∥∥2

2

)
+

1

72
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+ C12∆t.(88)

These bounds result in

−4

3
∆t
〈
un−1 ·∇Nωn−1 +∇N ·

(
un−1ωn−1

)
,∆Nω

n+1
〉

≤ 1

24
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+

(
CC̃2

1

ν
+ 2

)
∆t
(∥∥∇N (ωn+1 − ωn

)∥∥2

2

+
∥∥∇N (ωn − ωn−1

)∥∥2

2

)
+ C13∆t with C13 = 1

3C10 + C12 .(89)
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3138 KELONG CHENG AND CHENG WANG

For the nonlinear term at time step tn−2, the following estimate can be derived;
we only state the results for the sake of brevity.

5

12
∆t
〈
un−2 ·∇Nωn−2 +∇N ·

(
un−2ωn−2

)
,∆Nω

n+1
〉

≤

(
CC̃2

1

ν
+ 3

)
∆t
(∥∥∇N (ωn+1 − ωn

)∥∥2

2
+
∥∥∇N (ωn − ωn−1

)∥∥2

2

+
∥∥∇N (ωn−1 − ωn−2

)∥∥2

2

)
+

1

24
ν∆t

∥∥∆Nω
n+1
∥∥2

2
+ C14∆t.(90)

Consequently, a substitution of (77)–(90) into (76) shows that
(91)

‖∇Nωn+1‖22 − ‖∇Nωn‖22 +

(
1−

(
C15C̃

2
1

ν
+ 6

)
∆t

)∥∥∇N (ωn+1 − ωn
)∥∥2

2

−

(
C16C̃

2
1

ν
+ 5

)
∆t
∥∥∇N (ωn − ωn−1

)∥∥2

2
−

(
C17C̃

2
1

ν
+ 3

)
∆t
∥∥∇N (ωn−1 − ωn−2

)∥∥2

2

+
2

3
ν∆t‖∆Nω

n+1‖22 ≤
(

24M2

ν
+ C11 + C13 + C14

)
∆t

+
5

12
ν∆t

∥∥∆Nω
n−1
∥∥2

2
+

1

12
ν∆t

∥∥∆Nω
n−3
∥∥2

2
.

Under a more restrictive constraint for the time step (compared to (66)),

(92)

(
C15C̃

2
1

ν
+ 6

)
∆t ≤ 1

4
,

(
C16C̃

2
1

ν
+ 5

)
∆t ≤ 1

4
,

(
C17C̃

2
1

ν
+ 3

)
∆t ≤ 1

4
,

we have

‖∇Nωn+1‖22 +
3

4
‖∇N

(
ωn+1 − ωn

)
‖22 +

2

3
ν∆t‖∆Nω

n+1‖22

≤ ‖∇Nωn‖22 +
1

4
‖∇N

(
ωn − ωn−1

)
‖22 +

1

4
‖∇N

(
ωn−1 − ωn−2

)
‖22

+
5

12
ν∆t‖∆Nω

n−1‖22 +
1

12
ν∆t‖∆Nω

n−3‖22 + C18∆t(93)

with C18 = 24M2

ν +C11+C13+C14. Subsequently, the constants β0, β1, β2, and B0 can
be chosen as in (68). Hence, an additional term β0ν∆t‖∆Nω

n‖22+β1ν∆t‖∆Nω
n−1‖22+

β2ν∆t‖∆Nω
n−2‖22 +B0‖∇N (ωn − ωn−1)‖22 is added to both sides of (93):

(94)

‖∇Nωn+1‖22 +
3

4
‖∇N

(
ωn+1 − ωn

)
‖22 +B0‖∇N

(
ωn − ωn−1

)
‖22

+
2

3
ν∆t‖∆Nω

n+1‖22 + β0ν∆t‖∆Nω
n‖22 + β1ν∆t‖∆Nω

n−1‖22 + β2ν∆t‖∆Nω
n−2‖22

≤ ‖∇Nωn‖22 +

(
1

4
+B0

)
‖∇N

(
ωn − ωn−1

)
‖22 +

1

4
‖∇N

(
ωn−1 − ωn−2

)
‖22

+ β0ν∆t‖∆Nω
n‖22 +

(
5

12
+ β1

)
ν∆t‖∆Nω

n−1‖22 + β2ν∆t‖∆Nω
n−2‖22

+
1

12
ν∆t‖∆Nω

n−3‖22 + C18∆t.
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Similar to the leading L2 estimate, we recall a modified energy En1 as given by (70);
as a result, (94) is equivalent to

Ẽn+1
1 +

(
1

2
−B0

)
‖∇N

(
ωn+1 − ωn

)
‖22 +

(
B0 −

1

4

)
‖∇N

(
ωn − ωn−1

)
‖22

+

(
2

3
− β0

)
ν∆t‖∆Nω

n+1‖22 +

(
β0 −

5

12
− β1

)
ν∆t‖∆Nω

n‖22

+ (β1 − β2) ν∆t‖∆Nω
n−1‖22 + (β2 −

1

12
)ν∆t‖∆Nω

n−2‖22 ≤ Ẽn1 + C18∆t.(95)

Using a similar argument as (72), we could find a constant C19 to satisfy

C19ν∆t

(
1

4
+B0

)
≤ 1

2
−B0,

1

4
C19ν∆t ≤ B0 −

1

4
,

β0 −
5

12
− β1 ≥ C19

(
5

12
+ β1

)
, β1 − β2 ≥ C19β2, β2 −

1

12
≥ C19

12
,(

2

3
− β0

)
‖∆Nω

n+1‖22 ≥ C19

(
‖∇Nωn+1‖22 + β0ν∆t‖∆Nω

n+1‖22
)
.(96)

That in turn shows that

(1 + C19ν∆t) Ẽn+1
1 ≤ Ẽn1 + C18∆t.(97)

Applying an induction to the above inequality yields

‖∇Nωn+1‖22 ≤ Ẽn+1
1 ≤ (1 + C19ν∆t)

−(n+1)
Ẽ0

1 +
C18

C19ν
,

i.e., ‖∇Nωn+1‖2 ≤ (1 + C19ν∆t)
−n+1

2 (Ẽ0
1)1/2 +

√
C18

C19ν
≤ C20

:= (Ẽ0
1)1/2 +

√
C18

C19ν
,

(98)

so that the H1 estimate (38) is available, by taking γ1 = C19, Q(1) =
√

C18

C19ν
. Again,

C20 is a constant independent on time and C̃1.
In addition, we also have the discrete `2(0, T ;H2) bound for the numerical solu-

tion:

(99) ν∆t

Nk∑
k=1

∥∥∆Nω
k
∥∥2

2
≤ C(Ẽ0

1 + C18 T
∗).

4.3. Recovery of the a priori Hδ assumption (43). With the `∞(0, T ;L2)
and `∞(0, T ;H1) estimate for the numerical vorticity solution, namely, (74) and (98),
we are able to recover the Hδ assumption (43):∥∥ωn+1

∥∥
Hδ
≤ C

∥∥ωn+1
∥∥1−δ ·

∥∥ωn+1
∥∥δ
H1

≤ Cδ
∥∥ωn+1

∥∥1−δ ∥∥∇ωn+1
∥∥δ ≤ CδC1−δ

8 Cδ20.
(100)

For simplicity, by taking δ = 1
2 , we see that (43) is also valid at time step tn+1 if we

set

(101) C̃1 = Cδ
√
C8C20.
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Note that C8 and C20 are independent of C̃1 in the derivation. The constant C̃1 is
only used in the time step constraints (66) and (92). Therefore, an induction can be
applied so that the a priori Hδ assumption (43) is valid at any time step under a
global time step constraint

(102) ∆t ≤ ν

Cw(C2
δC8C20 + 1)

by taking Cw = max(4(C3 + 2C4 + 3C5), 4C16 + 1, 4C17 + 1, 4C18 + 1).
Therefore, we could choose M0 = C̃1Cδ

√
C8C20 so that constraint (35) is equiva-

lent to (102). Under this constraint for the time step, the proposed third order fully
discrete scheme (24)–(26) is unconditionally stable (in terms of spatial grid size and
final time); the asymptotic decay estimates (37), (38), for the L2 and H1 norms of
the vorticity, can be derived. The first part of Theorem 2 has been proved.

4.4. `∞(0, T ;Hm) estimate for ω. Moreover, the `∞(0, T ;Hm) estimate (42)
for the vorticity could be derived in the same manner. For simplicity, we focus our
attention on the case m = 2; the analysis for higher values of m could be carried out
in the same fashion.

For example, by taking a discrete inner product with (24) by 2∆2
Nω

n+1, we are
able to derive the following estimate (with the modified energy Ek2 given by (70)):

‖∆Nω
n+1‖22 ≤ Ẽn+1

2 ≤ (1 + C21ν∆t)
−(n+1)

Ẽ0
2 +

C22

C21ν
,

i.e., ‖∆Nω
n+1‖2 ≤ (1 + C21ν∆t)

−n+1
2 (Ẽ0

2)1/2 +

√
C22

C21ν
≤ C23

:= (Ẽ0
2)1/2 +

√
C22

C21ν
,(103)

under an additional constraint for the time step (in addition to (66), (92)):

(104)
C24C

2
20

ν
∆t ≤ 1

4
,

C25C
2
20

ν
∆t ≤ 1

4
.

The proof of (103) follows similar structures as in sections 4.1 and 4.2; the details
are skipped for the sake of brevity. Therefore, the H2 estimate (42) (with m = 2)

is available by taking γ2 = C21, Q(2) =
√

C22

C21ν
. It is obvious that C23 is a time-

independent constant.

It is obvious that we could set Cw = 4max(C24, C25), and M
(2)
0 = C20 in (40),

and M
(2)
1 = C28 in (41). The proof of Theorem 2 is completed.

Remark 3. It is observed that the stability condition (23), as reported in [21],
plays a crucial role in the long time stability analysis, since it ensures that the diffusion
coefficient at time step tn+1 dominates the rest.

Remark 4. With a uniform in time Hm bound derived for the numerical solution
(24)–(26), a statistical convergence is expected to be available, using similar techniques
presented in [20, 46]. The details are left to future works.

5. Numerical results. We present a numerical test to verify the theoretical
analysis in this article, including both the local in time convergence and the long time
stability for the third and fourth order numerical solutions.
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Fig. 1. Discrete ‖ · ‖2 numerical errors at T = 6 plotted versus ∆t, for the vorticity, velocity,
and stream function variables. The kinematic viscosity parameter is taken to be ν = 0.5. Left: Log-
log error plot for the third order numerical scheme (24)–(26); the data lie roughly on curves C∆ta3 ,
with a3 = 3.0282, for appropriate choices of C, confirming the third order accuracy. Right: The
error plot for the fourth order numerical scheme (27)–(29); the data lie roughly on curves C∆ta4 ,
with a4 = 3.9956, which confirms the fourth order accuracy.

5.1. Local in time convergence. In this subsection we perform a numerical
accuracy check for the proposed multistep numerical schemes, including the third
order one (24)–(26) and the fourth order one (27)–(29). The 2D computational domain
is set to be Ω = (0, 1)2, and the exact profile for the fluid flow is given by
(105)

ψe(x, y, t) =
1

2π2
sin(2πx) sin(2πy) cos t, ωe(x, y, t) = −4 sin(2πx) sin(2πy) cos t,

ue(x, y, t) = − 1

π
sin(2πx) cos(2πy) cos t, ve(x, y, t) =

1

π
cos(2πx) sin(2πy) cos t.

To make (ωe,ue, ψe) satisfy the original PDE (1)–(3), we have to add an artificial,
time-dependent force term, which could be viewed as f . For either the third or
fourth order multistep scheme, only two FFT-based Poisson solvers are needed at
each time step. We fix the spatial resolution as N = 256 and compute solutions with
a sequence of time step sizes, from ∆t = 0.001 to ∆t = 0.01, with an increment
0.001, and the numerical errors are reported at the final time T = 6. The kinematic
viscosity parameter is taken to be ν = 0.5. Figure 1 shows the discrete ‖ · ‖2 norms of
the errors between the numerical and exact solutions for the vorticity, velocity, and
stream function variables. With a choice of N = 256, the spatial error, which comes
from the Fourier pseudospectral approximation, is negligible, so that the numerical
errors are dominated by the temporal discretization. Clear third and fourth order
accuracy is observed in all cases, and a strong verification of Theorem 1 is given by
these results.

5.2. Long time numerical stability. In this subsection we present long time
numerical simulation results. For the 2D flow with the same force term f in section 5.1
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Fig. 2. Time evolution of the vorticity profile up to T = 1000. The gray, red, and blue
lines represent the plot for ‖ω(t)‖2, ‖∇Nω(t)‖2, and ‖∆Nω(t)‖2, respectively. Left: Log-log time
evolution for the third order numerical scheme (24)–(26). Right: The time evolution for the fourth
order numerical scheme (27)–(29).

(determined by the fluid profiles (105)), we perform the computation up to T = 1000.
For such a time scale, the local in time convergence result (34) could hardly provide us
any theoretical insight, since the convergence constant grows exponentially in terms
of the final time T . Instead, we examine the time evolution of the vorticity profile
by recording its discrete L2, H1, and H2 norms, namely, ‖ω(t)‖2, ‖∇Nω(t)‖2, and
‖∆Nω(t)‖2, respectively. These time evolution plots, for both the third order scheme
(24)–(26) and the fourth order one (27)–(29), are presented in Figure 2. These two
log-log plots are almost identical. A clear observation shows that, for both high order
multistep schemes, all three energy norms are globally in time bounded. Also, these
global in time bounds are expected to be valid for even a larger time scale. This
numerical result provides strong evidence of the long time numerical stability analysis
given by Theorem 2.

6. Conclusions. In this paper, we propose a few multistep numerical schemes
for the 2D incompressible Navier–Stokes equations, up to the fourth order temporal
accuracy. In addition, we provide a long time numerical stability analysis for the pro-
posed schemes, combined with Fourier pseudospectral spatial approximation; uniform
in time bounds for these high order schemes, in both L2 and Hm (for m ≥ 1) norms,
are derived. The numerical experiments have also verified such a long time stability.
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