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Abstract. A second order accurate in time, finite difference numerical scheme is pro-
posed and analyzed for the Cahn-Hilliard-Navier-Stokes system, with logarithmic
Flory-Huggins energy potential. In the numerical approximation to the chemical po-
tential, a modified Crank-Nicolson approximation is applied to the singular logarith-
mic nonlinear term, while the expansive term is updated by an explicit second order
Adams-Bashforth extrapolation, and an alternate temporal stencil is used for the sur-
face diffusion term. Moreover, a nonlinear artificial regularization term is included in
the chemical potential approximation, which ensures the positivity-preserving prop-
erty for the logarithmic arguments, i.e., the numerical value of the phase variable is
always between −1 and 1 at a point-wise level. Meanwhile, the convective term in the
phase field evolutionary equation is updated in a semi-implicit way, with second order
accurate temporal approximation. The fluid momentum equation is also computed by
a semi-implicit algorithm. The unique solvability and the positivity-preserving prop-
erty of the second order scheme is proved, accomplished by an iteration process. A
modified total energy stability of the second order scheme is also derived. Some nu-
merical results are presented to demonstrate the accuracy and the robust performance
of the proposed second order scheme.
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1 Introduction

For simplicity, we assume the domain under consideration is the unit square Ω=(0,1)2.
An extension to a rectangular domain, the 3-dimensional case, is straightforward.

The phase variable ϕ is assumed to have a point-wise bound, −1 < ϕ < 1. For any
ϕ∈H1(Ω) with such a bound, the Flory-Huggins free energy is formulated as

E(ϕ)=
∫

Ω

(
(1+ϕ)ln(1+ϕ)+(1−ϕ)ln(1−ϕ)− θ0

2
ϕ2+

ϵ2

2
|∇ϕ|2

)
dx, (1.1)

in which ϵ>0, θ0>0 are certain physical parameter constants associated with the diffuse
interface width and inverse temperature, respectively; see the related references [2,14,17,
23].

For two phase flow problems, the fluid motion plays an important role in the physical
process. A well-known two phase flow model is the following Cahn-Hilliard-Navier-
Stokes (CHNS) system [36]

ut+u·∇u+∇p−ν∆u=−γϕ∇µ, (1.2)

ϕt+∇·(ϕu)=∆µ, (1.3)

µ :=δϕE= ln(1+ϕ)−ln(1−ϕ)−θ0ϕ−ϵ2∆ϕ, (1.4)

∇·u=0, (1.5)

in which u is the advective velocity, p is the pressure variable, and ν>0 is the kinematic
viscosity. The constant γ > 0 is associated with surface tension, and term −γϕ∇µ is a
diffuse interface approximation of the singular surface force.

For such a coupled system, the following energy dissipation law can be derived:

E′
total(t)=−

∫
Ω
|∇µ|2dx− ν

γ

∫
Ω
|∇u|2dx≤0, Etotal =E(ϕ)+

1
2γ

∥u∥2. (1.6)

Many numerical works have been reported for various phase-field-fluid coupled sys-
tem [3, 6, 7, 26, 27, 34, 35, 41, 42, 47, 48, 53], etc. In particular, the issue of second order ac-
curate numerical schemes have attracted great attentions [15, 32, 54], due to its long time
simulation advantages. On the other hand, most existing works of second order schemes
have been based on the polynomial approximation in the energy potential. With a sin-
gular energy potential (1.1), the analysis will become much more challenging, because of
the highly nonlinear, singular and coupled nature of the physical system.

In this article, we propose and analyze a second order accurate numerical scheme
for the CHNS system (1.2)-(1.5), with three properties theoretically justified: positivity-
preserving (for the logarithmic arguments), unique solvability, and a modified energy
stability. In fact, even for the pure gradient model with singular energy potential, the
works of second order accurate in time, energy stable numerical schemes are still very
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limited. In the numerical approximation to the chemical potential (1.4), we adopt a simi-
lar approach as in a recent work [6]: a modified Crank-Nicolson temporal discretization.
More specifically, a modified Crank-Nicolson (secant-like) approximation is applied to
the logarithmic nonlinear term, in the form of

F(1±ϕn+1)−F(1±ϕn)

ϕn+1−ϕn , with F(x)= xlnx.

Such an approximation is convex in terms of ϕn+1, while the approximation is not sin-
gular as ϕn+1 ↘−1 or ϕn+1 ↗ 1. The expansive linear term is updated by a second or-
der Adams-Bashforth explicit extrapolation formula, and an alternate temporal stencil,
namely 3

4 ∆hϕn+1+ 1
4 ∆hϕn−1, is used for the surface diffusion term. Since the singularity

of the nonlinear approximation to the logarithmic term is not available as ϕn+1 ↘−1
or ϕn+1 ↗ 1, a nonlinear artificial regularization term has to be included in the chemi-
cal potential, namely ∆t(ln(1±ϕn+1)−ln(1±ϕn)). This regularization term ensures the
positivity-preserving property for both 1+ϕ and 1−ϕ at a theoretical level. In particular,
the singular nature of the logarithmic terms around the values of −1 and 1 prevents the
numerical solution reaching these limit values.

For the sake of unique solvability and energy stability properties, the other parts of
the CHNS system (1.2)-(1.4) have to be computed in a semi-implicit way. In the numerical
approximation to the convective term in the phase field evolution equation, explicit ex-
trapolation formula for the phase variable is combined with an implicit, Crank-Nicolson
approximation to the velocity vector. Similar methodology is applied to the fluid mo-
mentum equation: Crank-Nicolson algorithm for the kinematic diffusion term and the
fluid convection gradient term, explicit calculation for the pressure gradient, along with
Adams-Bashforth extrapolation for the convection velocity. Moreover, the phase field
coupled term is also updated in a semi-implicit fashion: Adams-Bashforth extrapolation
for the phase variable coefficient, and the modified Crank-Nicolson approximation to
the chemical potential part. As a result, an intermediate velocity field (at the next time
step) is determined by this semi-implicit algorithm, which could be represented as a lin-
ear velocity solver, with a fixed chemical potential profile. Consequently, a Helmholtz
projection into the divergence-free vector field is taken, which in turn yields the velocity
vector and the pressure variable at the next time step. Since the Stokes solver is decou-
pled in this approach, the numerical efficiency is expected to be greatly improved. Some
related works could also be found in [29, 37, 55], etc.

Because of the coupled and non-symmetric feature of the numerical system, the
unique solvability and positivity-preserving analysis for the proposed second order
scheme is expected to be much more challenging than the one for the pure phase field
gradient flow. In more details, the proposed numerical system could not be represented
as a minimization of a discrete energy functional, which comes from the non-symmetric
nature of the fluid convection term in the Navier-Stokes equation. As a result, many well-
established techniques to deal with singular energy potential gradient flows [6,10] are not
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directly applicable. On the other hand, the Browder-Minty lemma [1,43] has been a well-
known tool to deal with nonlinear, monotone, while non-symmetric systems. However,
a direct application of this analysis is not feasible, since the singularity of the logarith-
mic terms destroys the coercivity condition for the phase variable. To overcome these
subtle difficulties, we have to construct an iteration process to accomplish the theoret-
ical analysis. First, it is observed that the intermediate velocity vector could be repre-
sented as a non-symmetric, linear operator in terms of a fixed chemical potential profile.
The convection-diffusion nature of this linear operator implies its monotonicity property.
Therefore, a substitution into the numerical algorithm for the phase variable evolution-
ary equation leads to an alternate representation of the chemical potential variable: a
non-symmetric, linear operator of the discrete temporal derivative of the phase variable.
A combination with the modified Crank-Nicolson approximation for the chemical poten-
tial results in a closed system for the phase variable. This nonlinear system is monotone
in terms of the phase variable, while the logarithmic terms prevent a direct application
of the Browder-Minty analysis. Instead, a nonlinear iteration is constructed: at each iter-
ation stage, the non-symmetric, linear operator of the discrete temporal derivative part is
explicitly treated as a source term, while all other terms are implicitly solved. In addition,
a relaxation algorithm is included at each iteration stage. Since all the implicit terms in the
iteration stage, including the singular logarithmic terms, have symmetric Jacobian ma-
trix, a discrete energy minimization approach is available, so that the proposed iteration
process creates a unique solution satisfying the positivity-preserving property at each it-
eration stage; also see the related works [6,10]. Combined with the monotonicity analysis
for the linear operator of the discrete temporal derivative, a contraction mapping estimate
of this nonlinear iteration could be carefully derived. Consequently, a fixed point argu-
ment would be available, and the unique solvability/positivity-preserving property (for
the logarithmic arguments) could be proved.

With a unique solution to the proposed numerical system available, preserving a
point-wise positivity, the total energy stability analysis of the second order scheme turns
out to be more straightforward. By taking discrete inner product with the evolutionary
equation for the phase field variable and the momentum equation by the associated test
variables, we are able to obtain a dissipation law for the discrete functional of the total
energy, combined with a few numerical correction terms. These correction terms come
from the second order temporal approximation, as well as the decoupled Stokes solver.
In the analysis for the fully discrete scheme, the summation by parts formulas for differ-
ent physical variables, combined with the staggered location of these variables, will play
an important role.

The rest of the article is organized as follows. In Section 2 we review the finite differ-
ence spatial approximation, and propose the second order numerical scheme. The unique
solvability and the positivity-preserving analysis is provided in Section 3. A modified
total energy stability estimate is established in Section 4. Some numerical results are pre-
sented in Section 5, and the concluding remarks are given in Section 6.
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2 Numerical scheme

2.1 The finite difference spatial discretization

For simplicity, we only consider the two dimensional domain Ω=(0,1)2. The three di-
mensional case can be similarly extended.

Let N be a positive integer and define the uniform spatial grid size h = 1
N . We

now introduce the standard marker and cell (MAC) grid [33], where the phase vari-
able ϕ, the chemical potential µ and the pressure field p are defined on the cell-centered
mesh points

((
i+ 1

2

)
h,
(

j+ 1
2 h
))

, 0 ≤ i, j ≤ N. Meanwhile, given a velocity field u =
(ux,uy), the x-component of the velocity will be defined at the east-west cell edge points(
ih,
(

j+ 1
2 h
))

, 0≤ i≤N+1, 0≤ j∈≤N, while the y-component of the velocity is located at
the north-south cell edge points

((
i+ 1

2

)
h, jh

)
.

For a function f (x,y), denote fi+ 1
2 , j+ 1

2
as the value of f

((
i+ 1

2

)
h,
(

j+ 1
2

)
h
)
. The nota-

tions fi+ 1
2 , j, fi, j+ 1

2
could be similarly introduced. Then the following difference operators

are defined:

(Dc
x f )i, j+ 1

2
=

fi+ 1
2 , j+ 1

2
− fi− 1

2 , j+ 1
2

h
, (Dc

y f )i+ 1
2 , j =

fi+ 1
2 , j+ 1

2
− fi+ 1

2 , j− 1
2

h
, (2.1)

(Dew
x f )i+ 1

2 , j+ 1
2
=

fi+1, j+ 1
2
− fi, j+ 1

2

h
, (Dew

y f )i, j =
fi, j+ 1

2
− fi, j− 1

2

h
, (2.2)

(Dns
x f )i, j =

fi+ 1
2 , j− fi− 1

2 , j

h
, (Dns

y f )i+ 1
2 , j+ 1

2
=

fi+ 1
2 , j+1− fi+ 1

2 , j

h
. (2.3)

Such definitions may vary on the boundary, if implemented with different boundary
conditions. Specifically, with periodic boundary condition, (2.1) becomes

(Dc
x f )0, j+ 1

2
=(Dc

x f )N, j+ 1
2
=

f 1
2 , j+ 1

2
− fN− 1

2 , j+ 1
2

h
, (2.4)

(Dc
y f )i+ 1

2 ,0=(Dc
y f )i+ 1

2 ,N =
fi+ 1

2 , 1
2
− fi− 1

2 ,N− 1
2

h
. (2.5)

For (2.2)-(2.3), the formula can be analogously derived. As for homogeneous Neumann
boundary condition, (2.1) becomes

(Dc
x f )0, j+ 1

2
=(Dc

x f )N, j+ 1
2
=(Dc

y f )i+ 1
2 ,0=(Dc

y f )i+ 1
2 ,N =0. (2.6)

Finally, with the homogeneous Dirichlet boundary condition, a ghost point is needed and
will be eliminated using linear interpolation of the boundary conditions, so that (2.2)-(2.3)
become

(Dew
y f )i,0=

fi, 1
2
− fi,− 1

2

h
=

2 fi, 1
2

h
, (Dew

y f )i,N =
fi,N+ 1

2
− fi,N− 1

2

h
=−

2 fi,N− 1
2

h
, (2.7)

(Dns
x f )0, j =

f 1
2 , j− f− 1

2 , j

h
=

2 f 1
2 , j

h
, (Dns

x f )N, j =
fN+ 1

2 , j− fN− 1
2 , j

h
=−

2 fN− 1
2 , j

h
. (2.8)
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We also introduce the long stencil difference operator, defined on the east-west cell edge
points and north-south cell edge points:

(D̃x f )i, j+ 1
2
=

fi+1, j+ 1
2
− fi−1, j+ 1

2

2h
, (D̃y f )i+ 1

2 , j =
fi+ 1

2 , j+1− fi+ 1
2 , j−1

2h
. (2.9)

Again, the definitions are slightly different on the boundary. When equipped with peri-
odic boundary condition, (2.9) becomes

(D̃x f )0, j+ 1
2
=(D̃x f )N, j+ 1

2
=

f1, j+ 1
2
− fN−1, j+ 1

2

2h
, (2.10)

(D̃y f )i+ 1
2 ,0=(D̃y f )i+ 1

2 ,N =
fi+ 1

2 ,1− fi+ 1
2 ,N−1

2h
. (2.11)

With homogeneous Dirichlet boundary condition, (2.9) becomes

(D̃x f )0, j+ 1
2
=

f1, j+ 1
2
− f−1, j+ 1

2

2h
=

f1, j+ 1
2

h
, (2.12)

(D̃x f )N, j+ 1
2
=

fN+1, j+ 1
2
− fN−1, j+ 1

2

2h
=−

fN−1, j+ 1
2

h
, (2.13)

(D̃y f )i+ 1
2 ,0=

fi+ 1
2 ,1− fi+ 1

2 ,−1

2h
=

fi+ 1
2 ,1

h
, (2.14)

(D̃y f )i+ 1
2 ,N =

fi+ 1
2 ,N+1− fi+ 1

2 ,N−1

2h
=−

fi+ 1
2 ,N−1

h
. (2.15)

For a function f , the discrete gradient operator is defined as follows:

∇h f =
(
(Dℓ

x f ), (Dℓ
y f )
)T

, (2.16)

where ℓ= c, ew, ns may depend on the choice of f . The discrete divergence operator of a
vector gird function u, defined on the cell-centered points, is given by

(∇h ·u)i+ 1
2 , j+ 1

2
=(Dew

x ux)i+ 1
2 , j+ 1

2
+(Dns

y uy)i+ 1
2 , j+ 1

2
. (2.17)

In turn, the five-point standard Laplacian operator is defined as

(∆h f )r,s =
fr+1,s+ fr−1,s+ fr,s+1+ fr,s−1−4 fr,s

h2 , (2.18)

where (r, s) may refer to (i+ 1
2 , j+ 1

2 ), (i+
1
2 , j) and (i, j+ 1

2 ).
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For u=(ux,uy)T, v=(vx,vy)T, located at the staggered mesh points respectively, and
the cell centered variables ϕ, µ, the nonlinear terms are evaluated as follows:

u·∇hv=

(
ux

i, j+ 1
2
D̃xvx

i, j+ 1
2
+Axyuy

i, j+ 1
2
D̃yvx

i, j+ 1
2

Axyux
i+ 1

2 , j
D̃xvy

i+ 1
2 , j
+uy

i, j+ 1
2
D̃yvy

i+ 1
2 , j

)
, (2.19)

∇h ·(vuT)=

(
D̃x(uxvx)i, j+ 1

2
+D̃y(Axyuyvx)i, j+ 1

2

D̃x(Axyuxvy)i+ 1
2 , j+D̃y(uyvy)i+ 1

2 , j

)
, (2.20)

Ahϕ∇hµ=

(
(Dc

xµ·Axϕ)i, j+ 1
2

(Dc
yµ·Ayϕ)i+ 1

2 , j

)
, (2.21)

∇h ·(Ahϕu)=Dew
x (uxAxϕ)i+ 1

2 , j+ 1
2
+Dns

y (uyAyϕ)i+ 1
2 , j+ 1

2
, (2.22)

where the following averaging operators have been introduced:

Axyux
i+ 1

2 , j =
1
4

(
ux

i, j− 1
2
+ux

i, j+ 1
2
+ux

i+1, j− 1
2
+ux

i+1, j+ 1
2

)
, (2.23)

Axϕi, j+ 1
2
=

1
2

(
ϕi− 1

2 , j+ 1
2
+ϕi+ 1

2 , j+ 1
2

)
. (2.24)

A few other average terms, such as Axyuy
i, j+ 1

2
, Ayϕi+ 1

2 , j, could be similarly defined.

We now prepare to give the definition of discrete inner product. Let f , g be two grid
functions defined on the cell-center points, the discrete ℓ2 inner product is given by

⟨ f ,g⟩c =h2
N−1

∑
i=0

N−1

∑
j=0

fi+ 1
2 , j+ 1

2
gi+ 1

2 ,j+ 1
2
. (2.25)

If f , g are evaluated on the east-west points, (2.25) becomes:

⟨ f ,g⟩ew =h2
N

∑
i=0

N−1

∑
j=0

fi, j+ 1
2
gi, j+ 1

2
. (2.26)

If f , g are evaluated on the north-south points, (2.25) shifts into:

⟨ f ,g⟩ns =h2
N−1

∑
i=0

N

∑
j=0

fi+ 1
2 , jgi+ 1

2 , j. (2.27)

Moreover, for two vector grid functions u=(ux,uy)T, v=(vx,vy)T whose components are
defined on east-west and north-south respectively, the vector inner product is introduced:

⟨u,v⟩1= ⟨ux,vx⟩ew+⟨uy,vy⟩ns . (2.28)
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In turn, the discrete ℓ2 norms, ∥·∥2 can be naturally induced. Moreover, the discrete ℓp

(1 ≤ p ≤ ∞) norms are needed in the later analysis. For (r, s) = (i+ 1
2 , j+ 1

2 ), (i+
1
2 , j) or

(i, j+ 1
2 ), we denote

∥ f ∥∞ :=max
r,s

| fr,s|, ∥ f ∥p :=

(
h2∑

r,s
| fr,s|p

) 1
p

, 1≤ p<∞, (2.29)

where the range of r and s can be determined by referring (2.25)-(2.27). Finally, the fol-
lowing summation by parts formula is recalled and will be useful in the later analysis.

Lemma 2.1. For two discrete grid vector functions u=(ux,uy), v=(vx,vy), where ux, uy and
vx, vy are defined on east-west and north-south respectively, and two cell centered functions f , g,
the following identities are valid, if u, v, f , g are equipped with periodic boundary condition, or u,
v are implemented with homogeneous Dirichlet boundary condition and homogeneous Neumann
boundary condition is imposed for f and g:

⟨v,u·∇hv⟩1+
〈

v,∇h ·(vuT)
〉

1
=0, (2.30)

⟨u,∇h f ⟩1=0, if∇h ·u=0, (2.31)

−⟨v,∆hv⟩1=∥∇hv∥2
2 , (2.32)

−⟨ f ,∆h f ⟩c =∥∇h f ∥2
2 , (2.33)

−⟨g,∇h ·(Ah f u)⟩c = ⟨u,Ah f∇hg⟩1 . (2.34)

2.2 The proposed second order accurate numerical scheme

Here we propose the second order in time Crank-Nicolson scheme as follows. Given
un =((ux)n, (uy)n), un−1 =

(
(ux)n−1, (uy)n−1) evaluated at the MAC staggered grid, and

pn, ϕn, ϕn−1 located at the cell-centered grid, with ∥ϕn∥∞,
∥∥ϕn−1

∥∥
∞ < 1, we aim to find

ûn+1, un+1, pn+1, ϕn+1 that satisfy

ûn+1−un

τ
+

1
2

(
ũn+ 1

2 ·∇h ¯̂un+ 1
2 +∇h ·

(
¯̂un+ 1

2 (ũn+ 1
2 )T
))

+∇h pn−ν∆h ¯̂un+ 1
2

=−γAhϕ̃n+ 1
2 ∇hµn+ 1

2 , (2.35)

ϕn+1−ϕn

τ
+∇h ·

(
Ahϕ̃n+ 1

2 ¯̂un+ 1
2

)
=∆hµn+ 1

2 , (2.36)

µn+ 1
2 =

G(1+ϕn+1)−G(1+ϕn)

ϕn+1−ϕn +
G(1−ϕn+1)−G(1−ϕn)

ϕn+1−ϕn −θ0ϕ̃n+ 1
2 −ϵ2∆h

¯̄ϕn+ 1
2

+τ
(

ln(1+ϕn+1)−ln(1+ϕn)−ln(1−ϕn+1)+ln(1−ϕn)
)

, (2.37)

un+1−ûn+1

τ
+

1
2
∇h(pn+1−pn)=0, (2.38)

∇h ·un+1=0, (2.39)
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where

ϕ̃n+ 1
2 :=

3
2

ϕn− 1
2

ϕn−1, ϕ̄n+ 1
2 :=

1
2

ϕn+1+
1
2

ϕn, ¯̄ϕn+ 1
2 :=

3
4

ϕn+1+
1
4

ϕn−1,

ũn+ 1
2 :=

3
2

un− 1
2

un−1, ¯̂un+ 1
2 :=

1
2

ûn+1+
1
2

un, G(x)= xln(x),
(2.40)

for either periodic boundary condition, or the physical boundary condition:

ûn+1|Γ =0, un+1 ·n=0, ∂nϕn+1|Γ =∂nµn+ 1
2 |Γ =0. (2.41)

Remark 2.1. The numerical method (2.36)-(2.39) doesn’t give a way on how to calculate
the first step value. In fact, the first step variable ϕ1, u1, p1 can be either calculated using
a ghost point ϕ−1=ϕ0, u−1=u0 (which is first order accurate in the initial step), or using
other higher order algorithm, such as Runge-Kutta method.

Clearly, the phase variable satisfies the mass conservation property, i.e.,

ϕn+1=ϕn = ···=ϕ0. (2.42)

For simplicity, the following smooth function is introduced: for any a>0,

Fa(x) :=
G(x)−G(a)

x−a
, ∀x>0. (2.43)

In turn, (2.37) can be rewritten as:

µn+ 1
2 =F1+ϕn(1+ϕn+1)−F1−ϕn(1−ϕn+1)−θ0ϕ̃n+ 1

2 −ϵ2∆h
¯̄ϕn+ 1

2

+τ
(

ln(1+ϕn+1)−ln(1+ϕn)−ln(1−ϕn+1)+ln(1−ϕn)
)

. (2.44)

The following lemma is useful in the later analysis:

Lemma 2.2. [6] Let a>0 be fixed, then

1. F′
a(x)= G′(x)(x−a)−(G(x)−G(a))

(x−a)2 ≥0, for any x>0.

2. Fa(x) is an increasing function of x, and Fa(x)≤Fa(a)= lna+1 for any 0< x< a.

3 The unique solvability and positivity-preserving property

The unique solvability and positivity preserving analysis is based on four steps.
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Step 1: We first establish the connection between ûn+1 and µn+ 1
2 . Observe that (2.35) is

equivalent to

2 ¯̂un+ 1
2 −2un

τ
+

1
2

(
ũn+ 1

2 ·∇h ¯̂un+ 1
2 +∇h ·

(
¯̂un+ 1

2 (ũn+ 1
2 )T
))

+∇h pn−ν∆h ¯̂un+ 1
2

=−γAhϕ̃n+ 1
2 ∇hµn+ 1

2 , (3.1)

ûn+1=2 ¯̂un+ 1
2 −un. (3.2)

In other words, for a given field µ, we could define v=LNS
h (µ) as the unique solution of

the following discrete convection-diffusion equation:

2v−2un

τ
+

1
2

(
ũn+ 1

2 ·∇hv+∇h ·
(

v(ũn+ 1
2 )T
))

+∇h pn−ν∆hv=−γAhϕ̃n+ 1
2 ∇hµ. (3.3)

Then we obtain ¯̂un+ 1
2 =LNS

h (µn+ 1
2 ), and ûn+1 could be updated by the formula (3.2). In

turn, un+1 becomes the discrete Helmholtz projection of ûn+1 into divergence-free space.

Step 2: We next establish the connection between ϕn+1 and µn+ 1
2 . A substitution of ¯̂un+ 1

2 =

LNS
h (µn+ 1

2 ) into (2.36) leads to

ϕn+1−ϕn

τ
+∇h ·

(
Ahϕ̃n+ 1

2 LNS
h (µn+ 1

2 )
)
=∆hµn+ 1

2 . (3.4)

Define LCH
h : (RN2

)2 → (RN2
)2 to be:

LCH
h (µ)=∇h ·

(
Ahϕ̃n+ 1

2 LNS
h (µ)

)
−∆hµ. (3.5)

Observe that LCH
h is a linear operator, with either periodic, or homogeneous Neumann

boundary condition imposed. Subsequently, (3.4) can be represented as

ϕn+1−ϕn

τ
=−LCH

h (µn+ 1
2 ). (3.6)

Step 3: To proceed the analysis, we rewrite (3.6) as

1
τ
(LCH

h )−1(ϕn+1−ϕn)+µn+ 1
2 =0. (3.7)

To make (3.7) well defined, we must show that the operator LCH
h is invertible. Following

the proof of Lemma 3.2 and Proposition 3.1 in [5], we can derive the next two properties
of LCH

h .

Proposition 3.1. [5] The linear operator LCH
h satisfies the monotonicity condition:〈

LCH
h (µ1)−LCH

h (µ2),µ1−µ2

〉
c
≥∥∇h(µ1−µ2)∥2≥0, (3.8)

for any µ1, µ2. In addition, equality is realized if and only if µ1 =µ2, if we require µ1 =
µ2=0. Therefore, the operator LCH

h is invertible.
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Proposition 3.2. [5] The linear operator (LCH
h )−1 also satisfies the monotonicity condi-

tion: 〈
(LCH

h )−1(ϕ1),(LCH
h )−1(ϕ2)

〉
c
≥
∥∥∥∇h

(
(LCH

h )−1(ϕ1−ϕ2)
)∥∥∥2

≥C2
1

∥∥∥(LCH
h )−1(ϕ1−ϕ2)

∥∥∥2
(3.9)

for any ϕ1, ϕ2, with ϕ1=ϕ2=0. The constant C1 with the discrete elliptic regularity

∥∇h f ∥≥C1∥ f ∥, for any f with f =0, (3.10)

with C1 only dependent on Ω. In addition, the equality is valid if and only if ϕ1=ϕ2.

A combination of (2.37) and (3.7) leads to

1
τ
(LCH

h )−1(ϕn+1−ϕn)+F1+ϕn(1+ϕn+1)+F1+ϕn(1−ϕn+1)−θ0ϕ̃n+ 1
2 −ϵ2∆h

¯̄ϕn+ 1
2

+τ
(

ln(1+ϕn+1)−ln(1+ϕn)−ln(1−ϕn+1)+ln(1−ϕn)
)
=0. (3.11)

For the unique solvability analysis, we also need a discrete ℓ2 and ℓ∞ estimate for the
operator (LCH

h )−1. Notice that the (LCH
h ) can be decomposed into

LCH
h (µ)=Lh,1(µ)+Lh,2, where Lh,2 :=∇h ·

(
Ahϕ̃n+ 1

2

(
un− τ

2
∇h pn

))
, for any µ=0, (3.12)

in which Lh,1 corresponds to the homogeneous linear operator. Since the non-
homogeneous source term only depends on the numerical solution in the previous two
time steps, we see that

∥Lh,2∥≤C0, where C0 depends on τ, ϕn, ϕn−1, un and pn. (3.13)

The following estimate could also be derived in a similar manner as in [5].

Proposition 3.3. [5] for any ϕ with ϕ=0, the following ∥·∥ and ∥·∥∞ bounds are valid:∥∥∥(LCH
h )−1(ϕ)

∥∥∥≤C−2
1 (∥ϕ∥+C0), (3.14)∥∥∥(LCH

h )−1(ϕ)
∥∥∥

∞
≤C−2

1 h−
d
2 (∥ϕ∥+C0). (3.15)

Step 4: We will establish the existence of ϕn+1 in (3.11), which is also the key point to this
proof. Since (LCH

h )−1 is not a symmetric operator, we can not directly apply the discrete
energy minimization technique. On the other hand, due to the singularity of ln(1±ϕ)
when ϕ→∓1, the Browder-Minty lemma is not directly applicable to this system, either.
In turn, we seek to construct a fixed point sequence to get the result.
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Define the nonlinear iteration:

Gh(ϕ
(m+1)) :=F1+ϕn(1+ϕ(m+1))−F1−ϕn(1−ϕ(m+1))−ϵ2∆h

(
3
4

ϕ(m+1)+
1
4

ϕn−1
)

+τ
(

ln(1+ϕ(m+1))−ln(1+ϕn)−ln(1−ϕ(m+1))+ln(1−ϕn)
)

−θ0ϕ̃n+ 1
2 +Aϕ(m+1)

=− 1
τ
(LCH

h )−1(ϕ(m)−ϕn)+Aϕ(m), with ϕ(0)=ϕn, (3.16)

where A>0 is a constant. The following proposition ensures the existence of the solution
ϕ(m+1) in (3.16) at every iteration. The proof follows similar ideas as in [10]; the technical
details are skipped for the sake of brevity.

Proposition 3.4. Given cell-centered functions ϕn, ϕn−1, ϕ(m), with ∥ϕn∥∞,
∥∥ϕn−1

∥∥
∞ <1,

and ϕn = ϕn−1 = ϕ(m) = β0 < 1, then there exists a unique solution ϕ(m+1) to (3.16), with∥∥∥ϕ(m+1)
∥∥∥

∞
< 1, and ϕ(m+1) = β0. Moreover, since ϕn, ϕn−1 are discrete variables, there

exists 0<δn−1, δn, δ(m)<
1
2 , such that ∥ϕn∥∞≤1−δn,

∥∥ϕn−1
∥∥

∞≤1−δn−1 and
∥∥∥ϕ(m)

∥∥∥
∞
≤1−

δ(m). Then ϕ(m+1) satisfies
∥∥∥ϕ(m+1)

∥∥∥
∞
≤1−δ(m+1), where δ(m+1)=min( 1

2 , δ̂) and δ̂ satisfies
the following equality:

τ

(
ln

δ̂

2− δ̂
−ln

1+β0

1−β0

)
+4ϵ2h−2(1−δn−1)+4θ0+4τ|lnδn|

+ln(2−δn)+1− G(β0)−G(2−δn)

β0+δn−1
+

G(β0)−G(2−δn)

δn−1−β0
+C∗=0, (3.17)

where C∗=τ−1C−2
1 h−

d
2 (C0+

∥∥∥ϕ(m)−ϕn
∥∥∥)+A.

The main result of this section is stated below.

Theorem 3.1. Given cell-centered functions ϕn, ϕn−1, with ∥ϕn∥∞,
∥∥ϕn−1

∥∥
∞ < 1 and ϕn =

ϕn−1 = β0 < 1, then there exists a unique cell-centered solution ϕn+1 to (2.35)-(2.39), with∥∥ϕn+1
∥∥

∞ <1, and ϕn+1=β0.

Proof. Clearly, given ϕ(0)=ϕn, ϕ(1) generated by (3.16) satisfies the equality (3.17). Since∥∥∥ϕ(1)
∥∥∥

∞
<1, we see that

C∗=τ−1C−2
1 h−

d
2 (C0+

∥∥∥ϕ(0)−ϕn
∥∥∥)+A≤τ−1C−2

1 h−
d
2 (C0+2|Ω|

1
2 )+A=: Ĉ∗. (3.18)

An induction application implies that
∥∥∥ϕ(m)

∥∥∥
∞
< 1, ∀m≥ 0. Then we can replace C∗ by

Ĉ∗, and obtain a modified equality of (3.17), in which δ̂ is independent of m. Thus, if
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the sequence generated by (3.16) has a limit, say ϕn+1, then it must satisfy (3.17), with C∗

replaced by Ĉ∗. Then
∥∥ϕn+1

∥∥
∞ <1−δn+1, where δn+1=min( 1

2 , δ̂).
The rest work focuses on determining A to make Gh a contraction mapping, and the

existence proof could be accomplished by taking m→+∞ on both sides of (3.16). Define
the difference function between two consecutive iteration stages by:

ζ(m) :=ϕ(m)−ϕ(m−1), for m≥1. (3.19)

Since ϕ(m)=ϕ(m−1)=β0, we infer that ζ(m)=0.
Taking a difference of (3.16) between the mth and (m+1)st, we get

Gh(ϕ
(m+1))−Gh(ϕ

(m))

=F1+ϕn(1+ϕ(m+1))−F1+ϕn(1+ϕ(m))−F1−ϕn(1−ϕ(m+1))+F1−ϕn(1−ϕ(m))

+τ
(

ln(1+ϕ(m+1))−ln(1+ϕ(m))−ln(1−ϕ(m+1))+ln(1−ϕ(m))
)

+Aζ(m+1)− 3
4

ϵ2∆hζ(m+1)

=− 1
τ
(LCH

h )−1(ζ(m))+Aζ(m). (3.20)

Taking a discrete inner product with (3.20) by ζ(m+1) yields〈
F1+ϕn(1+ϕ(m+1))−F1+ϕn(1+ϕ(m))−F1−ϕn(1−ϕ(m+1))+F1−ϕn(1−ϕ(m)),ζ(m+1)

〉
c

+τ
〈

ln(1+ϕ(m+1))−ln(1+ϕ(m))−ln(1−ϕ(m+1))+ln(1−ϕ(m)),ζ(m+1)
〉

c

+A
〈

ζ(m+1),ζ(m+1)−ζ(m)
〉

c
+

3
4

ϵ2
∥∥∥∇hζ(m+1)

∥∥∥2

2

=− 1
τ

〈
(LCH

h )−1(ζ(m)),ζ(m+1)
〉

c
. (3.21)

By Lemma 2.2, as well as the monotonicity of ln(1+x)−ln(1−x), the first two terms of
(3.21) on the left side are always non-negative:〈

F1+ϕn(1+ϕ(m+1))−F1+ϕn(1+ϕ(m))

−F1−ϕn(1−ϕ(m+1))+F1−ϕn(1−ϕ(m)),ζ(m+1)
〉

c
≥0, (3.22)〈

ln(1+ϕ(m+1))−ln(1+ϕ(m))−ln(1−ϕ(m+1))+ln(1−ϕ(m)),ζ(m+1)
〉

c
≥0. (3.23)

For the iteration relaxation term, an application of polarization identity leads to〈
ζ(m+1),ζ(m+1)−ζ(m)

〉
c
=

1
2

(
∥ζ(m+1)∥2−∥ζ(m)∥2

2+∥ζ(m+1)−ζ(m)∥2
2

)
. (3.24)
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The right hand side of (3.21), namely the term related to asymmetric operator (LCH
h )−1,

could be analyzed as〈
(LCH

h )−1(ζ(m)),ζ(m+1)
〉

c
=
〈
(LCH

h )−1(ζ(m)),ζ(m)
〉

c
+
〈
(LCH

h )−1(ζ(m)),ζ(m+1)−ζ(m)
〉

c

≥
〈
(LCH

h )−1(ζ(m)),ζ(m+1)−ζ(m)
〉

c

≥−
∥∥∥(LCH

h )−1(ζ(m))
∥∥∥

2
·∥ζ(m+1)−ζ(m)∥2

≥−C−2
1 ∥ζ(m)∥2 ·∥ζ(m+1)−ζ(m)∥2

≥−τϵ2

4
C2

1∥ζ(m)∥2
2−

C−6
1

τϵ2 ∥ζ(m+1)−ζ(m)∥2
2. (3.25)

A combination of (3.22)-(3.25), along with the discrete elliptic regularity (3.10) to the
higher order viscosity term, leads to(

A
2
+

3
4

C2
1ϵ2
)∥∥∥ζ(m+1)

∥∥∥2

2
+

A
2

∥∥∥ζ(m+1)−ζ(m)
∥∥∥2

2

≤
(

A
2
+

1
4

C2
1ϵ2
)∥∥∥ζ(m)

∥∥∥2

2
+

C−6
1

τ2ϵ2

∥∥∥ζ(m+1)−ζ(m)
∥∥∥2

2
. (3.26)

By taking A≥ A0 :=2C−6
1 τ−2ϵ−2, a constant that may depend on τ, ϵ and Ω, we are able

to obtain the following inequality:(
A
2
+

3
4

C2
1ϵ2
)∥∥∥ζ(m+1)

∥∥∥2

2
≤
(

A
2
+

1
4

C2
1ϵ2
)∥∥∥ζ(m)

∥∥∥2

2
. (3.27)

Thus the nonlinear iteration (3.16) is assured to be a contraction mapping, and the proof
is complete.

Remark 3.1. At each nonlinear iteration, the asymmetric operator (LCH
h )−1(ϕm+1) is re-

placed by a linear operator Aϕm+1, so that the energy minimization technique can be used
in the analysis. In fact, such a technique has been widely used in various gradient flows,
including the Cahn-Hilliard equation with Flory-Huggins potential [6,10,18,19,50,51], the
liquid film droplet model [52], the Poisson-Nernst-Planck system [39,40,44], the reaction-
diffusion system [38], etc. The convex nature of the singular energy part prevents the
numerical solution approach the singular limit values of ±1, which turns out to be the
key point in the analysis.

Remark 3.2. Following similar ideas as in [6], we use a second order ap-
proximation nonlinear term in (2.36) to obtain energy stability, as will be
demonstrated in the later section. Meanwhile, a nonlinear regularization term
τ
(

ln(1+ϕ(n+1))−ln(1+ϕn)−ln(1−ϕ(n+1))+ln(1−ϕn)
)

is added in (2.36) to ensure the
positivity preserving property (for the logarithmic arguments).
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Remark 3.3. Though we derive a strict distance δn+1 between the phase variable ϕn+1

and ±1, δn+1 may depend on the following two distance δn, δn−1 and so could converge
to zero as n→∞. Therefore, a strict separation property of the numerical solution is not
guaranteed in the positivity preserving analysis (for the logarithmic arguments). In other
words, we do not obtain a uniform distance δ independent on n.

Remark 3.4. The existence of the numerical solution to (2.35)-(2.39) is unconditional,
and there is no time step restriction for the existence. In more details, the existence and
uniqueness for the iteration solution to (3.16) is unconditional, independent on the time
step size τ, by Proposition 3.4. In turn, by taking m →+∞, the analysis presented in
Theorem 3.1 reveals that, such an iteration is a contraction mapping, independent on the
time step size τ. As a result, by passing the limit, the existence of the numerical solution
to (2.35)-(2.39) is unconditional, without any time step restriction.

4 Total energy stability analysis

Denote the discrete energy by

Eh(ϕ) := ⟨(1+ϕ)ln(1+ϕ)+(1−ϕ)ln(1−ϕ),1⟩c−
θ0

2
∥ϕ∥2

2+
ϵ2

2
∥∇hϕ∥2

2 , (4.1)

Eh,total(ϕ,u) :=Eh(ϕ)+
1

2γ
∥u∥2

2 . (4.2)

Then the main energy dissipation law is demonstrated in the following theorem.

Theorem 4.1. For the proposed numerical scheme (2.35)-(2.39), the following inequality holds
for all n>0:

Ẽh(ϕ
n+1,ϕn,un+1, pn+1)+

τν

γ

∥∥∥∇h ¯̂un+ 1
2

∥∥∥2

2
+τ
∥∥∥∇hµn+ 1

2

∥∥∥2

2
≤ Ẽh(ϕ

n,ϕn−1,un, pn), (4.3)

where

Ẽh(ϕ
n+1,ϕn,un+1, pn+1)=Eh,total(ϕ

n+1,un+1)+
τ2

8γ

∥∥∥pn+1
∥∥∥2

+
θ0

4

∥∥∥ϕn+1−ϕn
∥∥∥2

2

+
ϵ2

8

∥∥∥∇h

(
ϕn+1−ϕn

)∥∥∥2

2
. (4.4)

Proof. Taking a discrete inner product with (2.35) by ¯̂un+ 1
2 = 1

2 (û
n+1+un) gives

∥ûn+1∥2
2−∥un∥2

2
2τ

+
〈
∇h pn, ¯̂un+ 1

2

〉
1
+ν
∥∥∥∇h ¯̂un+ 1

2

∥∥∥2

2
+γ

〈
Ahϕ̃n+ 1

2 ∇hµn+ 1
2 , ¯̂un+ 1

2

〉
1
=0, (4.5)

in which the summation-by-parts formula (2.30) has been applied:〈
¯̂un+ 1

2 ,ũn+ 1
2 ·∇h ¯̂un+ 1

2 +∇h ·
(

¯̂un+ 1
2 (ũn+ 1

2 )T
)〉

1
=0. (4.6)
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Taking a discrete inner product with (2.38) by un+1 leads to

∥un+1∥2−∥ûn+1∥2
2+∥un+1−ûn+1∥2

2=∥un+1∥2−∥ ¯̂un+ 1
2 ∥2

2+
1
4

τ2∥∇h(pn+1−pn)∥2
2=0, (4.7)

in which the summation by part formula (2.31) was used. In turn, a combination of (4.5)
and (4.7) results in

∥un+1∥2
2−∥un∥2

2
2τ

+
〈
∇h pn, ¯̂un+ 1

2

〉
1
+

1
8

τ∥∇h(pn+1−pn)∥2
2+ν

∥∥∥∇h ¯̂un+ 1
2

∥∥∥2

2

+γ
〈
Ahϕ̃n+ 1

2 ∇hµn+ 1
2 , ¯̂un+ 1

2

〉
=0. (4.8)

For the pressure gradient term
〈
∇h pn, ¯̂un+ 1

2

〉
1
, we make use of (2.38) and (2.39), so that

∇h ·ûn+1= 1
2 τ∆h(pn+1−pn). This in turn results in

〈
∇h pn, ¯̂un+ 1

2

〉
1
=−

〈
pn,∇h · ¯̂un+ 1

2

〉
c
=−1

2

〈
pn,∇h ·ûn+1

〉
c

=− 1
4

τ
〈

pn,∆h(pn+1−pn)
〉

c
=

1
4

τ
〈
∇h pn,∇h(pn+1−pn)

〉
1

=
τ

8
(∥∇h pn+1∥2

2−∥∇h pn∥2
2)−

τ

8
∥∇h(pn+1−pn)∥2

2. (4.9)

As a consequence, a substitution of (4.9) into (4.8) yields

∥un+1∥2
2−∥un∥2

2
2τ

+
τ

8
(∥∇h pn+1∥2

2−∥∇h pn∥2
2)+ν

∥∥∥∇h ¯̂un+ 1
2

∥∥∥2

2

+γ
〈
Ahϕ̃n+ 1

2 ∇hµn+ 1
2 , ¯̂un+ 1

2

〉
=0. (4.10)

For the CH system, taking inner product with (2.36) by τµn+ 1
2 , and with (2.37) by (ϕn+1−

ϕn), we get

〈
G(1+ϕn+1)+G(1−ϕn+1)−G(1+ϕn)−G(1−ϕn),1

〉
c
−θ0

〈
ϕ̃n+ 1

2 ,ϕn+1−ϕn
〉

c

+ϵ2
〈
∇h

¯̄ϕn+ 1
2 ,∇h(ϕ

n+1−ϕn)
〉

1
−τ
〈
Ahϕ̃n+ 1

2 ∇hµn+ 1
2 , ¯̂un+ 1

2

〉
1
+τ
∥∥∥∇hµn+ 1

2

∥∥∥2

2

+τ
〈

ln(1+ϕn+1)−ln(1+ϕn)−ln(1−ϕn+1)+ln(1−ϕn),ϕn+1−ϕn
〉

c
=0, (4.11)

with summation-by-parts formula (2.34) recalled. The linear expansive and surface dif-
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fusion terms could be analyzed as follows:

−
〈

ϕ̃n+ 1
2 ,ϕn+1−ϕn

〉
c
=−

〈
3
2

ϕn+1− 1
2

ϕn,ϕn+1−ϕn
〉

c

≥−1
2
(∥ϕn+1∥2

2−∥ϕn∥2
2)+

1
4
(∥ϕn+1−ϕn∥2

2−∥ϕn−ϕn−1∥2
2), (4.12)〈

∇h
¯̄ϕn+ 1

2 ,∇h(ϕ
n+1−ϕn)

〉
1
=

〈
∇h(

3
4

ϕn+1+
1
4

ϕn−1),∇h(ϕ
n+1−ϕn)

〉
1

=
1
2

〈
∇h(ϕ

n+1+ϕn),∇h(ϕ
n+1−ϕn)

〉
1
+

1
4

〈
∇h(ϕ

n+1−2ϕn+ϕn−1),∇h(ϕ
n+1−ϕn)

〉
1

≥ 1
2

(
∥∇hϕn+1∥2

2−∥∇hϕn∥2
2

)
+

1
8

(
∥∇h(ϕ

n+1−ϕn)∥2
2−∥∇h(ϕ

n−ϕn−1)∥2
2

)
. (4.13)

Using the monotonicity of ln(1+x)−ln(1−x), we obtain〈
ln(1+ϕn+1)−ln(1+ϕn)−ln(1−ϕn+1)+ln(1−ϕn),ϕn+1−ϕn

〉
c
≥0. (4.14)

As a consequence, a substitution of (4.12)-(4.14) into (4.11) yields〈
G(1+ϕn+1)+G(1−ϕn+1)−G(1+ϕn)−G(1−ϕn),1

〉
c
− θ0

2
(∥ϕn+1∥2

2−∥ϕn∥2
2)

+
ϵ2

2

(
∥∇hϕn+1∥2

2−∥∇hϕn∥2
2

)
+

θ0

4
(∥ϕn+1−ϕn∥2

2−∥ϕn−ϕn−1∥2
2)+τ

∥∥∥∇hµn+ 1
2

∥∥∥2

2

+
ϵ2

8

(
∥∇h(ϕ

n+1−ϕn)∥2
2−∥∇h(ϕ

n−ϕn−1)∥2
2

)
−τ
〈
Ahϕ̃n+ 1

2 ∇hµn+ 1
2 , ¯̂un+ 1

2

〉
1
≤0. (4.15)

Finally, a combination of (4.10) and (4.15) results in the following energy estimate:

En+1
h,CH−En

h,CH+
τ2

8γ

(
∥∇h pn+1∥2

2−∥∇h pn∥2
2

)
+

θ0

4

(∥∥∥ϕn+1−ϕn
∥∥∥2

2
−
∥∥∥ϕn−ϕn−1

∥∥∥2

2

)
+

ϵ2

8

(∥∥∥∇h(ϕ
n+1−ϕn)

∥∥∥2

2
−
∥∥∥∇h(ϕ

n−ϕn−1)
∥∥∥2

2

)
+

τν

γ

∥∥∥∇h ¯̂un+ 1
2

∥∥∥2

2
+τ
∥∥∥∇hµn+ 1

2

∥∥∥2

2
≤0. (4.16)

This completes the proof of Theorem 4.1.

With the above energy estimate, an induction application implies that

Eh(ϕ
n,un)≤ Ẽh(ϕ

n,ϕn−1,un, pn)≤ Ẽh(ϕ
0,ϕ−1,u0, p−1)=Eh(ϕ

0,u0), (4.17)

by taking the initial extrapolation ϕ−1=ϕ0, p−1=p0. Then we obtain the following result.
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Corollary 4.1. For every positive integer n, the solutions ϕn+1, un+1 of (2.36)-(2.39) satisfy the
following estimate: ∥∥∥∇hϕn+1

∥∥∥
2
≤C,

∥∥∥un+1
∥∥∥

2
≤C, (4.18)

where C only depends on the θ0, ϵ, ν, |Ω| and the initial value ϕ0, u0.

Remark 4.1. The first order numerical scheme has been reported in [5], with the estab-
lished theoretical properties. Meanwhile, a direct extension to the second order numer-
ical accuracy, such as the BDF2 approach analyzed in [10] for the pure Cahn-Hilliard
equation, would face a serious difficulty in the theoretical analysis. The modified BDF2
algorithm has its advantage to deal with the nonlinear logarithmic terms, associated with
the singular and convex nature of these terms. In turn, the positivity-preserving analysis
of the BDF2 method, for the pure phase field equation, follows essential the same ideas as
in the first order scheme. However, for the BDF2 approach to the Cahn-Hilliard-Navier-
Stokes system, the energy stability analysis would face a serious theoretical difficulty.
Instead, we use a modified Crank-Nicolson approach, in which the second order approx-
imation to the logarithmic terms does not preserve the singularity as the phase variables
approach the singular limit values of ±1, while the nonlinear artificial regularization term
preserves a singular nature. In turn, the positivity-preserving analysis is accomplished
with the help of this nonlinear artificial regularization term, while the total energy sta-
bility analysis is derived on the Crank-Nicolson format, for the proposed second order
scheme (2.35)-(2.39).

Remark 4.2. In the chemical potential expansion (2.37) of the proposed numerical
scheme, a modified Crank-Nicolson approximation, namely 3

4 ϕn+1+ 1
4 ϕn−1, is applied

in the surface diffusion part. Such an alternate Crank-Nicolson approximation greatly
enhances the numerical stability for nonlinear equations, in comparison with the stan-
dard Crank-Nicolson version, 1

2 (ϕ
n+1+ϕn). This fact was first reported in [28] to deal

with viscous Burgers’ equation, and it has been extensively applied to various gradient
flow [6, 9, 12, 15, 16, 30, 31] and fluid [11, 49] models, etc. This stability advantages have
been verified by extensive numerical evidences, as well as the theoretical analyses. Such
an improved numerical stability is expected to facilitate the convergence analysis of the
proposed numerical scheme, as will be considered in future works.

Remark 4.3. The convergence analysis of the proposed numerical scheme (2.35)-(2.39) is
expected to be highly challenging, due to the highly nonlinear and coupled nature of the
numerical system. In addition, the singular feature of the phase variable as its value ap-
proaches to the singular limit values of ±1 makes the analysis even more complicated. A
theoretical justification of the convergence analysis and error estimate will be considered
in our future works; some technical ideas in the related works [3, 4, 7, 15, 39, 41] could be
similarly applied.
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5 Numerical test

In this section, we perform some numerical tests to demonstrate the robustness of the
proposed numerical scheme. For the weak velocity-phase coupled numerical algorithm,
a Picard iteration technique is used to accelerate the computational program. Meanwhile,
the preconditioned steepest descent (PSD) method [25] is used to solve the Cahn-Hilliard
system. Specifically, a linear operator

L[ϕ] := 1
△t

−2∆h+
3
4

ϵ2∆2
h

is implemented to replace the original nonlinear equation. In turn, the operator is fixed
at each iteration, and we can use the Fast Fourier Transform (FFT) to solve the system.
For more details of the PSD iteration, see the related work of [5, 6, 8, 24, 52], etc.

5.1 Convergence test

To check the accuracy of the proposed scheme (2.35)-(2.39), we present two examples
for both boundary conditions, either periodic or physical one. For simplicity, we take
the kinematic viscosity as ν=0.5, surface diffusion parameter ϵ=0.5, and the expansive
coefficient θ0 is set as 3. For the periodic case, the exact solutions are chosen to be

ϕ(x,y,t)=0.5sin(2πx)cos(2πy)cos(t)+0.1, (5.1)

u=

(
−cos(t)cos(2πx)sin(2πy)
cos(t)sin(2πx)cos(2πy)

)
, (5.2)

p=sin(t)sin(2πx). (5.3)

Since the solution does not satisfy the original system (1.2)-(1.5), two artificial source
terms have to be added to the right hand side of the Navier-Stokes equation (1.2) and
the Cahn-Hilliard equation (1.3). We take τ= h to observe both the temporal and spatial
accuracy orders, with h = 2−k, k = 4, 5, 6, 7, 8, 9. We choose the final time T = 1 and
compare the exact and the computational solutions. Fig. 1 (left) plots the numerical error
of the phase variable, velocity and the pressure respect to the spatial size. A clear second
order convergence is illustrated in this picture.

On the other hand, a slightly different result has been observed with physical bound-
ary condition. In this case we choose the exact solutions as

ϕ(x,y,t)=
1
π

cos(πx)cos(πy)cos(t), (5.4)

u=

(
−cos(t)sin(πx)2sin(2πy)
cos(t)sin(2πx)sin(πy)2

)
, (5.5)

p=cos(t)cos(2πx)sin(2πy). (5.6)
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Figure 1: Numerical error of the phase variable, velocity field and pressure field. Periodic boundary case with
initial value (5.1)-(5.3) is shown on the left, while the physical case with initial value (5.4)-(5.6) is demonstrated
on the right. In the first case all three variables have the second order accuracy. In the physical boundary
condition case, though the velocity and phase variables appear to be second order convergent, the pressure
variable does not preserve a full second order accuracy.

The parameters along with the spatial and temporal are all given as the same above. The
associated convergence orders are reported in Fig. 1 (right). It is clear that the velocity
and phase variables remain to be second order convergent, while the accuracy order for
the pressure variable is reduced to one. We remark that, by using pressure correction
technique in (2.39) with boundary condition (2.41), an artificial Neumann boundary con-
dition ∂n

(
pn+1−pn)= 0 is implemented in (2.38), which induces a numerical boundary

layer that prevents the scheme to be fully second order accurate; also see the related
works of Shen [45, 46], Guermond, Minev and Shen [29], E and Liu [20–22], etc.

5.2 Buoyancy-driven flow

The Cahn-Hilliard-Navier-Stokes system can be used to simulate certain dynamics and
observe the associated physical phenomena. We follow the idea in [13] and consider a
single bubble rising in a box. An additional buoyancy force term b is added to the right
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hand side of the Navier-Stokes equation (1.2), shifting the original system as follows:

ut+(u·∇)u−ν∆u−∇p+ϕ∇µ=b, (5.7)
ϕt+∇·(ϕu)=∆µ, (5.8)

µ= ln(1+ϕ)−ln(1−ϕ)−θ0ϕ−ϵ2∆ϕ, (5.9)
∇·u=0. (5.10)

To be specific,
b=(0,−b(ϕ)T), b(ϕ)=λ(ϕ−ϕ̄),

and λ= G(ρ1−ρ2)
2 , where G is the gravitational force and ρ1 and ρ2 denote the densities of

the bubble and medium. We set the initial phase value as

ϕ(x,y,0)=0.9tanh

(√
(x−0.5)2+(y−0.3)2−0.25d

η

)
, (5.11)

where d controls the radius of the bubble and η represents the diffusive interfacial width.
Here we choose d=0.5 and η=0.01d. The physical parameters are given by θ0 =

10ln(19)
9 ,

so that the double wells of the potential are located at −0.9 and 0.9, and λ=20, ϵ=0.01.
The spatial and temporal sizes are set as 1/256 and 0.0001, respectively. We consider
the bubble rising under different viscosity parameters: ν=0.1, 0.01, 0.001, 0.0001. Fig. 2
displays some snapshots in the above four cases. As ν becomes smaller, the convection
term takes the lead and in turn the bubble rises faster, and deforms when reaching the
boundary of the top side.

5.3 Numerical simulation of the coarsening process

In this section we present the simulation results of the coarsening process, which illus-
trates that the proposed numerical scheme preserves the positivity property and total
energy stability. A random initial value is chosen:

ϕi+ 1
2 , j+ 1

2
=0.2+0.05

(
2ri+ 1

2 , j+ 1
2
−1
)

, (5.12)

where ri+ 1
2 , j+ 1

2
are uniform random numbers in [0,1]. We further set the initial velocity

as u0 = 0. The physical parameters are given by: ν= 0.01, θ0 = 3.6 and a sequence of ϵ,
ϵ= 0.01, 0.02, 0.03. The spatial size is still set as h= 1/256. Since the phase separation
process will encounter a fast energy decay in the early time stage, we use a numerical
strategy that slowly increases the time step sizes in the time evolution. Specifically, we
set τ= 10−5 at the very beginning, and compute 1000 time steps, then use the time step
size 2τ and repeat this process, until τ = 1.024∗10−2. In other words, the time interval
[0,0.01] will be simulated using the time step size τ = 10−5, then T = [0.01,0.03] with
τ=2∗10−5, T=[0.03,0.07] with τ=4∗10−5, etc.
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Figure 2: Bubble rises under different viscosity parameters, with different time snapshots.

Fig. 3 displays some pictures with different diffusion parameters, with its streamline
plotted for the phase variable. As ϵ gets bigger, less topology structures are presented,
and the separation process finishes faster. In Fig. 4 we give the energy decay plot with
different ϵ values, and an O(t−

1
3 ) dissipation rate is observed among these cases. It is

noticed that, at the beginning time of each process, the original energy Eh,total may not
decrease, due to the random data singularity, while the modified energy Ẽh always de-
creases over time, as proved in Theorem 4.1. Finally, Fig. 6 presents the maximum and
minimum values of ϕ in the time evolution. Of all three cases, the maximum value is
lower than 0.9687, while the minimum value remains larger than -0.9598, which implies
a strict separation property of the 2-D Cahn-Hilliard equation with logarithmic potential.
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Figure 3: Numerical simulation of the coarsening process.
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6 Conclusion

In this paper we have presented and analyzed a second order accurate numerical scheme
for the Flory-Huggins-Cahn-Hilliard-Navier-Stokes system, with logarithmic energy po-
tential. A modified Crank-Nicolson approximation is applied to the chemical potential,
combined with a nonlinear artificial regularization term. For the convective term in the
phase field evolutionary equation, the phase variable is evaluated by a second order ex-
trapolation formula, while the velocity vector is updated by the Crank-Nicolson approxi-
mation. The Navier-Stokes equation is also computed by a similar semi-implicit method.
The coupled numerical system creates a unique solution for the intermediate velocity
field and the phase variable. The unique solvability and positivity-preserving analy-
sis (for the logarithmic arguments) is accomplished by a nonlinear iteration process, in
which the monotonicity analysis and the singularity analysis (as the phase variable ap-
proaches the singular limit values of −1 and 1) have played an essential role. After the
intermediate velocity field is determined, a Helmholtz projection into the divergence-free
vector field yields the velocity vector and the pressure variable at the next time step. As
a result, the Stokes solver is decoupled, so that the numerical efficiency is greatly im-
proved. For the full numerical system, a modified total energy stability of the proposed
numerical scheme has been derived, with a few numerical correction terms included in
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the modified energy functional. Some numerical results are displayed, which demon-
strate the robustness and efficiency of the proposed second order scheme.
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