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Abstract A spectral collocation scheme for the three-dimensional incompressible (u, p)

formulation of the Navier–Stokes equations, in domains Ω with a non-periodic boundary
condition, is described. The key feature is the high order approximation, by means of a local
Hermite interpolant, of a Neumann boundary condition for use in the numerical solution of
the pressure Poisson system. The time updates of the velocity u and pressure p are decoupled
as a result of treating the pressure gradient in the momentum equation explicitly in time. The
pressure update is computed from a pressure Poisson equation. Extension of the overall
methodology to the Boussinesq system is also described. The uncoupling of the pressure and
velocity time updates results in a highly efficient scheme that is simple to implement and
well suited for simulating moderate to high Reynolds and Rayleigh number flows. Accuracy
checks are presented, along with simulations of the lid-driven cavity flow and a differentially
heated cavity flow, to demonstrate the scheme produces accurate three-dimensional results
at a reasonable computational cost.

Keywords Three-dimensional viscous incompressible flow · pressure Poisson equation ·
Pressure boundary condition · Spectral collocation method · Lid driven cavity flow

H. Johnston (B)
Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA, USA
e-mail: johnston@math.umass.edu

C. Wang
Department of Mathematics, University of Massachusetts Dartmouth, Dartmouth, MA, USA
e-mail: cwang1@umassd.edu

J.-G. Liu
Departments of Physics and Mathematics, Duke University, Durham, NC, USA
e-mail: jian-guo.liu@duke.edu

123



J Sci Comput (2014) 60:612–626 613

1 Introduction

The incompressible Navier–Stokes equations (NSE) in non-dimensional form with a no-
penetration, no-slip boundary condition for the velocity in a three-dimensional domain Ω

with boundary Γ = ∂Ω are given by

∂t u + u·∇u + ∇ p = νΔu + f , (1)

∇·u = 0, (2)

u|Γ = 0. (3)

Here u = (u, v, w)T is the velocity field, p the pressure, f = ( f1, f2, f3)
T an external body

force, and ν = 1/Re where Re is the Reynolds number.
A significant challenge in the design of numerical schemes for the (u, p) formulation (1)–

(3) of the NSE is the nature of the coupling between the pressure gradient in the momentum
equation (1) and the incompressibility constraint (2). The physical issue is: as the velocity field
evolves in time the pressure changes instantaneously and globally to ensure that the velocity
field remains incompressible. This can be directly enforced in a numerical scheme using a
Stokes solver. However, this is computationally costly since the velocity and pressure time
updates are coupled. Alternative approaches have been proposed in which the computation
of the velocity and pressure updates are decoupled, most notably projection methods [2,5,
16,22,28]. In these methods an intermediate velocity field is first computed, which may not
satisfy the incompressibility constraint, and is then projected onto the space of divergence-
free vector fields. Thus, projection method based schemes treat the pressure as a Lagrange
multiplier to enforce the incompressibility condition. This methodology requires two Poisson
solvers, one vector valued for u and one scalar for p, at each time step.

The starting point of the scheme presented herein is an alternate PDE formulation of the
NSE, a pressure Poisson equation (PPE) formulation (c.f. [10,13,25]), given by

∂t u + u·∇u + ∇ p = νΔu + f , (4)

Δp = −∇·(u·∇u) + ∇·f , (5)

u|Γ = 0, (∇·u)|Γ = 0. (6)

The incompressibility constraint (2) has been replaced by the PPE (5) and the divergence-free
velocity boundary condition in (6). Taking the divergence of (4) and using (5), one sees that
the divergence of the velocity field is governed by a heat equation,

∂t (∇·u) = νΔ(∇·u). (7)

Assuming the initial velocity field is divergence-free, i.e., (∇·u)|t=0 = 0, applying the BCs
in (6) shows that for t > 0, Eq. (7) has only the trivial solution

∇·u ≡ 0, (8)

thus the velocity field remains divergence-free. A proof of the equivalence between the PPE
formulation (4)–(6) and the classical formulation (1)–(3) within the framework of strong
solutions can be found in [13].

We present a spectral collocation method here for both the natural clustering of grid points
near physical boundaries, which aids in resolving fluid boundary layers. Spectral methods
provide powerful tools for simulating fluid flows, particularly in three dimensions [3,4,6,
8,15,24,29]. Following the advent of the FFT, their importance and influence were firmly
established in the 1970s by pioneering simulations of inhomogeneous turbulence in periodic
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domains. Since then, spectral methods have played a prominent role in simulating flows in
domains with non-periodic boundary conditions [1,17,18,26,27].

As our interest is in simulating moderate to high Reynolds number flows, we employ the
convectively stable classical fourth order Runge–Kutta (RK4) for the time discretization.
When used in conjunction with the spectral collocation approximation in space described
here, the resulting multi-stage explicit time stepping procedure is simple to implement and
highly efficient. At each time step (stage), the velocity vector is dynamically updated by the
momentum equation (4) at the interior collocation grid points with the pressure gradient com-
puted from previous time stage. The pressure is then updated by solving the PPE (5) with a
consistent BC derived at the numerical level for the pressure from the incompressibility con-
dition in (6). The derivation of this pressure BC is described below in Sect. 2. The finite differ-
ence approximation analog of this BC was described in [11,13]. The key point in the derivation
of our local pressure BC is a high order interpolation of the normal velocity with a local Her-
mite interpolant at the boundary. The order of accuracy depends on the number of collocation
grid points involved, which we denote by K . To achieve higher order accuracy we can simply
choose a larger K . The stability of this approach is demonstrated by numerical evidence.

It is straightforward to extend this methodology to the Boussinesq approximation for
simulating moderate to high Rayleigh number flows. The momentum equation is treated in
the same manner, with an addition of the gravity term. The temperature transport equation is
the approximated by a similar spectral differentiation procedure as the momentum equation.
The main computational cost at each time stage, for either the NSE or Boussinesq system, is a
three-dimensional Poisson solver for the pressure. The resulting schemes are able to capture
delicate and complicated structures of a flow with a high Reynolds and Rayleigh number at
a reasonable computational cost.

The remainder of this article is organized as follows: In Sect. 2 we derive a consistent
and computable Neumann boundary condition for pressure. Section 3 describes the Cheby-
shev spectral collocation numerical scheme for the three-dimensional NSE based on the
formulation (4)–(6). The extension of the scheme to the three-dimensional incompressible
Boussinesq equations is then described in Sect. 4. In Sect. 5 we present numerical accuracy
checks of the proposed scheme for both the NSE and Boussinesq equations. Finally, in Sect. 6
we present simulations of the three-dimensional lid-driven cavity flow at various Reynolds
numbers. The results at the highest Reynolds number computed herein, Re = 1,000, are
compared and contrasted with the benchmark results in [1].

2 Neumann Boundary Condition for Pressure

Key to the computational efficiency of our scheme for (4)–(6) is that, like projection methods,
the time updates of the velocity and pressure are decoupled. However, doing so requires a
boundary condition for the elliptic PPE (5), and finding a proper pressure boundary condition
for the PPE has been the subject of some controversy (c.f. [10,25] and references therein), both
from the view-point of the well-posedness of the resulting continuous formulation and with
respect to an implementable boundary condition for use in a numerical scheme. A natural
candidate is given by the normal component of the momentum equation at the boundary,
which gives a Neumann boundary condition for p

∂p

∂n
= νΔu·n + f ·n on Γ, (9)

where n is the outward unit normal along Γ .
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Based on the vector identity Δu = ∇(∇·u) − ∇ × ∇ × u and the incompressibility (2),
the above (9) can be reduced to

∂p

∂n
= −ν(∇ × ∇ × u)·n + f ·n on Γ, (10)

which result in a well-posed system (3)–(5) and (10). Indeed, this boundary condition together
with the derived boundary condition (9) implies that

∂n(∇·u)|Γ = 0. (11)

Its combination with (7) and the initial condition implies that ∇ ·u ≡ 0. Equivalence and
well-posedness for the system (3)–(5) and (10) was proved in [20]. Recent analysis presented
in [14,20,23] shows that such a reformulation could lead to an unconditional stable numer-
ical scheme with an explicit treatment of the pressure gradient. When the flow is resolved,
the system (3)–(5), together with the alternate Neumann boundary condition (10) gives an
excellent enforcement of incompressibility. However, in the case of marginal resolution such
an enforcement is much subtler. An additional projection or divergence suppression may be
needed in the numerical implementation (see [23]), where numerical experiments showed
that the enforcement of incompressibility will be enhanced with an implicit treatment of
the pressure. However, such a coupled system of velocity and pressure requires complicated
techniques, e.g. the influence matrix method [4], and makes the computational cost very
expensive. For simplicity, we consider the reformulated system (3)–(5) together with the
derived Neumann boundary condition (9).

3 Spectral Collocation Method for 3D NSE

In this section we present the complete details of our spatial and temporal discretization for
the PPE formulation (4)–(6). First, a local formula for the pressure along the boundary Γ is
derived from the momentum equation (4) evaluated at the boundary and the incompressibility
constraint in (6). The spatial discretization, specifically the use of our derived local pressure
boundary condition (LPBC) in conjunction with an explicit time stepping scheme, is then
described.

Consider a flow in the canonical domain Ω = [−1, 1]3 and let Nx , Ny , and Nz be
positive integers. We discretize in the x-, y-, and z-direction using the collocation points

{xi }Nx
i=0, {y j }Ny

j=0, and {zk}Nz
k=0, respectively, forming discrete grids for I = [−1, 1] in each

coordinate, the Cartesian product of which gives a discrete grid Ωh = I Nx
h × I

Ny
h × I Nz

h
for Ω . Denote by Γh = Γ ∩ Ωh the grid points that lie along the boundary, and further
distinguish the eight corner points by Γc.

We note that the method is easily adapted to many other simple domains. For example,
in channel flow one usually enforces periodic conditions in the coordinate directions parallel
to the channel. It is straightforward to modify the scheme described herein to handle such a
flow scenario, and thus we omit the details.

In what follows we focus on the most common choice of collocation points for a bounded
non-periodic domain, the Chebyshev Gauss–Lobatto points. Their popularity is of course
due to the identification—after an appropriate change of variable—of Chebyshev series with
Fourier Cosine series, making possible the efficient computation of discrete derivatives at the
Chebyshev points using an FFT. We emphasize, however, that the methodology presented
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below is quite general in that the collocation points can be chosen from any of the standard
families of Gauss-type points.

Recall, for Nx > 0 the Chebyshev Gauss-Lobatto points are given by xi = − cos (iπ/Nx )

for i = 0, 1, . . . , Nx . Let Dx denote the (Nx + 1) × (Nx + 1) Chebyshev differentiation
matrix (c.f. [3,12,29]). Then for a function f (x, y, z), let the (Nx +1)× (Ny +1)× (Nz +1)

array F be defined by Fi, j,k = f (xi , y j , zk). We then denote approximations to the partial
derivatives ∂x f and ∂2

x f as

∂x f
(
xi , y j , zk

) ≈ (Dx F)i, j,k , ∂2
x f
(
xi , y j , zk

) ≈ (D2
x F
)

i, j,k , (12)

which are spectrally accurate with increasing Nx provided that f is sufficiently smooth. With
Dy and Dz analogously defined, we denote the discrete gradient and Laplacian operators by

∇h = (Dx , Dy, Dz
)T

, Δh =
(
D2

x + D2
y + D2

z

)
. (13)

Even in the case of a periodic BC in one or two of the coordinate directions, where a uniform
grid is used, we will still use this discrete operator notation to illustrate the scheme.

3.1 Local Pressure Boundary Condition

The issue of a consistent, implementable boundary condition for pressure has been a chal-
lenging, even controversial, issue in the design of numerical schemes based on the velocity-
pressure formulation of the NSE. The crux of the problem is that no explicit pressure bound-
ary condition appears in either the classical formulation (1)–(3) or PPE formulation (4)–
(6). While the Neumann pressure boundary condition (9) is a natural candidate, it adds no
additional information to either system since it is derived by taking the dot product of the
momentum equation at the boundary with the outward unit normal. Here we describe a dis-
crete implementation of (9) derived from a local Hermite interpolant of the velocity field that
enforces the divergence-free boundary condition in (6).

To derive a discrete boundary condition for the PPE formulation, we consider a particular
segment of the boundary, say Γz=−1 on the bottom of Ω . Along this segment n = −k =
−(0, 0, 1)T and the Neumann pressure boundary condition (9) reads

∂p

∂n
= νΔu·n + f ·n = −νΔw − f3 = −ν∂2

z w − f3, (14)

since w|Γz=−1 = 0 implies ∂2
x w|Γz=−1 = ∂2

yw|Γz=−1 = 0. Furthermore, at any point along
Γz=−1 the normal velocity w satisfies the two boundary conditions

w = ∂zw = 0. (15)

The first of these follows from the no-penetration boundary condition, and the second from
the divergence-free velocity boundary condition in (6)

0 = ∇·u = ∂x u + ∂yv + ∂zw = 0 + 0 + ∂zw = ∂zw, (16)

since the no-slip velocity boundary condition implies that tangential derivatives of tangential
velocities at the boundary are zero. A discrete approximation to (14) is found by differentiating
a local polynomial interpolant of w which satisfies (15). To explain, fix a point x = (xi , y j , z0)

along Γz=−1 and a positive integer Kz ≤ Nz . Let W (z) be the unique polynomial of degree
at most Kz + 1 determined by the interpolation conditions

W (zk) = wi, j,k for 0 ≤ k ≤ Kz, W ′(z0) = C, (17)

123



J Sci Comput (2014) 60:612–626 617

where C is a prescribed constant. Then W (z) can be written as

W (z) =
Kz∑

k=0

wi, j,k lk(z) +
⎡

⎣C −
Kz∑

k=0

wi, j,k l ′k(z0)

⎤

⎦ (z − z0)l0(z), (18)

where {lk}Kz
k=0 are the classical Lagrange interpolating polynomial basis functions determined

by the grid points {zk}Kz
k=0, i.e., deg(lk)= Kz and lk(zk′) = δkk′ for 0 ≤ k, k′ ≤ Kz .

Our LPBC is given by the second order derivative of (18) evaluated at z = z0 = −1 to
approximate the ∂2

z w term in (14):

∂p

∂n
(x) ≈ −νW ′′(z0) − ( f3)i, j,0

= −ν

⎛

⎝
Kz∑

k=0

wi, j,k
[
l ′′k (z0) − 2l ′k(z0)l

′
0(z0)

]+ 2C l ′0(z0)

⎞

⎠− ( f3)i, j,0,

(19)

with C = 0 to enforce ∂zw = 0. Concise formulas for the derivatives of the Lagrange
polynomials can be found in “Appendix”.

The derivation of a discrete pressure boundary condition along the remaining boundaries
can be easily generalized by following the steps in (14)–(19). While in theory (19) is spectrally
accurate for Kz = Nz , in practice one can expect to resolve the kinematics of the boundary
layer for significantly smaller values of Kz due to the clustering of the collocation points at
the boundary. This is verified by the numerical experiments presented in Sect. 5.

Finally, derivation of our pressure Neumann boundary condition can be easily extended to
inhomogeneous velocity boundary conditions. Indeed, in the case of a prescribed slip velocity
boundary condition, from (16) we now have ∂zw = −(∂x u + ∂yv); thus in (17)–(19) we set
C = −(∂x u(x) + ∂yv(x)).

Remark 1 The proposed numerical method is PPE based; the pressure gradient term is
dynamically updated at each time step/stage, and the pressure boundary condition is enforced
by a spectral approximation to (9) or (10), as given by (19). This discrete boundary condi-
tion can be very efficiently implemented through a fully explicit time stepping procedure, as
described in later sections.

This numerical approach is very different from the projection method. In the projection
method, an intermediate velocity field is first computed without a consideration of the pres-
sure gradient term, so that the incompressibility condition is not satisfied; afterward, the
intermediate velocity is projected into the space of divergence-free vector fields. In other
words, projection based schemes treat the pressure as a Lagrange multiplier to enforce the
incompressibility condition, while the PPE based schemes treat the pressure gradient as an
intrinsic dynamic term.

There have been a few projection based methods that use a non-trivial pressure boundary
condition in the projection step in order to reduce the numerical boundary layer. For example,
the alternate boundary condition (10) was used in [22]. However, there are many subtle dif-
ferences between the method reported in [22], a projection based scheme, and the proposed
method in this article, a PPE based one. First, the right hand side of the alternate boundary
condition (10) reported in [22] is computed by an application of ∇ ×∇× to the intermediate
velocity field, while a similar operator is applied to the current time step velocity field un in
the pressure boundary condition of our proposed scheme. Moreover, the projection method
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assures the exact divergence-free property of the computed velocity vector (at a numeri-
cal level), while the PPE based scheme assures the exact no-penetration, no-slip boundary
condition for the velocity field.

3.2 Solution of the Discrete PPE

With the LPBC in-hand we turn to the numerical solution of PPE (5), which is required at
each stage of the time stepping procedure to be described below in Sect. 3.3. For a velocity
field u defined on Ωh/Γc we need to solve

Δh p = −∇h · (u · ∇hu) in Ωh/Γc, (20)
∂p

∂n
= g on Γh/Γc, (21)

where g denotes the evaluation of the LPBC (19). This discrete elliptic system can be solved
efficiently by the matrix-diagonalization method [7,21,24]. The Neumann boundary condi-
tion (21) is first used to reduce (20) to a system involving only unknowns in the interior of
the domain Ωh/Γh . Once solved, Eq. (21) is again used to recover the pressure on Γh/Γc. To
briefly explain, fix a point (xi , y j , z0) along Γz=−1 and consider also the point (xi , y j , zNz )

on the opposite boundary Γz=1. Denote by p̂ the column vector comprised of the unknown
pressure variable for these fixed values of i and j , i.e., p̂k = pi, j,k for 0 ≤ k ≤ Nz . Then
the discrete form (21) reads (Dz p̂)0 = gi, j,0 and (Dz p̂)Nz = gi, j,Nz , and from these two
expressions one can uniquely solve for p̂0 and p̂Nz in terms of p̂k for 1 ≤ k ≤ Nz − 1.
Repeating this process for all remaining pairs of opposing boundary points in Γh/Γc leads
to the elimination of the equations in the discrete PPE (20) for the pressure at these points.
The reduced system is given by

Δ̃h p =
(

D̃2
x + D̃2

y + D̃2
z

)
p = h in Ωh/Γh, (22)

where h is the interior of the right-hand side of (20) appropriately modified by the elimination
of the pressure on the boundary. D̃2

x , D̃2
y , and D̃2

z are, respectively, the interiors of D2
x , D2

y ,
and D2

z modified by the elimination of the pressure variables on Γh/Γc. The eigenvalues of
each matrix are real, non-positive, and distinct, hence diagonalizable [9]. This fact leads to
an efficient inversion of the discrete operator Δ̃h . Note that, as expected, this operator has
a one-dimensional kernel, consistently reflecting the fact that pressure in the NSE is only
determined up to an additive constant. Once (22) is solved, the pressure on Γh/Γc is recovered
from (21).

3.3 Time Discretization-Method of Lines

In this section we describe the time stepping procedure for the PPE formulation (4)–(6).
As our goal is a scheme capable of efficiently computing moderate to high Reynolds (or
Rayleigh; see Sect. 4) number flows, a convectively stable explicit time discretization of the
momentum equation should be used. An ideal candidate is RK4, used for all the results pre-
sented herein, since its stability region encompasses an appreciable portion of the imaginary
axis. In addition, computation of the velocity and pressure time updates are decoupled by
explicitly discretizing in time the pressure term in the momentum equation, which is equally
critical to the numerical efficiency. In other words, the pressure term is dynamically updated
as a force term, in stark contrast to being cast as a Lagrange multiplier in the projection
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method. Of course, the nonlinear term is also discretized explicitly in time to avoid a costly
nonlinear solver.

Given a time step Δt let tn = nΔt . For simplicity, we use forward Euler to illustrate
the time discretization, noting that the extension to a higher order time stepping, such as
Runge–Kutta methods, is straightforward.

Time-stepping: Given (un, pn) compute (un+1, pn+1) by

Step 1. Update the velocity at the interior points Ωh/Γh via

un+1 − un

Δt
+ un · ∇hun + ∇h pn = νΔhun + f n, (23)

and impose the boundary condition un+1|Γh = 0.
Step 2. Compute the LPBC (19) for pn+1 from un+1.
Step 3. Solve for the PPE for pn+1:

Δh pn+1 = −∇h · (un+1 · ∇hun+1) + ∇·f n+1. (24)

The numerical experiments indicate that the overall scheme is stable under the condition

‖u‖∞Δt

hmin
≤ CFL < 1, and

νΔt

h2
min

≤ 1

10
, (25)

in which hmin denotes the smallest mesh size in Chebyshev collocation grid.
The classical fourth order Runge–Kutta method, a multi-stage explicit time stepping pro-

cedure, is used as the time discretization in the momentum equations. The explicit time
stepping of convection and diffusion terms makes the scheme easy to implement. Such an
explicit treatment can avoid any stability concern caused by the cell-Reynolds number con-
straint if a high order Runge–Kutta method, such as classical RK4, is applied. Note that only
one Poisson solver, above in Step 2, is required at each stage in Runge–Kutta time stepping.

In more detail, the classical RK4 discretization is given by

ξ1 = un, ξ2 = un + 1

2
Δt F(tn, ξ1), ξ3 = un + 1

2
Δt F(tn + 1

2
Δt, ξ2),

ξ4 = un + Δt F(tn + 1

2
Δt, ξ3),

un+1 = un + 1

6
Δt F(tn, ξ1) + 1

3
Δt F(tn + 1

2
Δt, ξ2)

+1

3
Δt F(tn + 1

2
Δt, ξ3) + 1

6
Δt F(tn + Δt, ξ4), (26)

in which F is formulated as un+1 = un + Δt F(tn, un), corresponding to the forward Euler
time update (23), combined with the PPE (24) and the boundary condition (19).

Remark 2 Note in (23) that for neither the nonlinear convection, the pressure gradient or
diffusion term does time appear as a variable explicitly. As a result, the time evaluations at
different time stages for F are not needed in (26), unless a time-dependent external force
term f is involved in the equation.

In particular, for the PPE (24) and the pressure boundary condition (19), the pressure
variable always keeps the same time instant as the velocity field u, after u is updated by the
last time stage. Therefore, a time evaluation at different stages is not needed in the pressure
Poisson solver.
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Remark 3 In addition to the classical RK4, some other multi-stage Runge–Kutta discretiza-
tions can also be used. Meanwhile, for the computation of moderate to high Reynolds number
flows (with small ν), the corresponding RK scheme has to have a stability region that encom-
passes an appreciable portion of the imaginary axis. From this point of view, both RK3 and
RK4 are good choices, while RK2 is insufficient for moderate to high Reynolds number flows
since its stability region does not contain any portion of the imaginary axis. This phenomenon
has also been verified by various numerical experiments.

Regarding this linearized stability property, all versions of RK2 are equivalent, since they
share the same characteristic polynomial and stability domain. Similarly, all versions of RK3
scheme share the same linear stability property.

4 Extension to the Boussinesq Equations

For both the NSE formulations (1)–(3) and (4)–(6), the fluid was assumed to have constant
density and temperature. Meanwhile, for flows that have slight temperature variations, the
change in density can be neglected. Under this assumption the flow can be modeled by the
Boussinesq approximation for a unit density incompressible fluid in a domain Ω of height h
with no-slip velocity boundary conditions.

By introducing the temperature variable T, and when non-dimensionalized by space,
time, and temperature scales, which are dependent on the particular temperature boundary
conditions at z = ±1, the PPE formulation of the Boussinesq equations for a fluid in a domain
Ω of height h are given by

∂t T + (u·∇)T = (PrR)−1/2ΔT + f T , (27)

∂t u + (u·∇)u + ∇ p = (Pr/R)1/2Δu + Tk + f , (28)

Δp = −∇ · (u·∇)u + ∂zT + ∇·f , (29)

u|Γ = 0, (∇ · u)|Γ = 0, (30)

where f T is a force term. The parameter R is the measure of the imposed thermal forcing,
with its definition dependent on the choice of temperature boundary conditions at z = ±1,
and Pr = ν/κ the Prandtl number, where ν is the fluid’s kinematic viscosity and κ its thermal
diffusivity.

We consider here two boundary condition scenarios for T at the top and bottom boundaries
z = ±1, fixed temperature (Dirichlet) and inhomogeneous fixed heat flux (Neumann). We
leave the boundary conditions for T at the sidewalls x, y = ±1 unspecified since they do not
enter into the determination of R.

In the case of fixed temperature boundary conditions, the space, time, and temperature
scales are, respectively, h, (h/αgδT∗)1/2, and δT∗ = T|z=−1 − T|z=1, the dimensional tem-
perature drop, where g is the acceleration due to gravity and α is the thermal expansion
coefficient of the fluid. In this case, the thermal forcing parameter R is the usual Rayleigh
number

R = Ra = αgδT∗h3/νκ, (31)

and the non-dimensional temperature boundary conditions are T|z=−1 = 1 and T|z=1 = 0.
For the case of an imposed vertical fixed heat flux ∼ β �= 0, the space, time, and temperature
scales are, respectively, h, (αgβ)−1/2, and βh. Then

R = R̂ = αgβh4/νκ, (32)
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with ∂T/∂z|z=±1 = −1.
For the space and time discretization of the Boussinesq system (27)–(30), we again use

forward Euler to illustrate. Given (un, pn, Tn), first compute Tn+1 on Ωh by

Tn+1 − Tn

Δt
+ un · ∇hTn = (PrR)−1/2ΔhTn + f n

T . (33)

To enforce a prescribed boundary condition for the temperature we overwrite the values of
Tn+1 on Γh/Γc. For a given Dirichlet condition TD

BC , we set Tn+1 = TD
BC on Γh/Γc. In

the case of a Neumann boundary condition, again fix a point (xi , y j , z0) along the bottom
boundary at z = −1 at which we need to enforce ∂Tn+1/∂z = TN

BC . Choose a positive integer

K BC < Nz , and let T (z) = ∑K BC
k=0 Tn+1

i, j,k lk(z) be a local polynomial interpolant of Tn+1,

where {lk}K BC
k=0 are the Lagrange polynomial basis functions defined by the points {zk}K BC

k=0 .
Then evaluating the derivative of T (z) at the boundary and solving for Tn+1

i, j,z0
gives

Tn+1
i, j,z0

=
(

TN
BC −

K BC∑

k=1

Tn+1
i, j,k l ′k(z0)

)/
l ′0(z0). (34)

While in theory (34) is spectrally accurate for K BC = Nz , as was the case for the LPBC, in
practice one can expect (34) to be highly accurate for significantly smaller values of K BC

since the collocation points cluster at the boundary. This is verified by the numerical results
presented in Sect. 5.2. Note that this procedure is easily generalized to any of the other
boundary segments. Concise formulas for the Lagrange polynomial derivatives that appear
above can be found in “Appendix”.

The time discretization of the Boussinesq system requires only minor modifications to the
scheme for the NSE in Sect. 3.3 to account for the temperature terms in (28)–(29). Treating
the gravity term explicitly in time in the momentum equation, we compute un+1 using

un+1 − un

Δt
+ un · ∇hun + ∇h pn = (Pr/R)1/2Δhun + Tnk + f n

T , (35)

and set u = 0 on Γh/Γc. For the LPBC, the dot product of (28) and n gives

∂p

∂n
=
(

(Pr/R)1/2Δu
)

·n + T(k·n),

Thus, only for n = ±k = ±(0, 0, 1)T (i.e., along the boundary), there is a contribution
from the temperature to the derived Neumann pressure boundary condition. Since Tn+1 has
already been computed, it is straightforward to incorporate this term into (19) to compute
the LPBC at time tn+1. Finally, from (29) the discrete PPE reads

Δh pn+1 = −∇h ·
(

un+1 · ∇hun+1
)

+ DzTn+1, (36)

for which the matrix-diagonalization method described in Sect. 3.2 is used to obtain the
solution.

As was the case for the NSE in Sect. 3.2, the classical RK4 method is chosen as the
time discretization in both the momentum equation and the temperature transport equation.
The explicit treatment of convection, diffusion and gravity terms in both equations avoids
a stability constraint caused by the cell-Reynolds number, if the stability condition (25) is
satisfied. The overall scheme is efficient and highly accurate. Only one three-dimensional
Poisson solver for the pressure is required at each stage in Runge–Kutta time stepping.
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5 Numerical Accuracy Checks

In this section we present accuracy checks to demonstrate the numerical convergence prop-
erties of the schemes for the NSE in Sect. 3 and the Boussinesq system in Sect. 4. In each
case the force term f is chosen to ensure that our prescribed exact solutions satisfy the system
at-hand, and as the velocity field in the latter must satisfy a no-slip boundary condition. We
take the computational domain to be Ω = [0, 1]3 to allow for simpler analytic expressions
of these solutions. The error is measured in the discrete L∞ and L2 norms,

‖ f ‖L∞ = max
x∈Ωh

| f (x)|, ‖ f ‖L2 =
⎛

⎜
⎝

1

|Ωh |
∫

Ωh

| f (x)|2dx

⎞

⎟
⎠

1
2

, (37)

where a spectrally accurate quadrature rule, based on weights from entries of D−1 (c.f. [29]),
is used to compute the L2 integral over Ωh .

5.1 NSE Accuracy Checks

We choose the exact velocity ue = (ue, ve, we)
T on Ω = [0, 1]3 to be

ue = cos (t)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

− 6

π2 sin2(πx) sin (2πy)(z − z2)

1

2π
sin (2πx) sin2(πy) sin (π z)

sin (2πx) sin (2πy)

(
3

π
z2 − 2

π
z3 + 1

2π
cos(π z) − 1

2π

)

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (38)

which satisfies ∇·ue = 0 and ue|Γ = 0 for all t . The exact pressure is taken as

pe(x, y, z, t) = cos (t)

[
1

2π
cos (2πx) cos (2πy) cos (π z)

]
, (39)

with the time dependent force term f in (1) set to

f = νΔue −
(

∂t ue + ue ·∇ue + ∇ pe

)
(40)

to ensure that (ue, pe) is indeed a solution of (1)–(3).
Solutions with ν = 10−4 were computed until a final time T = 5 for equal grid sizes

N = 16 : 4 : 48 in each coordinate, and the LPBC was computed in each coordinate with
K = N/2−1. The time stepping is classical RK4 with Δt determined by (25) with CFL = 0.5
and hmin = (1 − cos (π/N ))/2.

Figure 1 shows the L2 and L∞ norm of the errors between the numerical and exact solutions
for velocity and pressure. The numerical results provide clear evidence that the scheme is
stable and the spatial spectral accuracy is observed for all physical variables. In particular,
the spectral accuracy of the pressure variable shows that the numerical approximation to the
pressure BC is stable and does not cause any artificial numerical boundary layer.
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Fig. 1 L∞ and L2 and errors at T = 5 of the Chebyshev collocation scheme for the NSE with N = 16 :4 :48
and the local pressure boundary condition computed with K = N/2 − 1
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Fig. 2 L∞ and L2 and errors at T = 5 of the Chebyshev collocation scheme for the Boussinesq system with
N = 16 : 4 : 48, the local pressure boundary condition computed with K = N/2 − 1, and the temperature
boundary formula (34) with K BC = N/2 − 1

5.2 Boussinesq Equations Accuracy Checks

An accuracy check can also be performed for the Chebyshev collocation method applied to
the incompressible Boussinesq equations outlined in Sect. 4. Again, the exact profile for the
velocity (38) and pressure (39), and the exact temperature profile is chosen as

Te(x, y, z, t) = 1

2π
cos(πx) cos(πy) cos(π z) cos t, (41)

which satisfies the no-flux boundary conditions on all six boundary sections.
With viscosity parameters ν = κ = 0.0001 we compute solutions with grid sizes 16 :4 :48

until a final time T = 5. Formulas are used to determine the pressure boundary condition and
boundary value for temperature, respectively, with K = N/2 − 1, K BC = N/2 − 1. Again,
the time step Δt is determined from (25) with CFL = 0.5 and hmin = (1 − cos (π/N ))/2.

Figure 2 shows the L2 and L∞ norm of the errors between the numerical and exact solutions
for velocity, pressure and temperature. As was the case for the NSE above, the spatial spectral
accuracy is observed for all physical variables. In particular, the spectral accuracy in the L∞
norm of the temperature shows that the temperature boundary formula (34) does not cause
any instability of loss of accuracy, fully resolving the thermal boundary layer.
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6 Simulation of the Three-Dimensional Lid-Driven Cavity Flow

In this section we present benchmark simulations of a three-dimensional lid-driven cavity
flow, a detailed description of which can be found in [1,18,19].

The physical set-up is a viscous incompressible fluid in a cubic box Ω = [0, 1]3. The
no-penetration, no-slip boundary condition is imposed on all six boundary surfaces, except
for the left side,

u =
(

0, 1, 0
)T

, at x = 0.

The proposed collocation spectral method is applied to compute the lid-driven cavity flow
for a sequence of Reynolds numbers: Re = 100 with a 243 grid, Re = 400 with a 323 grid,
and Re = 1,000 with a 643 grid. In each case the LPBC was computed in each coordinate
with K = N/2 − 1, where N is the respective grid size. The time stepping is classical RK4
with the time step Δt determined by (25) with CFL = 0.5 and hmin = (1 − cos (π/N ))/2.
The computation was terminated in each case when a steady state was reached.

A plot of normal velocities u and v at centerlines (x, 0.5, 0.5) and (0.5, y, 0.5), respec-
tively, is presented in Fig. 3. Furthermore, in Fig. 4 we present a comparison of the computed
normal velocity profiles Re = 1,000 with a 643 grid at the centerlines (x, 0.5, 0.5) and
(0.5, y, 0.5), showing excellent agreement with the benchmark data provided in [1] com-
puted using a 96 × 96 × 64 grid, further demonstrating the accuracy of our spectral method
presented herein.

Acknowledgment This work is supported in part by NSF DMS-1115420, NSFC 11271281 (C. Wang).

Appendix: A Derivative Formulas for Lagrange Interpolation Basis Function

Given K, let {lk(y)}K
k=0 denote the K+1 Lagrange interpolation basis functions based on the

K +1 distinct points {y j }K
j=0. The functions are defined by lk(y) =

K∏

i=0
i �=k

y − yi

yk − yi
, and satisfy

−0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

u

y

Re=100
Re=400
Re=1000

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

v

Re=100
Re=400
Re=1000

Fig. 3 Normal velocities on the center line (x, 0.5, 0.5) and (0.5, y, 0.5) in the cubic driven cavity in [0, 1]3
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Fig. 4 Comparison between normal velocities as computed by the proposed scheme and benchmark data [1]
for Re = 1,000

lk(y j ) = δk, j for 0 ≤ k, j ≤ K . A direct calculation gives

l ′k(y0) =

⎧
⎪⎪⎨

⎪⎪⎩

∑K

m=1
(y0 − ym)−1, k = 0

∏K
i=0
i �=k

(yk − yi )
−1
∏K

i=0
i �=k

(y0 − yi ), k �= 0
(42)

and

l ′′k (y0) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑K

m=1

∑K
n=1
n �=k

[(y0 − ym)(y0 − yn)]−1, k = 0

2
∏K

i=0
i �=k

(yk − yi )
−1
∑K

n=1
n �=k

∏K
i=0
i �=k

(y0 − yi ), k �= 0.

(43)
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