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Abstract We present and analyze a mixed finite element numerical scheme for
the Cahn-Hilliard—Hele—Shaw equation, a modified Cahn-Hilliard equation cou-
pled with the Darcy flow law. This numerical scheme was first reported in Feng
and Wise (SIAM J Numer Anal 50:1320-1343, 2012), with the weak convergence
to a weak solution proven. In this article, we provide an optimal rate error analy-
sis. A convex splitting approach is taken in the temporal discretization, which in
turn leads to the unique solvability and unconditional energy stability. Instead of the
more standard £°°(0, T'; LZ) N 62(0, T: H 2) error estimate, we perform a discrete
£%°(0,T; H 1) N 52(0, T: H 3) error estimate for the phase variable, through an L?
inner product with the numerical error function associated with the chemical poten-
tial. As a result, an unconditional convergence (for the time step t in terms of the
spatial resolution #) is derived. The nonlinear analysis is accomplished with the help
of a discrete Gagliardo—Nirenberg type inequality in the finite element space, gotten
by introducing a discrete Laplacian A of the numerical solution, such that A¢ € S,
for every ¢ € Sj, where S, is the finite element space.
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1 Introduction

Let @ ¢ R?, d = 2,3, be an open, bounded and convex polygonal or polyhedral
domain. We consider the following Cahn—Hilliard—Hele—Shaw problem with natural
and no-flux/no-flow boundary conditions:

0p =eAp — V- (¢pu), inQy :=Q x (0,7), (1.1a)
—— (¢3 - ¢) —eAS, inQr, (1.1b)
u+Vp=—yoVpu, inQr, (1.1¢)
V.-u=0, inQr, (1.1d)
O =0y =0,u-n=0, ond2 x (0,7T), (1.1e)

with initial data ¢o(-) = ¢(0, -) € H'(Q). We assume that the model parameters
satisfy ¢, y > 0.
We can reformulate the model by eliminating the velocity:

O =eAn+V-(@(Vp+yoVu), in Qr, (1.2a)
e (¢3—¢) — e, inQr, (1.2b)
—Ap=yV-(¢Vpn), in Qr, (1.2¢)

O = 0y = 9, p =0, ondQ2 x (0, T). (1.2d)

If needed, the velocity may be back-calculated as u = — (Vp 4+ y¢pVu). A weak

formulation of the problem may be expressed as

(3, v) +6(Vi, Vo) + (Vp + ydVi, Vi) =0, Vv e H'(Q), (1.3a)
e (0 =) +e (VO VY — ) =0, vy eH'®). (13D)
(Vp+yoVu,Vq) =0, Yge H'(Q), (13c)

for almost every ¢ € (0, T). We will also consider a weak formulation that keeps the
velocity as separate variable:

0rd,v) +ea(u,v) —b(p,u, u) =0, Vv € H](Q), (1.4a)

e (¢ =g ) +ea@ )~ ) =0, VY eH'(@,  (14b)
(W, v)+c v, p)—yb(p,v,n) =0, vv € L2(Q), (1.4¢)
c(u,q) =0, Vg € H'(Q), (1.4d)
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where
a,v) = Vu,Vv), b, v,v):=@v,Vv), c(v,q):=(v,Vq). (1.5)
We consider

E@) = o[> 1]+ S iver?

= Lot - Lo+ 2 Eyvge (16)
Toge LY g 4 2 ’ '

which is defined for all ¢ € H := {¢p € H'(Q)| (¢ — ¢y, 1) =0}, where ¢, =
Ilﬁ\ fQ ¢o(x)dx. From now on, we denote by || - || the standard L? norm, provided
there is no ambiguity. Clearly, E(¢) > O for all ¢ € H. It is straightforward to
show that weak solutions dissipate the energy (1.6). In other words, (1.1a)—(1.1e) is a
conserved gradient flow with respect to the energy (1.6). Precisely, for any ¢ € [0, T],
we have the energy law

t 1
E(¢(1) + /0 (; lu(s)II* + & ||VM(S)||2) ds = E(¢v), (1.7)
and, in addition, the following mass conservation law: (¢ (t, -), 1) = (¢o, 1) = ¢ -

|€2|. Formally, one can also easily demonstrate that u in (1.1b) is the variational
derivative of E with respect to ¢. In symbols, u = 64 E.

Definition 1.1 Define

W= {u cL2(Q)| (0, Vq) =0, Vq e Hl(sz)}. (1.8)

The projection P : L?(Q) — W is defined via
P(w)=Vp+w, (1.9)
where p € FOII(Q) = {¢ e HY(Q) | (b, 1) = O} is the unique solution to
(Vp+w,Vq) =0, VqgeH (Q). (1.10)

Clearly P(w) € W for any w € L2(Q). Furthermore, we have

Lemma 1.2 P is linear, and, given w € LZ(Q), it follows that
(P(w) —w,v) =0, VveW. (1.11)
In particular, since P(w) € W,

(P(w) —w, P(w)) =0, (1.12)
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and, consequently,
IPWII < lIwll (1.13)

forallw e L2,

With the projection, we have the following alternate weak formulation:

(p,v) +e(Vi, Vv) + (P(ypVp), pVv) =0, Vv e H(Q),  (1.14a)
g (¢3 — 0, w) +e(Vo,VY) — (u, ¥) =0, Vo e H(Q).  (1.14b)

Equivalently, withu = —P(y¢$Vu), we have

0, v) +e(Vi, Vv) — (u, ¢Vv) =0, Yv € HI(S'Z), (1.15a)
e (0P =0 ) +e VeV — () =0, Wy eH'®.  (LI5b)

The well-posedness of this weak form, as well as the basic regularity of the weak
solution, can be found in [19]. In more detail, a convex splitting numerical scheme,
which treats the terms of the variational derivative implicitly or explicitly according to
whether the terms corresponding to the convex or concave parts of the energy, was for-
mulated in [19], with a mixed finite element approximation in space. Such a numerical
approach assures two mathematical properties: unique solvability and unconditional
energy stability; also see the related works for various PDE systems, including the
phase field crystal (PFC) equation [4,5,27,34,35,39], epitaxial thin film growth model
[8,10,31,33], and others [21,22]. Moreover, for a gradient system coupled with fluid
motion, the idea of convex splitting can still be applied and these distinguished math-
ematical properties are retained, as given by a few recent works [9,12,13,19,38].
In particular, a weak convergence of the finite element numerical approximation to
a global-in-time weak solution was established in [19], using certain compactness
arguments.

In addition to this weak convergence result, a convergence analysis with an asso-
ciated convergence order, for these gradient flows coupled with fluid motion, has
attracted a great deal of attentions in recent years. For instance, a convex split-
ting finite element scheme applied to Cahn-Hilliard—Stokes equation was analyzed
in [13] and an optimal rate convergence analysis was provided in detail. Such a
convergence result was derived by an H! error estimate, combined with uncondi-
tional energy stability and other higher order stability properties for certain numerical
variables.

Meanwhile, a careful examination shows that, this convergence analysis relies
heavily on the ¢2(0, T; H') stability bound of the velocity field, at the numerical
level. With this stability available, the maximum norm bound of the phase variable
¢ could be derived, which leads to a great simplification in the convergence analy-
sis. However, for the CHHS system (1.1a)—(1.1e), only an 220, T; L?) bound for
the velocity field is valid. As a result, a global-in-time L° bound is not available
to the phase variable; see more detailed PDE analyses in [36,37], etc. Without this
estimate, an error estimate for the CHHS equation (1.1a)—(1.1e) becomes very chal-
lenging, due to the appearance of a highly nonlinear convection term; the velocity
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error term turns out to be a Helmholtz projection of the nonlinear error associated
with —y ¢V . In turn, even the highest order diffusion term in the standard Cahn—
Hilliard part is not able to control the numerical error term associated with the nonlinear
convection.

In this paper, we provide an optimal rate convergence analysis for the mixed
finite element scheme applied to the CHHS equation (1.1a)—(1.le), as reported
in [19]. Instead of the standard ¢*°(0, T'; L2) N ZZ(O, T; Hz) error estimate for the
pure Cahn-Hilliard equation [1,2,14-16,18,20,32], we perform an £°°(0, T'; Hl) N
E2(0, T:H 3) error estimate in an alternate way. This error estimate is necessary to
make the error term associated with the nonlinear convection have a non-positive
inner product with the corresponding error test function, which is crucial to the
convergence analysis. In particular, we note that, although the £*°(0, T; H') error
estimates have been available for the pure Cahn-Hilliard equation in the exist-
ing literature [3,17,24,29], an 62(0, T;H 3) error estimate remains open for the
finite element approximation applied to the related PDE systems, in the authors’
knowledge.

To overcome the difficulty associated with the lack of regularity for the velocity
field in the Darcy law, a discrete Gagliardo—Nirenberg inequality is needed in the
finite element analysis, in both 2-D and 3-D cases. Meanwhile, such an inequality is
involved with an H3 norm of the numerical solution, which is beyond its regularity
in the standard finite element space. In this paper, we establish the desired inequality
in a modified version, which plays a key role in the nonlinear error estimate. First,
a discrete Laplacian operator, Ay, is introduced for any H'! function in the finite
element space. Subsequently, by applying various Sobolev inequalities for continuous
function, combined with a few error bounds in the finite element space, the maximum
norm bound of the numerical solution could be established in terms of a discrete
Gagliardo—Nirenberg inequality.

Another key point of the analysis presented in this paper is that, the £*°(0, T; H')
error estimate is performed through an L? inner product with the numerical error asso-
ciated with the chemical potential term. Such an inner product yields an L2(0, T; H')
stability of the chemical potential error term, which contains certain nonlinear parts.
These nonlinear errors are analyzed via appropriate Sobolev inequalities, so that its
growth is always controlled. Furthermore, by applying a subtle W31* estimate for the
temporal derivative of the numerical solution (at a discrete level), we could convert
all the nonlinear error terms at the current time step into the ones at the previous one.
With this approach, an 8 (0, T'; L*) estimate of the numerical solution (for the phase
variable ¢) could be applied so that an unconditional convergence (for the time step
T in terms of the spatial resolution ) is available, and a constraint for both t and &
turns out to be very mild.

The rest of the paper is organized as follows. The fully discrete finite element
scheme is reviewed in Sect. 2. Therein we recall an unconditional energy stability and
afew other refined stability estimates, and a discrete Gagliardo—Nirenberg inequality is
established in the finite element space. Subsequently, the detailed convergence analysis
is given by Sect. 3, which results in an optimal rate error estimate. Finally, a useful
discrete Gronwall inequality is restated in Appendix 1.
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2 Some mixed finite element convex splitting schemes
2.1 Definitions of the schemes

Let M be a positive integer and 0 = 19 < #; < --- < tyy = T be a uniform
partition of [0, 7], with T = t; — t;_1,i = 1,..., M. Suppose 7, = {K} is a
conforming, shape-regular, globally quasi-uniform family of triangulations of €2. For
r € Z*, define M" := {v e CO%Q)|vlx € P,(K), Y K € T;} C H'(Q). Define
L3(Q) == {¢p € L*(Q)| (¢, 1) = 0}. Weset S := M" and §), := $,NL3(K)., where
q is a positive integer. The mixed convex-splitting scheme is defined as follows [19]:
forany 1 <m < M, given q);l"_l € Sy, find ¢}, u}' € Sy and py' € S, such that

(8cop' v) +ea (u . v) + (¢>Z1_1 (VpZ’ + yqb;l"_qu’;f) , Vv) =0, Vves,

(2.1a)
_ 3 _
e (o) oy ) +ea (. v) — (upv) =0. V¥ es,
(2.1b)
(Vop + vy vuy.ve) =0, V¢ e S,
(2.1¢)
where X
¢m _ ¢m—
bedj == ———"—, &} = Rudo. 22)
The operator R, : H 1(Q) — S is the Ritz projection:
a(Rpp —¢, x) =0, VxeS, (Rwp—¢1)=0. (2.3)
The velocity may be defined from the other variables as
ul = -Vl — yer vt e L2 (2.4)
Now we define a discrete projection.
Definition 2.1 Define
W), = {u cL2(Q)] (0, Vg) =0, Vq e Sh} . 2.5)
Observe that W C W,,. The projection P, : Lz(Q) — W, is defined via
Pr(w) =Vp+w, (2.6)
where p € §), is the unique solution to
(Vp+w,Vq) =0, VqgeSs,. 2.7
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Clearly P, € Wy,. Furthermore, we have
Lemma 2.2 Py, is linear, and given any w € L*(R), it follows that
Pr(w) —w,v) =0, VveW, (2.8)
In particular, since Pp(w) € Wy,
(Pr(w) —w, Pp(w)) =0, (2.9
and, consequently,
I1Prw)Il < lwll, (2.10)

forallw e L2,

There is an estimate for the difference between the projections P and P,.

Lemma 2.3 Suppose that w € H?(2) with the compatible boundary conditions w -

n=00ndQand p € HIT(Q) where
Vp=Pw) —w.

Then
Pr(w) = PW)|| < Ch? |plyqe+ .

Proof By definition,
Pw)=Vp+w,

where p € H 1(Q) is the unique solution to

(Vp+w,Vq) =0, Vqge H\(Q),

and
Prn(w) =Vpp +w,

where pj, € S'h is the unique solution to
(Vpn+w,Vq) =0, Vqels,.

Thus
[Pr(w) = PW) = IV (p — pu)ll < Ch?|plyq+,

by a standard approximation estimate.

We may re-express the scheme as

(8:¢7 . v) +ea(uy,v)+b (¢,’l"_l, Pr (yqb;l"_quZ‘) , v) =0,

@2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

2.17)

Yvesy,,
(2.18a)
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686 Y. Liu et al.

! ((¢hm)3_¢zl_191//)+8a(¢2n91//)_(/’Lzlvl//):Os VlPESh,
(2.18b)

or equivalently, with w}’ := =P, (yqbf*lvuf) eL? as

(5e0t,v) +ea () = b (6" upv) =0, ¥ves,  (219%)

- ((¢Z")3—¢2"‘1,¢)+sa(¢zw)—(uﬁf,w)=o, Ve Sp.  (2.19b)

We observe that, in general, uz1 is a discontinuous function, its components are not in
the finite element spaces so far described.

To remedy this we could formulate a scheme which keeps the velocity as a separate
variable in some appropriate finite element space. To this end, we will also consider a
scheme that uses a mixed method for the velocity and pressure: forany 1 <m < M,

given ¢;'~ e s, find o,y € Spandw)! € Xy, pyt € O}, such that

YvelsS, (2.20a)

(3:9,v) +ea (. v) = b (5w, vy)
B ((¢>Z1)3 -, 1/f) +ea(pp. ) — (). v) = Yy € Sy, (2.20b)
)

(u)',v) +c (v, p)+yb (¢,’l"_ LV, W VveX, (2200

c uﬁ,q = Vg € Qn, (2.20d)

where X;, ¢ L2 and Q;, ¢ H(Q) are compatible and inf-sup stable finite element
spaces. Here we have used the so called primal mixed formulation. A finite element
method based on the dual mixed formulation is also available. We will not pursue this
further at this time.

2.2 Unconditional solvability and energy stability

In this subsection, we demonstrate some results from [13, 19] that are important for the
proof in the following section. These results show that our schemes are unconditionally
uniquely solvable. We begin by defining some machinery for the solvability, as well
as the stability and convergence analyses discussed later. First, consider the invertible
linear operator Ty, : S, — S defined via the following variational problem: given
IS Sy, find Th(¢) € S, such that

a(Th@),x) =& %), V€S (2.21)

This clearly has a unique solution because a (-, -) is an inner product on S'h. We
now wish to define a mesh-dependent “—1 norm, i.e., a discrete analogue to the H ™!
norm. The following result can be found in [13,19].
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Lemma 24 Let¢, & € Sy, and set
(€, 8) 1 = aTp(@), Th(§) = (& Tr(&) = (Th(£), &) . (2.22)

Therefore, (-, -)_1 j defines an inner product on Sy, and the induced negative norm

satisfies
& x
Il —1n =/ (& O sup ———. (2.23)
b T v, IV
Consequently, for all x € Sy and all ¢ € Sn,
101 = Mgl n VX (2.24)
The following Poincaré-type estimate holds:
lclip < Clgll, V¢ €Sy, (2.25)

for some C > 0 that is independent of h. Finally, if Ty, is globally quasi-uniform, then
the following inverse estimate holds:

gl < R NEly s V¢ €S, (2.26)

for some C > 0 that is independent of h.

The result for the uniquely solvability of the scheme can be found in [19]. The
solutions to our scheme enjoy stability properties that are similar to those of the
PDE solutions. Moreover, these properties hold regardless of the sizes of 7 and 7.
The first property, the unconditional energy stability, is a direct result of the convex
decomposition represented in the scheme [19].

Lemma 2.5 Let (¢, uy', pj') € Sp x Sp x Sy, be the unique solution of (2.1a),
(2.1b). Then the following energy law holds for any h, T > 0:

B (o) +xe g el 3 g
+r22[ IV o) +

m=

+ Z lepscer | + Z gy HZ] =E£(47). 2.27)

m)2H2

forall0 <{ <M.

The discrete energy law immediately implies the following uniform (in /2 and t) a
priori estimates for ¢;', 11}, and w’. Note that, from this point, we will not track the
dependence of the estimates on the interface parameter ¢ > 0, though this may be of
importance, especially if & is made smaller [19].
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Lemma 2.6 Suppose that Q2 is convex polyhedral. Let (¢}, ij', p}') € Sp X Sp % Sy
be the unique solution of (2.1a)—(2.1c). Assume that E (d),?) < Cy, independent of h.

Then forany 0 <m < M,
/ Prdx = / PPdx, (2.28)
Q Q

and there is a constant C > 0 independent of h and t such that the following estimates
hold for any h, T > 0:

s [[ver P+ [om? -1 ] <. 229)
omax [l [+ g | + i3] < . 230)
M
oS [ v+ ) < 23
m=1
u m m—1 2 m m—1 2 mgam m—1 2
Z[Hv(dm o | IR AR IR PAC AR ]
m=1
+ H @7 — (@’ Hz] <C, (2.32)
d 2 2 Hood)
o3[ loo P+l + o 1,27 | < e, 25
m=1
M
v > [seoi e = C. (2.34)
m=1

for some constant C > 0 that is independent of h, T, and T.
We are able to prove the next set of a priori stability estimates without any restric-
tions of / and t. Before we begin, we will need the discrete Laplacian, Ay, : Sy — Sp,

which is defined as follows: for any v, € S, Apvy, € S’h denotes the unique solution
to the problem

(Apvp, ) =—an, x), Y x € Sh. (2.35)

In particular, setting x = Apvy, in (2.35), we obtain
1A v I1* = —a (va, Apop).
Lemma 2.7 The discrete Laplacian has the following properties. For any v, € Sp,
1 Apvnll < Vvl IV Mg/, (2.36)
and, there is some constant C > 0 such that

Rl Apvpll = CIVugll, (2.37)
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and
R | Apvnll < C lluall - (2.38)

Proof The first inequality follows from (2.36) and the Cauchy—Schwarz inequality.
For the second inequality, starting from the first and using a standard inverse inequality,
we have

IARR I < VRl - IV ARl < CR™Y [Vl - | Apvall - (2.39)

Applying the inverse inequality again, the third inequality follows as well. O

Next we need akind of discrete Gagliardo—Nirenberg inequality in the finite element
space. Noting that the functions in the conforming finite element space only have the
regularity up to H', it is impossible to directly apply standard Gagliardo—Nirenberg
inequalities involving higher order norms, such as H> or H>. Now that we have the
definition of Ay, we can prove the following discrete Gagliardo—Nirenberg inequality.
Similar techniques can be found in the existing works [25,28] for related finite element
estimates involved with higher order derivatives.

Theorem 2.8 Suppose that 2 is convex and polyhedral. Then, for any ¥, € S

3(4—d)

d —
1Wnllee < CIARYRITOD IYnll s +Cllynlle, d=2,3),  (240)
d 6—d
IVYallzs < CHARYRIS VYRS +C VYRl (d=2.3), (2.41)
and, consequently,
- d 24—5d
1¥n = Y| oo < CUVARYRIIFED |V | 560 + C |Vl (d =2,3),

(2.42)
d 12—d
IVynllps < CIVARYRITZ VYRl 2 + C VYRl (d=2,3), (2.43)

using the Poincaré inequality and estimate (2.36).

Proof Define Hy := {¢ € H*()| dn¢ = 0}. By elliptic regularity, for any v, € Sp,
there is a unique function ¥ € H 1%, such that

(Vyr, V) = (—=Apn, w), Ywe H', =y 1)=0. (2.44)

According to the definitions of Rj, in (2.3) and the discrete Laplacian in (2.35), ¥, =
Ry ¥. Moreover, Ay = Ay, in L2(Q2). Therefore, there is a constant C > 0 such
that

[Vig2 = ClIAY I = CllApnll - (2.45)

We summarize some standard inverse inequalities, which can be found in [6,11]:
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d_d

lenllwp <Che™ P llgnllwe . YeneSh, l1<p<q<oo, 0<t=m=<l,
(2.46)

for some constant C > 0. By 7, : H?*(Q) — S, we denote the C°(), piecewise-

polynomial nodal interpolation operator, and we recall the following approximation
estimate from [6,11]: for any ¢ € Hz(Q), and any 2 < g < o0,

d_d
¢ = Zndllwp < Cha 22 e, (2.47)

form = 0, 1, and some constant C > 0. Then, by approximation properties, an inverse
inequality, and elliptic regularity, we have

1 = Wnllzs < In — Tl o + 1Znwr — il s
< Ch™5 lyn — Tl + CR>~ 5 ||
< ChS Y — vl + Ch™S 1y — Tywrll + CH> S ||
< CR* S |Y 1) < CH*S | Ayl (2.48)

Therefore, by the triangle inequality,
_d
W lzs < 1¥nlle + CH*=5 | Anyll - (2.49)

On the other hand, using (2.37) and (2.46), we have

d
ARl < Ch™*F5 [yl . (2.50)
and combining the last two inequalities, we have the (reciprocal stability) bound

lVilze < Cllvmnllze (2.51)

for some constant C > 0. Using the Gagliardo—Nirenberg inequality, we have

3(4—d) d
Wl < ClVILs @ 1Wls Y +Clivlis
3@-d) d
< Cllvnlls 1Ayl 7= + C 1yl s - (2.52)

Using inverse inequalities, the approximation properties above, and the last inequality,
we find

I¥nllpee < 1Wn = ZnWllpee + 120 — Yl Lo + W1l Lo
_d _d
< Ch2 Y — Tnyr |l + CH* 721 g2 + ¥l oo
d _d _d
< Ch™2 Yo — Yl + Ch™2 | = Tyl + Ch*72 | Ayl + 1] o0
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_d
< Ch*2 | Ayl + 19l oo

)_d 3¢4—d) d
=< Ch™ 2 [|Apyn 1€~ | Apipp || 26D
4 6 :
+C Yl 6 AR YRI2CD + CllYnll Lo

3(4—d)

d
< Cllynlls” 1ARYRlIIZoD + C llynll s , (2.53)

where the inequality (2.50) is applied in the last step. The result (2.40) is proven.

Since ¥y, is the Ritz projection of i, the forward stability ||V, || < [|[Vi| follows
easily. To obtain the inequality in the other direction, by the definition of v, the triangle
inequality, a standard approximation estimate for the Ritz projection, and the inverse
inequality (2.37), it follows that

VYl < VY = Véull + IVl
< h Il ARYRI + IV
= CIVYRll + IVl = C IVl (2.54)

which is another type of reciprocal stability. Applying a different Gagliardo—Nirenberg
inequality and using the reciprocal stability above, it follows that

6—d d
V¥l < CIVYIS ¥, +ClIVY
6—d d
< CIVynll & lApgnlle + C IVl (2.55)

To finish up, we argue as before
IVallzs < IV — YV @)lls + IV @) — Vlls + IV s
< Ch6 [V = V (@)l + CRY76 [Apyl + IVl
< Ch™5 |V, — VY|l + Ch™6 VY — V (T
+ CRTE Ayl + IVl s
< CRH'=S | Apll + C VYR S 1ARYA1S + C IVl
— CR' 6 AW ¥ 1 ARYRIE + C VYRl S 1AWl +C IVl
= C VYIS 1ARYRIS + C IVl - (2.56)

O
Theorem 2.9 Let (¢, ', pi') € Sp x Sp x Sy, be the unique solution of (2.1a)—

(2.1c). Suppose that E (qbg) < Cy, independent of h, and that Q2 is a convex polyhedral.
The following estimate holds for any h, t > 0:

M 5 8(6—d)
[V RN V7 Pl RS
m=1

with some constant C4 > 0 independent of h, T, and T.
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Proof We first observe that for any v, € Sy, Apvp, Aﬁvh € §h,

2
p (vh, A%,vh) — VA2 = H A2y, H_1 - (2.58)

Taking ¢ = A? #¢;' in (2.1b), we have

e|vang P =t (@) ater) =" (o' ader) — (it alop)
= ! (v (o), VAhqbZ’) s (VquH, VAhqbZ’)
+ (Vg VArey)
=V ()| VA +e7 | Vo | Ivaney]
+ [ Vi | [ Varey|
oot vee o
+Ce7 Vi + 5 ||VAh¢ I°
<ce g HW’h I +c+ce! ”Vﬂh 1>+ HVAhfﬁh I°

< Ce )t [ + CHCe7 ViP5 ||VAh¢h >

The first estimate follows upon summing and the result from (2.33).
To get the second estimate, we appeal to (2.42):

J— — _d 24-5d
971 < |0 = |+ |#7] = C [V angiy |7 | veyr | 5

C[vap| +[77]

<C+ ’¢>_2‘ +C VA Hﬁ ) (2.59)
Hence,
8(6—d)
lep 4 < c+c|vampl. (2.60)
Summing gives the result. O

3 Error estimates for the fully discrete convex splitting scheme
3.1 Preliminary estimates

We utilize some notation to simplify the error analysis. To this end, define the time
lag operator L ¢ () := ¢(t — t), and the backward difference operator 8;¢(¢) :=
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M. Define the approximation errors

&) =¢ —Rup, E:=pu—Ruu, 3.1
o? = 8. Ry — 8,9. (3.2)
Define the piecewise constant (in time) functions, for m = 1,... M and for t €

(tm—l ) tm]a
G =, ) = pp, 6@ =uy, p@) = py,
where ¢;', wj’, wy', and p;' are the solutions of the fully discrete convex-splitting
scheme (2.1a)—(2.1c). We take (]3(0) = qbg, et cetera, as is natural. Finally, let us
define
& =Rup—9. E:=¢p—b, & =Riu—j. E=p—p (33)

Proposition 3.1 The following key error equation holds for all t € [z, T]:

e |ver [+ 3o vs;sz + 5 |ever ’
= (0%.&) +b(#u &) b (Lo &) + (€8.0:80) + = (300, 0.67)
+e7t (Leg? 5:80) — 7 (07— 8%, 5:87). (3.4)

Proof Weak solutions (¢, ) with the higher regularities (3.9)—(3.12) solve the fol-
lowing variational problem:

(0p,v)+ea(u,v)—b(p,u,v)=0, VYve H(Q), (3.5a)

() —ea@ )= (#1 =9 ¥) =€ ¥)=0. VyeH (@, (G5

where u := —P(y¢$Vu). By definition of the Ritz projection, for all v, Y € Sj,, we
see that

(8: Ry, v) +ea(Ryp,v) = (6%, v) +b (¢, u,v), (3.6a)
ea(Rypo ) = (Ruw ) = (€4 v) =™ (67 = Leg ¥) + = G v).
(3.6b)

Thus, fort <t < T,and all v, ¢ € Sy,

((sfés, v) +ea(i,v)=b (L,¢3, i, v) : (3.72)
ea(dv) = (ny) == (6~ Ldv). (3.70)
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where t = —Py, (yLr¢3Vﬁ). Subtracting (3.7a), (3.7b) from (3.6a), (3.6b), we have,
forallv, ¥ € Sy,

(560, v) +ea(v) = (0% v) +b @) —b(Lediv),  (G8a)
ca (5,?, w) — (&1 ) = () + g Gep W)+ (LE2, )
" (¢3 — 4% 1//) . (3.8b)

Setting v = E;f in (3.8a), ¥ = 8,5;? in (3.8b) and summing the two equations, we
have the result. O

For the error estimates that we pursue in this section, we shall assume that weak
solutions have the additional regularities:

b € W20, 73 Wi (@) N L= (0.T: Wh(®) N L2(0, 73 WL (@), 3.9)

e L0, T; W) nL®(0, T; Wi (@), (3.10)
ue L>(0,T; HI(Q)), (3.11)
¢V e L=(0,T; H(Q)), (3.12)

where g > 1 is the spatial approximation order.
We need some preliminary estimates, the proofs of which can be found in [13].

Lemma 3.2 Suppose that (¢, 0) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, forany h, t > 0, there exists C > 0, independent
of h and t, such that

lo?@)|* < ch? + ce2. (3.13)

Lemma 3.3 Suppose that (¢, 1) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0,

[v (5 =) = (Jal; + 1) vev1. G.14)
Proof Fort € [0, T1], the following estimate is valid:
[v (5 =) =3|07v0 - 5259] <3 |65 - i7va] +3|sver]

~

¢

¢+
<c (Hq&”iw + 1) |ve?

where C > 0 is independent of r € [0, T']. Then, using the unconditional a priori
estimates in (2.33) and the assumption that ¢ € L (0, T:H' (SZ)) , the result follows.

<3[VolLe

el o3[l vee]

) (3.15)
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In our error analysis we need to make use of some non-standard approximation
results for the Ritz projection. The proof of the following can be gleaned from the
material in [6, Ch. 8] and [23].

Theorem 3.4 Let Q@ C R? be a convex polyhedral domain. Assume that the solution
u of the Neumann—Poisson equation

a(u,v) = (f,v), Yve H(Q),

has regularity u € W;(Q),for some p € [2, 00]. Then there are constants C > 0 and
ho, such that the stability
| Rntellyy < C llullyy (3.16)

holds, provided 0 < h < hqo. Furthermore, ifu € W[ZH(Q),

lu = Rpullys < Ch? |ulyq+1 (3.17)
P

where q is the order of the polynomial approximation defining Rj,.

Remark 3.5 If Q is a convex polyhedral domain, it is proven in [23] that the following
best approximation property holds for the homogeneous Dirichlet—Poisson problem:

IV(u — Rpu)llpoe < C inf [[V(u — X)L, (3.18)
XESh

where u € HO1 N W;o. It is expected to be straightforward to prove such a result for
homogeneous Neumann—Poisson problem as well. With such a result, the last theorem
will follow.

Lemma 3.6 Suppose that (¢, u) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0 and any arbitrary 0 > 0, there
exists a constant C > 0, independent of h and t, but dependent upon 6, such that

5. VE? H2

e & 2 et
SIve P+ 2o | ver | + 5

< CTHCH 4 b (g0 &) —b (L0, &)

" 2
+c|vegl| ), +o

5.7 |

2 n
e (@ —sgl) . Ga9)
3
Proof Using Lemma 3.2, the Cauchy—Schwarz inequality, the Poincaré inequality,
and the fact that (0¢, 1) = 0, we get the following estimates: if 5,’; (¢) is the spatial
average of &' (1), for 0 < ¢ < T, then
o 2 & 2
(0%, = |(o*. & = &F)| = ¢ [o®] - Ve < c lo?]” + 5 | ver]

= Ch¥ + cr 4 2 |vEr | (3.20)
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An application of Theorem 3.4 implies that

|€8 i = IR = pellyy < ChY |1l g -

“ w4

As a consequence, we arrive at

(e 5c87)| = e J o H o S O lulygen 080
< Cch* + (3.21)
Now, it follows that
L :
[TV ¢35 < 3 ( / IVasp ()3 ds) < Ct?, (3.22)
t—1
and, therefore, using a Poincaré-type inequality, for any 6 > 0,
T ‘(ama,é‘,‘f)‘ < C Vsl |66 le* <c7? + . (3.23)
e
With similar steps, the next-to-last term in (3.4) is controlled by,
e |(Lee? 5:80)| = | VLE?] s 5,5,?”
< Ch¥ |L, ¢ i +C ”VL 5"’”
< cr¥+c|ve.ef H (3.24)

using Theorem 3.4 in the second step.
The last term in (3.4) can be divided into

— (0 =8 6:80) == (#° - R 5:87) — (Ra) — 3, 6:67) . (329)
Using the stability ||Rh¢||wl°° <C ||¢||Wloo and the non-standard approximation results

from Theorem 3.4, and the assumed regularities of the PDE solution, the first term
above can be bounded as follows: for any 6 > 0,

— (#* - Ra)*  5.87)
co* - mor[

L0
4

IA

1
3

IA

c[ (4> + R + R19?)
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2

2 2 2 6
+C |97V — (Rig) VRip|  + 7

) H wi*
< ClIplEn |E2]2 +C (@ + Rug) 299

(2] 2
T3

|

¢ |wir e,

w)*
< Clglit, €215+ C oI, V12, €217

%
+Cllglyy IVEL s+

2
5 5"’” .
T h W31

0
< Chzq —
< +3

2
¢
5e&) H wit’

Combining (3.20)—(3.26) leads to the result.

Now, let us consider the error of the triple form in (3.4). Define

li:=b(g.u ) = b (Leboingf).

(3.26)

(3.27)

Lemma 3.7 Suppose that (¢, ) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0, there exists a constant C > 0,

independent of h and t, such that

N 2 A A 2 ¢
s = =y | Pi (LedvE) )|+ CDoG? + 2 + Co | VLoE] |+ S | ver|

where
. N
o= [0

Proof By adding and subtracting appropriate terms, we have

2

(3.28)

(3.29)

Ii=b (8;7’, u, &)+b (L,E,?, u, 5,’;)4—19 (t8:Rngp,u, &) +b (L,(;AS, u—1a, Sﬁ) )

The last term is the only one that will give us any concern.

Recall that the discrete and continuous velocities can be described as

u=-Py¢Vp), b=—-Py,(yLpVi).

We obtain the following useful decomposition:

-y (u—1)
= P(pV i) — Pu(L:pV 1)

(3.30)

(3.31)
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= P(pV i) — Pu(@V ) + Pr(¢Vi) — Pr(LpV i)
= PPV ) — Pu(@V 1) + Pu(t8: V) + Pu(Le Vi) — Pu(L:pV i)

= PPV ) — Pu(@V ) + Pu(t8: V) + Pu(LEPV i) + Pr(L pVEM).
(3.32)

Let’s deal with all the above terms except for the last one. Define

Is := P(@V) — Pr(@V ) + Pr(td:dV i) + Pr(LE2V ). (3.33)

Then

2
11511 < 3I1P(@VR) — Pr(@V)I* + 3 1Ph(z8:0V)II? + 3 | Pr(L:E2Vi) |

2 2 2 2 2 2
< CH |V ullye + CT IVl 10125 +6 | L. Vi
< C (W + )+ CR [ VilZs 1170 + 1Vl

=c (W +)+c|L (3.34)

From (3.30) we have

Iy =b(E0.0.8) +b (L& 0 &) +b (8 Ryg,u &) + b (Ledu -8, 8 )

< |€2] s Iulls [ VEY]

h | 6 ”u”L3 ”V‘g}l: ”
+([E2] + [ LE2| + lizs-01) Iul ||v5“|| —b(Lebou—igf)
< cn¥+ Ve P+ c | VL. 5‘1’” + 57 Ve )?

+Co? +—||vg“|| +b(Ledu—4, s;;). (335)

Now, using (3.34) we have

b (LT¢3, u— i, 5;;) — —yb (LTq;, Is, 5;;) A (qu3, Pr(L:pVEM), 5;;)

b (Lf¢3, Ph<Lf¢3V6">, &)

s Ve Pren |Led | i
g o1 —yb( qu,Ph(Lmve,i‘),sg)
< CDo(x + 1) + CDy = Iver|®
—y HPh(LﬂiVéﬁ)Hz : (3.36)
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To finish up, adding (3.35) and (3.36) leads to the result. O
Combining Lemmas 3.6 and 3.7, we get immediately the following result:

Lemma 3.8 Suppose that (¢, i) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0, and any arbitrary 6 > 0, there
exists a constant C > 0, independent of h and t, but dependent on 0, such that

SAvet + Soc vt ] + 5 focver| v [P (zedver) |

A 2 2q A ¢ 2 ¢ 2
< CDo(® +n*) +Chy |VL.E |+ C | vL.€f|

+6

5.8 Hiv; — 7 ((Rig)? = 6% 5:87). (3.37)

The next step is to prove that the dual norm can be bounded in a

*

¢
58 H W)

convenient way.

Lemma 3.9 Suppose that (¢, ) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0,

58| ye S CeIVEL] +Cy [P (Ledvey)| +c|rever| + CHE (e + 1),

(3.38)
where C > 0 is independent of h and t.

Proof Here we follow the ideas in [19]. Let Qy, be the standard L? projection into S},.
For any v € W13(Q), denote v, = Qv in (3.8a). Recall the estimate for ¢ from
Lemma 3.2,

(S,SZ’, v) = (8,5,?, vh)
=—ca (&, v)+ (0% ) +b(p.uvy) —b (quAb, a, vh)
<& |VE IVl + o |l +5 @, v~ b (Led, b, wy)

= C (e | VER] 4+ +7) Wnllyy +b @ wvi) = b (Lo b,y
(3.39)

For the last two terms above, we repeat the techniques used to analyze I4 in (3.30).
Define

Is :=b(¢p,u,vy) — b (L,J), a, vh) . (3.40)
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Recalling the estimates in (3.34)—(3.36), we can estimate I as follows:

Ie=0b(E2 u,vp) +b (Lff,’f, u, vh) +b(t8:Rpp,u, vy) + b (L,¢A>, u-—1a, vh)
< €20 o Mllo 190l + |27 | Illzs 19l + 178 Rughl Tl V0]
—b (qug, u-—u, vh)
= € (n 4o+ |Level| ) Ivvnl + b (Lo, 15, 1)
+ b (Lo Ph(LBVELD, v4) + 7D (Led, Pa(L@VE). 1)
< c(n+o+|LveR|) Ivul +y | Lo

+CH Lo Nitllgars 19015 + 7 | Lo

Lo sl IV RllLs

o [PreedveD] 1vvis

<c (i)éhq Y4y HPh(Lfésvgﬁ)H + )

L.veE? H) Vvl s - (3.41)
Combining (3.39) and (3.41), we get

AL ~
(s:&0.v)=c (Dghq e [VEL | +y |PacLdven)| +]Lovel H) onlly

AL ~
C (Dght+e+e | Ve |+ |[Paeedved|+| L Ve H) Ivlly;
(3.42)

The last estimate is due to the W31 stability of the L? projection into the finite element
space. See, for example [7]. O

Now, if we choose 8 in (3.37) sufficiently small, and apply Lemma 3.9, the following
result could be easily obtained:

Lemma 3.10 Suppose that (¢, i) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0, there exists a constant C > 0,
independent of h and t, such that

SIverl + 5o [ver] + S|P (redver) |

< CDo(z2 2q A ¢ s
< o(t° +h™)+ CDg |VLE, | +C |VLE, L3

— 7! ((Rug)* = 8%, 0.87). (3.43)

3.2 Estimates for the cubic nonlinear error term

Now that all the preliminary estimates have been done, we will then elaborate how
to deduce the stability for the error function (3.4). The result (3.37) is not enough to
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get what we want, since the last term of the right side has not been estimated yet.
If it is estimated in the normal way, such as using the Cauchy—Schwarz inequality
directly and summing every step, what we get is at most a stable inequality coupled

~ 2 N
with an implicit term like 7C H Vé';f’ H on the right side with C is dependent on some

norm of the numerical solution q3 In this case, T needs to be small enough in order
to be absorbed by the left side. In addition, the high nonlinearity of the last term in
(3.37) is another difficulty to be overcome. If we do not use dual norm estimates, what
we get from (3.37) is a discrete nonlinear Gronwall inequality which leads us to the
sub-optimal convergence rate. The main result is demonstrated below.

Lemma 3.11 Suppose that (¢, i) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0, there exists a constant C > 0,
independent of h and t, such that

¢ H VEL (1)

= ;Zl [vet | + ygl [P (e1 veran) [

3

N nl 2 g3 2
sce Y i i e Y A vebap| + LY [ vangtan|
; j=0 j=0

(3.44)
where lA)(j) = ﬁo(tj) and
A sz+1+H 8,v¢f“H +H a,qsf“H
3
=7 ||l zs, ¢/t =5 |8, . 3.45
+7 T8¢, W;* +1 8.9, W;* (3.45)

Proof Our starting point is estimate (3.43). The last term of (3.43) can be rewritten as

(Rapen))* = @), 680 ) = (7EF ). 0 ) . (3:46)
where
= (Ru (1n))? + 8}/ Rip (1) + (977)” = 0. (3.47)
By Lemma 4.2,
D GRACHR RS
j=1
= IS (e () ) = TS (o (5.6 )
- E (e o)) -5 )
j=1 j=1
(e (20)) 3.48
_E(C 7(h(tm)))- ( )
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Observe that the last two terms on the right-hand-side of the last identity are non-
positive and can be dropped in the analysis. For any | < m < M, summation of
(3.43) implies that

c[vetan] + 3 e op e v 3 |7 (of veta)
j=1 =1
ccw e S B S (153“ |vegap| +c Hv‘ff(’f)Hia)
j=1 j=0
+ EIZZ (&cm, (S;f’(tm_l))z) : (3.49)

where we have dropped the indicated non-positive terms from the right-hand-side.
Due to the definition of ¢/,

. . . . 2
I = 8T = T8 R (t0) (Rud (1) + Rid (1)) +78 R (tj08] + (8097
+ 78 (Rnd (1) + 2Rig (1)) — 26017 (3.50)

Then for every step ¢}, the following estimate is available:

(e = ¢l &fa?)

EPt))

2
SCH¢(tj+1)-|-<15(tj)”WC;o (RREIGESD) PR 13

+C | ¢ £/ ))

2
L4

L (REEIGESY] P
. 2 2 .
+ e | |etan|, +c|(zsea™ fan?)]

+C|(zse0i ™ 1))

< co|vepap[ + ¢ [eevei” P vetan|

e [ (H &tan?],, +| (gf(ff)>3HW;)' (3:51)
Now define

o= H (5,?@,))2” wt H (5,?(z,~))3H Wi
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We observe that 7 can be analyzed as

n=c(|eta

P
|+ |etanvelap

)

e (fet],. 1)l

P GO

+| et aprved;

e (lezonl,. . et

N o7 [vet | ¢
sc|vetap| +c|vangtan| | vetup| +c|vansta (1)

1
+c|vagtapn|* [vete;

3
2

2 1 7
= c|vetap| +c|vangtap|* frc|vangla

n (1 n (1))

(3.52)

Here we reduce the power of H A\ f: () H in some terms above according to the L°>° (H 1

bound of SZ) . We also appeal to the discrete Gagliardo—Nirenberg inequality (2.42)
and (2.43). This is then fed into (3.51) to obtain

({J#l -, (5}?([j))2) <Crt va}?(tj)”2
ve(Jomst [+ el et

e Hra ¢1“H vl

Wy n

el

VA,,S,;”(:,)H [vetap]’

wy

<Cr va,‘f(z,-)H
+C (”ra V¢/+1” + H 5 ¢1+1) 1*) Hve;f(tj)wz

+Cr7 s ¢f+‘

N

iKa

] +25 )VAhg (IJ)H

+Cr_%

s ¢/+1

(1) ’ + )VAhS (t] )H (3.53)
Due to the definition of A7 from (3.45), we arrive at
(gf“ — (5,‘5’(:,-))2) < cA Hve;f’(tj)Hz + 513—; ‘VAhE,‘f(tj)Hz. (3.54)
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2
For the term t H Vc‘fff () HH in (3.49), we apply the discrete Gagliardo—Nirenberg
inequality and Young’s inequality again:

1
1

T va;f’(tj)H; < cr|vanglap|" | vedap e va;f(z,-)Hz
2 831' 2
< Ct va;f(zj)H + HVAhSZ’(tj)H (3.55)
Combining (3.49)—(3.55), we finish the proof. O

The following lemma demonstrates an approach to deal with the term
2
v | vaugl )] on the right-hand-side in (3.44).

Lemma 3.12 Suppose that (¢, 1) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0,

£2 Hmhg,‘f(tj)ﬂz < | velap|?
b [sstip[ vt o ol . ase
Proof Since

¢2 HVAhg,‘f(t,-)H2 <2|velap|* +2 va,’j(r,) n sVAhg,f(t,-)Hz, (3.57)

what we need to estimate is the last term above. To bound H Vé’,’f + 8VAth) , set
Y= Ahé’;’f + EA%SZ) in (3.8b), which in turn implies that
5112
[ver +evang]
= (e angl +entel) + = (500, gl +enley)
e
+e (o8, anelf +2nlE]) — o7t (67 - 7 gy +enfel)
2 ~3\ || 2
<c (nve,l; [P+ 18:v012 + |V (¢° = )|+ |VLee?] )
1 W s
+5 |ver +evangl] (3.58)

Using techniques from Lemmas 3.3 and 3.6, the above norm can be controlled as
" PN 2 TN 2 ¢ 2
[verap +evangtup| = et c([dap|  +1)n+c|velan)
A 4 ® 2
ve (foorll. 1) et
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n n 2
< DI (2 + 1) + D! va;f(tj)ﬂ

+C H Vel (1) Hz . (3.59)

A combination of Lemmas 3.12 and 3.11 yields the following theorem.

Theorem 3.13 Suppose that (¢, (1) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0, there exists a constant C > 0,
independent of h and t, such that

g Hve,f’(zm)ﬂz il z IVelap|? + vyt Z HPh (qs’ 1v5“(zj)) H2
<cCr i (B + D)) @+ 12+ C Z_: Al vs,?(tj)Hz . (3.60)
=1 =0

The summability of the sequence A/ is then essential to apply the discrete Gronwall
inequality. We have the following lemma:

Lemma 3.14 Suppose that (¢, i) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any 1 < m < M and any h, T > 0, there
exists a constant C > 0, independent of h and t, such that

> A<c. (3.61)

Proof Recalling (3. 45) for the definition of A/, rﬁé“ is summable due to Theo-
rem 2.9. Hus,v(p/“ H and Hrafqﬁ;{“ H are summable due to (2.32) and (2.34)

1%

respectively. For the last two terms in (3.45), it can be estimated due to the Cauchy—
Schwarz inequality

3w
~l

m
Zr 7 |zs ¢>]+l

J=

m
zl >
=0

78 ¢>]+1 H

m
_1 1
<Cct77 Et4 18¢]+H v
Jj=
4
7

m
<C Zf‘ H 5,¢1+1H <cC, (3.62)
=0
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and

IR

IA
a
H\

Wl

" 2
<c(> Hra,@{“‘)wl* <cC. (3.63)
3

3.3 Main convergence result

Applying the discrete Gronwall inequality to (3.60), we get the optimal convergence
rate for the numerical scheme.

Theorem 3.15 Suppose that (¢, |v) is a weak solution to (3.5a), (3.5b), with the addi-
tional regularities (3.9)—(3.12). Then, for any h, T > 0, there exists a constant C > 0,
independent of h and t, such that

e ve,?(rm>H2 + Z Iveran|?
j=1

m
. 2
tyr> HPh (¢£ lvg,f(t,-)) H < C(z2 + %), (3.64)
j=1
Remark 3.16 A combination of (3.59) and (3.64) yields that
m 2
o> |vanglap| = e+, (3.65)
j=1
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Appendix 1: Discrete Gronwall inequality

We need the following discrete Gronwall inequality, cited in [26,30]:

@ Springer



Error Analysis of a Mixed Finite Element Method 707

Lemma 4.1 Fix T > 0, and suppose {am}%:l, {bm}fn/":1 and {cm}rﬂrf;l1 are non-
negative sequences such that t Z%;ll cm < C1, where C| is independent of T and M,

and M -t = T. Suppose that, for all Tt > 0,

M M—1
am+7 Y b < Cr+7T D amcm, (CAY
m=1 m=1

where Cy > 0 is a constant independent of T and M. Then, for all Tt > 0,

M M—1
ay +t1 Z by < Crexp| T z cm | < Crexp(Cy). “4.2)
m=1 m=1

Note that the sum on the right-hand-side of (4.1) must be explicit.

Lemma 4.2 Suppose {a, }fn/I: | and {bm}%:() are sequences such that by = 0. Define,
for any integerm, 1 <m < M,

Iy = ajbj(bj —bj). (4.3)
j=1

Then the following identity is valid:

1 - 1 < 1
In= =3 > (aj —aj0bj_ +5 > ajbj —bj0)’+ Sanby,. (44
=1 j=1
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