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We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and 
sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains 
in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-
coefficient, positive linear operators, which suggests a natural preconditioning strategy. 
Such nonlinear elliptic equations often arise from time discretization of parabolic equations 
that model various biological and physical phenomena, in particular, liquid crystals, thin 
film epitaxial growth and phase transformations. The analyses of the schemes involve 
the characterization of the strictly convex energies associated with the equations. We 
first give a general framework for PSD in Hilbert spaces. Based on certain reasonable 
assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the 
nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order 
problems of interest, making use of Sobolev embedding and regularity results to confirm 
the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our 
results include a sharper theoretical convergence result for p-Laplacian systems compared 
to what may be found in existing works. We demonstrate rigorously how to apply the 
theory in the finite dimensional setting using finite difference discretization methods. 
Numerical simulations for some important physical application problems – including thin 
film epitaxy with slope selection and the square phase field crystal model – are carried out 
to verify the efficiency of the scheme.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let ! ⊂ Rd , d = 2, 3, be a rectangular domain. In this work we are interested in efficient solution techniques for fourth 
and sixth-order nonlinear elliptic equations that have p-Laplacian terms. The fourth-order problem reads as follows: given 
f !-periodic, find u !-periodic such that

u − s∇ · (|∇u|p−2∇u) + sε2#2u = f , (1.1)

where 0 < ε ≤ 1 and s is a positive parameter. The sixth-order problem is as follows: given f , g !-periodic, find u, w
!-periodic such that
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u − #w = g, (1.2a)

sλu − s∇ ·
(
|∇u|p−2∇u

)
+ sε2#2u − w = f , (1.2b)

where 0 < ε ≤ 1, s > 0, and λ ≥ 0 are parameters. The highest order positive diffusion term, parameterized by ε, is often 
referred to as the surface diffusion, following the thin film applications described below.

We will refer to problems (1.1) and (1.2a)–(1.2b) as regularized p-Laplacian problems. However, this is primarily for ease of 
reference. The highest order surface diffusion term, though parameterized by the “small” coefficient ε > 0, must be present 
for the related physical models to make sense and is not an artificial regularization. In other words, we will not consider 
and are not concerned with the singular limit ε ↘ 0.

These model equations arise most commonly from the time discretization for certain time-dependent physical models. 
For example, consider the thin epitaxial film model with slope selection

∂t u = ∇ ·
(
|∇u|2 ∇u

)
− #u − ε2#2u,

in [28,32,35,38], where u is the spatially periodic height of the film. The 4-Laplacian term in combination with the negative 
Laplacian term gives energetic preference to facets with unit slope, a continuum-level model of the Ehrlich–Schwoebel 
kinetic barrier. The highest order term models a small amount of surface diffusion, which smooths the corners where the 
facets merge. In the square Swift–Hohenberg (SSH) equation

∂t u = (β − 1)u + ηu3 − u5 + α
(
|∇u|2 ∇u

)
− 2#u + #2u, α > 0, β,η ∈ R,

studied in [11,22,20,30], and the square phase field crystal (SPFC) equation

∂t u = #
(
γ0u + γ1#u + ε2#2u − ∇ ·

(
|∇u|2 ∇u

))
, γ0 ∈ R, γ1 > 0,

studied in [15,19,20,30], the 4-Laplacian term gives preference to square-symmetry arrays of “dots” in the density field u. 
In general, such localized structures play important roles in biological, chemical, and physical processes [23].

For these time-dependent problems, convex decomposition schemes have been proposed and analyzed in [32,35] to 
obtain unconditional unique solvability and unconditional energy stability. The convex decomposition scheme for the thin 
film model is [35]

um − s∇ · (|∇um|2∇um) + sε2#2um = um−1 − s#um−1,

where s > 0 is the time step size, and the superscripts indicate the time discretizations. The convex decomposition scheme 
for the SPFC model – which can be inferred from the general principles in [35,37] – is precisely

um − #wm = um−1,

sγ0um − s∇ ·
(
|∇um|2∇um

)
+ sε2#2um − wm = − sγ1#um−1,

assuming γ0, γ1 ≥ 0. These schemes are nonlinear and require one to deal with the p-Laplacian term at the implicit time 
level. We remark that there are also second-order-in-time convex decomposition schemes for such nonlinear parabolic 
equations, as described in [32], which have similar nonlinear structures. In any case, solving nonlinear elliptic equations 
with the p-Laplacian term is challenging, because of its highly nonlinear nature. In [32,35], the authors used a nonlinear 
conjugate gradient algorithm to solve the nonlinear system at each implicit time step. Such naive gradient methods are 
guaranteed to converge due to the global convexity of the equations, but are not necessarily efficient.

Several works develop and analyze numerical schemes for nonlinear elliptic equations involving the p-Laplacian operator. 
The works [2,3,25,29,34,39,40] are based on finite element approximations in space. Recently, the vanishing moment method 
for the p-Laplacian was proposed in [18]. In that method, the highest order term is purely artificial, whereas, for the 
models above, the surface diffusion term is small, but non-vanishing. A hybridizable discontinuous Galerkin method for 
the p-Laplacian was proposed in [10]. Of these works, [25,39,40] are primarily focused on efficient solvers for the elliptic 
equations with p-Laplacian terms, rather than, say, error estimates.

The main goal of this paper is to design a general framework of preconditioned steepest descent (PSD) methods for 
certain nonlinear elliptic equations with p-Laplacian terms. The main idea is to use a linearized version of the nonlinear 
operator as a pre-conditioner, or in other words, as a metric for choosing the search direction. We propose and analyze 
the preconditioned steepest descent methods for both the fourth- and sixth-order p-Laplacian problems mentioned above. 
Herein we present numerical simulations for the 6-Laplacian thin film epitaxy and the H−1 gradient flow SPFC model by us-
ing the proposed method. While we restrict our focus to the p-Laplacian problems herein, the search direction framework is 
general and can be applied to other nonlinear equations, such as the Cahn–Hilliard (CH) equation [5,7,31,33], functionalized 
Cahn–Hilliard (FCH) Equation [8,13,16], for example.

The convergence analyses of the nonlinear iteration algorithms we propose for the p-Laplacian equations are quite chal-
lenging, due to the highly nonlinear nature of the problems. However, we are able to recast the equations as equivalent 
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minimization problems involving strictly convex functionals in Hilbert spaces. Once this is done, we are able to characterize 
the properties of general pre-conditioners that will result in geometric convergence rates. This general approach is applica-
ble to both the 4th and 6th order equations at the space-continuous level, as well as the approximation of these problems 
in finite dimensions using finite differences. Though we do not explore it here, we remark that the theory is extensible to 
the pseudo-spectral, spectral-Galerkin, and mixed finite element settings as well, using the appropriate discrete Gagliardo–
Nirenburg inequalities. To our knowledge, the only related theoretical results available in the existing literature are to be 
found in [25], in which finite element PSD solvers were designed and analyzed. Specifically, it was proved in [25] that their 
method converges with the rate O (k−β), where k is the iteration index and β = p

p−2 > 0. In this article, we provide a theo-

retical analysis with a geometric convergence rate O (αk), with 0 < α < 1, for the finite difference PSD solver applied to the 
regularized p-Laplacian problems.

For such nonlinear analyses, the essential difficulty has always been associated with the subtle fact that the numerical so-
lution has to be bounded uniformly in certain functional norms, so that a bound for the iteration error could be established. 
For the p-Laplacian problems, typically a uniform W 1,p bound of the numerical solution is available at each iteration stage, 
and such a bound may be used to derive an O (k−β ) convergence rate for the PSD iteration. However, for the regularized 
p-Laplacian problems, one observes that a linear operator with higher-order diffusion may be utilized so that a uniform H2

bound of the numerical solution may be obtained. Specifically, the existence of the surface diffusion term ε2#2u enables 
us to derive a geometric convergence rate O (αk) for the PSD iteration, which gives a sharper theoretical result than the 
existing one in [25]. Our strategy comes at a cost that we point out at the offset: a linear, positive, constant-coefficient op-
erator of order 4 or 6 must be inverted to obtain the search direction. But, since we are interested in applications involving 
coarsening processes over periodic domains, the FFT can be utilized to make this process efficient.

The remainder of the paper is organized as follows. In section 2, we present a general preconditioned steepest descent 
(PSD) method for nonlinear equations in Hilbert spaces, and provide the convergence rate estimates for the PSD method. The 
application of the general theory to the fourth-order regularized p-Laplacian problem is formulated in section 3. The PSD 
scheme for the sixth-order regularized p-Laplacian problem is outlined in section 4. Subsequently, in section 5, we introduce 
a two-dimensional finite difference discretization and provide the fully discrete convergence analysis. Applications to thin 
film epitaxy with slope selection and the SPFC model and the numerical results are presented in section 6. Concluding 
remarks are offered in section 7.

2. Preconditioned steepest descent methods

2.1. Non-quadratic energy functionals in Hilbert spaces

Here we outline the general theory for preconditioned steepest descent (PSD) in a Hilbert space [1,9,14,26]. Suppose 
that H is a (real) Hilbert space with the inner product ( · , · )H and induced norm ∥ ·∥H . We consider an energy functional 
E[ · ] : H → R with the following properties:

(E1) E is twice Fréchet differentiable for all points ν ∈ H . For each fixed ν ∈ H , δE[ν]( · ) : H → R is the continuous lin-
ear functional equal to the first Fréchet derivative at ν , and, for each fixed ν ∈ H , δ2 E[ν]( · , · ) : H × H → R is the 
continuous bilinear operator equal to the second Fréchet derivative at ν .

(E2) For every ν ∈ H ,

0 ≤ δ2 E[ν](ξ, ξ), ∀ ξ ∈ H, (2.1)

and

0 < δ2 E[ν](ξ, ξ), ∀ ξ ∈ H \ {0} . (2.2)

This implies the strict convexity of E .
(E3) E is coercive with respect to the norm on H , i.e., there exist constants C1 > 0, C2 ≥ 0 such that

C1 ∥ν∥2
H ≤ E[ν] + C2, ∀ ν ∈ H .

If E satisfies (E1)–(E3), it follows [9] that there is a unique element u ∈ H with the property that

E[u] ≤ E[ν], ∀ ν ∈ H, with E[u] < E[ν], for ν ≠ u,

and this minimizer further satisfies

δE[u](ξ) = 0, ∀ ξ ∈ H .

We wish to construct, via preconditioned steepest descent (PSD), a sequence that converges to the unique minimizer. 
By H ′ we denote the continuous dual of H . When it is convenient, we use the symbol ⟨ · , · ⟩H : H ′ × H → R to denote the 
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dual pairing between H ′ and H . Consider a linear operator L : H → H ′ . This operator L, which we call the pre-conditioner
induces a bilinear form on H :

(ν, ξ)L := ⟨L[ν], ξ⟩H = L[ν](ξ), ∀ ν, ξ ∈ H .

We assume that L satisfies the following properties:

(L1) ( · , · )L : H × H → R is symmetric, i.e.,

(ν, ξ)L = (ξ,ν)L, ∀ ν, ξ ∈ H;
(L2) ( · , · )L is continuous with respect to the standard topology of H , i.e., there is some C3 > 0 such that

|(ν, ξ)L| ≤ C3 ∥ν∥H ∥ξ∥H , ∀ ν, ξ ∈ H;
(L3) ( · , · )L is coercive with respect to H , i.e., there is some C4 > 0 such that

C4 ∥ν∥2
H ≤ (ν,ν)L, ∀ ν ∈ H .

It follows that ( · , · )L : H × H → R is an inner product on H , equivalent to the primary inner product ( · , · )H . The induced 
norm, ∥ν∥L := √

(ν,ν)L , is equivalent to the primary norm. By the Riesz Representation Theorem, if f ∈ H ′ , then there 
exists a unique u f ∈ H such that

(u f , ξ)L = f [ξ ] = ⟨ f , ξ⟩H , ∀ξ ∈ H,

with

∥∥u f
∥∥

L = ∥ f ∥L−1 := sup
0≠ξ∈H

f [ξ ]
∥ξ∥L

,

where the second norm is the L-induced operator norm.
Suppose that uk ∈ H is given. We define the following search direction problem: find dk ∈ H such that

(
dk, ξ

)

L
= −δE

[
uk

]
(ξ), ∀ξ ∈ H . (2.3)

We call dk the kth search direction. In operator form, we write L[dk] = −δE[uk] in H ′ . The functional −δE
[
uk

]
is called the 

residual of uk . By the Riesz Representation Theorem, we discover that

−δE
[

uk
]
(dk) =

∥∥∥dk
∥∥∥

2

L
=

∥∥∥δE
[

uk
]∥∥∥

2

L−1
. (2.4)

We then define the next iterate uk+1 as

uk+1 := uk + αkdk, (2.5)

where αk ∈ R is the unique solution to

αk := argmin
α∈R

E[uk + αdk] = argzero
α∈R

δE[uk + αdk](dk). (2.6)

Therefore, we have the fundamental orthogonality relation

δE[uk + αkdk](dk) = δE[uk+1](dk) = 0. (2.7)

It follows that the sequence 
{

uk
}∞

k=0 ⊂ H generated by the preconditioned steepest descent algorithm converges to the 
unique minimizer u ∈ H . We now wish to estimate the convergence rate.

2.2. Estimates of the convergence rate for the PSD method

We summarize some standard results.

Proposition 2.1. Suppose that E satisfies (E1)–(E3). It follows that, for any ν, ξ ∈ H,

δE[ν](ξ − ν) ≤ E[ξ ] − E[ν] ≤ δE[ξ ](ξ − ν), (2.8)

and, consequently,

0 ≤ (δE[ξ ] − δE[ν]) (ξ − ν).
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Proposition 2.2. Suppose that E satisfies (E1)–(E3). Let 
{

uk
}∞

k=0 ⊂ H be computed via (2.5). Then, for every k ≥ 0 we have E[uk+1] ≤
E[uk]. Furthermore, αk > 0, as long as uk ≠ u.

Proof. Using the orthogonality relation (2.7) and the convexity inequality (2.8), we find

E[uk+1] − E[uk] ≤ δE[uk+1](uk+1 − uk) = αkδE[uk+1](dk) = 0.

Now, suppose dk ≠ 0. Then, by Taylor’s theorem, (2.4), and (2.2),

E[uk+1] = E[uk] − αk

∥∥∥dk
∥∥∥

2

L
+ α2

k

2
δ2 E[θk](dk,dk) > E[uk] − αk

∥∥∥dk
∥∥∥

2

L
.

Equivalently, we get

αk

∥∥∥dk
∥∥∥

2

L
> E[uk] − E[uk+1] ≥ 0,

which implies that αk > 0. ✷

Proposition 2.3. Suppose that E satisfies (E1)–(E3) and u ∈ H is the unique minimizer of E. Then, for any ξ ∈ H,

0 ≤ E[ξ ] − E[u] ≤ (δE[ξ ] − δE[u]) (ξ − u) = δE[ξ ](ξ − u),

and, consequently,

0 ≤ E[uk] − E[u] ≤
(
δE[uk] − δE[u]

)
(uk − u) = δE[uk](uk − u). (2.9)

Proof. This follows immediately from (2.8), because δE[u](ξ) = 0, for all ξ ∈ H . ✷

Now, we make the following further assumptions about the pre-conditioner L with respect to the derivatives of the 
energy E:

(L4) There is a constant C5 > 0 such that

C5 ∥ξ − ν∥2
L ≤ (δE[ξ ] − δE[ν]) (ξ − ν), (2.10)

for all ν, ξ ∈ H .
(L5) Suppose B := {ν ∈ H | E[ν] ≤ E0} is non-empty. (This is the case if, for example, one chooses E0 = E[0].) There is a 

constant C6 = C6(E0) > 0 such that, for all ν ∈ B , and any ξ ∈ H ,
∣∣∣δ2 E[ν](ξ, ξ)

∣∣∣ ≤ C6 ∥ξ∥2
L . (2.11)

Remark 2.4. We note that, practically speaking, (L5) is harder of the last two conditions to enforce. In some sense, if the 
norm induced by L is not “strong” enough, then there does not exist C6 > 0 so that (L5) is satisfied.

Theorem 2.5. Suppose that assumptions (E1)–(E3) and (L1)–(L5) are valid. Let 
{

uk
}∞

k=0 ⊂ H be the sequence generated by (2.5). Then

0 ≤ E[uk] − E[u] ≤ (C7)
k(E[u0] − E[u]), (2.12)

where

0 < C7 := 1 − C5

2C6
< 1. (2.13)

Proof. Consider the function g(α) := E[uk + αdk] − E[uk], α ∈ R. Then g(0) = 0, and g has a global minimum at αk > 0. By 
coercivity and continuity of E , there is a βk , αk < βk < ∞, such that g(βk) = 0, and, for all α ∈ [0, βk],

E[uk + αdk] ≤ E[uk] ≤ E[u0] =: E0.

By Taylor’s theorem, there is a γ = γ (uk, dk, α) ∈ (0, 1), such that

E[uk + αdk] − E[uk] = αδE[uk](dk) + α2

2
δ2 E[θk](dk,dk),
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Fig. 1. The functions g(α) = E[uk + αdk] − E[uk] and f (α) = (−α + α2

2 C6)∥δE[uk]∥2
L−1 from (2.14). The function g , which is strictly convex, is dominated 

by the function f , which is quadratic, on the interval [0, βk].

where θk := uk + (1 − γ )αdk . By convexity of E ,

E[θk] ≤ γ E[uk] + (1 − γ )E[uk + αdk] ≤ E[uk] ≤ E[u0] = E0.

Using estimate (2.11) – with the set B defined with respect to E0 = E[u0] – and norm equality (2.4), we get, for all 
α ∈ [0, βk],

g(α) = E[uk + αdk] − E[uk] ≤ αδE[uk](dk) + α2

2
C6

∥∥∥dk
∥∥∥

2

L

=
(
− α + α2

2
C6

)∥∥∥δE[uk]
∥∥∥

2

L−1
=: f (α). (2.14)

Now, the function f (α) is quadratic, f (0) = 0, f (βk) ≥ g(βk) = 0, and f ′(0) < 0. See Fig. 1. Thus f has a minimum in 
(0, βk). In fact, the minimum is achieved at 0 < σk := 1

C6
< βk . Then we have

E[uk + αkdk] − E[uk] ≤ g(σk) = E[uk + σkdk] − E[uk] ≤ − 1
2C6

∥∥∥δE[uk]
∥∥∥

2

L−1
= f (σk),

or, equivalently,

E[uk] − E[uk+1] ≥ 1
2C6

∥∥∥δE[uk]
∥∥∥

2

L−1
.

Now, using estimates (2.9) and (2.10) we obtain

0 ≤ E[uk] − E[u] ≤ 1
C5

∥∥∥δE[uk]
∥∥∥

2

L−1
.

Combining the last two estimates, we get the result

0 ≤ E[uk] − E[u] ≤ 2C6

C5

(
E[uk] − E[uk+1]

)
,

or, equivalently,

0 ≤ E[uk+1] − E[u] ≤
(

2C6

C5
− 1

)(
E[uk] − E[uk+1]

)
.

Since E[uk+1] > E[u], as long as uk+1 ≠ u, and E[uk] ≥ E[uk+1], this last inequality implies that

0 <
C5

2C6
< 1.

A little more manipulation reveals the equivalent inequality

0 ≤ E[uk+1] − E[u] ≤
(

1 − C5

2C6

)(
E[uk] − E[u]

)
,

and the result follows. ✷
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If the following property holds, we get a simple corollary of the last theorem.

(L6) There is a constant C8 > 0, such that, for every ν, ξ ∈ H ,

C8 ∥ξ∥2
L ≤ |δ2 E[ν](ξ, ξ)|. (2.15)

This implies the strong convexity of E and is, therefore, stronger that (E2).

Corollary 2.6. Suppose that assumptions (E1)–(E3) and (L1)–(L6) are valid. Let 
{

uk
}∞

k=0 ⊂ H be the sequence generated by (2.5), and 
define ek := u − uk. Then

∥∥∥ek
∥∥∥

2

L
≤ (C7)

k E[u0] − E[u]
C8

. (2.16)

Proof. By Taylor’s theorem and estimate (2.15), we have

E[uk] − E[u] = δE[u](ek) + 1
2
δ2 E[θk](ek, ek)

= 1
2
δ2 E[θk](ek, ek) ≥ C8

∥∥∥ek
∥∥∥

2

L
, (2.17)

where θk is in the line segment from uk to u. The result follows from (2.12). ✷

3. Nonlinear elliptic equations on periodic domains

3.1. Notation for periodic Sobolev spaces

For the remainder of paper ! ⊂ Rd with d = 2, 3 is a rectangular domain. In what follows, if d = 2 we assume p ∈ [2, ∞); 
whereas if d = 3 we suppose p ∈ [2, 6]. Most of the physically relevant cases correspond to p being an even integer, however, 
all of our arguments hold for any value of p in the indicated ranges. The Sobolev spaces of periodic functions are defined 
as follows: for q ∈ [1, ∞], we set

W k,q
per(!) :=

{
u ∈ W k,q

loc (Rd)
∣∣∣ u is !-periodic

}
,

where k ∈ N is the differentiability index. Observe that W 0,q
per(!) =: Lq

per(!) = Lq(!). We denote the norm of W k,q
per(!) by 

∥ · ∥W k,q , or just ∥ · ∥Lq when k = 0. In the case q = 2 and k = 0, we denote by (·, ·) and ∥ · ∥ the inner product and norm, 
respectively. We set Hk

per(!) = W k,2
per(!) and immediately remark that, given the range of p, we have H2

per(!) ↪→ W 1,p
per (!). 

For k ∈ N, the continuous dual of Hk
per(!) is denoted by H−k

per(!) and their pairing by ⟨·, ·⟩k . We set ⟨·, ·⟩ := ⟨·, ·⟩1.
If L2

0(!) denotes the set of functions in L2(!) with zero mean, we define

H̊1
per(!) := H1

per(!) ∩ L2
0(!), H̊−1

per(!) :=
{

v ∈ H−1
per(!)

∣∣∣ ⟨v,1⟩ = 0
}

.

We define a linear operator T : H̊−1
per(!) → H̊1

per(!) via the following variational problem: given ζ ∈ H̊−1
per(!), T[ζ ] ∈ H̊1

per(!)
solves

(∇T[ζ ],∇χ) = ⟨ζ,χ⟩, ∀ χ ∈ H̊1
per(!).

From the Riesz representation theorem it immediately follows that T is well-defined. We define the inner product

(ζ, ξ)H̊−1
per

:= (∇T[ζ ],∇T[ξ ]) = ⟨ζ,T[ξ ]⟩ = ⟨ξ,T[ζ ]⟩, ∀ ζ, ξ ∈ H̊−1
per(!).

The induced norm is denoted ∥ · ∥H̊−1
per

. The following facts can be easily established [12]:

Lemma 3.1. On H̊−1
per(!) the norm ∥ · ∥H̊−1

per
equals the operator norm: for all ζ ∈ H̊−1

per(!),

∥ζ∥H̊−1
per

= sup
0≠χ∈H̊1

per(!)

⟨ζ,χ⟩
∥∇χ∥ .

Consequently, we have |⟨ζ,χ ⟩| ≤ ∥ζ∥H̊−1
per

∥∇χ∥, for all χ ∈ H1
per(!) and ζ ∈ H̊−1

per(!). Furthermore, for all ζ ∈ L2
0(!), we have the 

Poincaré type inequality: ∥ζ∥H̊−1
per

≤ C ∥ζ∥ , for some C > 0.
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3.2. A fourth-order regularized p-Laplacian problem

We consider the following weak formulation of (1.1): given f ∈ L2
per(!), find u ∈ H2

per(!) such that

(u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (#u,#ξ) = ( f , ξ) , ∀ ξ ∈ H2

per(!), (3.1)

where 0 < ε ≤ 1 and s > 0 are parameters. Equation (3.1) is mass conservative in the following sense: (u − f ,1) = 0. One 
can show that the solution of the weak formulation is a minimizer of the following energy: for any ν ∈ H2

per(!),

E[ν] := 1
2
∥ν − f ∥2 + s

p
∥∇ν∥p

Lp + sε2

2
∥#ν∥2. (3.2)

It is not difficult to show that E satisfies (E1)–(E3). The first derivative of E at a point ν may be calculated as follows: for 
any ξ ∈ H2

per(!),

dτ E[ν + τξ ]|τ=0 = δE[ν](ξ) = (ν − f , ξ) + s
(
|∇ν|p−2∇ν,∇ξ

)
+ sε2 (#ν,#ξ) .

Thus, our original problem is equivalent to the following: find u ∈ H2
per(!), such that, for all ξ ∈ H2

per(!), δE[u](ξ) = 0, 
which is equivalent to (3.1). This problem has a unique solution, which is, in turn, the unique minimizer of the energy 
(3.2):

u := argmin
ν∈H2

per(!)

E[ν].

The following estimate holds: for all ν, ξ ∈ H2
per(!),

|δE[ν](ξ)| ≤ ∥ν − f ∥ · ∥ξ∥ + s ∥∇ν∥p−1
Lp ∥∇ξ∥L p + sε2 ∥#ν∥ · ∥#ξ∥ .

The second variation is a continuous bilinear operator. Given a fixed ν ∈ H2
per(!), the action of the second variation on the 

arbitrary pair (ξ, η) ∈ H2
per(!) × H2

per(!) is given by

δ2 E[ν](ξ,η) = (ξ,η) + s
(
|∇ν|p−2∇ξ,∇η

)

+ (p − 2)s
(
|∇ν|p−4∇ν · ∇ξ,∇ν · ∇η

)
+ sε2 (#ξ,#η) ,

and we have the bound
∣∣∣δ2 E[ν](ξ,η)

∣∣∣ ≤ ∥ξ∥ · ∥η∥ + s ∥∇ν∥p−2
Lp ∥∇ξ∥L p ∥∇η∥L p

+ (p − 2)s ∥∇ν∥p−2
Lp ∥∇ξ∥L p ∥∇η∥L p + sε2 ∥#ξ∥ · ∥#η∥ . (3.3)

For this problem we define the pre-conditioner L : H2
per(!) → H−2

per(!) via

⟨L[ν], ξ⟩ := (ν, ξ) + s (∇ν,∇ξ) + sε2 (#ν,#ξ) , ∀ ξ ∈ H2
per(!).

Clearly, this is a positive, symmetric operator, and it satisfies assumptions (L1)–(L3), and one can see the similarities with 
the nonlinear operator in (3.1). We now proceed to find the positive constants for which C5, C6, C8 assumptions (L4)–(L6) 
are satisfied.

Remark 3.2. We could also consider the possibility of changing the metric in the descent direction calculation by, for 
example, defining the linear operator Lk : H2

per(!) → H−2
per(!) via

⟨Lk[ν], ξ⟩ := (ν, ξ) + s
(∣∣∣∇uk

∣∣∣
p−2

∇ν,∇ξ

)
+ sε2 (#ν,#ξ) , ∀ ξ ∈ H2

per(!).

This is similar to the idea in [26]. The search direction is then found as follows: find dk ∈ H2
per(!) such that

⟨Lk[dk], ξ⟩ = −δE
[

uk
]
(ξ), ∀ ξ ∈ H2

per(!).

Our theory does not cover this case, and we will not consider it further here. We plan to examine this in a future work.
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Lemma 3.3. Suppose that p ∈ [2, ∞) when d = 2, and p ∈ [2, 6], if d = 3. For any ξ ∈ H2
per(!), we have

∥∇ξ∥L p ≤ C9

{
∥ξ∥ 1

p · ∥#ξ∥
p−1

p , if d = 2, p ∈ [2,∞),

∥ξ∥ 3
2p − 1

4 · ∥#ξ∥ 5
4 − 3

2p , if d = 3, p ∈ [2,6],
(3.4)

for some C9 = C9(d, p) > 0.

Proof. This follows from the Gagliardo–Nirenberg interpolation inequality and elliptic regularity. ✷

Lemma 3.4. For any ν, ξ ∈ H2
per(!),

C5 ∥ξ − ν∥2
L ≤ (δE[ξ ] − δE[ν]) (ξ − ν), (3.5)

where C5 = min
(

1
2 ,εs− 1

2

)
. Let E0 be given, such that B :=

{
ν ∈ H2

per(!)
∣∣ E[ν] ≤ E0

}
is non-empty. For any ν ∈ B and any ξ ∈

H2
per(!),

∣∣∣δ2 E[ν](ξ, ξ)
∣∣∣ ≤ C6 ∥ξ∥2

L , (3.6)

where

C6 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + 1
p (p − 1)

2p−1
p ε

−2(p−1)
p s

1
p C2

9 C p−2
10 for p ∈ [2,∞), d = 2,

1 + (p − 1)
(

4p
6−p

) p−6
4p

(
4p

5p−6

) 6−5p
4p

s
6−p
4p ε

6−5p
2p C2

9 C p−2
10 for p ∈ [2,6), d = 3,

1 + (p − 1)ε−2C2
9 C p−2

10 for p = 6, d = 3,

(3.7)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).

Proof. Clearly

(δE[ξ ] − δE[ν]) (ξ − ν) = ∥ξ − ν∥2 + sε2 ∥#(ξ − ν)∥2

+ s
(
|∇ξ |p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
.

In addition, the following estimate is available:

(
|∇ξ |p−2∇ξ − |∇ν|p−2∇ν,∇(ξ − ν)

)
≥ 1

2p−2 ∥∇(ξ − ν)∥p
L p ≥ 0, for p ≥ 2. (3.8)

The simple interpolation inequality

∥∇ξ∥2 ≤ ∥ξ∥ · ∥#ξ∥, ∀ξ ∈ H2
per(!),

in conjunction with Young’s inequality yields

1
2

∥ξ − ν∥2 + sε2

2
∥#(ξ − ν)∥2 ≥ s

1
2 ε ∥ξ − ν∥ · ∥#(ξ − ν)∥ ≥ s

1
2 ε ∥∇(ξ − ν)∥2 .

As a consequence, we get

(δE[ξ ] − δE[ν]) (ξ − ν) ≥ ∥ξ − ν∥2 + sε2 ∥#(ξ − ν)∥2

≥ 1
2

∥ξ − ν∥2 + 1
2

sε2 ∥#(ξ − ν)∥2 + s
1
2 ε ∥∇(ξ − ν)∥2 ,

and we conclude that estimate (3.5) is valid by choosing C5 = min( 1
2 , εs− 1

2 ).
Next we derive (3.6). Suppose ν ∈ B . From (3.3) we have

∣∣∣δ2 E[ν](ξ, ξ)
∣∣∣ ≤ ∥ξ∥2 + (p − 1)s ∥∇ν∥p−2

Lp ∥∇ξ∥2
Lp + sε2 ∥#ξ∥2 . (3.9)

Now, since ν ∈ B ,

∥∇ν∥L p ≤ (pE0)
1
p =: C10.
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Suppose that d = 2. An application of the Sobolev inequality (3.4) in Lemma 3.3 indicates that

p
1
p

(
p

p − 1

) p−1
p

ε
2(p−1)

p s
(p−1)

p C−2
9 ∥∇ξ∥2

Lp ≤ p
1
p ∥ξ∥ 2

p ·
(

p
p − 1

) p−1
p

ε
2(p−1)

p s
p−1

p ∥#ξ∥
2(p−1)

p

≤ ∥ξ∥2 + sε2 ∥#ξ∥2 ,

where Young’s inequality is applied in the second step. It follows that,

(p − 1)s ∥∇ν∥p−2
Lp ∥∇ξ∥2

Lp ≤ 1
p

(p − 1)
2p−1

p ε
−2(p−1)

p s
1
p C2

9 C p−2
10

(
∥ξ∥2 + sε2 ∥#ξ∥2

)
. (3.10)

Substituting (3.10) in (3.9) yields

∣∣∣δ2 E[ν](ξ, ξ)
∣∣∣ ≤

(
1 + 1

p
(p − 1)

2p−1
p ε

−2(p−1)
p s

1
p C2

9 C p−2
10

)
(∥ξ∥2 + sε2 ∥#ξ∥2).

We conclude that estimate (3.6) is valid by choosing

C6 = 1 + 1
p

(p − 1)
2p−1

p ε
−2(p−1)

p s
1
p C2

9 C p−2
10 .

Note that both C9 and C10 are ε and s independent. Following the similar arguments, for p ∈ [2, 6), d = 3, we get

C6 = 1 + (p − 1)

(
4p

6 − p

) p−6
4p

(
4p

5p − 6

) 6−5p
4p

s
6−p
4p ε

6−5p
2p C2

9 C p−2
10 .

For the case p = 6, d = 3, the Sobolev inequality (3.4) degenerates to ∥∇ξ∥Lp ≤ C9 ∥#ξ∥, for any ξ ∈ H2
per(!). Hence, we 

have

∥ξ∥2 + sε2 ∥#ξ∥2 ≥ sε2 ∥#ξ∥2 ≥ sε2C−2
9 ∥∇ξ∥2

Lp ,

and
∣∣∣δ2 E[ν](ξ, ξ)

∣∣∣ ≤
(

1 + (p − 1)ε−2C2
9 C p−2

10

)
(∥ξ∥2 + ε2 ∥#ξ∥2).

Therefore, estimate (3.6) is valid by choosing

C6 = 1 + (p − 1)ε−2C2
9 C p−2

10 .

That we can take C8 = C5 is the result of a simple calculation that we omit for the sake of brevity. The proof is com-
plete. ✷

4. A sixth-order regularized p-Laplacian problem

We now study problem (1.2a)–(1.2b). A weak formulation is given as follows: for f , g ∈ L2
per(!), find u ∈ H2

per(!) and 
w ∈ H1

per(!) such that

(u,χ) + (∇w,∇χ) = (g,χ) , ∀ χ ∈ H1
per(!), (4.1a)

sλ (u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (#u,#ξ) − (w, ξ) = ( f , ξ) , ∀ ξ ∈ H2

per(!), (4.1b)

where λ ≥ 0, and ε ∈ (0, 1]. This problem is mass-conservative, in the sense that (u − g, 1) = 0, and (w − sλg + f , 1) = 0, and 
it can be recast as a minimization problem with an energy that involves the H̊−1

per norm. In particular, for any ν ∈ H̊2
per(!)

we define

E[ν] = 1
2

(ν − g + ḡ,T[ν − g + ḡ]) + λs
2

∥ν + ḡ∥2 − (ν, f ) + s
p

∥∇ν∥p
L p + sε2

2
∥#ν∥2

= 1
2

∥ν − g + ḡ∥2
H̊−1

per
+ λs

2
∥ν + ḡ∥2 − (ν, f ) + s

p
∥∇ν∥p

L p + sε2

2
∥#ν∥2 , (4.2)

where by ḡ we denote the average of g over !. Observe that ν − g + ḡ ∈ H̊−1
per, which is required for this energy to make 

sense. It is straightforward to show that E satisfies (E1)–(E3), with respect to the Hilbert space H = H̊2
per(!). The first 

variation of E is given as follows: for any ξ ∈ H̊2
per(!),
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dτ E[ν + τξ ]|τ=0 = δE[ν](ξ) = (T[ν − g + ḡ], ξ) + λs (ν + ḡ, ξ) − ( f , ξ)

+ s
(
|∇ν|p−2∇ν,∇ξ

)
+ sε2 (#ν,#ξ) .

The unique minimizer of E – let us call it u⋆ ∈ H̊2
per(!) for the moment – satisfies δE[u⋆](ξ) = 0, for all ξ ∈ H̊2

per(!). By the 
definition of the T operator, there is a unique element w⋆ ∈ H̊1

per(!) such that

w⋆ := −T[u⋆ − g + ḡ].
Therefore, we have, for all ξ ∈ H̊2

per(!),

sλ (u⋆ + ḡ, ξ) + s
(
|∇u⋆|p−2∇u⋆,∇ξ

)
+ sε2 (#u⋆,#ξ) − (w⋆, ξ) = ( f , ξ) .

Setting u := u⋆ + ḡ and w := w⋆ + sλḡ − f̄ and using the fact that ξ is of zero mean, we have

sλ (u, ξ) + s
(
|∇u|p−2∇u,∇ξ

)
+ sε2 (#u,#ξ) − (w, ξ) = ( f , ξ) , ∀ ξ ∈ H̊2

per.

Using the definition of the T operator again, we conclude that w⋆ ∈ H̊1
per(!) satisfies

(∇w⋆,∇χ) = − (u⋆ − g + ḡ,χ) ,

for all χ ∈ H̊1
per(!), which implies that

(∇w,∇χ) = − (u − g,χ) .

It follows that solving (4.1a)–(4.1b) is equivalent to minimizing the coercive, strictly convex energy (4.2), after the appropri-
ate affine change of variables.

The second variation of E is a continuous bilinear operator. Given a fixed ν ∈ H̊2
per(!), the action of the second variation 

on the arbitrary pair (ξ, η) ∈ H̊2
per(!) × H̊2

per(!) becomes

δ2 E[ν](ξ,η) = (ξ,T[η]) + λs (ξ,η) + s
(
|∇ν|p−2∇ξ,∇η

)

+ (p − 2)s
(
|∇ν|p−4∇ν · ∇ξ,∇ν · ∇η

)
+ sε2 (#ξ,#η) .

Similar to the estimate in the fourth-order case (3.3), we have the bound
∣∣∣δ2 E[ν](ξ,η)

∣∣∣ ≤ ∥ξ∥H̊−1
per

∥η∥H̊−1
per

+ λs ∥ξ∥ · ∥η∥ + s ∥∇ν∥p−2
Lp ∥∇ξ∥L p ∥∇η∥L p

+ (p − 2)s ∥∇ν∥p−2
Lp ∥∇ξ∥L p ∥∇η∥L p + sε2 ∥#ξ∥ · ∥#η∥ ,

which implies that
∣∣∣δ2 E[ν](ξ, ξ)

∣∣∣ ≤ ∥ξ∥2
H̊−1

per
+ sλ∥ξ∥2 + (p − 1)s ∥∇ν∥p−2

Lp ∥∇ξ∥2
Lp + sε2 ∥#ξ∥2 , (4.3)

for all ν, ξ ∈ H̊2
per(!).

For the sixth order problem, we define the pre-conditioner L : H̊2
per(!) → H̊−2

per(!) via

⟨L[ν], ξ⟩ := sλ (ν, ξ) + (ν, ξ)H̊−1
per

+ s (∇ν,∇ξ) + sε2 (#ν,#ξ) , ∀ ξ ∈ H̊2
per(!). (4.4)

This operator satisfies (L1)–(L3). To show that it satisfies (L3)–(L6), we need some technical results.

Lemma 4.1. For every ξ ∈ H̊2
per(!) we have

∥ξ∥ ≤ ∥ξ∥
2
3

H̊−1
per

∥#ξ∥ 1
3 , (4.5)

and

∥∇ξ∥ ≤ ∥ξ∥
1
3

H̊−1
per

∥#ξ∥ 2
3 . (4.6)
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Proof. Using integration by parts we get

∥∇ξ∥2 = −(ξ,#ξ) ≤ ∥ξ∥ · ∥#ξ∥. (4.7)

The definition of the H̊−1
per(!) norm implies that

∥ξ∥2 = (ξ, ξ) ≤ ∥ξ∥H̊−1
per

∥∇ξ∥. (4.8)

Therefore, a combination of (4.7) and (4.8) leads to

∥∇ξ∥ ≤ ∥ξ∥ 1
2 · ∥#ξ∥ 1

2 ≤ ∥ξ∥
1
4

H̊−1
per

∥∇ξ∥ 1
4 · ∥#ξ∥ 1

2 ,

so that

∥∇ξ∥ 3
4 ≤ ∥ξ∥

1
4

H̊−1
per

∥#ξ∥ 1
2 ,

which yields the second inequality. The first may be proved in a similar way. ✷

Similar to before, the Gagliardo–Nirenberg inequality, together with elliptic regularity, yield the following interpolation 
result.

Lemma 4.2. Suppose that p ∈ [2, ∞) when d = 2, and p ∈ [2, 6], if d = 3. For any ξ ∈ H̊2
per(!), we have

∥∇ξ∥L p ≤ C9

⎧
⎪⎨

⎪⎩

∥ξ∥
2

3p

H̊−1
per

∥#ξ∥1− 2
3p , if d = 2, p ∈ [2,∞),

∥ξ∥
1
p − 1

6

H̊−1
per

∥#ξ∥ 7
6 − 1

p , if d = 3, p ∈ [2,6],
(4.9)

for some C9 = C9(d, p) > 0.

We can now find the coefficients C5, C6, and C8, which establish properties (L4)–(L6) and therefore guarantee the geo-
metric convergence of the PSD method for the sixth-order case.

Lemma 4.3. For any ν, ξ ∈ H̊2
per(!), we have

C5 ∥ξ − ν∥2
L ≤ (δE[ξ ] − δE[ν]) (ξ − ν), (4.10)

where C5 = min
(

1
3 ,ε

4
3 s− 1

3

)
. Let E0 be given such that B :=

{
ξ ∈ H̊2

per(!)
∣∣ E[ξ ] ≤ E0

}
is non-empty. For any ν ∈ B and any ξ ∈

H̊2
per(!), the following estimate is valid:

∣∣∣δ2 E[ν](ξ, ξ)
∣∣∣ ≤ C6 ∥ξ∥2

L , (4.11)

where

C6 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + (p − 1)
(

3p
2

)− 2
3p

(
3p

3p−2

) 2−3p
3p

ε
4−6p

3p s
2

3p C2
9 C p−2

10 , for p ∈ [2,∞), d = 2,

1 + (p − 1)
(

6p
6−p

) p−6
6p

(
6p

7p−6

) 6−7p
6p

ε
6−7p

3p s
6−p
6p C2

9 C p−2
10 , for p ∈ [2,6), d = 3,

1 + (p − 1)ε−2C2
9 C p−2

10 , for p = 6, d = 3,

(4.12)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).

Proof. The proof is similar to that of Lemma 3.4, and we omit it for the sake of brevity. The details may be found in [17]. ✷

Remark 4.4. We note that a mixed formulation of the sixth-order regularized p-Laplacian problem – expressed in strong 
form in (1.2a)–(1.2b) and in weak form in (4.1a)–(4.1b) – in order to preserve the proper variational structure of the problem. 
Specifically, observe that the p-Laplacian term appearing in (1.2b) is the gradient of a convex energy functional. However, if 
one applies −# to (1.2b), so that the variable w is dropped, a composition of the p-Laplacian and regular Laplacian operators 
yields a nonlinear term that could not be represented as the gradient of a convex energy. In short, the variational/convexity 
structure would be lost and the theoretical convergence could not be justified.
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5. Finite difference spatial discretization in 2D

5.1. Notation

In this subsection we define the discrete spatial difference operators, function space, inner products and norms, following 
the notation used in [24,32,35–37]. Let ! = (0, L) × (0, L), with L > 0. We write L = m · h, where m is a positive integer. The 
parameter h = L

m is called the mesh or grid spacing. We define the following two uniform, infinite grids with grid spacing 
h > 0:

E := {xi+ 1
2

| i ∈ Z}, C := {xi | i ∈ Z},

where xi = x(i) := (i − 1
2 ) · h. Consider the following 2D discrete periodic function spaces:

Vper :=
{
ν : E × E → R

∣∣∣ νi+ 1
2 , j+ 1

2
= νi+ 1

2 +αm, j+ 1
2 +βm, ∀ i, j,α,β ∈ Z

}
,

Cper :=
{
ν : C × C → R

∣∣ νi, j = νi+αm, j+βm, ∀ i, j,α,β ∈ Z
}
,

Eew
per :=

{
ν : E × C → R

∣∣∣ νi+ 1
2 , j = νi+ 1

2 +αm, j+βm, ∀ i, j,α,β ∈ Z
}

,

Ens
per :=

{
ν : C × E → R

∣∣∣ νi, j+ 1
2

= νi+αm, j+ 1
2 +βm, ∀ i, j,α,β ∈ Z

}
.

The functions of Vper are called vertex centered functions; those of Cper are called cell centered functions. The functions of Eew
per

are called east-west edge-centered functions, and the functions of Ens
per are called north-south edge-centered functions. We also 

define the mean zero space

C̊per :=

⎧
⎨

⎩ν ∈ Cper

∣∣∣∣∣∣
h2

|!|
m∑

i, j=1

νi, j =: ν = 0

⎫
⎬

⎭ .

We now define the important difference and average operators on the spaces:

Axνi+ 1
2 ,✷ := 1

2

(
νi+1,✷ + νi,✷

)
, Dxνi+ 1

2 ,✷ := 1
h

(
νi+1,✷ − νi,✷

)
,

A yν✷,i+ 1
2

:= 1
2

(
ν✷,i+1 + ν✷,i

)
, D yν✷,i+ 1

2
:= 1

h

(
ν✷,i+1 − ν✷,i

)
,

with Ax, Dx : Cper → Eew
per if ✷ is an integer, and Ax, Dx : Ens

per → Vper if ✷ is a half-integer, with A y, D y : Cper → Ens
per if ✷ is 

an integer, and A y, D y : Eew
per → Vper if ✷ is a half-integer. Likewise,

axνi,✷ := 1
2

(
νi+ 1

2 ,✷ + νi− 1
2 ,✷

)
, dxνi,✷ := 1

h

(
νi+ 1

2 ,✷ − νi− 1
2 ,✷

)
,

ayν✷, j := 1
2

(
ν✷, j+ 1

2
+ ν✷, j− 1

2

)
, dyν✷, j := 1

h

(
ν✷, j+ 1

2
− ν✷, j− 1

2

)
,

with ax, dx : Eew
per → Cper if ✷ is an integer, and ax, dx : Vper → Ens

per if ✷ is a half-integer; and with ay, dy : Ens
per → Cper if ✷

is an integer, and ay, dy : Vper → Eew
per if ✷ is a half-integer.

Define the 2D center-to-vertex derivatives Dx, Dy : Cper → Vper component-wise as

Dxνi+ 1
2 , j+ 1

2
:= A y(Dxν)i+ 1

2 , j+ 1
2

= Dx(A yν)i+ 1
2 , j+ 1

2

= 1
2h

(
νi+1, j+1 − νi, j+1 + νi+1, j − νi, j

)
,

Dyνi+ 1
2 , j+ 1

2
:= Ax(D yν)i+ 1

2 , j+ 1
2

= D y(Axν)i+ 1
2 , j+ 1

2

= 1
2h

(
νi+1, j+1 − νi+1, j + νi, j+1 − νi, j

)
.

The utility of these definitions is that the differences Dx and Dy are collocated on the grid, unlike the case for Dx , D y . 
Define the 2D vertex-to-center derivatives dx, dy : Vper → Cper component-wise as

dxνi, j := ay(dxν)i, j = dx(ayν)i, j

= 1
2h

(
νi+ 1

2 , j+ 1
2

− νi− 1
2 , j+ 1

2
+ νi+ 1

2 , j− 1
2

− νi− 1
2 , j− 1

2

)
,

dyνi, j := ax(dyν)i, j = dy(axν)i, j

= 1
2h

(
νi+ 1

2 , j+ 1
2

− νi+ 1
2 , j− 1

2
+ νi− 1

2 , j+ 1
2

− νi− 1
2 , j− 1

2

)
.
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Now the discrete gradient operator, ∇ v
h : Cper → Vper × Vper, is defined as

∇ v
h νi+ 1

2 , j+ 1
2

:= (Dxνi+ 1
2 , j+ 1

2
,Dyνi+ 1

2 , j+ 1
2
).

The standard 2D discrete Laplacian, #h : Cper → Cper, is given by

#hνi, j := dx(Dxν)i, j + dy(D yν)i, j = 1
h2

(
νi+1, j + νi−1, j + νi, j+1 + νi, j−1 − 4νi, j

)
.

The 2D vertex-to-center average, A : Vper → Cper, is defined to be

Aνi, j := 1
4

(
νi+1, j + νi−1, j + νi, j+1 + νi, j−1

)
.

The 2D skew Laplacian, #v
h : Cper → Cper, is defined as

#v
hνi, j = dx(Dxν)i, j + dy(Dyν)i, j

= 1
2h2

(
νi+1, j+1 + νi−1, j+1 + νi+1, j−1 + νi−1, j−1 − 4νi, j

)
.

The 2D discrete p-Laplacian operator is defined as

∇ v
h ·

(∣∣∇ v
h ν

∣∣p−2 ∇ v
h ν

)

i j
:= dx(r Dxν)i, j + dy(r Dyν)i, j,

with

ri+ 1
2 , j+ 1

2
:=

[
(Dxu)2

i+ 1
2 , j+ 1

2
+ (Dyu)2

i+ 1
2 , j+ 1

2

] p−2
2

.

Clearly, for p = 2, #v
hν = ∇ v

h ·
(∣∣∇ v

h ν
∣∣p−2 ∇ v

h ν
)

.

Now we are ready to define the following grid inner products:

(ν, ξ)2 := h2
m∑

i=1

n∑

j=1

νi, jψi, j, ν, ξ ∈ Cper,

⟨ν, ξ⟩ := (A(νξ),1)2 , ν, ξ ∈ Vper,

[ν, ξ ]ew := (Ax(νξ),1)2 , ν, ξ ∈ Eew
per,

[ν, ξ ]ns :=
(

A y(νξ),1
)

2 , ν, ξ ∈ Ens
per.

Suppose that ζ ∈ C̊per, then there is a unique solution Th[ζ ] ∈ C̊per such that −#hTh[ζ ] = ζ . We often write, in this case, 
Th[ζ ] = −#−1

h ζ . The discrete analogue of the H̊−1
per inner product is defined as

(ζ, ξ)−1 := (ζ,Th[ξ ])2 = (Th[ζ ], ξ)2 , ζ, ξ ∈ C̊per,

where summation-by-parts [32,37] guarantees the symmetry and the second equality.
We now define the following norms for cell-centered functions. If ν ∈ C̊per, then ∥ν∥2

−1 = (ν,ν)−1. If ν ∈ Cper, then 
∥ν∥2

2 := (ν,ν)2; ∥ν∥p
p :=

(
|ν|p,1

)
2 (1 ≤ p < ∞), and ∥ν∥∞ := max 1≤i≤m

1≤ j≤n

∣∣νi, j
∣∣. Similarly, we define the gradient norms: for 

ν ∈ Cper,

∥∥∇ v
h ν

∥∥p
p := ⟨|∇ v

h ν|p,1⟩, |∇ v
h ν|p := [(Dxν)2 + (Dyν)2] p

2 =
[
∇ v

h ν · ∇ v
h ν

] p
2 ∈ Vper, 2 ≤ p < ∞,

and

∥∇hν∥2
2 := [Dxν, Dxν]ew +

[
D yν, D yν

]
ns .

5.2. Discrete Sobolev inequalities

Lemma 5.1. Suppose that p ∈ [2, ∞), d = 2, we have

∥∥∇ v
h ξ

∥∥
p ≤ C9

⎧
⎨

⎩
∥ξ∥

1
p
2 · ∥#hξ∥

p−1
p

2 , ∀ ξ ∈ Cper,

∥ξ∥
2

3p
−1 · ∥#hξ∥1− 2

3p
2 , ∀ ξ ∈ C̊per,

for some C9 = C9(p) > 0.
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Proof. The proof for p = 4, d = 2 can be found in [17]. ✷

Remark 5.2. Though we have focused on the case d = 2 in this section, we can also define our operators and norms, in 
particular ∇ v

h ξ and 
∥∥∇ v

h ξ
∥∥

p , in three space dimensions. Then for p ∈ [2, 6], we expect

∥∥∇ v
h ξ

∥∥
p ≤ C9

⎧
⎨

⎩
∥ξ∥

3
2p − 1

4
2 ∥#hξ∥

5
4 − 3

2p
2 , ∀ ξ ∈ Cper,

∥ξ∥
1
p − 1

6
−1 ∥#hξ∥

7
6 − 1

p
2 , ∀ ξ ∈ C̊per,

for some C9 = C9(d = 3, p) > 0.

5.3. Convergence for the discretized fourth-order problem

The discrete version of (1.1) can be expressed as follows: given f ∈ Cper, find u ∈ Cper such that

u − s∇ v
h ·

(∣∣∇ v
h u

∣∣p−2 ∇ v
h u

)
+ sε2#2

hu = f . (5.1)

This represents a second-order approximation of the solution of (1.1). As in the space continuous case, we formulate an 
equivalent minimization problem. Using the definitions from subsection 5.1, we have the following discrete energy: given 
f ∈ Cper, for any ν ∈ Cper, define

Eh[ν] := 1
2
∥ν − f ∥2

2 + s
p

∥∥∇ v
h ν

∥∥p
p + sε2

2
∥#hν∥2

2. (5.2)

This (discrete) energy satisfies (E1)–(E3). The discrete variational derivative at ν ∈ Cper is

δEh[ν](ξ) := dτ Eh[ν + τξ ]|τ=0

= (ν − f , ξ)2 + s⟨|∇ v
h ν|p−2Dxν,Dxξ⟩ + s⟨|∇ v

h ν|p−2Dyν,Dyξ⟩ + sε2(#hν,#hξ)2

= (ν − f , ξ)2 + s⟨|∇ v
h ν|p−2∇ v

h ν,∇ v
h ξ⟩ + sε2(#hν,#hξ)2

=
(
ν − f − s∇ v

h ·
(∣∣∇ v

h ν
∣∣p−2 ∇ v

h ν
)

+ sε2#2
hν, ξ

)

2
,

for all ξ ∈ Cper, where we have used summation-by-parts [32,37] to obtain the last equality. Given a fixed ν ∈ Cper, the 
action of the second variation on the arbitrary pair (ξ, η) ∈ Cper × Cper is given by

δ2 Eh[ν](ξ,η) = (ξ,η)2 + s⟨|∇ v
h ν|p−2∇ v

h ξ,∇ v
h η⟩

+ (p − 2)s⟨|∇ v
h ν|p−4∇ v

h ν · ∇ v
h ξ,∇ v

h ν · ∇ v
h η⟩ + sε2 (#hξ,#hη)2 .

We have the bound:
∣∣∣δ2 Eh[ν](ξ,η)

∣∣∣ ≤ ∥ξ∥2 ∥η∥2 + s
∥∥∇ v

h ν
∥∥p−2

p

∥∥∇ v
h ξ

∥∥
p

∥∥∇ v
h η

∥∥
p

+ (p − 2)s
∥∥∇ v

h ν
∥∥p−2

p

∥∥∇ v
h ξ

∥∥
p

∥∥∇ v
h η

∥∥
p + sε2 ∥#hξ∥2 ∥#hη∥2 . (5.3)

For this problem, we define the pre-conditioner via

(ν, ξ)Lh = Lh[ν](ξ) := (ν, ξ)2 + s [Dxν, Dxξ ]ew + s
[

D yν, D yξ
]

ns + sε2(#hν,#hξ)2

= (ν − s#hν + sε2#2
hν, ξ)2,

for all ν, ξ ∈ Cper, where we have used summation-by-parts to establish the second equality. In other words,

Lh[ν] = ν − s#hν + sε2#2
hν.

One will notice the similarity of the pre-conditioner with the nonlinear operator in (5.1). The induced norm is

∥ν∥2
Lh

:= (ν,ν)Lh = ∥ν∥2
2 + s ∥∇hν∥2

2 + sε2 ∥#hν∥2 ,

defined for every ν ∈ Cper.
Mimicking the proofs in the continuous case, using summation-by-parts in place of integration-by-parts, and Lemma 5.1, 

we get the following result, whose proof is omitted:
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Lemma 5.3. For any ν, ξ ∈ Cper ,

C5 ∥ξ − ν∥2
Lh

≤ (δEh[ξ ] − δEh[ν]) (ξ − ν), (5.4)

where C5 = min
(

1
2 ,εs− 1

2

)
. Let E0 be given, such that B :=

{
ν ∈ Cper

∣∣ Eh[ν] ≤ E0
}

is non-empty. For any ν ∈ B and any ξ ∈ Cper , 
we have

∣∣∣δ2 Eh[ν](ξ, ξ)
∣∣∣ ≤ C6 ∥ξ∥2

Lh
, (5.5)

where

C6 = 1 + 1
p

(p − 1)
2p−1

p ε
−2(p−1)

p s
1
p C2

9 C p−2
10 , (5.6)

and C10 = (pE0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).

5.4. Convergence for the discretized sixth-order problem

The (second-order accurate) discrete version of (1.2a)–(1.2b) can be expressed as follows: given f , g ∈ Cper, find u, w ∈
Cper such that

u − #h w = g,

sλu − s∇ v
h ·

(∣∣∇ v
h u

∣∣p−2 ∇ v
h u

)
+ sε2#2

hu − w = f .

As before, it is convenient to switch to the mean-zero version: find u⋆, w⋆ ∈ C̊per such that

u⋆ − #h w⋆ = g − g,

sλu⋆ − s∇ v
h ·

(∣∣∇ v
h u⋆

∣∣p−2 ∇ v
h u⋆

)
+ sε2#2

hu⋆ − w⋆ = f − f .

Similar to fourth-order regularized p-Laplacian problem, we define the following discrete energy: for every ν ∈ C̊per

Eh[ν] := 1
2

∥ν − g + ḡ∥2
−1 + λs

2
∥ν + ḡ∥2

2 − (ν, f ) + s
p

∥∥∇ v
h ν

∥∥p
p + sε2

2
∥#hν∥2

2 .

For the discrete sixth order problem, we define a linear operator Lh : C̊per → C̊per via

(ν, ξ)Lh = Lh[ν](ξ) := sλ (ν, ξ)2 + (ν, ξ)−1 + s [Dxν, Dxξ ]ew + s
[

D yν, D yξ
]

ns + sε2(#hν,#hξ)2

=
(

sλν − s#hν + sε2#2
hν − Th [−ν] , ξ

)

2
,

where the second equality may be seen using summation-by-parts [32,37]. This operator satisfies (L1)–(L3), and the next 
result, which we give without proof for the sake of brevity, shows that (L4)–(L6) are satisfied as well.

Lemma 5.4. For any ν, ξ ∈ C̊per , the following inequality is valid

C5 ∥ξ − ν∥2
Lh

≤ (δEh[ξ ] − δEh[ν]) (ξ − ν),

where C5 = min
(

1
3 ,ε

4
3 s− 1

3

)
. Let E0 be given such that B :=

{
ξ ∈ C̊per

∣∣∣ Eh[ξ ] ≤ E0

}
is non-empty. For any ν ∈ B, we have

∣∣∣δ2 Eh[ν](ξ, ξ)
∣∣∣ ≤ C6 ∥ξ∥2

Lh
,

for all ξ ∈ C̊per , where

C6 = 1 + (p − 1)

(
3p
2

)− 2
3p

(
3p

3p − 2

) 2−3p
3p

ε
4−6p

3p s
2

3p C2
9 C p−2

10 ,

and C10 = (pEh,0)
1
p . We can take C8 = C5 to satisfy estimate (2.15) of assumption (L6).
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6. Numerical experiments

In this section we perform some numerical experiments to support the theoretical results. The finite difference search 
direction equations and Poisson equations are solved efficiently using the Fast Fourier Transform (FFT). We would like to 
point out that the Fourier pseudo-spectral method can be used to discretize space, and, once again, one can utilize the FFT 
for the inversion of the linear systems. For descriptions of the pseudo-spectral methods, see, for example, [4,6,21].

6.1. Thin film epitaxy model with slope selection

In this section we recall the convex decomposition numerical scheme in [35] for the thin film epitaxy model with slope 
selection. Suppose that ! ⊂ R2 is a rectangular domain. The energy of an epitaxial thin film is given by

E[u] =
∫

!

{
1
p

|∇u|p − 1
2

|∇u|2 + ε2

2
|#u|2

}
dx, ∀ u ∈ H2

per(!),

where, p ≥ 4 is even, u : ! → R is the height film, and ε is a constant. The L2 gradient flow is

∂t u = −w, w := δE = −∇ ·
(
|∇u|p−2 ∇u

)
+ #u + ε2#2u, (6.1)

and w is called the chemical potential. The model predicts the emergence of a faceted thin film, whose facets have slopes 
of magnitude approximately one, that coarsens over time. The fully-implicit convex decomposition scheme in 2D [35] can 
be written in operator format as Nh[un+1] = f , where

Nh[ν] := ν − s∇ v
h ·

(∣∣∇ v
h ν

∣∣p−2 ∇ v
h ν

)
+ ε2s#2

hν, f = un − s#v
h un, (6.2)

and s > 0 is the time step. Hence, the scheme can be reformulated as the fourth-order problem (5.1) with f = un − s#v
h un

and p ≥ 4 and even.
In way of summary, to solve Nh[u] = f , suppose that iterate uk ∈ Cper is given. (Note that k is the PSD solver iteration 

index, not the time step index, the latter of which we usually denote by n.) We first compute the search direction dk ∈ Cper
via (2.3):

Lh[dk] = dk − s#hdk + sε2#2
hdk = − δEh[uk]

= −
(

uk − f − s∇ v
h ·

(∣∣∣∇ v
h uk

∣∣∣
p−2

∇ v
h uk

)
+ sε2#2

huk
)

= f − Nh[uk],
where Eh is as defined in (5.2). This equation is efficiently solved using FFT. Once dk is found, we perform a line-search 
according to (2.6): find αk ∈ R such that q(αk) = 0, where

q(α) := δEh[uk + αdk](dk)

=
(

uk + αdk − f − s∇ v
h ·

(∣∣∣∇ v
h (uk + αdk)

∣∣∣
p−2

∇ v
h (uk + αdk)

)
+ sε2#2

h(uk + αdk),dk
)

2

=
(
Nh[uk + αdk] − f ,dk

)

2
.

The approximation sequence is then updated via uk+1 = uk + αkdk . When p = 4 (p = 6), a short calculation shows that q is 
a cubic (quintic) polynomial whose coefficients can be easily obtained. Moreover, the theory predicts that there is a unique 
global root for q.

6.1.1. Convergence and complexity of the PSD solver
In this subsection we demonstrate the accuracy and efficiency of the PSD solver by using the epitaxial thin film model 

with slope selection. We present the results of some convergence tests and perform some sample computations to demon-
strate the convergence and near optimal complexity with respect to the grid size h.

To simultaneously demonstrate the spatial accuracy and the efficiency of the solver, we perform a typical time–space 
convergence test for the fully discrete scheme (6.2) for the slope selection model. As in [32,35], we perform the Cauchy-type 
convergence test using the following periodic initial data [32]:

u(x, y,0) = 0.1 sin2
(

2πx
L

)
· sin

(
4π(y − 1.4)

L

)

−0.1 cos
(

2π(x − 2.0)

L

)
· sin

(
2π y

L

)
, (6.3)
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Table 1
Errors, convergence rates, average iteration numbers and average CPU time for each time step. Parameters are given in the text, and the initial data are 
defined in (6.3). The refinement path is s = 0.1h2.

hc h f p = 4 p = 6

∥δu∥2 Rate #iter Tcpu(h f ) ∥δu∥2 Rate #iter Tcpu(h f )

3.2
16

3.2
32 6.2192 × 10−3 – 4 0.0007 9.3074 × 10−3 – 5 0.0009

3.2
32

3.2
64 1.2685 × 10−3 2.29 2 0.0024 1.6392 × 10−3 2.51 3 0.0032

3.2
64

3.2
128 2.6046 × 10−4 2.28 2 0.0114 2.9046 × 10−4 2.50 2 0.0141

3.2
128

3.2
256 5.9639 × 10−5 2.13 2 0.0475 6.5325 × 10−5 2.15 2 0.0616

3.2
256

3.2
512 1.4526 × 10−5 2.04 2 0.3560 1.5886 × 10−5 2.04 2 0.4636

Fig. 2. Complexity tests showing the solver performance for changing values of h, ε, s and p. Parameters are given in the text.

where ! = (0, 3.2)2. In this test, we compute the Cauchy difference, δu := uh f (T ) − I f
c (uhc (T )), where hc = 2h f , and I f

c
is a bilinear interpolation operator that maps the coarse grid approximation uhc onto the fine grid. We take a quadratic 
refinement path, i.e., s = h2/10, to equalize the spatial and temporal error contributions. At the final time, T = 0.32, we 
expect the global error to be O(s) +O(h2) = O(h2) in the discrete ∥ · ∥2 and ∥ · ∥∞ norms, as h, s → 0. The other parameter 
is given by ε = 0.1. The norms of Cauchy difference, the convergence rates, average iteration number and average CPU time 
can be found on Table 1. Second-order convergence is observed. At the same time, the average iteration count for the solver 
remains at around 2. Since we are using a quadratic refinement path, increasing the grid size by a factor of two (decreasing 
the grid spacing by 2) means increasing the number of time–space degrees of freedom by a factor of 16. But the CPU time 



W. Feng et al. / Journal of Computational Physics 334 (2017) 45–67 63

Fig. 3. Time snapshots of the evolution with PSD solver for the epitaxial thin film growth model with p = 4 at t = 10, 1000, 3000, 6000, 8000 and 10000. 
Left: contour plot of u, Right: contour plot of #u. The parameters are ε = 0.03, ! = [12.8]2, s = 0.01. These simulation results are consistent with earlier 
work on this topic in [32,35,38]. (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

increases at a much slower rate. The complexity can be offset, of course, by the fact the starting guesses for the solver at 
each independent time level are better for smaller time step sizes.

To more directly investigate the complexity of the PSD solver we perform another series of tests to determine the 
dependences of the convergence rates on ε, h, s, and p, in particular. Consider the following spatially periodic function 
parametrized by s:

ũ(x, y, s) = 1
2π

sin
(
2πx

)
cos

(
2π y

)
cos(s). (6.4)

First we calculate f := Nh
[
Ih

(
ũ( · , · , s)

)]
∈ Cper, where Ih : C0

per(!) → Cper is the canonical grid projection operator. Then 
we compute the sequence 

{
uk

}∞
k=0 via the PSD algorithm, with the initialization

u0
i, j = ũ(pi, p j,0) + s2 sin

(
4π pi

)
sin

(
6π p j

)
,

hence uk → Ih
(
ũ( · , · , s)

)
, as k → ∞. Define γk := ∥uk − Ih

(
ũ( · , · , s)

)
∥∞ . We stop the PSD algorithm when γk ≤ τ :=

1 × 10−8.
In Fig. 2 we plot γk versus k, on a semi-log scale, for various choices of h, ε, s and p. In Fig. 2(a) p = 4, s = 0.01 and 

ε = 0.03; in Fig. 2(b) p = 4, s = 0.01 and h = 1/512; in Fig. 2(c) p = 4, h = 1/512 and ε = 0.03; in Fig. 2(d): h = 1/512, 
s = 0.01 and ε = 0.03. As can be seen in Fig. 2(a), the convergence rate (as gleaned from the error reduction) is nearly 
uniform and nearly independent of h. Figs. 2 (b) and (c) indicate that more PSD iterations are required for smaller values of 
ε and larger values of s, respectively. Fig. 2(d) shows that the number of PSD iterations increases with the value of p. These 
general trends are expected form the theory.

6.1.2. Long-time coarsening behavior for the thin film model with p = 4, 6
Coarsening processes in thin film systems can take place on very long time scales [27]. In this subsection, we perform 

(now standard) long time behavior tests for p = 4, 6. Such test, which have been performed in many places, will confirm 
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Fig. 4. Log–log plot of Roughness and energy evolution for the simulation depicted in Fig. 3.

Fig. 5. Time snapshots of the evolution with PSD solver for the epitaxial thin film growth model with p = 6 at t = 10, 1000, 3000 and 6000. Left: contour 
plot of u, Right: contour plot of #u. The parameters are ϵ = 3.0 × 10−2, ! = [12.8]2, s = 0.01. (For interpretation of the colors in this figure, the reader is 
referred to the web version of this article.)

the expected coarsening rates and serve as benchmarks for our solver. See, for example, [32,35]. The initial data for the 
simulations are taken as essentially random:

u0
i, j = 0.05 · (2ri, j − 1), (6.5)

where the ri, j are uniformly distributed random numbers in [0, 1]. Time snapshots of the evolution for the epitaxial thin 
film growth model with p = 4 can be found in Fig. 3. The coarsening rates for the p = 4 case are given in Fig. 4. These 
simulation results are consistent with earlier work on this topic in [32,35,38], showing the surface roughness, W , grows like 
t

1
3 and the energy, E , decays like t− 1

3 . We also present the numerical simulations for the epitaxial thin film growth model 
with p = 6 in Fig. 5. Notice in Fig. 5 that the evolution process is significantly different from the process depicted in Fig. 3.

6.2. Square phase field crystal model

Suppose that ! ⊂ Rd , d = 2, 3 is a rectangular domain. The energy of square phase field crystal (SPFC) model is given by 
[15,19,20,30]:

E[u] =
∫

!

{
γ0

2
u2 − γ1

2
|∇u|2 + ε2

2
|#u|2 + 1

4
|∇u|4

}
dx,
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Fig. 6. Time snapshots of the evolution with PSD solver for squared phase field crystal model at t = 1, 10, 20, 40, 60, 80, 100, 200, 500, 1000, 5000 and 9000. 
The parameters are ϵ = 1.0, λ = 0.5, γ1 = 2.0, ! = [100]2 and s = 0.01. (For interpretation of the colors in this figure, the reader is referred to the web 
version of this article.)

where u : ! → R corresponds to the number density field of the atoms, and ε > 0, γ0, γ1 ≥ 0 are parameters. The SPFC 
model is the H−1 gradient flow of this energy and is given by

∂t u = #w, w := δE = γ0u + γ1#u + ε2#2u − ∇ ·
(
|∇u|2 ∇u

)
.

We propose the following fully-implicit, nonlinear convex decomposition scheme

un+1 − #h wn+1 = g, sγ0un+1 − s∇ v
h ·

(∣∣∣∇ v
h un+1

∣∣∣
2
∇ v

h un+1
)

+ sε2#2
hun+1 − wn+1 = f , (6.6)

where g = un and f = −γ1#hun . Using the techniques of [35,37], we can prove that this scheme is unconditionally energy 
stable. The fully discrete scheme can also be rewritten in operator format as Nh[un+1] = f , where

Nh[ν] := sγ0ν + sε2#2
hν − s∇ v

h ·
(∣∣∇ v

h ν
∣∣2 ∇ v

h ν
)

− Th[−ν + g].

We can shift the scheme from the affine space of solutions – whose elements ν satisfy 
(
ν − g,1

)
2 = 0 – to the mean zero 

space, but this is not necessary for practical implementation. Otherwise, this scheme is in the scope of our theory, and, 
according to the prescription in Section 5.4, the pre-conditioner should be

Lh[ν] := sγ0ν − s#hν + sε2#2
hν − Th[−ν].

Given uk ∈ Cper, with 
(
uk − g,1

)
2 = 0, we compute the search direction dk ∈ C̊per by solving the sixth order linear problem 

Lh[dk] = f − Nh[uk] using FFT. Once dk is found, we perform the line-search: find αk ∈ R such that q(αk) = 0, where

q(α) =
(
Nh[uk + αdk] − f ,dk

)

2
.

After this, we update the approximation via uk+1 = uk + αkdk . As before, q is a cubic polynomial (since p = 4) whose 
coefficients can be precomputed. But this time, two of the coefficients involve the Th = −#−1

h operator. Specifically, for q(α)



66 W. Feng et al. / Journal of Computational Physics 334 (2017) 45–67

Fig. 7. Time snapshots of the evolution with PSD solver for squared phase field crystal model at t = 1, 10, 20, 40, 60, 80, 100, 200, 600, 800, 1000 and 3000. 
The parameters are ϵ = 1.0, λ = 0.5, γ1 = 2.0, ! = [100]2 and s = 0.01. (For interpretation of the colors in this figure, the reader is referred to the web 
version of this article.)

we need to compute
(

Th

[
uk − f + αdk

]
,dk

)

2
=

(
Th

[
uk − f

]
,dk

)

2
+ α

(
Th

[
dk

]
,dk

)

2

=
(

uk − f ,Th

[
dk

])

2
+ α

(
dk,Th

[
dk

])

2
,

where we have used the linearity and symmetry properties of the Th operator. These terms have only to be calculated once 
per line search, and can be efficiently computed using FFT. In fact, observe that we only need to compute Th

[
dk

]
, at the 

cost of a single FFT, per line search!
The 4-Laplacian term in (6.6) gives preference to rotationally invariant patterns with square symmetry. We perform a 

simple test showing the emergence of these patterns in this subsection. The initial data for those simulations are similar 
to (6.5), but we add nucleation sites at specific locations in the domain. The rest of the parameters are given by ε = 1.0; 
λ = γ0 = 0.5; γ1 = 2.0; ! = (0, 100)2; and s = 0.01. The time snapshots of the evolution by using the given parameters are 
presented in Figs. 6 (one nucleation site) and 7 (four nucleation sites). These tests confirm the emergence of the rotationally 
invariant square-symmetry patterns in the density field u.

7. Summary and conclusions

A preconditioned steepest descent (PSD) solver is proposed and analyzed for fourth and sixth-order regularized p-
Laplacian equations. Solution of the highly nonlinear finite difference equations are equivalent to the minimizations of 
associated strictly convex energies. The energy dissipation property of the PSD solver leads to a bound for the numerical 
solution at each iteration stage. This fact, coupled with an upper-bound for the second derivative of the energy with re-
spect to the metric induced by the pre-conditioner, leads to a geometric convergence rate for our (PSD) solver, which is 
proved rigorously for both the continuous and discrete space cases. In the present setting the pre-conditioner is a linear, 
constant-coefficient, positive, and symmetric finite difference operator. The key to the efficiency of our method is that this 
pre-conditioner can be efficiently inverted using the FFT. Various numerical results are presented in this article, including 
a convergence test and a complexity analysis for the PSD solver, as well as long-time simulation results for the thin film 
epitaxy model with slope selection (both p = 4 and p = 6) and the square phase field crystal model.
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Since we have shown rigorously that our equations result as the gradients of strictly convex functionals, it also possible 
to use Newton’s method (or a quasi Newton’s method) to solve the nonlinear equations. One will still obtain global con-
vergence, and in fact, we expect the convergence rate to be faster than geometric. On the other hand, in the case of (5.1), 
say, Newton’s method requires one to invert a complicated, non-constant coefficient, fourth-order linear finite difference 
equation. One could not use FFT for the inversion of this operator but would have to design an efficient solver for this 
purpose. This is a non-trivial task. So, in summary, although the (quasi) Newton’s method would give a faster convergence 
rate than the PSD solver – in particular, super-linear convergence ∥ek+1∥ ≤ C∥ek∥β , β > 1, versus a geometric convergence 
rate – the PSD solver is, at least currently, much more efficient.
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