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a b s t r a c t

In this paper, we provide a theoretical analysis for an iteration solver to implement a
finite difference numerical scheme for the Poisson-Nernst–Planck (PNP) system, based
on the Energetic Variational Approach (EnVarA), in which a non-constant mobility H−1

gradient flow is formulated. In particular, the nonlinear and singular nature of the
logarithmic energy potentials has always been the essential difficulty. In the numerical
design, the mobility function is explicitly updated, for the sake of unique solvability
analysis. The logarithmic and the electric potential diffusion terms, which come from
the gradient of convex energy functional parts, are implicitly computed. The positivity-
preserving property for all the concentrations, an unconditional energy stability, and the
optimal rate error estimate have been established in a recent work. A modified Newton
iteration for the nonlinear and logarithmic part, combined with a linear iteration for
the electric potential part, is proposed to implement the given numerical scheme, in
which a non-constant linear elliptic equation needs to be solved at each iteration stage.
A theoretical analysis is presented in this article, and a linear convergence is proved for
such an iteration, with an asymptotic error constant in the same order of the time step
size. A numerical test is also presented in this article, which demonstrates the linear
convergence rate of the proposed iteration solver.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The Poisson-Nernst–Planck (PNP) system is formulated as

∂tn = Dn∆n −
z0e0
kBθ0

∇ · (Dnn∇φ) , (1.1)

∂tp = Dp∆p +
z0e0
kBθ0

∇ ·
(
Dpp∇φ

)
, (1.2)

−ε∆φ = z0e0(p − n) + ρ f , (1.3)
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where n and p are the concentrations of negatively and positively charged ions, and φ is the electric potential. In this
model, kB, θ0, ε, z0, e0 stand for the Boltzmann constant, the absolute temperature, the dielectric coefficient, valence of ions,
the charge of an electron, respectively; the parameters Dn and Dp are diffusion/mobility coefficients. The periodic boundary
conditions are assumed in this paper, for simplicity of presentation, and the presented analysis could be extended to more
complicated, more physical boundary conditions, such as the homogeneous Neumann one. Furthermore, the source term
ρ f is assumed to vanish everywhere, i.e., ρ f

≡ 0. An extension to a non-homogeneous source term is straightforward. See
the related works [1–6] for more detailed descriptions of this physical model.

In particular, the Energetic Variational Approach (EnVarA) [7] for the PNP system has attracted more and more
attentions, since the PDE system is formulated as a gradient flow with respect to certain free energy. This framework
has provided great convenience in the structure preserving analysis, at both the PDE and numerical levels. In fact, the
dimensionless dynamical equations of the PNP system could be rewritten as (see the detailed derivation in [8])

∂tn = ∇ · (∇n − n∇φ) , (1.4)
∂tp = D∇ · (∇p + p∇φ) , (1.5)

−∆φ = p − n. (1.6)

n fact, the parameter D plays the role of a non-dimensional relative mobility. The corresponding dimensionless energy
s given by

E(n, p) =

∫
Ω

{n ln n + p ln p} dx +
1
2
∥n − p∥2

H−1 , (1.7)

nder the assumption that n − p is of mean zero, and the H−1 norm is defined via

∥f ∥H−1 :=
√
(f , f )H−1 , (f , g) = (f , (−∆)−1g) = ((−∆)−1f , g), for f and g with mean zero.

n turn, the PNP system (1.4)–(1.6) could be rewritten as the following conserved H−1 gradient flow, with non-constant
obility:

∂tn =∇ · (n∇µn) , ∂tp = D∇ ·
(
p∇µp

)
, (1.8)

µn := δnE = ln n + 1 + (−∆)−1(n − p) = ln n + 1 − φ, (1.9)

µp := δpE = ln p + 1 + (−∆)−1(p − n) = ln p + 1 + φ, (1.10)

n which the electric potential is defined as φ = (−∆)−1(p − n). A careful calculation implies that the energy dissipation
aw becomes E ′(t) = −

∫
Ω

{
n |∇µn|

2
+ D p

⏐⏐∇µp
⏐⏐2} dx ≤ 0.

Among the existing numerical works for the PNP system, the theoretical analysis for the positivity-preserving property,
nergy stability and convergence analysis turns out to be very challenging, due to the nonlinear and singular nature of
he logarithmic terms in the EnVarA formulation. Some progresses have been made in recent years, such as the positivity-
reserving analysis reported in [4,9–16], the energy stability analysis in [17–19], the convergence analysis in [20–23], as
ell as a few other related works [19,24–28]. In particular, a finite difference numerical scheme was proposed in [8], so
hat all three theoretical features have been established in the numerical analysis. In more details, the numerical scheme is
ased on the variational structure of the original PNP system, so that the energy stability analysis could be formulated in an
ppropriate framework. The mobility concentration function is explicitly updated in the scheme, for the sake of unique
olvability analysis. In the chemical potential expansion, all the terms are implicitly computed, which comes from the
onvexity of both the logarithmic energy functional and the electric energy potential. The positivity-preserving property
as been theoretically established for both ion concentration variables, with the help of the singularity feature of the
ogarithmic term, combined with its convex nature. In fact, similar techniques have been successfully applied to other
radient models with singular energy potential [29–36], etc. The energy stability is a direct consequence of the convexity
nalysis. In addition, an optimal rate convergence analysis for the proposed numerical scheme has been reported in [8],
ased on an asymptotic expansion for the numerical solution, combined with rough error estimate and refined error
stimate.
On the other hand, this numerical scheme is highly nonlinear and singular, due to the implicit treatment of the

ingular logarithmic chemical potential parts. In addition, an implicit treatment of the electric part leads to a highly
oupled numerical system. These facts make the proposed numerical scheme very challenging to implement. In this
rticle, we propose and analyze an iteration solver for this numerical scheme. A linearized Newton iteration is applied
o the nonlinear and singular logarithmic parts, while a linear iteration is used for the electric potential part. In turn,
divergence-form elliptic system needs to be solved at each iteration stage, which in turn leads to a computational
ost comparable to a standard Poisson solver. In addition, the positivity of both concentration variables at each iteration
tage is crucial to ensure the well-posed property of the elliptic system. The convergence analysis will be provided for
he proposed iteration algorithm, under the separation assumption for the exact PDE solution, i.e., a uniform distance is
nsured between the exact PDE solution and the singular value of 0. With such an assumption for the exact PDE solution,
similar uniform distance could be derived for the numerical solution at each iteration stage, using an a-priori ∥ · ∥
∞
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error estimate for the iteration solution. With the help of this uniform distance, the singularity issue associated with
the logarithmic term could be avoided in the iteration analysis. Moreover, the convex nature of the logarithmic energy
functional will lead to a well-posed error analysis for the nonlinear part at each iteration stage. As a result of all these
techniques, a linear convergence analysis is reported for the proposed iteration process, with the convergence rate in the
same order of the time step size. In our knowledge, it will be the first such result for the highly nonlinear and singular
PNP system.

The rest of the article is organized as follows. In Section 2 the numerical scheme is reviewed, and the main theoretical
esults are recalled, if the numerical solution could be exactly implemented. In turn, the iteration solver is introduced
n Section 3, and a linear convergence analysis is provided in details. A numerical test is presented in Section 4, and the
inear convergence rate of the proposed iteration solver is confirmed in the test. Finally, some concluding remarks are
iven in Section 5.

. Review of the numerical scheme

.1. The finite difference spatial discretization

The standard centered finite difference spatial approximation is applied. We present the numerical approximation on
he computational domain Ω = (0, 1)3 with a periodic boundary condition, and ∆x = ∆y = ∆z = h =

1
N with N ∈ N

o be the spatial mesh resolution throughout this work. In particular, fi,j,k stands for the numerical value of f at the cell
centered mesh points ((i + 1

2 )h, (j +
1
2 )h, (k +

1
2 )h), and we denote Cper as

Cper :=
{
(fi,j,k) | fi,j,k = fi+αN,j+βN,k+γN , ∀ i, j, k, α, β, γ ∈ Z

}
,

with the discrete periodic boundary condition imposed. In turn, the discrete average and difference operators are
evaluated at ((i + 1)h, (j + 1

2 )h, (k +
1
2 )h), ((i +

1
2 )h, (j + 1)h, (k +

1
2 )h) and ((i + 1

2 )h, (j +
1
2 )h, (k + 1)h), respectively:

Axfi+1/2,j,k :=
1
2

(
fi+1,j,k + fi,j,k

)
, Dxfi+1/2,j,k :=

1
h

(
fi+1,j,k − fi,j,k

)
,

Ayfi,j+1/2,k :=
1
2

(
fi,j+1,k + fi,j,k

)
, Dyfi,j+1/2,k :=

1
h

(
fi,j+1,k − fi,j,k

)
,

Az fi,j,k+1/2 :=
1
2

(
fi,j,k+1 + fi,j,k

)
, Dz fi,j,k+1/2 :=

1
h

(
fi,j,k+1 − fi,j,k

)
.

Conversely, the corresponding operators at the staggered mesh points are defined as follows:

axf xi,j,k :=
1
2

(
f xi+1/2,j,k + f xi−1/2,j,k

)
, dxf xi,j,k :=

1
h

(
f xi+1/2,j,k − f xi−1/2,j,k

)
,

ayf
y
i,j,k :=

1
2

(
f yi,j+1/2,k + f yi,j−1/2,k

)
, dyf

y
i,j,k :=

1
h

(
f yi,j+1/2,k − f yi,j−1/2,k

)
,

az f zi,j,k :=
1
2

(
f zi,j,k+1/2 + f zi,j,k−1/2

)
, dz f zi,j,k :=

1
h

(
f zi,j,k+1/2 − f zi,j,k−1/2

)
.

In turn, for a scalar cell-centered function g and a vector function f⃗ = (f x, f y, f z)T , with f x, f y and f z evaluated at
((i+ 1)h, (j+ 1

2 )h, (k+
1
2 )h), ((i+

1
2 )h, (j+ 1)h, (k+

1
2 )h), ((i+

1
2 )h, (j+

1
2 )h, (k+ 1)h), respectively, the discrete divergence

s defined as

∇h ·
(
gf⃗

)
i,j,k = dx

(
Axg · f x

)
i,j,k + dy

(
Ayg · f y

)
i,j,k + dz

(
Azg · f z

)
i,j,k . (2.1)

n particular, if f⃗ = ∇hφ = (Dxφ,Dyφ,Dzφ)T for certain scalar grid function φ, the corresponding divergence becomes

∇h ·
(
g∇hφ

)
i,j,k =dx (Axg · Dxφ)i,j,k + dy

(
Ayg · Dyφ

)
i,j,k + dz (Azg · Dzφ)i,j,k , (2.2)

(∆hφ)i,j,k =∇h ·
(
∇hφ

)
i,j,k = dx (Dxφ)i,j,k + dy

(
Dyφ

)
i,j,k + dz (Dzφ)i,j,k . (2.3)

For two cell-centered grid functions f and g , its discrete L2 inner product and the associated ℓ2 norm are defined as

⟨f , g⟩Ω := h3
N∑

i,j,k=1

fi,j,kgi,j,k, ∥f ∥2 := (⟨f , f ⟩Ω )
1
2 .

In turn, the mean zero space is introduced as C̊per :=

{
f ∈ Cper | 0 = f :=

h3
|Ω|

∑m
i,j,k=1 fi,j,k

}
. Similarly, for two vector

grid functions f⃗ = (f x, f y, f z)T , g⃗ = (gx, gy, gz)T , with f x (gx), f y (gy), f z (gz) evaluated at ((i + 1)h, (j + 1
2 )h, (k +

1
2 )h),

(i + 1
2 )h, (j + 1)h, (k +

1
2 )h), ((i +

1
2 )h, (j +

1
2 )h, (k + 1)h), respectively, the corresponding discrete inner product becomes[

f⃗ , g⃗
]

:=
[
f x, gx]

x +
[
gy, gy]

y +
[
f z, gz]

z ,[ x x] ⟨ x x ⟩ [ y y] ⟨ y y ⟩ [ z z] ⟨ z z ⟩

f , g x := ax(f g ), 1 , f , g y := ay(f g ), 1 , f , g z := az(f g ), 1 .

3
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In addition to the discrete ∥ · ∥2 norm, the discrete maximum norm is defined as ∥f ∥∞ := max1≤i,j,k≤N
⏐⏐fi,j,k⏐⏐. Moreover,

the discrete H1
h and H2

h norms are introduced as

∥∇hf ∥2
2 := [∇hf ,∇hf ] = [Dxf ,Dxf ]x +

[
Dyf ,Dyf

]
y + [Dz f ,Dz f ]z ,

∥f ∥2
H1
h

:= ∥f ∥2
2 + ∥∇hf ∥2

2 , ∥f ∥2
H2
h

:= ∥f ∥2
H1
h

+ ∥∆hf ∥2
2.

The summation by parts formulas are recalled in the following lemma; the detailed proof could be found in [37–40], etc.

Lemma 2.1 ([37–40]). For any ψ, φ, g ∈ Cper, and any f⃗ = (f x, f y, fz)T , with f x, f y, f z evaluated at ((i+1)h, (j+ 1
2 )h, (k+

1
2 )h),

(i+ 1
2 )h, (j+ 1)h, (k+

1
2 )h), ((i+

1
2 )h, (j+

1
2 )h, (k+ 1)h), respectively, the following summation by parts formulas are valid:⟨

ψ,∇h · f⃗
⟩
Ω

= −

[
∇hψ, f⃗

]
, ⟨ψ,∇h · (g∇hφ)⟩Ω = − [∇hψ,Ahg∇hφ] , (2.4)

n which Ah corresponds to the average operator given by Ax, Ay and Az .

In addition, a few notations need to be introduced, to facilitate the analysis in later sections. For any ϕ ∈ C̊per and a
ositive cell centered grid function g (at a point-wise level), the weighed discrete norm is defined as

∥ϕ∥L−1
g

=

√⟨
ϕ,L−1

M̆
(ϕ)

⟩
Ω
, (2.5)

n which ψ = L−1
g (ϕ) ∈ C̊per is the unique solution that solves

Lg (ψ) := −∇h · (g∇hψ) = ϕ. (2.6)

n a simplified case of g ≡ 1, it is obvious that Lg (ψ) = −∆hψ , and the discrete H−1
h inner product and H−1

h norm are

introduced as ⟨ϕ1, ϕ2⟩−1,h = ⟨ϕ1, (−∆h)−1ϕ2⟩Ω , and ∥ϕ∥−1,h =

√⟨
ϕ, (−∆h)−1ϕ

⟩
Ω
.

.2. Review of the numerical scheme

The mobility function at the face-centered mesh points are defined as

(M̆m
n )i+1/2,j,k := Ax(Mm

n )i+1/2,j,k,

(M̆m
n )i,j+1/2,k := Ay(Mm

n )i,j+1/2,k, (2.7)
(M̆m

n )i,j,k+1/2 := Az(Mm
n )i,j,k+1/2,

n which (Mm
n )i,j,k = nm

i,j,k. Similar definitions could be introduced for M̆m
p . The following finite difference scheme has

een proposed in a recent work [8]: given nm, pm ∈ Cper, find nm+1, pm+1
∈ Cper such that

nm+1
− nm

∆t
= ∇h ·

(
M̆m

n ∇hµ
m+1
n

)
, (2.8)

pm+1
− pm

∆t
= ∇h ·

(
M̆m

p ∇hµ
m+1
p

)
, (2.9)

µm+1
n = ln nm+1

+ (−∆h)−1(nm+1
− pm+1), (2.10)

µm+1
p = ln pm+1

+ (−∆h)−1(pm+1
− nm+1). (2.11)

2.3. The theoretical results for the proposed numerical scheme

It is observed that the numerical solution to (2.8)–(2.11) is mass conservative, i.e.,

nm = n0 := β0, pm = p0 := β0, with 0 < β0, ∀m ≥ 1, (2.12)

n which the average operator is given by f =
1

|Ω|
⟨f , 1⟩Ω .

emma 2.2. Assume that the mobility function M̆ has uniform lower and upper bounds: M0 ≤ M̆ ≤ M1. For any g with
g = 0, we have

M0

M2
1
∥g∥

2
−1,h ≤ ∥g∥

2
L−1

M̆
≤

M1

M2
0
∥g∥

2
−1,h. (2.13)

Proof. We denote ψ as the solution to the non-constant elliptic equation, −∇h · (M̆∇hψg ) = g , and ϕg = (−∆h)−1g ,
.e., −∆hϕg = g . Taking a test function ϕg with both equations −∇h · (M̆∇hψg ) = g , −∆hϕg = g , respectively, we get

⟨M̆∇ ψ ,∇ ϕ ⟩ = ⟨g, ϕ ⟩ = ∥∇ ϕ ∥
2. (2.14)
h g h g Ω g Ω h g 2

4



C. Liu, C. Wang, S.M. Wise et al. Journal of Computational and Applied Mathematics 406 (2022) 114017

S

w

T

s

M
p

Meanwhile, an application of Cauchy inequality implies that

∥∇hϕg∥
2
2 = ⟨M̆∇hψg ,∇hϕg⟩Ω ≤ M1∥∇hψg∥2 · ∥∇hϕg∥2,

which in turn gives ∥∇hψg∥2 ≥
1
M1

∥∇hϕg∥2.
(2.15)

imilarly, taking a test function ψg to both equations −∇h · (M̆∇hψg ) = g , −∆hϕg = g , respectively, we get

⟨M̆∇hψg ,∇hψg⟩Ω = ⟨g, ψg⟩Ω = ⟨∇hψg ,∇hϕg⟩Ω , (2.16)

hich in turn results in

M0∥∇hψg∥
2
2 ≤ ⟨M̆∇hψg ,∇hψg⟩Ω = ⟨∇hψg ,∇hϕg⟩Ω ≤ ∥∇hψg∥2 · ∥∇hϕg∥2,

so that ∥∇hψg∥2 ≤
1
M0

∥∇hϕg∥2.
(2.17)

Therefore, we arrive at

∥g∥
2
L−1

M̆
= ⟨M̆∇hψg ,∇hψg⟩Ω ≤ M1∥∇hϕg∥

2
2 ≤

M1

M2
0
∥g∥

2
−1,h,

∥g∥
2
L−1

M̆
= ⟨M̆∇hψg ,∇hψg⟩Ω ≥ M0∥∇hϕg∥

2
2 ≥

M0

M2
1
∥g∥

2
−1,h,

(2.18)

in which the identity that ∥∇hϕg∥
2
2 = ∥g∥

2
−1,h has been repeatedly applied. This finishes the proof of Lemma 2.2. □

The positivity-preserving and unique solvability properties are established in the following theorem.

Theorem 2.1 ([8]). Given nm, pm ∈ Cper, with 0 < nm
i,j,k, p

m
i,j,k, 1 ≤ i, j, k ≤ N, and nm

−pm ∈ C̊per, there exists a unique solution
(nm+1, pm+1) ∈

[
Cper

]2 to the numerical scheme (2.8)–(2.11), with 0 < nm+1
i,j,k , p

m+1
i,j,k , 1 ≤ i, j, k ≤ N and nm+1

− pm+1
∈ C̊per.

In terms of the energy stability analysis, the following discrete energy is introduced:

Eh(n, p) := ⟨n ln n + p ln p, 1⟩Ω +
1
2
∥n − p∥2

−1,h. (2.19)

heorem 2.2 ([8]). For the numerical solution (2.8)–(2.11), we have

Eh(nm+1, pm+1) +∆t
([
M̆m

n ∇hµ
m+1
n ,∇hµ

m+1
n

]
+

[
M̆m

p ∇hµ
m+1
p ,∇hµ

m+1
p

])
≤ Eh(nm, pm), (2.20)

o that Eh(nm, pm) ≤ Eh(n0, p0) ≤ C0, for all m ∈ N, where C0 > 0 is a constant independent of h.

In addition, an optimal rate convergence analysis has been reported in [8]. Denote (N, P,Φ) be the exact PDE solution
for the non-dimensional PNP system (1.4)–(1.6). The following regularity assumption was made for the exact solution:

N, P ∈ R := H4 (
0, T ; Cper(Ω)

)
∩ H3 (

0, T ; C2
per(Ω)

)
∩ L∞

(
0, T ; C6

per(Ω)
)
. (2.21)

More importantly, the following separation property is assumed for the exact solution:

N ≥ ϵ0, P ≥ ϵ0, for some ϵ0 > 0, at a point-wise level. (2.22)

Meanwhile, the (spatial) Fourier projection of the exact solution is introduced, NN ( · , t) := PNN( · , t), PN ( · , t) :=

PNP( · , t), with the projection into BK , the space of trigonometric polynomials of degree to and including K (with
N = 2K + 1). Of course, the projection approximation estimate is standard:

∥NN − N∥L∞(0,T ;Hk) ≤ Chℓ−k
∥N∥L∞(0,T ;Hℓ), ∥PN − P∥L∞(0,T ;Hk) ≤ Chℓ−k

∥P∥L∞(0,T ;Hℓ), (2.23)

for any 0 ≤ k ≤ ℓ, provided that (N, P) ∈ L∞(0, T ;Hℓper(Ω)). In addition, denote Nm
N = NN ( · , tm), Pm

N = PN ( · , tm), with
tm = m ·∆t . Since (NN , PN ) ∈ BK , The mass conservative property has been proved for NN and PN at the discrete level:

Nm
N = Nm−1

N , Pm
N = Pm−1

N , ∀m ∈ N. (2.24)

eanwhile, a similar property for the numerical solution of (2.8)–(2.9) is given by (2.12). In turn, the mass conservative
rojection for the initial data is taken: n0

= PhNN ( · , t = 0), p0 = PhPN ( · , t = 0):

(n0)i,j,k := NN (pi, pj, pk, t = 0), (p0)i,j,k := PN (pi, pj, pk, t = 0). (2.25)

Similarly, for the exact electric potential Φ , its Fourier projection is denoted as ΦN . Subsequently, the error grid function
is defined as

em := P Nm
− nm, em := P Pm

− pm, em := P Φm
− φm, ∀ m ∈ N. (2.26)
n h N p h N φ h N

5
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Because of the fact that emn = emp = 0, for any m ≥ 0, we see that the discrete norm ∥ · ∥−1,h is well defined for the error
grid function.

The convergence result of the proposed numerical scheme is stated in the following theorem.

Theorem 2.3 ([8]). Given initial data N( · , t = 0), P( · , t = 0) ∈ C6
per(Ω), suppose the exact solution for the PNP system (1.4)–

(1.5) is of regularity class R. Then, provided ∆t and h are sufficiently small, and under the linear refinement requirement
C1h ≤ ∆t ≤ C2h, we have

∥emn ∥2 + ∥emp ∥2 +

(
∆t

m∑
k=1

(∥∇hekn∥
2
2 + ∥∇hekp∥

2
2)

)1/2
+ ∥emφ ∥H2

h
≤ C(∆t + h2), (2.27)

or all positive integers m, such that tm = m∆t ≤ T , where C > 0 is independent of ∆t and h.

In fact, in the convergence analysis, a few supplementary fields, N∆t,1, N∆t,2, P∆t,1, P∆t,2 and Ň, P̌, have been
onstructed:

Ň = NN + PN (∆tN∆t,1 +∆t2N∆t,2 + h2Nh,1), P̌ = PN + PN (∆tP∆t,1 +∆t2P∆t,2 + h2Ph,1), (2.28)

o that a higher O(∆t3 + h4) consistency is satisfied with the given numerical scheme (2.8)–(2.11). These constructed
rofiles depend solely on the exact solution (N, P).
In turn, alternate numerical error functions have been introduced:

ñm
:= PhŇ

m
− nm, p̃m := PhP̌

m
− pm, φ̃m

:= (−∆h)−1(p̃m − ñm), ∀ m ∈ N. (2.29)

inally, the following convergence estimate has been derived in [8]:

∥ñm+1
∥2 + ∥p̃m+1

∥2 +

(
∆t

m+1∑
k=1

(∥∇hñk
∥
2
2 + ∥∇hp̃k∥2

2)
)1/2

≤ C(∆t3 + h4). (2.30)

As a result of the convergence estimate (with higher order asymptotic expansion in Ň and P̌), an application of an
nverse inequality leads to

∥ñk
∥∞ + ∥p̃k∥∞ ≤

C∥ñk
∥2 + ∥p̃k∥2

h3/2 ≤
C(∆t3 + h4)

h3/2 ≤ C(∆t3/2 + h5/2) ≤ ∆t, (2.31)

or any k ≥ 0, under the linear refinement requirement C1h ≤ ∆t ≤ C2h. Furthermore, the following ∥ · ∥∞ estimate for
he discrete temporal difference of the numerical solution could be derived:

∥nm+1
− nm

∥∞ ≤ ∥Ňm+1
− Ňm

∥∞ + ∥ñm+1
− ñm

∥∞ ≤ C∆t +∆t = C3∆t,

∥pm+1
− pm∥∞ ≤ C3∆t, (similar analysis),

(2.32)

here the inequality ∥Ňm+1
− Ňm

∥∞ ≤ C∆t comes from the C1(0, T ; C0) regularity of Ň.
With the help of the ∥ · ∥∞ bound (2.31) of the numerical error functions, the following bounds become available
ϵ0

2
≤ nk, pk ≤ C4 + 1 =: C5, at a point-wise level, for any k ≥ 0, (2.33)

rovided that ∆t and h are sufficiently small. In fact, such a derivation is based on the uniform-in-time ∥ · ∥∞ bound of
he constructed profiles, ∥Ň∥∞, ∥P̌∥∞ ≤ C4, as well as the separation properties, Ň, P̌ ≥

5ϵ0
8 .

. The iteration solver and the convergence analysis

Of course, an iteration solver is needed to implement the fully nonlinear scheme (2.8)–(2.11) at each time step. A
ethod was proposed in [8] and is recounted here. First, the initial value for the nonlinear iteration is taken as n(0)

:= nm,
(0)

:= pm, and φ(0)
:= φm. Subsequently, given the kth iterates, n(k), p(k), φ(k), we obtain the k + 1st iterate by solving the

ollowing system:

n(k+1)
− nm

∆t
− ∇h ·

(
M̆m

n ∇h

(n(k+1)
− n(k)

n(k)

))
= ∇h ·

(
M̆m

n ∇h

(
ln n(k)

− φ(k)
))
,

p(k+1)
− pm

∆t
− ∇h ·

(
M̆m

p ∇h

(p(k+1)
− p(k)

p(k)

))
= ∇h ·

(
M̆m

p ∇h

(
ln p(k) + φ(k)

))
,

−∆hφ
(k+1)

= p(k+1)
− n(k+1).

(3.1)

The point-wise positivity of M̆m
n and M̆m

p has been justified by the positivity-preserving analysis. In fact, the unique
solvability of the linear elliptic system (3.1), in the divergence form, can be theoretically ensured, provided that the point-
wise positivity of the iteration solution n(k) and p(k) is available. The system (3.1) makes use of a Newton linearization
6
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with respect to the logarithmic nonlinear parts: for any a, b > 0,

ln(a) = ln(b) +
a − b
b

−
1
2
(a − b)2

ζ 2
, (3.2)

or some ζ between a and b. In addition, we observe that

n(k+1) = n(k) = nm, p(k+1) = p(k) = pm, nm = pm, (3.3)

o that LM̆m
n
(n(k+1)

− nm), LM̆m
p
(p(k+1)

− pm), as well as (−∆h)−1(p(k+1)
− n(k+1)), are well defined.

Given the numerical solution (nm, pm) at the previous time step tm, and we assume that the numerical scheme (2.8)–
2.11) has been exactly implemented up to time step tm. As a result of the point-wise bound (2.33) of nm and pm, the
ollowing lower and upper bounds for M̆m

n and M̆m
p are straightforward:

ϵ0

2
≤ M̆m

n ≤ C4 + 1 = C5,
Dϵ0
2

≤ M̆m
p ≤ DC5, at a point-wise level. (3.4)

We introduce the following iteration error functions:

ê(k)n = nm+1
− n(k), ê(k)p = pm+1

− p(k), ê(k)φ = φm+1
− φ(k). (3.5)

By the fact that nm+1 = nm, pm+1 = pm, and nm = pm, we see that

ê(k)n = ê(k)p = 0, ∀k ≥ 0, (3.6)

o that LM̆m
n
(ê(k+1)

n ), LM̆m
p
(ê(k+1)

p ), as well as (−∆h)−1(ê(k)p − ê(k)n ), are well defined. Finally, the following weighed numerical
‘‘error energy" is defined:

F (k)
:=

ϵ0

4C2
5∆t

(
∥ê(k)n ∥

2
−1,h + ∥ê(k)p ∥

2
−1,h

)
+

1
2(C5 + 1)

(
∥ê(k)n ∥

2
2 + ∥ê(k)p ∥

2
2

)
. (3.7)

The main theoretical result of this article is stated in the following theorem.

Theorem 3.1. Given the numerical solution nm, pm and φm
= (−∆h)−1(pm − nm) at the previous time step. Then, provided

∆t and h are sufficiently small, and under the linear refinement requirement C1h ≤ ∆t ≤ C2h, the following estimates hold:

F (1)
≤ C6∆t2F (0), (3.8)

F (2)
≤ C7∆tF (1), (3.9)

F (k+1)
≤ C8∆t2F (k), ∀ k ≥ 2, (3.10)

here C6, C7 and C8 > 0 are independent of ∆t and h.

roof. First we make an a-priori assumption:
ϵ0

4
≤ n(k), p(k) ≤ C5 + 1, at a point-wise level. (3.11)

his a-priori assumption will be recovered by the convergence analysis at the next iteration stage. With such an
ssumption, the iteration algorithm (3.1) is well-defined.
Subtracting the iteration algorithm (3.1) from the exact numerical solution (2.8)–(2.11) gives

ê(k+1)
n

∆t
= ∇h ·

(
M̆m

n ∇h

(
ln nm+1

− ln n(k)
−

n(k+1)
− n(k)

n(k) + (−∆h)−1(ê(k)n − ê(k)p )
))
,

ê(k+1)
p

∆t
= ∇h ·

(
M̆m

p ∇h

(
ln pm+1

− ln p(k) −
p(k+1)

− p(k)

p(k)
+ (−∆h)−1(ê(k)p − ê(k)n )

))
.

(3.12)

n fact, such an error system could be rewritten as

1
∆t

LM̆m
n
(ê(k+1)

n ) + ln nm+1
− ln n(k)

−
n(k+1)

− n(k)

n(k) + (−∆h)−1(ê(k)n − ê(k)p ) = 0,

1
∆t

LM̆m
p
(ê(k+1)

p ) + ln pm+1
− ln p(k) −

p(k+1)
− p(k)

p(k)
+ (−∆h)−1(ê(k)p − ê(k)n ) = 0.

(3.13)

Next we look at the first equation in (3.13), the error equation for ê(k+1)
n . An application of Taylor’s Theorem reveals

that

ln nm+1
− ln n(k)

=
1
(k) ê

(k)
n , (3.14)
ξn

7
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for some ξ (k)n between nm+1 and n(k) in a point-wise sense. Since ξ (k)n is ‘‘between" nm+1 and n(k), we conclude that

|ξ (k)n − n(k)
| ≤ |nm+1

− n(k)
| ≤ |ê(k)n |,

o that

∥ξ (k)n − n(k)
∥∞ ≤ ∥ê(k)n ∥∞. (3.15)

ecause of the separation properties and upper bounds satisfied by both nm+1 and n(k) – see (2.33) and (3.11), respectively
the following estimate is valid for ξ (k)n :

ϵ0

4
≤ ξ (k)n ≤ C5 + 1, at a point-wise level. (3.16)

eanwhile, for the term n(k+1)
− n(k), we have

n(k+1)
− n(k)

= (nm+1
− ê(k+1)

n ) − (nm+1
− ê(k)n ) = −(ê(k+1)

n − ê(k)n ). (3.17)

Therefore, the error equation for ê(k+1)
n could be reformulated as

1
∆t

LM̆m
n
(ê(k+1)

n ) +
1

ξ
(k)
n

ê(k)n +
ê(k+1)
n − ê(k)n

n(k) + (−∆h)−1(ê(k)n − ê(k)p ) = 0. (3.18)

The two nonlinear iteration error terms can be rewritten as

1

ξ
(k)
n

ê(k)n +
ê(k+1)
n − ê(k)n

n(k) =
n(k)

− ξ
(k)
n

ξ
(k)
n n(k)

ê(k)n +
ê(k+1)
n

n(k) . (3.19)

ext, define

ζ (k)n :=
n(k)

− ξ
(k)
n

ξ
(k)
n

.

hen, the point-wise inequality (3.15) implies that

|ζ (k)n | =
|n(k)

− ξ
(k)
n |

ξ
(k)
n

≤
|ê(k)n |

ξ
(k)
n

≤ 4ϵ−1
0 |ê(k)n |, (3.20)

n which the bound (3.16) has been applied in the last step. Going back (3.18), we get

1
∆t

LM̆m
n
(ê(k+1)

n ) +
ê(k+1)
n

n(k) = −
ζ
(k)
n

n(k) ê
(k)
n + (−∆h)−1(ê(k)n − ê(k)p ). (3.21)

Next, taking a discrete inner product of (3.21) with ê(k+1)
n gives

1
∆t

∥ê(k+1)
n ∥

2
L−1

M̆m
n

+

⟨
1
n(k) , (ê

(k+1)
n )2

⟩
Ω

= −

⟨
ζ
(k)
n

n(k) , ê
(k)
n ê(k+1)

n

⟩
Ω

+
⟨
ê(k+1)
n , ê(k)n − ê(k)p

⟩
−1,h

. (3.22)

For the first term on the left hand side, an application of Lemma 2.2 reveals that

∥ê(k+1)
n ∥

2
L−1

M̆m
n

≥
ϵ0

2C2
5
∥ê(k+1)

n ∥
2
−1,h, (3.23)

ith the estimate (2.33) applied. The lower bound of the nonlinear inner product on the left hand side could be obtained
ith the help of the a-priori assumption (3.11):⟨

1
n(k) , (ê

(k+1)
n )2

⟩
Ω

≥
1

C5 + 1
∥ê(k+1)

n ∥
2
2. (3.24)

or the term associated with the electric potential, a direct application of the Cauchy–Schwarz and Young inequalities
ives ⟨

ê(k+1)
n , ê(k)n − ê(k)p

⟩
−1,h

≤ ∥ê(k+1)
n ∥−1,h · ∥ê(k)n − ê(k)p ∥−1,h

≤
ϵ0
2 ∥ê(k+1)

n ∥
2
−1,h + C2

5 ϵ
−1
0 ∆t∥ê(k)n − ê(k)p ∥

2
−1,h.

(3.25)

4C5∆t

8
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For the nonlinear error inner product on the right hand side of (3.22), a more careful calculation reveals that

−

⟨
ζ
(k)
n

n(k) , ê
(k)
n ê(k+1)

n

⟩
Ω

≤
1
2

⟨
1
n(k) , (ê

(k+1)
n )2

⟩
Ω

+
1
2

⟨
1
n(k) , (ζ

(k)
n )2(ê(k)n )2

⟩
Ω

≤
1
2

⟨
1
n(k) , (ê

(k+1)
n )2

⟩
Ω

+
1
2

· 4ϵ−1
0 · 16ϵ−2

0 ∥ê(k)n ∥
2
∞

· ∥ê(k)n ∥
2
2

≤
1
2

⟨
1
n(k) , (ê

(k+1)
n )2

⟩
Ω

+ 32ϵ−3
0 ∥ê(k)n ∥

2
∞

· ∥ê(k)n ∥
2
2.

(3.26)

herefore, a substitution of (3.23)–(3.26) into (3.22) leads to

ϵ0

4C2
5∆t

∥ê(k+1)
n ∥

2
−1,h +

1
2(C5 + 1)

∥ê(k+1)
n ∥

2
2

≤ C2
5 ϵ

−1
0 ∆t∥ê(k)n − ê(k)p ∥

2
−1,h + 32ϵ−3

0 ∥ê(k)n ∥
2
∞

· ∥ê(k)n ∥
2
2.

(3.27)

Similarly, the second equation in (3.13), the error equation for ê(k+1)
p , could be reformulated as

1
∆t

LM̆m
p
(ê(k+1)

p ) +
1

ξ
(k)
p

ê(k)p +
ê(k+1)
p − ê(k)p

p(k)
+ (−∆h)−1(ê(k)p − ê(k)n ) = 0, (3.28)

where ξ (k)p is between pm+1 and p(k) and satisfies

|ζ (k)p | ≤ 4ϵ−1
0 |ê(k)p |.

The error equation for p can be further rewritten as

1
∆t

LM̆m
p
(ê(k+1)

p ) +
ê(k+1)
p

p(k)
= −

ζ
(k)
p

p(k)
ê(k)p + (−∆h)−1(ê(k)p − ê(k)n ). (3.29)

In addition, taking a discrete inner product of (3.21) with ê(k+1)
p , we are able to derive the following iteration error estimate

ϵ0

4C2
5∆t

∥ê(k+1)
p ∥

2
−1,h +

1
2(C5 + 1)

∥ê(k+1)
p ∥

2
2

≤ C2
5 ϵ

−1
0 ∆t∥ê(k)n − ê(k)p ∥

2
−1,h + 32ϵ−3

0 ∥ê(k)p ∥
2
∞

· ∥ê(k)p ∥
2
2.

(3.30)

he technical details are left to interested readers. Finally, a combination of (3.27) and (3.30) yields

ϵ0

4C2
5∆t

(∥ê(k+1)
n ∥

2
−1,h + ∥ê(k+1)

p ∥
2
−1,h) +

1
2(C5 + 1)

(
∥ê(k+1)

n ∥
2
2 + ∥ê(k+1)

p ∥
2
2

)
≤ 2C2

5 ϵ
−1
0 ∆t∥ê(k)n − ê(k)p ∥

2
−1,h + 32ϵ−3

0

(
∥ê(k)n ∥

2
∞

· ∥ê(k)n ∥
2
2 + ∥ê(k)p ∥

2
∞

· ∥ê(k)p ∥
2
2

)
≤ 4C2

5 ϵ
−1
0 ∆t

(
∥ê(k)n ∥

2
−1,h + ∥ê(k)p ∥

2
−1,h

)
+ 32ϵ−3

0

(
∥ê(k)n ∥

2
∞

· ∥ê(k)n ∥
2
2 + ∥ê(k)p ∥

2
∞

· ∥ê(k)p ∥
2
2

)
.

(3.31)

3.1. Iteration stage 1: k = 0

At k = 0, we see that the preliminary error estimate (2.32) (for the exact solution of (2.8)–(2.11)) implies that

∥ê(0)n ∥∞ = ∥nm+1
− nm

∥∞ ≤ C3∆t, ∥ê(0)p ∥∞ = ∥pm+1
− pm∥∞ ≤ C3∆t, (3.32)

due to initializations nm+1,(0)
= nm, pm+1,(0)

= pm. A substitution of the last inequality into (3.31) leads to the following
iteration error estimate for k = 0:

ϵ0

4C2
5∆t

(∥ê(1)n ∥
2
−1,h + ∥ê(1)p ∥

2
−1,h) +

1
2(C5 + 1)

(∥ê(1)n ∥
2
2 + ∥ê(1)p ∥

2
2)

≤ 4C2
5 ϵ

−1
0 ∆t(∥ê(0)n ∥

2
−1,h + ∥ê(0)p ∥

2
−1,h) + 32C2

3 ϵ
−3
0 ∆t2(∥ê(0)n ∥

2
2 + ∥ê(0)p ∥

2
2).

(3.33)

Consequently, we get inequality (3.8), by taking

C = max
(
16C4ϵ−2, 64C2(C + 1)ϵ−3

)
.
6 5 0 3 5 0

9
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3.2. Iteration stage 2: k = 1

The iteration error estimate (3.8) for k = 0 indicates that

F (1)
=

ϵ0

4C2
5∆t

(∥ê(1)n ∥
2
−1,h + ∥ê(1)p ∥

2
−1,h) +

1
2(C5 + 1)

(∥ê(1)n ∥
2
2 + ∥ê(1)p ∥

2
2)

≤ C6∆t2F (0)

≤ C9C6∆t4,

(3.34)

ince F (0)
≤ C9∆t2, which comes from the preliminary error estimate (3.32). Therefore,

∥ê(1)n ∥2, ∥ê(1)p ∥2 ≤ C10∆t2, C10 := (2C9C6(C5 + 1))1/2. (3.35)

ubsequently, an application of an inverse inequality gives

∥ê(1)n ∥∞ ≤
C∥ê(1)n ∥2

h3/2 ≤
CC10∆t2

h3/2 ≤ C11∆t1/2, ∥ê(1)p ∥∞ ≤ C11∆t1/2, (similarly), (3.36)

ith C11 = CC10, where the linear refinement constraint, C1h ≤ ∆t ≤ C2h, has been applied. A substitution of the last
nequalities into (3.31) leads to the following iteration error estimate for k = 1:

ϵ0

4C2
5∆t

(∥ê(2)n ∥
2
−1,h + ∥ê(2)p ∥

2
−1,h) +

1
2(C5 + 1)

(∥ê(2)n ∥
2
2 + ∥ê(2)p ∥

2
2)

≤ 4C2
5 ϵ

−1
0 ∆t(∥ê(1)n ∥

2
−1,h + ∥ê(1)p ∥

2
−1,h) + 32C2

11ϵ
−3
0 ∆t(∥ê(1)n ∥

2
2 + ∥ê(1)p ∥

2
2),

(3.37)

so that inequality (3.9) is valid, by taking

C7 = max
(
16C4

5 ϵ
−2
0 , 64C2

11(C5 + 1)ϵ−3
0

)
.

3.3. Iteration stage 3: k = 2

The iteration error estimate (3.9) for k = 1 indicates that

F (2)
=

ϵ0

4C2
5∆t

(∥ê(2)n ∥
2
−1,h + ∥ê(2)p ∥

2
−1,h) +

1
2(C5 + 1)

(∥ê(2)n ∥
2
2 + ∥ê(2)p ∥

2
2)

≤ C7∆tF (1)

≤ C9C6C7∆t5.

(3.38)

herefore,

∥ê(2)n ∥2, ∥ê(2)p ∥2 ≤ C12∆t5/2, C12 = (2(C5 + 1)C9C6C7)
1/2 . (3.39)

n turn, an application of an inverse inequality leads to

∥ê(2)n ∥∞ ≤
C∥ê(2)n ∥2

h3/2 ≤
CC12∆t5/2

h3/2 ≤ C13∆t, ∥ê(2)p ∥∞ ≤ C13∆t, (similar argument), (3.40)

ith C13 = CC12. A substitution of the last inequalities into (3.31) leads to the following iteration error estimate for k = 2:

ϵ0

4C2
5∆t

(∥ê(3)n ∥
2
−1,h + ∥ê(3)p ∥

2
−1,h) +

1
2(C5 + 1)

(∥ê(3)n ∥
2
2 + ∥ê(3)p ∥

2
2)

≤ 4C2
5 ϵ

−1
0 ∆t(∥ê(2)n ∥

2
−1,h + ∥ê(2)p ∥

2
−1,h) + 32C2

13ϵ
−3
0 ∆t2(∥ê(2)n ∥

2
2 + ∥ê(2)p ∥

2
2),

(3.41)

o that inequality (3.10) is valid, by taking

C8 = max
(
16C4

5 ϵ
−2
0 , 64C2

13(C5 + 1)ϵ−3
0

)
.

.4. Higher iteration stages: k ≥ 3

Assume that inequality (3.10) is valid up to the k − 1st stage. Then we get

F (k)
=

ϵ0

4C2
5∆t

(∥ê(k)n ∥
2
−1,h + ∥ê(k)p ∥

2
−1,h) +

1
2(C5 + 1)

(∥ê(k)n ∥
2
2 + ∥ê(k)p ∥

2
2)

≤ C8∆t2F (k−1)

≤ C̃C6C7C8∆t7

6

(3.42)
≤ ∆t .
10
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Therefore,

∥ê(k)n ∥2, ∥ê(k)p ∥2 ≤ ∆t3. (3.43)

rovided that ∆t is sufficiently small. In turn, an application of an inverse inequality leads to

∥ê(k)n ∥∞ ≤
C∥ê(k)n ∥2

h3/2 ∥ê(k)p ∥∞ ≤ ∆t, (similar argument). (3.44)

Again, a substitution of the last inequalities into (3.31) leads to the following iteration error estimate for k ≥ 3:
ϵ0

4C2
5∆t

(∥ê(k+1)
n ∥

2
−1,h + ∥ê(k+1)

p ∥
2
−1,h) +

1
2(C5 + 1)

(∥ê(k+1)
n ∥

2
2 + ∥ê(k+1)

p ∥
2
2
)

≤ 4C2
5 ϵ

−1
0 ∆t(∥ê(k)n ∥

2
−1,h + ∥ê(k)p ∥

2
−1,h) + 32ϵ−3

0 ∆t2(∥ê(k)n ∥
2
2 + ∥ê(k)p ∥

2
2),

(3.45)

o that inequality (3.10) is valid for k ≥ 3, by taking

C8 = max
(
16C4

5 ϵ
−2
0 , 64(C5 + 1)ϵ−3

0

)
.

Finally, we observe that the a-priori assumption (3.11) can be recovered at the next iteration stage, by applying the
· ∥∞ iteration error estimate (3.36), (3.40) and (3.44):

n(k+1)
≥ nm+1

− |ê(k+1)
n | ≥

ϵ0

2
−
ϵ0

4
=
ϵ0

4
,

n(k+1)
≤ nm+1

+ |ê(k+1)
n | ≤ C5 + 1,

ϵ0

4
≤ p(k+1)

≤ C5 + 1, (similar argument),

(3.46)

or k = 0, k = 1 and k ≥ 2, provided that ∆t and h are sufficiently small. This finishes the proof of Theorem 3.1. □

Remark 3.1. From the above iteration convergence analysis, we see that

∥ê(0)n ∥2 = O(∆t), ∥ê(1)n ∥2 = O(∆t2), ∥ê(2)n ∥2 = O(∆t5/2), ∥ê(k)n ∥2 = O(∆tk+1/2), (k ≥ 3), (3.47)

o that the convergence is at least linear, with convergence rate in the order of O(∆t). Extensive numerical experiments
ave demonstrated that, only four to five iteration stages are needed to achieve a near-machine error precision at each
ime step. In addition, each iteration stage corresponds to a non-constant coefficient elliptic solver, with the computational
ost comparable to the standard Poisson solver. Therefore, the proposed iteration algorithm turns out to be a very efficient
olver to implement the numerical scheme (2.8)–(2.11).

emark 3.2. In the iteration algorithm (3.1), we treat the electric potential part explicitly in the iteration, to avoid a
oupling. This approach leads to a linear convergence, with convergence rate of order O(∆t), as stated in Theorem 3.1.
eanwhile, if such a term is treated implicitly in the iteration (which leads to a coupled system), the iteration convergence
rder could be further improved. In fact, a careful analysis reveals the following estimate, if the electric potential part is
reated implicitly:

1
2(C5 + 1)

(∥ê(k+1)
n ∥

2
2 + ∥ê(k+1)

p ∥
2
2) ≤ 32ϵ−3

0 (∥ê(k)n ∥
2
∞

· ∥ê(k)n ∥
2
2 + ∥ê(k)p ∥

2
∞

· ∥ê(k)p ∥
2
2).

This estimate corresponds to a quadratic convergence order in the standard Newton iteration, i.e, ê(k+1)
≈ C(êk)2, a faster

convergence order than the one given by (3.10). However, a coupled system has to be solved in this approach, and the
numerical experiments have demonstrated great efficiency advantages of the proposed iteration algorithm (3.1) over this
approach.

4. Numerical test for the iteration solver

We perform a 2-D numerical test to demonstrate the convergence rate of the iteration algorithm (3.1). The computa-
tional box, taken as Ω = (0, 1)2, is covered by a uniform mesh with h = 0.02, and the time step size is chosen as ∆t = h.
We consider the following exact solution⎧⎪⎨⎪⎩

n = e−t sin(2πx) cos(2πy) + 2,
p = e−t cos(2πx) sin(2πy) + 2,
ψ = e−t sin(2πx) sin(2πy),

(4.1)

to the PNP system (1.4)–(1.6) with additional source terms in the NP equations. The source terms and the initial conditions
are determined by the known exact solution. In fact, such a test function has been used in the existing work [8] to verify
the accuracy of the numerical scheme (2.8)–(2.11), and the expected numerical accuracy in both temporal and spatial
11
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Fig. 1. Logarithmic plot of ℓ2-errors of p, n, and φ vs. iteration stages.

iscretization has been reported. In this section, we focus on the convergence rate of the iteration solver (3.1) for the
onlinear discretization scheme (2.8)–(2.11).
In this test, we only focus on solving the nonlinear discretization scheme for a single time step, i.e., the first time

tep, and take the converged numerical solution as the reference solution. For each iteration stage, the iteration solution
s compared with the reference solution. Fig. 1 displays the logarithmic plot of the ℓ2-error for p, n, and φ vs. the
teration stages. It is obvious that the natural logarithm of the ℓ2-error decreases linearly against the iteration stages,
hich demonstrates a linear convergence rate of the iteration algorithm (3.1) (as stated in Theorem 3.1). Therefore, this
umerical test has verified the theoretical result of the linear convergence rate for the proposed iteration solver.

. Concluding remarks

An iteration solver is proposed and analyzed for a finite difference scheme for the Poisson-Nernst–Planck (PNP) system,
ormulated in the Energetic Variational Approach (EnVarA). In the given numerical scheme, the mobility concentration
unction is explicitly treated to ensure the unique solvability, while both the logarithmic and the electric potential diffusion
erms are treated implicitly, because of their convex natures. The positivity-preserving property for both concentrations,
n unconditional energy stability, and the optimal rate error estimate have been established in a recent work. In this
rticle, an iteration solver is proposed to implement the numerical scheme, which includes a modified Newton iteration for
he nonlinear and logarithmic part, combined with a linear iteration for the electric potential part. In turn, a linear elliptic
quation, in the divergence form, needs to be solved at each iteration stage. A linear convergence analysis is provided for
he proposed iteration algorithm, under the separation assumption for the exact PDE solution and the numerical solution
t each iteration stage. The positivity of both concentration variables at each iteration stage is crucial to ensure the well-
osed property of the elliptic system. With the help of the uniform distance between the numerical solutions and the
ingular limit value, the singularity issue associated with the logarithmic term could be avoided in the iteration analysis,
nd the convex nature of the logarithmic energy functional will lead to a well-posed nonlinear error at each iteration
tage. Finally, a linear convergence analysis is reported for the proposed iteration process, with convergence rate in the
ame order of the time step size. It will be the first such result for the highly nonlinear and singular PNP system. In
ddition, a numerical test has also demonstrated the linear convergence rate of the proposed iteration solver.
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