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GLOBAL-IN-TIME ENERGY STABILITY ANALYSIS FOR A

SECOND-ORDER ACCURATE EXPONENTIAL TIME
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FIELD CRYSTAL EQUATION

XIAO LI, ZHONGHUA QIAO, CHENG WANG, AND NAN ZHENG

Abstract. The global-in-time energy estimate is derived for the second-order
accurate exponential time differencing Runge–Kutta (ETDRK2) numerical
scheme to the phase field crystal (PFC) equation, a sixth-order parabolic equa-
tion modeling crystal evolution. To recover the value of stabilization constant,
some local-in-time convergence analysis has been reported, and the energy
stability becomes available over a fixed final time. In this work, we develop a
global-in-time energy estimate for the ETDRK2 numerical scheme to the PFC
equation by showing the energy dissipation property for any final time. An
a priori assumption at the previous time step, combined with a single-step
H2 estimate of the numerical solution, is the key point in the analysis. Such
an H2 estimate recovers the maximum norm bound of the numerical solution
at the next time step, and then the value of the stabilization parameter can
be theoretically justified. This justification ensures the energy dissipation at
the next time step, so that the mathematical induction can be effectively ap-

plied, by then the global-in-time energy estimate is accomplished. This paper
represents the first effort to theoretically establish a global-in-time energy sta-
bility analysis for a second-order stabilized numerical scheme in terms of the
original free energy functional. The presented methodology is expected to be
available for many other Runge–Kutta numerical schemes to the gradient flow
equations.

1. Introduction

The phase field crystal (PFC) equation has become a very powerful model to
describe crystal dynamics at the atomic scale in space and on diffusive scales in
time [16]. The elastic and plastic deformations, as well as multiple crystal orien-
tations and defects, have been appropriately incorporated in this approach. This
physical model has been widely used in the numerical simulation of many related
microstructures [42], such as epitaxial thin film growth [17], grain growth [47],
eutectic solidification [18], and dislocation formation and motion [47], etc. The
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PFC equation is a gradient flow model, and the phase variable stands for a coarse-
grained temporal average of the number density of atoms; also see the related
derivation of dynamic density functional theory [1, 40, 43]. In the PFC formula-
tion, u : Ω ⊂ R

3 → R is the atom density variable, and the free energy is given
by [16, 17, 48]

(1.1) E(u) =

∫
Ω

(1

4
u4 +

1− ε

2
u2 − |∇u|2 + 1

2
(Δu)2

)
dx,

in which the parameter 0 < ε < 1 measures a deviation from the melting tem-
perature. Moreover, we assume a periodic boundary condition for the sake of
brevity, and an extension to the case of homogeneous Neumann boundary condi-
tion is straightforward.

Meanwhile, with either a periodic boundary condition or a homogeneous Neu-
mann boundary condition for both the phase variable and chemical potential, an
equivalent free energy functional is used to simplify the analysis [45]:

E(u) =

∫
Ω

(1

4
u4 − ε

2
u2 +

1

2
((I +Δ)u)2

)
dx,

with the help of integration-by-parts formulas to represent ‖∇u‖2 = −(u,Δu).
In turn, the PFC equation becomes the associated H−1 gradient flow of the free
energy,

(1.2) ut = Δμ, μ := δuE = u3 − εu+ (I +Δ)2u.

Many numerical works have been reported for the PFC equation in the existing
literature. Of course, a theoretical justification of energy stability has always been
used as a mathematical check for a numerical scheme to gradient flows, since it
plays a crucial role in the long time simulation. There have been extensive works of
energy stability and convergence analysis for various numerical schemes to the PFC
equation, as well as the modified PFC and square PFC models, including the first-
order algorithms [49, 50, 54] and the second-order accurate ones [2, 3, 11, 15, 25, 51],
etc. On the other hand, it is observed that, most energy stable numerical schemes
for the PFC equation (1.2) involve an implicit treatment of the nonlinear term,
which comes from the convexity structure of the free energy functional. Such an
implicit treatment leads to a nonlinear numerical solver, which makes the imple-
mentation process very challenging. In addition, most existing works on second-
and higher-order accurate schemes for the PFC equation and the modified models
correspond to a multi-step algorithm, so that the reported energy stability is in
terms of a modified energy functional, which is the original free energy combined
with a few numerical correction terms. Such a modified energy estimate leads to a
uniform-in-time bound for the original energy functional, while the original energy
dissipation property has not been theoretically justified.

To obtain the stability estimate for the original energy functional, some Runge–
Kutta (RK) numerical approaches have attracted increasing attention in recent
years. For example, a combination of the convex splitting technique and the
implicit-explicit (IMEX) RK idea leads to a convex splitting RK (CSRK) frame-
work for gradient flow equations [46] based on a resemblance condition. Such
a CSRK framework gives a three-stage, second-order accurate nonlinear implicit
scheme with a dissipation property for the original energy. In practical compu-
tations, this three-stage RK numerical algorithm leads to three nonlinear solvers
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at each time step, making it even more expensive than the multi-step nonlinear
numerical schemes [15, 25], in which only one nonlinear solver is needed. As an
alternate approach, a linear IMEX-RK scheme is proposed in [19], in which linear
stabilization terms are used in the numerical design, and the unconditional energy
stability is proved under a global Lipschitz condition assumption. However, a theo-
retical justification of such a global Lipschitz condition has not been available due to
the lack of estimates for the numerical solution in the maximum norm, particularly
when a nonlinear term appears in the gradient flow equation.

Meanwhile, the exponential time differencing (ETD)-based numerical approach
has been another popular effort to solve nonlinear parabolic PDEs, in which an
exact integration of the linear and positive definite part of the PDE is used, com-
bined with certain explicit approximations to the temporal integral of the nonlinear
and concave terms [4, 5, 12, 13, 23, 24, 27–29, 52, 56]. The energy stability analysis
has been reported for a few multi-step ETD schemes [8–10,26] in their applications
to various gradient flow models, while such a stability analysis has always been
associated with a modified energy because of the multi-step nature. More recently,
a second-order accurate ETD Runge–Kutta (ETDRK2) numerical scheme is stud-
ied for the PFC equation (1.2) in [34]. In this numerical approach, the right-hand
side is decomposed into two parts: the stabilized diffusion part Lκ, consisting of
the physical diffusion and artificial diffusion terms, while the nonlinear and the
concave artificial terms are combined as the remaining part fκ. Subsequently, an
exact ETD integration is applied to the stabilized diffusion part Lκ, and a specific
explicit update of the nonlinear part fκ is used to ensure the desired accuracy or-
der is satisfied. For such an ETDRK2 numerical scheme, a careful estimate reveals
an energy stability in terms of the original free energy functional (in comparison
with the modified energy stability for many multi-step numerical schemes) under
the condition of a global Lipschitz constant. In turn, the artificial regularization
parameter κ is required to be greater than a constant, dependent on the maximum
norms of the numerical solution at the previous and current time steps and at the
intermediate time stage.

In the existing work [34], a local-in-time convergence analysis is performed for the
ETDRK2 numerical scheme in the �∞(0, T ; �∞) norm, so that the distance between
the exact and numerical solutions stays bounded for a fixed final time. Then, the
�∞ bound of the numerical solution can be derived by the associated bound of
the exact solution plus a fixed constant, as long as the convergence estimate is
valid. With such an �∞ bound for the numerical solution, a theoretical analysis of
the energy stability forms a close argument. On the other hand, such an energy
stability analysis is only local-in-time, since all the error estimates for a nonlinear
PDE have always contained a convergence constant of the form eCT . In turn, such
a convergence constant has an exponential growth as the final time becomes larger,
and a theoretical justification of the distance between the exact and numerical
solutions is no longer valid for a fixed time step size and spatial mesh in the long-
time simulation.

In this article, we provide a global-in-time energy estimate for the proposed
ETDRK2 scheme to the PFC equation (1.2), where the energy dissipation property
is valid for any final time. Based on the established result, the key point of such
an analysis is to derive a uniform-in-time bound for the numerical solution in the
maximum norm. To this end, we make an a priori assumption of decreasing energy
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at the previous time step, so that the discrete H2 and �∞ bounds of the numerical
solution become available at the current step. Subsequently, the numerical system
at the intermediate time stage and the next time step is carefully analyzed, which
leads to a single-step H2 estimate. More precisely, two sub-stages are formulated
at each Runge–Kutta stage, and nonlinear analysis in the Fourier pseudo-spectral
space is undertaken, in which a careful eigenvalue estimate plays an important
role. The derived single-step H2 estimate recovers the �∞ bounds of the numerical
solution at the intermediate stage and the next time step, so that a theoretical
justification of the artificial stabilization parameter κ becomes available. Such an
evaluation of κ ensures the energy dissipation at the next time step, so that the
mathematical induction argument can be effectively applied, and thus the global-
in-time energy estimate is accomplished.

In fact, the reported framework for the global-in-time energy stability estimate
is expected to be applicable to a class of gradient flow models, such as Cahn–
Hilliard equation, epitaxial thin film growth, and other related gradient equations
with non-quadratic free energy expansion. This scientific idea can also be applied
to a class of high-order Runge–Kutta numerical schemes, including the ETDRK,
the exponential and exponential-free Runge–Kutta numerical algorithms with any
accuracy order, as long as the energy stability can be proved under a condition of
a global Lipschitz constant. Moreover, for a wide class of Runge–Kutta numerical
schemes for the gradient flow model, the reported theoretical technique can aslo
be applied to derive the uniform-in-time bound of the numerical solution under
the associated functional norm (required by the global Lipschitz constant in the
energy stability estimate), hence the global-in-time energy estimate can also be
theoretically justified.

The rest of this paper is organized as follows. In Section 2, we review the ET-
DRK2 numerical scheme and present a few preliminary estimates. A global-in-time
energy stability analysis is provided in Section 3. Various numerical experiments
are considered in Section 4 to demonstrate the convergence rates and global-in-time
stability. Some concluding remarks are presented in Section 5.

2. The numerical scheme and a few preliminary estimates

2.1. The finite difference spatial discretization. The numerical approxima-
tion on the computational domain Ω = (0, L)3 is taken into consideration with
periodic boundary condition. The standard centered finite difference approxima-
tion is applied with Δx = Δy = Δz = h = L

N , in which N ∈ N is the spatial mesh
resolution. In particular, fi,j,k represents the numerical value of f at the regular
numerical mesh points (ih, jh, kh), and the discrete space Cper is introduced as

Cper := {f = (fi,j,k) | fi,j,k = fi+αN,j+βN,k+γN , ∀ i, j, k, α, β, γ ∈ Z} .
In turn, the discrete difference operators are evaluated at ((i+ 1

2 )h, jh, kh), (ih, (j+
1
2 )h, kh) and (ih, jh, (k + 1

2 )h), respectively:

(Dxf)i+ 1
2 ,j,k

:=
1

h
(fi+1,j,k − fi,j,k), (Dyf)i,j+ 1

2 ,k
:=

1

h
(fi,j+1,k − fi,j,k),

(Dzf)i,j,k+ 1
2
:=

1

h
(fi,j,k+1 − fi,j,k).

For a vector function 	f=(fx, fy, fz)T with fx, fy, fz evaluated at ((i+1
2 )h, jh, kh),

(ih, (j + 1
2 )h, kh), (ih, jh, (k + 1

2 )h), respectively, the corresponding average and
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difference operators at the staggered mesh points are defined as follows:

(axf
x)i,j,k :=

1

2

(
fx
i+ 1

2 ,j,k
+ fx

i− 1
2 ,j,k

)
, (dxf

x)i,j,k :=
1

h

(
fx
i+ 1

2 ,j,k
− fx

i− 1
2 ,j,k

)
,

(ayf
y)i,j,k :=

1

2

(
fy

i,j+ 1
2 ,k

+ fy

i,j− 1
2 ,k

)
, (dyf

y)i,j,k :=
1

h

(
fy

i,j+ 1
2 ,k

− fy

i,j− 1
2 ,k

)
,

(azf
z)i,j,k :=

1

2

(
fz
i,j,k+ 1

2
+ fz

i,j,k− 1
2

)
, (dzf

z)i,j,k :=
1

h

(
fz
i,j,k+ 1

2
− fz

i,j,k− 1
2

)
.

In turn, the discrete divergence turns out to be

∇h ·
(
	f
)
i,j,k

= (dxf
x)i,j,k + (dyf

y)i,j,k + (dzf
z)i,j,k.

In particular, if 	f = ∇hφ = (Dxφ,Dyφ,Dzφ)
T for certain scalar grid function φ,

the corresponding divergence becomes

(Δhφ)i,j,k = ∇h ·
(
∇hφ

)
i,j,k

= dx (Dxφ)i,j,k + dy (Dyφ)i,j,k + dz (Dzφ)i,j,k .

For two regular grid functions f and g, the discrete L2 inner product and the
associated �2 norm are defined as

〈f, g〉 := h3
N∑

i,j,k=1

fi,j,kgi,j,k, ‖f‖2 := (〈f, f〉) 1
2 .

In turn, the mean zero space is introduced as C̊per :=
{
f ∈ Cper

∣∣ f := 1
|Ω| 〈f, 1〉 = 0

}
.

Similarly, for two vector grid functions 	f = (fx, fy, fz)T and 	g = (gx, gy, gz)T with
fx (gx), fy (gy), fz (gz) evaluated at ((i + 1

2 )h, jh, (k + 1
2 )h), (ih, (j +

1
2 )h, kh),

(ih, jh, (k + 1
2 )h), respectively, the corresponding discrete inner product becomes

〈	f,	g〉 := [fx, gx]x + [fy, gy]y + [fz, gz]z ,

[fx, gx]x := 〈ax(fxgx), 1〉, [fy, gy]y := 〈ay(fygy), 1〉, [fz, gz]z := 〈az(fzgz), 1〉.

In addition to the �2 norm, the discrete �p and maximum norms are introduced as

‖f‖p = (〈|f |p, 1〉) 1
p , 1 ≤ p < +∞, and ‖f‖∞ := max1≤i,j,k≤N |fi,j,k|. Moreover,

the discrete H1
h and H2

h norms are defined as

‖∇hf‖22 := 〈∇hf,∇hf〉 = [Dxf,Dxf ]x + [Dyf,Dyf ]y + [Dzf,Dzf ]z ,

‖f‖2H1
h
:= ‖f‖22 + ‖∇hf‖22 , ‖f‖2H2

h
:= ‖f‖2H1

h
+ ‖Δhf‖22.

The summation-by-parts formulas are recalled in Lemma 2.1 whose detailed proof
can be found in [20, 50, 53, 54], etc.

Lemma 2.1. For any ψ, φ ∈ Cper and any 	f , the following summation-by-parts
formulas are valid:

〈ψ,∇h · 	f〉 = −〈∇hψ, 	f〉, 〈ψ,Δhφ〉 = −〈∇hψ,∇hφ〉, 〈ψ,Δ2
hφ〉 = 〈Δhψ,Δhφ〉,

〈Δhψ,Δ
2
hφ〉 = −〈∇hψ,∇hΔ

2
hφ〉, 〈Δ3

hψ,Δ
2
hφ〉 = −〈∇hΔ

2
hψ,∇hΔ

2
hφ〉.

In addition, the following φ-functions are introduced to facilitate the numerical
formulation:

(2.1) φ0(a) = e−a, φ1(a) =
1− e−a

a
, φ2(a) =

a− (1− e−a)

a2
, a > 0.

The following result will be used in subsequent analysis, and its proof has been
provided in [10].
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Lemma 2.2.

(1) φi(x) is decreasing, for i = 0, 1, 2;

(2) 0 < φ1(x) ≤ 1, 0 < φ2(x) ≤ 1
2 , and 0 < φ2(x)

φ1(x)
≤ 1, ∀x > 0.

2.2. The numerical scheme. The space-discrete problem of (1.2) is to find u :
[0,+∞) → Cper that

(2.2)
du

dt
= Δh(u

3)− εΔhu+Δh(I +Δh)
2u.

Given a constant κ > 0, we add and then subtract the term κΔhu on the right-hand
side of (2.2) and rearrange the terms into linear and nonlinear parts:
(2.3)
du

dt
= −Lκu+fκ(u), Lκ = −Δh

(
(I+Δh)

2+κI
)
, fκ(u) = Δh(u

3)−(ε+κ)Δhu.

Notice that 0 < ε < 1 is a fixed physical parameter, while κ ≥ 1 is an artificial
constant to ensure an energy dissipation property at a theoretical level. In fact, if
one takes Lκ(u) = −Δh

(
(I +Δh)

2 + (κ − ε)I
)
u, the other part becomes fκ(u) =

Δh(u
3)− κΔhu. These two representations would lead to an analysis in the same

style, since the value of κ in the later rewritten form could be treated as ε+κ in the
representation (2.3); the constant value of κ could be artificially adjusted, as long
as it preserves a lower bound, which will be demonstrated in the later analysis. By
the variation-of-constants formula, the exact solution to (2.3) is given by

(2.4) u(tn+1) = e−τLκu(tn) +

∫ τ

0

e−(τ−s)Lκfκ(u(t
n + s)) ds,

where {tn = nτ}n≥0 with τ > 0 represents the set of nodes partitioning the time
domain [0,+∞). The numerical design of the ETDRK approximation has had a
long history, and such a numerical algorithm to a dissipative PDE system, in the
style of (2.3), was originally proposed by Hochbruck and Ostermann [22], in the
Butcher tableau form. In particular, the second-order ETDRK method, denoted as
the ETDRK2 scheme, consists of two stages at each time step:

ũn+1 = φ0(τLκ)u
n + τφ1(τLκ)fκ(u

n),(2.5a)

un+1 = φ0(τLκ)u
n + τ

(
(φ1(τLκ)− φ2(τLκ))fκ(u

n) + φ2(τLκ)fκ(ũ
n+1)

)
(2.5b)

= ũn+1 + τφ2(τLκ)(fκ(ũ
n+1)− fκ(u

n)).

In fact, this numerical scheme has been studied in [34], which turns out to be a
special case of the ETDRK method outlined in [22]. Meanwhile, a discrete version
of the energy functional is defined as

Eh(u) =
1

4
‖u‖44 +

1− ε

2
‖u‖22 − ‖∇hu‖22 +

1

2
‖Δhu‖22, ∀u ∈ Cper.

For the ETDRK2 scheme (2.5), the following result has been proved in [34].

Lemma 2.3 ([34]). Under the condition that

κ ≥ 3M2
0 − ε

2
, where M0 = max{‖un‖∞, ‖ũn+1‖∞, ‖un+1‖∞},

the numerical solution {un}0≤n≤NT
generated by the ETDRK2 scheme (2.5) satis-

fies Eh(u
n+1) ≤ Eh(u

n).
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In the existing work [34], a local-in-time convergence analysis is performed, in
the ‖·‖∞ norm, to justify the parameterM0. This in turn determines the value of κ,
so that the energy stability analysis becomes available in Lemma 2.3. On the other
hand, it is observed that, the convergence constant contains an exponential growth
term in time, due to the nonlinearity of the PDE. Hence, the ‖ · ‖∞ bound of the
numerical solution is just a local-in-time result and such an energy stability estimate
turns out to be a local-in-time analysis, since the ‖ · ‖∞ bound of the numerical
solution is only valid local-in-time by using the convergence analysis approach.

2.3. Some related operators in the Fourier space. To facilitate the global-in-
time energy stability analysis, we introduce the linear operators

Gh = φ1(τLκ) = (τLκ)
−1(I − e−τLκ),

G
(1)
h = φ2(τLκ) = (τLκ)

−1(I −Gh),

G
(2)
h = G−1

h G
(1)
h = (φ1(τLκ))

−1 φ2(τLκ),

in which φj are defined in (2.1). Moreover, for any f ∈ Cper with the following
discrete Fourier expansion:

(2.6) fi,j,k =
K∑

�,m,n=−K

f̂�,m,ne
2πi(�xi+myj+nzk)/L,

the above operators can be represented as

(Ghf)i,j,k =

K∑
�,m,n=−K

1− e−τΛ�,m.n

τΛ�,m,n
f̂�,m,ne

2πi(�xi+myj+nzk)/L,

(G
(1)
h f)i,j,k =

K∑
�,m,n=−K

1− 1−e−τΛ�,m,n

τΛ�,m,n

τΛ�,m,n
f̂�,m,ne

2πi(�xi+myj+nzk)/L,

(G
(2)
h f)i,j,k =

K∑
�,m,n=−K

1− 1−e−τΛ�,m,n

τΛ�,m,n

1− e−τΛ�,m,n
f̂�,m,ne

2πi(�xi+myj+nzk)/L,

with

Λ�,m,n =
(
(1−λ�,m,n)

2+κ
)
λ�,m,n, λ�,m,n =

4

h2

(
sin2

�πh

L
+sin2

mπh

L
+sin2 nπh

L

)
.

Meanwhile, since all the eigenvalues 1−e−τΛ�,m,n

τΛ�,m,n
are non-negative, a natural defini-

tion of G
(0)
h = (Gh)

1/2 is given by

(G
(0)
h f)i,j,k =

K∑
�,m,n=−K

(
1− e−τΛ�,m,n

τΛ�,m,n

) 1
2

f̂�,m,ne
2πi(�xi+myj+nzk)/L.

It is clear that the operator G
(0)
h is commutative with any discrete differential

operator, and the following summation by parts formula is valid:

〈f, φ1(τLκ)g〉 = 〈f,Ghg〉 = 〈G(0)
h f,G

(0)
h g〉.
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Similarly, we are able to define G
(3)
h = (G

(1)
h )1/2 and G

(4)
h = (G

(2)
h )1/2 as

(G
(3)
h f)i,j,k =

K∑
�,m,n=−K

(1− 1−e−τΛ�,m,n

τΛ�,m,n

τΛ�,m,n

) 1
2

f̂�,m,ne
2πi(�xi+myj+nzk)/L,

(G
(4)
h f)i,j,k =

K∑
�,m,n=−K

(1− 1−e−τΛ�,m,n

τΛ�,m,n

1− e−τΛ�,m,n

) 1
2

f̂�,m,ne
2πi(�xi+myj+nzk)/L.

The following summation-by-parts formula can be derived in the same manner:

〈f, φ2(τLκ)g〉 = 〈f,G(1)
h g〉 = 〈G(0)

h f,G
(3)
h G

(4)
h g〉.

In addition, the following operator is introduced, which will be used in the analysis
for the diffusion part:

(2.7) (G
(5)
h f)i,j,k =

K∑
�,m,n=−K

(
1− e−τΛ�,m,n

τ

) 1
2

λ�,m,nf̂�,m,ne
2πi(�xi+myj+nzk)/L.

2.4. A few preliminary estimates. The following preliminary estimates are
needed in the subsequent analysis; the detailed proof will be provided in Appen-
dices A and B, respectively.

Proposition 2.4. Assume that κ ≥ 1. For any f ∈ Cper, we have

|G(0)
h ∇hΔhf‖2 ≤ ‖G(0)

h Δhf‖
2
3
2 · ‖G(0)

h ∇hΔ
2
hf‖

1
3
2 ,(2.8)

‖Δhf‖22 ≥ τ‖G(5)
h f‖22,(2.9)

〈GhLκf,Δ
2
hf〉 = ‖G(5)

h f‖22 ≥ 1

2
‖G(0)

h ∇hΔ
2
hf‖22 + (κ− 1)‖G(0)

h ∇hΔhf‖22,(2.10)

〈
GhLκf,Δ

2
he

−τLκf
〉
≥ ‖G(5)

h (e−τLκf)‖22,(2.11)

‖G(0)
h f‖2 ≤ ‖f‖2, ‖G(3)

h f‖2 ≤ ‖G(0)
h f‖2,(2.12)

‖G(3)
h f‖2 ≤ 1√

2
‖f‖2, ‖G(4)

h f‖2 ≤ ‖f‖2.(2.13)

Proposition 2.5. For any two periodic grid functions f , g ∈ Cper, we have

τ 〈GhLκf,Δ
2
he

−τLκf〉+ ‖Δh(g − e−τLκf)‖22 ≥ τ‖G(5)
h g‖22.(2.14)

Remark 2.6. In fact, a combination of inequalities (2.9) and (2.11) implies that

τ 〈GhLκf,Δ
2
he

−τLκf〉+ ‖Δh(g − e−τLκf)‖22

≥ τ‖G(5)
h (e−τLκf)‖22 + τ‖G(5)

h (g − e−τLκf)‖22 ≥ 1

2
τ‖G(5)

h g‖22,

for any f , g ∈ Cper, in which the quadratic inequality has been applied. In compar-
ison, the derived estimate (2.14) turns out to be a more refined one.

Moreover, the following inequalities will be extensively used in the nonlinear
analysis.

Lemma 2.7. For any f ∈ Cper, we have

‖f‖∞ ≤ C2(|f̄ |+ ‖Δhf‖2),(2.15)

‖∇h(f
3)‖2 ≤ 3‖f‖2∞ · ‖∇hf‖2, ‖∇hf‖2 ≤ C3‖Δhf‖2,(2.16)
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GLOBAL-IN-TIME ENERGY STABILITY ANALYSIS FOR ETDRK 9

in which the constants C2 and C3 are only dependent on Ω, independent on f , h
and κ.

Proof. Inequality (2.15) comes from Lemma 3.1 in [20]; the technical details are
skipped.

In terms of the first inequality in (2.16), we begin with the following point-wise
expansion, from two neighboring mesh points, (i, j, k) to (i+ 1, j, k):

(Dx(f
3))i+ 1

2 ,j,k
=

1

h
(f3

i+1,j,k−f3
i,j,k) =

(
f2
i+1,j,k+fi+1,j,k·fi,j,k+f2

i,j,k

)
(Dxf)i+ 1

2 ,j,k
.

In turn, an application of discrete Hölder inequality indicates that

‖Dx(f
3)‖2 ≤ 3‖f‖2∞ · ‖Dxf‖2.

The corresponding estimates in the y and z directions can be similarly derived.
This completes the proof of the first inequality in (2.16).

The second inequality in (2.16) also comes from Lemma 3.1 in [20]; the technical
details are skipped for the sake of brevity. �

3. The global-in-time energy stability estimate

In this article, we perform a direct analysis for the numerical solution, so that a
uniform-in-time H2

h estimate becomes available for the numerical solution. Because
of the Sobolev embedding from H2 to L∞ in the 3-D space, we are able to recover
the uniform-in-time value of M0 and κ arisen in Lemma 2.3. This in turn gives a
global-in-time energy stability estimate for the ETDRK2 scheme (2.5).

To proceed with the global-in-time energy stability analysis, we make an a priori
assumption at the previous time step:

(3.1) Eh(u
n) ≤ Eh(u

0) := C̃0.

Such an a priori assumption will be recovered at the next time step. On the other
hand, the following energy estimate becomes available for any u ∈ Cper, with the
help of Cauchy inequality and quadratic inequality:

‖u‖22 − ‖∇hu‖22 +
1

4
‖Δhu‖22 = ‖u‖22 + 〈u,Δhu〉+

1

4
‖Δhu‖22 ≥ 0,

1

4
u4 − u2 ≥ −1, which in turn gives

1

4
‖u‖44 − ‖u‖22 ≥ −|Ω|,

so that Eh(u) =
1

4
‖u‖44 +

1− ε

2
‖u‖22 − ‖∇hu‖22 +

1

2
‖Δhu‖22 ≥ 1

4
‖Δhu‖22 − |Ω|.

Therefore, the following H2
h bound of the numerical solution can be derived, com-

bined with the discrete energy assumption (3.1):

(3.2)
1

4
‖Δhu

n‖22 ≤ C̃0 + |Ω|, i.e., ‖Δhu
n‖2 ≤ C̃1 := 2

(
C̃0 + |Ω|

) 1
2

.

Meanwhile, it is observed that the ETDRK2 scheme (2.5) is mass conservative at
a discrete level:

un+1 = ũn+1 = un = u0 := β0.

Now, an application of estimates (2.15) and (2.16) in Lemma 2.7 yields the following
nonlinear bounds at the previous time step:

‖un‖∞ ≤ C2(|un|+ ‖Δhu
n‖2) ≤ C2(|β0|+ C̃1) := C̃2,(3.3)

‖∇h((u
n)3)‖2 ≤ 3‖un‖2∞ · C3‖Δhu

n‖2 ≤ 3C̃2
2C3C̃1 := C̃3.(3.4)
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10 XIAO LI, ZHONGHUA QIAO, CHENG WANG, AND NAN ZHENG

In fact, both C̃2 and C̃3 are global-in-time constants, of O(1), only dependent on
the initial energy and Ω. Moreover, these two constants are independent of κ.

3.1. A preliminary estimate for ‖ũn+1‖H2
h
. We aim to obtain a rough H2

h esti-

mate for the intermediate stage numerical solution ũn+1. The current form (2.5a) of
the evolutionary algorithm has not indicated a clear interaction between the linear
and nonlinear terms. In order to carry out the theoretical analysis in a more con-
venient way, we denote un+1,∗ = e−τLκun, and rewrite the evolutionary equation
(2.5a) as the following two-substage system:

un+1,∗ − un

τ
= −Lκφ1(τLκ)u

n,(3.5)

ũn+1 − un+1,∗

τ
= φ1(τLκ)fκ(u

n).(3.6)

Taking a discrete �2 inner product with (3.5) by Δ2
h(u

n+1,∗ + un) results in

(3.7)
〈
un+1,∗ − un,Δ2

h(u
n+1,∗ + un)

〉
+ τ 〈GhLκu

n,Δ2
h(u

n+1,∗ + un)〉 = 0.

For the first term, an direct application of the summation-by-parts formula gives:〈
un+1,∗ − un,Δ2

h(u
n+1,∗ + un)

〉
=

〈
Δh(u

n+1,∗ − un),Δh(u
n+1,∗ + un)

〉
= ‖Δhu

n+1,∗‖22 − ‖Δhu
n‖22.

In terms of the first term appearing in the diffusion part of (3.7), an application of
estimate (2.10) in Proposition 2.4 implies that
(3.8)

〈GhLκu
n,Δ2

hu
n〉 = ‖G(5)

h un‖22 ≥ 1

2
‖G(0)

h ∇hΔ
2
hu

n‖22 + (κ− 1)‖G(0)
h ∇hΔhu

n‖22.

Subsequently, a combination of (3.7)–(3.8) yields

(3.9) ‖Δhu
n+1,∗‖22 − ‖Δhu

n‖22 + τ (‖G(5)
h un‖22 + 〈GhLκu

n,Δ2
hu

n+1,∗〉) = 0.

Similarly, taking a discrete �2 inner product with (3.6) by 2Δ2
hũ

n+1 leads to

(3.10)
〈
ũn+1 − un+1,∗, 2Δ2

hũ
n+1

〉
= 2τ 〈Ghfκ(u

n),Δ2
hũ

n+1〉.

The term on the left-hand side can be expressed as〈
ũn+1 − un+1,∗, 2Δ2

hũ
n+1

〉
= 2

〈
Δh(ũ

n+1 − un+1,∗),Δhũ
n+1

〉
(3.11)

= ‖Δhũ
n+1‖22 − ‖Δhu

n+1,∗‖22 + ‖Δh(ũ
n+1 − un+1,∗)‖22.

Subsequently, a combination of (3.9) and (3.10)–(3.11) gives

‖Δhũ
n+1‖22 − ‖Δhu

n‖22 + ‖Δh(ũ
n+1 − un+1,∗)‖22(3.12)

+ τ (‖G(5)
h un‖22 + 〈GhLκu

n,Δ2
hu

n+1,∗〉) = 2τ 〈Ghfκ(u
n),Δ2

hũ
n+1〉.

Moreover, an application of inequality (2.14) (in Proposition 2.5) reveals that

(3.13) τ 〈GhLκu
n,Δ2

hu
n+1,∗〉+ ‖Δh(ũ

n+1 − un+1,∗)‖22 ≥ τ‖G(5)
h ũn+1‖22.

Going back to (3.12), we arrive at
(3.14)

‖Δhũ
n+1‖22 − ‖Δhu

n‖22 + τ (‖G(5)
h un‖22 + ‖G(5)

h ũn+1‖22) ≤ 2τ 〈Ghfκ(u
n),Δ2

hũ
n+1〉.
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Meanwhile, due to (2.10) in Proposition 2.4, we observe the following inequality:

‖G(5)
h un‖22 + ‖G(5)

h ũn+1‖22 ≥ 1

2
(‖G(0)

h ∇hΔ
2
hu

n‖22 + ‖G(0)
h ∇hΔ

2
hũ

n+1‖22)(3.15)

+ (κ− 1)(‖G(0)
h ∇hΔhu

n‖22 + ‖G(0)
h ∇hΔhũ

n+1‖22).

The right-hand side of (3.14) contains two parts:
(3.16)
2〈Ghfκ(u

n),Δ2
hũ

n+1〉 = 2〈GhΔh((u
n)3),Δ2

hũ
n+1〉 − 2(ε+ κ)〈GhΔhu

n,Δ2
hũ

n+1〉.

The first term can be analyzed as follows

2〈GhΔh((u
n)3),Δ2

hũ
n+1〉 = −2〈Gh∇h((u

n)3),∇hΔ
2
hũ

n+1〉(3.17)

= −2〈G(0)
h ∇h((u

n)3), G
(0)
h ∇hΔ

2
hũ

n+1〉

≤ 2‖G(0)
h ∇h((u

n)3)‖2 · ‖G(0)
h ∇hΔ

2
hũ

n+1‖2
≤ 2‖∇h((u

n)3)‖2 · ‖G(0)
h ∇hΔ

2
hũ

n+1‖2

≤ 8‖∇h((u
n)3)‖22 +

1

8
‖G(0)

h ∇hΔ
2
hũ

n+1‖22

≤ 8C̃2
3 +

1

8
‖G(0)

h ∇hΔ
2
hũ

n+1‖22,

in which the summation-by-parts formulas, as well as the first inequality in (2.12)
and the a priori estimate (3.4) have been applied. The second term, a linear inner
product term, can be decomposed into two parts: the first part is estimated as

− 2(1 + ε)〈GhΔhu
n,Δ2

hũ
n+1〉 = 2(1 + ε)〈Gh∇hu

n,∇hΔ
2
hũ

n+1〉(3.18)

= 2(1 + ε)〈G(0)
h ∇hu

n, G
(0)
h ∇hΔ

2
hũ

n+1〉

≤ 2(1 + ε)‖G(0)
h ∇hu

n‖2 · ‖G(0)
h ∇hΔ

2
hũ

n+1‖2
≤ 2(1 + ε)‖∇h(u

n)‖2 · ‖G(0)
h ∇hΔ

2
hũ

n+1‖2
≤ 2(1 + ε)C3‖Δhu

n‖2 · ‖G(0)
h ∇hΔ

2
hũ

n+1‖2

≤ 16C2
3‖Δhu

n‖22 +
1

4
‖G(0)

h ∇hΔ
2
hũ

n+1‖22

≤ 16C2
3 C̃

2
1 +

1

4
‖G(0)

h ∇hΔ
2
hũ

n+1‖22,

in which the inequality (2.16) is used, and the second part is analyzed as

− 2(κ− 1)〈GhΔhu
n,Δ2

hũ
n+1〉 = 2(κ− 1)〈Gh∇hΔhu

n,∇hΔhũ
n+1〉(3.19)

= 2(κ− 1)〈G(0)
h ∇hΔhu

n, G
(0)
h ∇hΔhũ

n+1〉

= (κ− 1)(‖G(0)
h ∇hΔhu

n‖22 + ‖G(0)
h ∇hΔhũ

n+1‖22)

− (κ− 1)‖G(0)
h ∇hΔh(ũ

n+1 − un)‖22.

In particular, we notice that an additional dissipation term appears in the equal-
ity (3.19), and this dissipation term comes from the stabilization of −κΔhu in the
expansion (2.3) for fκ(u). As a result, a substitution of (3.15)–(3.16) into (3.14)
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12 XIAO LI, ZHONGHUA QIAO, CHENG WANG, AND NAN ZHENG

yields

‖Δhũ
n+1‖22 − ‖Δhu

n‖22 +
τ

2
‖G(0)

h ∇hΔ
2
hu

n‖22 +
τ

8
‖G(0)

h ∇hΔ
2
hũ

n+1‖22(3.20)

+ (κ− 1)τ‖G(0)
h ∇hΔh(ũ

n+1 − un)‖22 ≤ 8τC̃2
3 + 16τC2

3 C̃
2
1 .

Consequently, the following bound becomes available for ‖Δhũ
n+1‖2:

‖Δhũ
n+1‖22 ≤ ‖Δhu

n‖22 + 8τC̃2
3 + 16τC2

3 C̃
2
1 ≤ (1 + 16C2

3τ )C̃
2
1 + 8τC̃2

3 ,

in which the a priori estimate (3.2) has been applied. Under the following O(1)
constraint for the time step size

(3.21) τ ≤ min
{ 1

16
C−2

3 ,
1

8
C̃−2

3

}
,

we obtain a rough estimate for ‖Δhũ
n+1‖2 as

‖Δhũ
n+1‖22 ≤ 2C̃2

1 + 1, so that ‖Δhũ
n+1‖2 ≤ C̃4 :=

√
2C̃2

1 + 1,

where C̃4 is independent of κ. Similarly, an application of estimates (2.15) and
(2.16) in Lemma 2.7 yields the following nonlinear bounds at intermediate stage:

‖ũn+1‖∞ ≤ C2(|ũn+1|+ ‖Δhũ
n+1‖2) ≤ C2(|β0|+ C̃4) := C̃5,(3.22)

‖∇h((ũ
n+1)3)‖2 ≤ 3‖ũn+1‖2∞ · C3‖Δhũ

n+1‖2 ≤ 3C̃2
5C3C̃4 := C̃6.(3.23)

Again, both C̃5 and C̃6 are global-in-time constants, of O(1), only dependent on

the initial energy and Ω, independent of κ. In addition, we see that C̃5 ≥ C̃2 since
C̃4 ≥ C̃1.

By the way, the rough estimate (3.20) also indicates

(3.24) (κ− 1)τ‖G(0)
h ∇hΔh(ũ

n+1 − un)‖22 ≤ C̃2
1 + (8C̃2

3 + 16C2
3 C̃

2
1 )τ ≤ 2C̃2

1 + 1,

under the constraint (3.21). This bound will be useful to the estimate in the next
stage.

3.2. A preliminary estimate for ‖un+1‖H2
h
. In this section, we aim to obtain

a rough H2
h estimate for the numerical solution un+1 at the next time step, deter-

mined by the second stage. Similarly, we denote un+1,∗ = e−τLκun, so that the
evolutionary algorithm (2.5b) can be rewritten as a two-substage system:

un+1,∗ − un

τ
= −Lκφ1(τLκ)u

n,(3.25)

un+1 − un+1,∗

τ
= φ1(τLκ)fκ(u

n) + φ2(τLκ)(fκ(ũ
n+1)− fκ(u

n)).(3.26)

The equation (3.25) is the same as (3.5), so that equality (3.9) is still valid.
Taking a discrete �2 inner product with (3.26) by 2Δ2

hu
n+1 leads to〈

un+1 − un+1,∗, 2Δ2
hu

n+1
〉
= 2τ 〈Ghfκ(u

n),Δ2
hu

n+1〉 − 2τ 〈G(1)
h fκ(u

n),Δ2
hu

n+1〉

+ 2τ 〈G(1)
h fκ(ũ

n+1),Δ2
hu

n+1〉.(3.27)

The term on the left-hand side can be analyzed similarly as (3.11) and (3.13):〈
un+1 − un+1,∗, 2Δ2

hu
n+1

〉
= ‖Δhu

n+1‖22 − ‖Δhu
n+1,∗‖22 + ‖Δh(u

n+1 − un+1,∗)‖22,

τ 〈GhLκu
n,Δ2

hu
n+1,∗〉+ ‖Δh(u

n+1 − un+1,∗)‖22 ≥ τ‖G(5)
h un+1‖22,
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and its combination with (3.9) and (3.27) yields

‖Δhu
n+1‖22 − ‖Δhu

n‖22 + τ (‖G(5)
h un‖22 + ‖G(5)

h un+1‖22)(3.28)

≤ 2τ 〈Ghfκ(u
n),Δ2

hu
n+1〉+ 2τ 〈G(1)

h (fκ(ũ
n+1)− fκ(u

n)),Δ2
hu

n+1〉.

The first term on the right-hand side of (3.28) can be analyzed in a similar way
as in (3.16)–(3.19); some technical details are skipped for the sake of brevity:

2〈Ghfκ(u
n),Δ2

hu
n+1〉

= 2〈GhΔh((u
n)3),Δ2

hu
n+1〉 − 2(ε+ κ)〈GhΔhu

n,Δ2
hu

n+1〉,
2〈GhΔh((u

n)3),Δ2
hu

n+1〉(3.29)

= −2〈Gh∇h((u
n)3),∇hΔ

2
hu

n+1〉

≤ 2‖∇h((u
n)3)‖2 · ‖G(0)

h ∇hΔ
2
hu

n+1‖22

≤ 24C̃2
3 +

1

24
‖G(0)

h ∇hΔ
2
hu

n+1‖22,

− 2(1 + ε)〈GhΔhu
n,Δ2

hu
n+1〉

= 2(1 + ε)〈G(0)
h ∇hu

n, G
(0)
h ∇hΔ

2
hu

n+1〉

≤ 2(1 + ε)C3‖Δhu
n‖2 · ‖G(0)

h ∇hΔ
2
hu

n+1‖22

≤ 32C2
3 C̃

2
1 +

1

8
‖G(0)

h ∇hΔ
2
hu

n+1‖22,

− 2(κ− 1)〈GhΔhu
n,Δ2

hu
n+1〉(3.30)

= 2(κ− 1)〈Gh∇hΔhu
n,∇hΔhu

n+1〉

= 2(κ− 1)〈G(0)
h ∇hΔhu

n, G
(0)
h ∇hΔhu

n+1〉

= (κ− 1)(‖G(0)
h ∇hΔhu

n‖22 + ‖G(0)
h ∇hΔhu

n+1‖22)

− (κ− 1)‖G(0)
h ∇hΔh(u

n+1 − un)‖22,

so that

2τ 〈Ghfκ(u
n),Δ2

hu
n+1〉 ≤ (24C̃2

3 + 32C2
3 C̃

2
1 )τ +

τ

6
‖G(0)

h ∇hΔ
2
hu

n+1‖22(3.31)

+ (κ− 1)τ (‖G(0)
h ∇hΔhu

n‖22 + ‖G(0)
h ∇hΔhu

n+1‖22)

− (κ− 1)τ‖G(0)
h ∇hΔh(u

n+1 − un)‖22.

For the second term on the right-hand side of (3.28), we begin with the following
decomposition:

2〈G(1)
h (fκ(ũ

n+1)− fκ(u
n)),Δ2

hu
n+1〉(3.32)

= 2〈G(1)
h Δh((ũ

n+1)3),Δ2
hu

n+1〉 − 2〈G(1)
h Δh((u

n)3),Δ2
hu

n+1〉

− 2(ε+ κ)〈G(1)
h Δh(ũ

n+1 − un),Δ2
hu

n+1〉.
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14 XIAO LI, ZHONGHUA QIAO, CHENG WANG, AND NAN ZHENG

The two nonlinear inner product terms can be bounded in the same fashion as
in (3.17), (3.29), combined with the help of inequality (2.13) in Proposition 2.4:

2〈G(1)
h Δh((ũ

n+1)3),Δ2
hu

n+1〉(3.33)

= 2〈G(3)
h G

(4)
h Δh((ũ

n+1)3), G
(0)
h Δ2

hu
n+1〉

= −2〈G(3)
h G

(4)
h ∇h((ũ

n+1)3), G
(0)
h ∇hΔ

2
hu

n+1〉

≤ 2‖G(3)
h G

(4)
h ∇h((ũ

n+1)3)‖2 · ‖G(0)
h ∇hΔ

2
hu

n+1‖2
≤

√
2‖∇h((ũ

n+1)3)‖2 · ‖G(0)
h ∇hΔ

2
hu

n+1‖2
≤

√
2C̃6‖G(0)

h ∇hΔ
2
hu

n+1‖2 (by the a priori estimate (3.23))

≤ 12C̃2
6 +

1

24
‖G(0)

h ∇hΔ
2
hu

n+1‖22,

and

(3.34) −2〈G(1)
h Δh((u

n)3),Δ2
hu

n+1〉 ≤ 12C̃2
3 +

1

24
‖G(0)

h ∇hΔ
2
hu

n+1‖22.

Again, the linear diffusion inner product on the right-hand side of (3.32) is split
into two parts, and we analyze them separately:

− 2(1 + ε)〈G(1)
h Δh(ũ

n+1 − un),Δ2
hu

n+1〉(3.35)

= −2(1 + ε)〈G(3)
h G

(4)
h Δh(ũ

n+1 − un), G
(0)
h Δ2

hu
n+1〉

= 2(1 + ε)〈G(3)
h G

(4)
h ∇h(ũ

n+1 − un), G
(0)
h ∇hΔ

2
hu

n+1〉

≤
√
2(1 + ε)‖∇h(ũ

n+1 − un)‖2 · ‖G(0)
h ∇hΔ

2
hu

n+1‖2
≤ 2

√
2C3‖Δh(ũ

n+1 − un)‖2 · ‖G(0)
h ∇hΔ

2
hu

n+1‖2
≤ 2

√
2C3(C̃1 + C̃4)‖G(0)

h ∇hΔ
2
hu

n+1‖2 (by (3.2) and (3.22))

≤ 12C2
3 (C̃1 + C̃4)

2 +
1

6
‖G(0)

h ∇hΔ
2
hu

n+1‖22,

and

− 2(κ− 1)〈G(1)
h Δh(ũ

n+1 − un),Δ2
hu

n+1〉(3.36)

= −2(κ− 1)〈G(3)
h Δh(ũ

n+1 − un), G
(3)
h Δ2

hu
n+1〉

= 2(κ− 1)〈G(3)
h ∇hΔh(ũ

n+1 − un), G
(3)
h ∇hΔhu

n+1〉

≤ 2(κ− 1)‖G(3)
h ∇hΔh(ũ

n+1 − un)‖22 +
κ− 1

2
‖G(3)

h ∇hΔhu
n+1‖22

≤ 2(κ− 1)‖G(0)
h ∇hΔh(ũ

n+1 − un)‖22 +
κ− 1

2
‖G(0)

h ∇hΔhu
n+1‖22,

in which the preliminary inequality (2.12) has been applied in the last step of
(3.36). Furthermore, to obtain a bound for the second term on the right-hand side
of (3.36), we make use of the Cauchy inequality:
(3.37)
κ− 1

2
‖G(0)

h ∇hΔhu
n+1‖22 ≤ (κ− 1)(‖G(0)

h ∇hΔhu
n‖22 + ‖G(0)

h ∇hΔh(u
n+1 − un)‖22).

It is noticed that the second term on the right-hand side of (3.37) can be balanced
by the stabilization estimate in (3.30). On the other hand, motivated by the Sobolev
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interpolation inequality (which comes from (2.8) in Proposition 2.4)

‖G(0)
h ∇hΔhu

n‖2 ≤ ‖G(0)
h Δhu

n‖
2
3
2 · ‖G(0)

h ∇hΔ
2
hu

n‖
1
3
2 ,

an application of Young’s inequality indicates that

‖G(0)
h ∇hΔhu

n‖22 ≤ ‖G(0)
h Δhu

n‖
4
3
2 · ‖G(0)

h ∇hΔ
2
hu

n‖
2
3
2

≤ ‖Δhu
n‖

4
3
2 · ‖G(0)

h ∇hΔ
2
hu

n‖
2
3
2

≤ 2

3
α− 3

2 ‖Δhu
n‖22 +

1

3
α3‖G(0)

h ∇hΔ
2
hu

n‖22, ∀α > 0.

By taking 1
3α

3 = 1
2(κ−1) , so that α = ( 32 )

1
3 (κ− 1)−

1
3 , we get

(κ− 1)‖G(0)
h ∇hΔhu

n‖22 ≤ 2(κ− 1)

3
α− 3

2 ‖Δhu
n‖22 +

1

2
‖G(0)

h ∇hΔ
2
hu

n‖22(3.38)

=
2
√
6

9
(κ− 1)

3
2 ‖Δhu

n‖22 +
1

2
‖G(0)

h ∇hΔ
2
hu

n‖22

≤ 2
√
6

9
C̃2

1 (κ− 1)
3
2 +

1

2
‖G(0)

h ∇hΔ
2
hu

n‖22,

in which the a priori estimate (3.2) has been applied in the last step. Subsequently,
a substitution of (3.38) into (3.37) gives

κ− 1

2
‖G(0)

h ∇hΔhu
n+1‖22 ≤ 2

√
6

9
C̃2

1 (κ− 1)
3
2 +

1

2
‖G(0)

h ∇hΔ
2
hu

n‖22(3.39)

+ (κ− 1)‖G(0)
h ∇hΔh(u

n+1 − un)‖22.
Meanwhile, we recall the a priori estimate (3.24) at the previous stage. As a result,
a substitution of (3.24) and (3.39) into (3.36) leads to

− 2(κ− 1)τ 〈G(1)
h Δh(ũ

n+1 − un),Δ2
hu

n+1〉(3.40)

≤ 4C̃2
1 + 2 +

2
√
6

9
C̃2

1τ (κ− 1)
3
2 +

τ

2
‖G(0)

h ∇hΔ
2
hu

n‖22

+ (κ− 1)τ‖G(0)
h ∇hΔh(u

n+1 − un)‖22.
Consequently, a combination of (3.35) and (3.40) gives

− 2(ε+ κ)τ 〈G(1)
h Δh(ũ

n+1 − un),Δ2
hu

n+1〉(3.41)

≤ 4C̃2
1 + 2 + 12C2

3 (C̃2 + C̃4)
2τ +

τ

6
‖G(0)

h ∇hΔ
2
hu

n+1‖22

+
2
√
6

9
C̃2

1τ (κ− 1)
3
2 +

τ

2
‖G(0)

h ∇hΔ
2
hu

n‖22

+ (κ− 1)τ‖G(0)
h ∇hΔh(u

n+1 − un)‖22.
Furthermore, a combination of (3.33), (3.34) and (3.41) results in

2τ 〈G(1)
h (fκ(ũ

n+1)− fκ(u
n)),Δ2

hu
n+1〉(3.42)

≤ 4C̃2
1 + 2 + 12(C̃2

3 + C̃2
6 + C2

3 (C̃1 + C̃4)
2)τ +

τ

4
‖G(0)

h ∇hΔ
2
hu

n+1‖22

+
2
√
6

9
C̃2

1τ (κ− 1)
3
2 +

τ

2
‖G(0)

h ∇hΔ
2
hu

n‖22

+ (κ− 1)τ‖G(0)
h ∇hΔh(u

n+1 − un)‖22.
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16 XIAO LI, ZHONGHUA QIAO, CHENG WANG, AND NAN ZHENG

Therefore, a substitution of (3.31) and (3.42) into (3.28) yields

‖Δhu
n+1‖22 − ‖Δhu

n‖22 + τ (‖G(5)
h un+1‖22 + ‖G(5)

h un‖22)

≤ 4C̃2
1 + 2 + (36C̃2

3 + 12C̃2
6 + 32C2

3 C̃
2
1 + 12C2

3 (C̃1 + C̃4)
2)τ +

2
√
6

9
C̃2

1τ (κ− 1)
3
2

+ (κ− 1)τ (‖G(0)
h ∇hΔhu

n‖22 + ‖G(0)
h ∇hΔhu

n+1‖22)

+
5τ

12
‖G(0)

h ∇hΔ
2
hu

n+1‖22 +
τ

2
‖G(0)

h ∇hΔ
2
hu

n‖22.

We notice that the term (κ− 1)τ‖G(0)
h ∇hΔh(u

n+1 − un)‖22 has been balanced be-
tween (3.31) and (3.42), which played an important role in the derivation. In ad-
dition, the two diffusion estimate terms have the following lower bounds, as given
by inequality (2.10) in Proposition 2.4:

‖G(5)
h un‖22 + ‖G(5)

h un+1‖22 ≥ 1

2
(‖G(0)

h ∇hΔ
2
hu

n‖22 + ‖G(0)
h ∇hΔ

2
hu

n+1‖22)

+ (κ− 1)(‖G(0)
h ∇hΔhu

n‖22 + ‖G(0)
h ∇hΔhu

n+1‖22).

Then we arrive at

‖Δhu
n+1‖22 − ‖Δhu

n‖22 +
τ

12
‖G(0)

h ∇hΔ
2
hu

n+1‖22

≤ 4C̃2
1 + 2 + (36C̃2

3 + 12C̃2
6 + 32C2

3 C̃
2
1 + 12C2

3 (C̃1 + C̃4)
2)τ +

2
√
6

9
C̃2

1τ (κ− 1)
3
2 ,

so that the following bound becomes available for ‖Δhu
n+1‖2:

(3.43)
‖Δhu

n+1‖22 ≤ 5C̃2
1 + 2 +

2
√
6

9
C̃2

1τ (κ− 1)
3
2 + C̃8τ,

C̃8 = 36C̃2
3 + 12C̃2

6 + 32C2
3 C̃

2
1 + 12C2

3 (C̃1 + C̃4)
2.

Under the following O(1) constraint for the time step size

(3.44) τ ≤ min
{
κ− 3

2 ,
1

12
C−2

3 ,
1

36
C̃−2

3 ,
1

12
C̃−2

6

}
,

which is a stronger requirement than (3.21), a rough estimate can be derived for
‖Δhu

n+1‖2:

‖Δhu
n+1‖22 ≤ 6C̃2

1 + 2 + C̃8τ ≤ 7C̃2
1 + 4 + (C̃1 + C̃4)

2, so that

‖Δhu
n+1‖2 ≤ C̃9 :=

√
7C̃2

1 + 4 + (C̃1 + C̃4)2.

Notice that C̃9 is independent of κ and time. Again, an application of esti-
mate (2.15) in Lemma 2.7 implies the following ‖ · ‖∞ bound at time-step tn+1:

‖un+1‖∞ ≤C2(|un+1|+ ‖Δhu
n+1‖2) ≤ C2(|β0|+ C̃9) := C̃10.(3.45)

Obviously, the constant C̃10 is independent of κ and global-in-time. In addition, it
is clear that C̃10 ≥ C̃5 since C̃9 ≥ C̃4.
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3.3. Justification of the artificial parameter κ and the a priori assump-
tion (3.1). By making a comparison between the ‖ · ‖∞ bounds for un, ũn+1 and

un+1, given by (3.3), (3.22) and (3.45), respectively, it is evident that C̃10 ≥ C̃5 ≥
C̃2. In other words, the defined constant C̃10 is greater than the maximum of
‖un‖∞, ‖ũn+1‖∞ and ‖un+1‖∞. Subsequently, we proceed with

(3.46) κ = max
{3C̃2

10 − ε

2
, 1

}
.

Notice that κ is an O(1) constant, and it contains no singular dependence on any
physical parameter. With this fixed choice of κ, we can take the time step size τ
satisfying (3.44), thereby enabling the availability of the energy stability estimate
for the ETDRK2 scheme (2.5) at the next time step, by Lemma 2.3, i.e.,

(3.47) Eh(u
n+1) ≤ Eh(u

n) ≤ Eh(u
0) = C̃0.

This in turn recovers the a priori assumption (3.1) at the next time step, so that
an induction argument can be effectively applied. Therefore, we have proved the
following theorem, which represents the primary theoretical result of this article.

Theorem 3.1. With the choice of the artificial parameter in (3.46), depending
only on the initial energy and the domain Ω, we take the time step size satisfying
the O(1) constraint (3.44). The numerical solution {un}0≤n≤NT

generated by the

ETDRK2 scheme (2.5) satisfies Eh(u
n+1) ≤ Eh(u

n).

Remark 3.2. As derived in the theoretical analysis, the constants C̃3, C̃6 and C̃10

are global-in-time constants, of O(1), only dependent on the initial H2 data and the
domain Ω. This fact in turn implies that, the constant κ, as determined by (3.46),
is another O(1) constant, only dependent on the initial H2 data and Ω. Meanwhile,
by Lemma 2.7, C3 is a constant only dependent on Ω. As a result, in terms of the
time step constraint (3.44), the upper bound on the right-hand side turns out to
be a constant of O(1), only dependent on the initial H2 data and Ω. Therefore,
such a time step constraint would not pose any serious challenge in the practical
computations.

Remark 3.3. In the PFC model, the free energy (1.1) is well defined only if the
solution is of regularity H2(Ω). This fact in turn indicates that the initial data has
to be of regularity H2; otherwise, the energy stability and dissipation is not even
defined, at both the analytic and numerical levels.

All the theoretical results stated in this work are independent of the spatial mesh
size h. As h → 0+, the global-in-time energy stability analysis will always be valid,
independent of h. The convergence analysis, in terms of τ → 0+, h → 0+, has
already been reported in a recent work [34].

For any gradient flow, the regularity requirement of the initial data depends on
the form of the free energy. For example, if the Cahn–Hilliard model is taken into
consideration, only an H1 regularity is required for the initial data, since the free
energy is well defined for an H1 function.

3.4. A refined estimate for ‖un+1‖H2
h
and ‖un+1‖∞. We notice that the H2

h

estimate (3.43) for the numerical solution un+1, as well as the maximum norm es-
timate (3.45), is based on a direct analysis for the semi-implicit numerical scheme
(2.5), with the help of extensive applications of discrete Sobolev embedding. How-
ever, this estimate turns out to be too rough since we did not make use of the
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variational energy structure in the analysis. In fact, to obtain the energy dissipa-
tion at a theoretical level, an ‖ · ‖∞ bound of the numerical solution at the next
time step has to be derived, due to the nonlinear term involved. Such a bound can
only be possibly accomplished by a direct H2

h estimate without using the energy
structure. Since the ‖Δhu

n+1‖2 bound in (3.43) contains a multiple factor of the
‖Δhu

n‖2 bound in (3.2), this estimate cannot be used in the induction. On the
other hand, with such a rough bound at hand, we are able to justify the artificial
parameter value in (3.46), so that the energy stability becomes theoretically avail-
able at the next time step. With a theoretical justification of the energy stability
analysis, we are able to obtain a much sharper ‖ · ‖H2

h
and ‖ · ‖∞ bound for the

numerical solution un+1.
More specifically, with the energy stability (3.47) theoretically justified at the

next time step, we apply a similar analysis as in (3.2) and obtain

(3.48) ‖Δhu
n+1‖2 ≤ C̃1 := 2

(
C̃0 + |Ω|

) 1
2

,

which is a time-independent constant. Obviously, this bound turns out to be a much
sharper estimate compared with the rough H2

h estimate (3.43), since the variational
energy structure has not been applied in the derivation of (3.43). In turn, with the
aid of inequality (2.15) in Lemma 2.7, a much sharper maximum norm bound for
un+1 also becomes available:

(3.49) ‖un+1‖∞ ≤ C2(|un+1|+ ‖Δhu
n+1‖2) ≤ C2(|β0|+ C̃1) := C̃2.

Note that the ‖ · ‖H2
h
bound C̃1 and the ‖ · ‖∞ bound C̃2 are both global-in-time

quantities.

Remark 3.4. In the rough ‖ · ‖H2
h
estimate for the numerical solution un+1, if the

inequality (3.42) is derived in an alternate way, we are able to obtain ‖Δhu
n+1‖22 =

‖Δhu
n‖22 +O(τ (1 + κ2)) for a fixed value of κ. In other words, even for the rough

‖·‖H2
h
estimate, a reasonable result can be available. The reason why the ‖Δhu

n+1‖2
bound (3.43) contains a multiple factor of ‖Δhu

n‖2 is due to the fact that, the value
of κ has not been fixed in the rough estimate, so that we need the time step size τ
to balance the quantity of κ

3
2 .

Meanwhile, all these derivations are rough estimates. With the bound (3.45), we
are able to choose κ as in (3.46), so that the energy stability becomes theoretically
available. Consequently, much sharper estimates (3.48) and (3.49) can be derived.

Remark 3.5. The stabilization approach has been extensively applied in the nu-
merical design for various gradient flow models, in which an artificial regularization
term ensures the energy stability at a theoretical level while preserving the de-
sired accuracy order. For the gradient models with automatic Lipschitz continuity
for the nonlinear term, such as the no-slope-selection thin film growth equation,
the stabilization approach has been widely studied [7, 8, 21, 33, 41], and the energy
stability can be proved in a straightforward way. For the gradient models with-
out automatic Lipschitz continuity for the nonlinear part, a theoretical analysis
of the maximum norm of the numerical solution is needed to establish the energy
stability analysis. For example, a local-in-time convergence analysis and energy
stability estimate has been provided for the stabilization schemes to the nonlocal
Cahn–Hilliard equation [35–37], in both the first and second accuracy orders. The
local-in-time nature of these analyses comes from a lack of global-in-time regularity
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for the nonlocal gradient model. For the standard Cahn–Hilliard equation, a cut-off
approach is applied in the pioneering work [44], while a theoretical justification of
the artificial regularization parameter is available in the associated works [30–32],
in which a single-step �∞ analysis for the numerical solution is provided to establish
the energy stability analysis.

Meanwhile, all the existing works on energy stability analysis for the multi-step
numerical schemes are in terms of a modified energy functional, consisting of the
original free energy and a few numerical correction terms. In comparison, this
article represents the first effort to theoretically establish a global-in-time energy
stability analysis for a second-order stabilized numerical scheme, in terms of the
original free energy functional, which comes from the single-step Runge–Kutta style
of the numerical algorithm.

Remark 3.6. A preliminary lower bound κ ≥ 1 is assumed in the statement of
Proposition 2.4. In more details, all the eigenvalues of −Δh(I + Δh)

2 are non-
negative, while an artificial term −κΔhu is needed to derive a diffusion estimate,
1
2‖G

(0)
h ∇hΔ

2
hf‖22 in (2.10). Such a term will be necessary to the later analysis.

On the other hand, we notice that the lower bound κ ≥ κ0 could be set as any
positive value. In fact, for any κ0 > 0, a similar diffusion term in the form of

θ0‖G(0)
h ∇hΔ

2
hf‖22 (with θ0 dependent on κ0) could be derived with the help of

Cauchy inequality. Based on this estimate, the constants C̃2, C̃5 and C̃10 will be
accordingly obtained, dependent on the value of θ0. A similar argument could be
used to prove that C̃10 ≥ C̃5 ≥ C̃2, and the artificial constant could be taken as

κ =
3C̃2

10−ε
2 , analogous to (3.46). In principle, the smaller value of the lower bound

κ0 > 0 is, the larger value of κ will be. For simplicity of presentation, we just take
such a lower bound as κ0 = 1 in this article. For any κ0 > 0, the artificial constant
choice (3.46) will always be of O(1).

Remark 3.7. The theoretical techniques presented in this article will provide a
framework of the global-in-time energy stability analysis for a class of higher-order
accurate, multi-stage RK-type numerical schemes for various gradient flow mod-
els. For example, different versions of the third-order ETDRK numerical schemes
have been proposed and studied in a few recent works [6, 39], and the energy sta-
bility analysis has been derived with a global Lipschitz continuity condition. The
methodology presented in this article is expected to be applicable to these higher-
order ETDRK numerical schemes, so that the global Lipschitz condition could be
theoretically justified. An extension to even higher-order numerical schemes, such
as fourth-order accurate RK algorithms, will also be available, as long as the RK
structure is preserved. This theoretical technique will also be useful to other RK-
type numerical algorithms, such as implicit-explicit RK (IMEXRK), exponential-
free RK approaches, etc.

This theoretical approach could also be effectively applied to other gradient flow
equations, such as the classic Cahn–Hilliard equation. In comparison with the
PFC equation studied in this article, the analysis of the Cahn–Hilliard equation is
expected to be much more involved. In fact, a dissipation in terms of the PFC free
energy (1.1) would automatically ensure an H2 bound of the numerical solution,
therefore an �∞ bound of the numerical solution becomes a direct result of Sobolev
embedding, and the global Lipschitz condition could be theoretically justified. In
contrast, a dissipation of the Cahn–Hilliard free energy would only ensure an H1
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bound of the numerical solution, and the maximum norm bound is not directly
available, in both the 2D and 3D cases. Moreover, a small interface width parameter
ε is included in the surface diffusion coefficient in the Cahn–Hilliard model. This
fact would lead to singularly ε−1-dependent estimates of the numerical solution, in
the H1 and higher Hm norms. These two subtle facts will make the global-in-time
analysis of the ETDRK numerical schemes for the Cahn–Hilliard equation more
challenging, while it is believed that the basic idea of this work is applicable. The
technical details will be reported in the future works.

Remark 3.8. For simplicity of presentation, the standard centered difference spa-
tial discretization is used in this article, and the periodic boundary condition is
imposed to leverage the associated operators in the Fourier space. Other than the
finite difference method, some other spatial discretization techniques could also be
effectively applied, and a theoretical justification of global-in-time energy stability
analysis is also expected. For example, the Fourier pseudo-spectral spatial approx-
imation would be a natural choice, and all the estimates could be derived following
similar theoretical methodology, with a modification of the eigenvalues associated
with the Fourier pseudo-spectral space. As another alternate choice, if a homo-
geneous Neumann boundary condition is imposed for the phase variable and the
chemical potential, a mixed finite element spatial discretization may also be com-
bined with the ETDRK2 algorithm, in which the eigenvalues in the ETD operators
depend on the detailed structure of the finite element space. Moreover, all the
theoretical analyses in this article are expected to be applicable to the ETDRK2
algorithm with mixed finite element spatial discretization, while some theoretical
techniques of a few existing works [14, 55] may be helpful. The technical details
will be reported in the future works.

Remark 3.9. The numerical scheme (2.5) is based on a Runge–Kutta style tem-
poral discretization of the Duhamel’s formula (2.4), in the integral form. In fact,
this approach gives a direct computation of the numerical solution at a point-wise
level, in which the ETD operators are evaluated with the help of Fourier eigenvalue
calculation. Therefore, the numerical algorithm (2.5) is not a weak-form based
method; instead, the point-wise values of the numerical solution would be directly
computed, without a representation of the numerical solution in terms of an expan-
sion in terms of Fourier eigenfunctions. In the theoretical analysis of the numerical
scheme, a discrete inner product with a few test functions has to be performed to
derive the desired global-in-time energy stability estimate. This analysis makes the
numerical scheme look like in the weak form, while the algorithm itself is indeed
directly based on a semi-group approach. In fact, the multi-step ETD and ETDRK
are two most commonly used semi-group numerical approaches. As argued in the
introduction section, the multi-step ETD approach usually indicates a dissipation
property of a modified energy functional, while the ETDRK method would preserve
a dissipation of the original free energy.

4. Numerical experiments

In this section, a few numerical experiments are conducted to verify the theoret-
ical results of the numerical scheme (2.5). We will verify the convergence rates in
both time and space, and perform a long-time simulation of the crystal growth of
a crystallite in three-dimensional space. Theoretically, the stabilization constant κ
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needs to satisfy the condition (3.46), an O(1) constraint, to ensure the global-in-
time energy stability. Meanwhile, it will be observed that κ = 2 is sufficient in the
following experiments. In both parts below, we always set ε = 0.25 and κ = 2.

4.1. Convergence tests. We begin by verifying the convergence order in both
time and space for the proposed scheme. We set a square domain Ω = (0, 32) ×
(0, 32) and take a smooth initial data given by

u0(x, y) = 0.07− 0.02 cos
2π(x− 12)

32
sin

2π(y − 1)

32

+ 0.02 cos2
π(x+ 10)

32
cos2

π(y + 3)

32
− 0.01 sin2

4πx

32
sin2

4π(y − 6)

32
.

This initial condition was considered in a previous work [34] and one can also refer
to [25]. The numerical errors at t = 1 and t = 5 are considered, respectively.
In the calculation of the numerical errors, we use the solution computed by τ =
0.1 × 2−9 and N = 4096 as a benchmark. Table 1 presents the discrete �∞ errors
of the numerical solutions, which obviously indicates the expected second-order
convergence rates in both time and space.

Table 1. Errors and convergence rates at times t = 1 and t = 5

t = 1 t = 5

τ N �∞ error rate �∞ error rate

2−5 25 1.507× 10−4 – 1.311× 10−3 –
2−6 26 4.225× 10−5 1.835 3.790× 10−4 1.791
2−7 27 1.085× 10−5 1.961 9.782× 10−5 1.954
2−8 28 2.723× 10−6 1.994 2.458× 10−5 1.993
2−9 29 6.739× 10−7 2.015 6.084× 10−6 2.014
2−10 210 1.605× 10−7 2.070 1.449× 10−6 2.070

4.2. Long-time simulations. Now we carry out a simulation of the crystal growth
of a crystallite setting in a cubic domain Ω = (0, 128) × (0, 128) × (0, 128). The
initial configuration is set as a thin spherical shell, defined by the function

u0(x, y, z) = 0.2− 0.05
{
1 + tanh

[
0.1

(√
(x− 64)2 + (y − 64)2 + (z − 64)2 − 2

)]}
.

The computation is conducted on a spatial mesh of 256 × 256 × 256 grid points,
and we adopt a time step size τ = 0.1 to capture the long-time dynamics. It is
observed in Figure 1 that the crystallite grows and the size becomes larger gradually.
This phenomena are consistent with those reported in [38]. Figure 2 plots the free
energy evolution along the time, in which the long-time energy dissipation is clearly
demonstrated. The free energy keeps decreasing after t = 500 but changes more
and more slowly, and we do not display the corresponding graph here.

5. Concluding remarks

A second-order accurate, exponential time differencing Runge–Kutta (ETDRK2)
numerical scheme for the phase field crystal (PFC) equation is analyzed in detail,
and a global-in-time energy estimate is derived. Such an energy stability has been
proven for the ETDRK2 numerical scheme to the PFC equation under a global
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(a) t = 30 (b) t = 50 (c) t = 70
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1

(d) t = 500

Figure 1. Snapshots of the 3D crystal growth simulation begin-
ning with a sphere. The first row plots the isosurface of the com-
puted solution and the second row shows a slice of the solution
across the indicated plane.
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Figure 2. Evolution of the energy (left) with the local details
(right) of the 3D crystal growth simulation beginning with a sphere.
Four highlighted points in the left graph correspond to the mo-
ments shown in Figure 1.

Lipschitz constant assumption. To accomplish this goal, an a priori assumption
is made at the previous time step, and a single-step H2 estimate of the numerical
solution is carefully performed. This single-step H2 estimate gives a useful upper
bound of the numerical solution at the next time step, in the discrete maximum
norm, which in turn leads to a theoretical justification of the stabilization parameter
value. Consequently, such a justification ensures the energy dissipation at the next
time step. As a result, the mathematical induction can be applied to derive a global-
in-time energy estimate. In particular, the derived energy dissipation property is
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valid at any final time, in comparison with some existing works of local-in-time
energy estimates, which come from a local-in-time convergence analysis.

The methodology presented in this work will provide a framework of the global-
in-time energy stability analysis for a class of higher-order accurate, multi-stage
RK-type numerical schemes for various gradient flow models, such as Allen–Cahn/
Cahn–Hilliard equation, epitaxial thin film growth, and other related gradient equa-
tions with non-quadratic free energy expansion. As long as the energy stability can
be proven under a global Lipschitz condition, a similar theoretical technique can
be used to derive a uniform-in-time bound of the numerical solution, in the as-
sociated functional norm, which in turn leads to a theoretical justification of the
global-in-time energy estimate. The technical details will be reported in the future
works.

Appendix A. Proof of Proposition 2.4

In the following analysis, we write
∑
�,m,n

to represent
K∑

�,m,n=−K

for simplicity of

notations unless the particular declarations.
To prove inequality (2.8), we begin with the summation-by-parts formula

(A.1) ‖G(0)
h ∇hΔhf‖22 = −〈G(0)

h Δhf,G
(0)
h Δ2

hf〉 ≤ ‖G(0)
h Δhf‖2 · ‖G(0)

h Δ2
hf‖2,

in which the Cauchy inequality has been applied in the last step. Meanwhile,
applying the summation-by-parts formula again gives
(A.2)

‖G(0)
h Δ2

hf‖22 = −〈G(0)
h ∇hΔhf,G

(0)
h ∇hΔ

2
hf〉 ≤ ‖G(0)

h ∇hΔhf‖2 · ‖G(0)
h ∇hΔ

2
hf‖2.

In turn, a substitution of (A.2) into (A.1) results in

‖G(0)
h ∇hΔhf‖22 ≤ ‖G(0)

h Δhf‖2 · ‖G(0)
h ∇hΔhf‖

1
2
2 · ‖G(0)

h ∇hΔ
2
hf‖

1
2
2 ,

so that

‖G(0)
h ∇hΔhf‖

3
2
2 ≤ ‖G(0)

h Δhf‖2 · ‖G(0)
h ∇hΔ

2
hf‖

1
2
2 ,

which then leads to (2.8).
In terms of inequality (2.9), we make use of the following identity

‖Δhf‖22 = L3
∑
�,m,n

λ2
�,m,n · |f̂�,m,n|2.

An application of Parseval equality to the discrete Fourier expansion of G
(5)
h f , given

by (2.7), yields

(A.3) ‖G(5)
h f‖22 = L3

∑
�,m,n

1− e−τΛ�,m,n

τ
λ2
�,m,n · |f̂�,m,n|2.

Then, the following inequality is valid:

τ‖G(5)
h f‖22 = L3

∑
�,m,n

(1− e−τΛ�,m,n)λ2
�,m,n · |f̂�,m,n|2 ≤ L3

∑
�,m,n

λ2
�,m,n · |f̂�,m,n|2,

in which the last step comes from a trivial fact that 1 − e−τΛ�,m,n ≤ 1. The proof
of inequality (2.9) is completed.
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Next, we show (2.10). The applications of GhLκ and Δ2
h to the discrete Fourier

expansion of f ∈ C̊per, given by (2.6), become

(GhLκf)i,j,k =
∑
�,m,n

1− e−τΛ�,m.n

τΛ�,m,n
· Λ�,m,nf̂�,m,ne

2πi(�xi+myj+nzk)/L,(A.4)

(Δ2
hf)i,j,k =

∑
�,m,n

λ2
�,m,nf̂�,m,ne

2πi(�xi+myj+nzk)/L.

Subsequently, the discrete inner product turns out to be

〈GhLκf,Δ
2
hf〉 = L3

∑
�,m,n

1− e−τΛ�,m.n

τΛ�,m,n
· Λ�,m,n · λ2

�,m,n · |f̂�,m,n|2.(A.5)

In turn, a comparison between (A.5) and (A.3) results in the first equality in (2.10).
To prove the second inequality in (2.10), we begin with the following observation:

(−1 + λ�,m,n)
2 + κ = 2− 2λ�,m,n +

1

2
λ2
�,m,n +

1

2
λ2
�,m,n + (κ− 1)

=
1

2
(2− λ�,m,n)

2 +
1

2
λ2
�,m,n + (κ− 1) ≥ 1

2
λ2
�,m,n + (κ− 1),

so that

Λ�,m,n =
(
(−1 + λ�,m,n)

2 + κ
)
λ�,m,n ≥ 1

2
λ3
�,m,n + (κ− 1)λ�,m,n,

Λ�,m,n · λ2
�,m,n ≥ 1

2
λ5
�,m,n + (κ− 1)λ3

�,m,n,

which in turn leads to the following inequality

‖G(5)
h f‖22 = L3

∑
�,m,n

1− e−τΛ�,m,n

τΛ�,m,n
Λ�,m,n · λ2

�,m,n · |f̂�,m,n|2(A.6)

≥ L3
∑
�,m,n

1− e−τΛ�,m,n

τΛ�,m,n

(1

2
λ5
�,m,n + (κ− 1)λ3

�,m,n

)
|f̂�,m,n|2.

An application of Parseval equality to the discrete Fourier expansion of

G
(0)
h ∇hΔ

2
hf and G

(0)
h ∇hΔhf indicates that

‖G(0)
h ∇hΔ

2
hf‖22 = L3

∑
�,m,n

1− e−τΛ�,m,n

τΛ�,m,n
· λ5

�,m,n · |f̂�,m,n|2,(A.7)

‖G(0)
h ∇hΔhf‖22 = L3

∑
�,m,n

1− e−τΛ�,m,n

τΛ�,m,n
· λ3

�,m,n · |f̂�,m,n|2.(A.8)

Similarly, a comparison between (A.6), (A.7)–(A.8) leads to the second inequality
of (2.10).

To prove (2.11), we see that the discrete Fourier expansion of Δ2
he

−τLκf can be
represented as

(Δ2
he

−τLκf)i,j,k =
∑
�,m,n

e−τΛ�,m.n · λ2
�,m,nf̂�,m,ne

2πi(�xi+myj+nzk)/L,
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and its discrete inner product with GhLκf , in which the discrete Fourier expansion
is given by (A.4), turns out to be
(A.9)〈
GhLκf,Δ

2
he

−τLκf
〉
= L3

∑
�,m,n

1− e−τΛ�,m.n

τΛ�,m,n
· Λ�,m,n · e−τΛ�,m.n · λ2

�,m,n|f̂�,m,n|2.

On the other hand, by the first equality in (A.6), we get

(A.10) ‖G(5)
h e−τLκf‖22 = L3

∑
�,m,n

1− e−τΛ�,m,n

τΛ�,m,n
Λ�,m,n · λ2

�,m,n · e−2τΛ�,m,n |f̂�,m,n|2.

Again, a comparison between (A.9) and (A.10) implies inequality (2.11), because
of the fact that |e−τΛ�,m.n | ≤ 1.

Inequalities in (2.12) and (2.13) come directly from the estimates in Lemma 2.2;
the details are skipped for the sake of brevity.

Appendix B. Proof of Proposition 2.5

A discrete Fourier expansion (2.6) is assumed for f ∈ Cper, and we set the
corresponding expansion for g ∈ Cper as

gi,j,k =
∑
�,m,n

ĝ�,m,ne
2πi(�xi+myj+nzk)/L.

Subsequently, the discrete Fourier expansion of g − e−τLκf turns out to be

(g − e−τLκf)i,j,k =
∑
�,m,n

(ĝ�,m,n − e−τΛ�,m,n f̂�,m,n)e
2πi(�xi+myj+nzk)/L.

Of course, its discrete H2 norm becomes

(B.1) ‖Δh(g − e−τLκf)‖22 = L3
∑
�,m,n

λ2
�,m,n · |ĝ�,m,n − e−τΛ�,m,n f̂�,m,n|2.

In turn, a combination of the representation formula (A.9) and (B.1) yields

τ
〈
GhLκf,Δ

2
he

−τLκf
〉
+ ‖Δh(g − e−τLκf)‖22

=L3
∑
�,m,n

(
(1−e−τΛ�,m,n)e−τΛ�,m,nλ2

�,m,n|f̂�,m,n|2+λ2
�,m,n|ĝ�,m,n − e−τLκ f̂�,m,n|2

)

=L3
∑
�,m,n

λ2
�,m,n

(
(1−e−τΛ�,m,n)eτΛ�,m,n |e−τΛ�,m,n f̂�,m,n|2+|ĝ�,m,n − e−τLκ f̂�,m,n|2

)

=L3
∑
�,m,n

λ2
�,m,n(1− e−τΛ�,m,n)

(
eτΛ�,m,n |e−τΛ�,m,n f̂�,m,n|2

+
1

1− e−τΛ�,m,n
|ĝ�,m,n − e−τLκ f̂�,m,n|2

)
.

The following lower bound can be derived for each fixed mode frequency (�,m, n):

eτΛ�,m,na2 +
1

1− e−τΛ�.m,n
b2 = a2 + b2 + (eτΛ�,m,n − 1)a2 +

( 1

1− e−τΛ�,m,n
− 1

)
b2

≥ a2 + b2 + 2ab = (a+ b)2, ∀ a, b ≥ 0,

Licensed to Shanghai Jiao Tong University. Prepared on Tue May 13 22:52:11 EDT 2025 for download from IP 58.247.22.183.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



26 XIAO LI, ZHONGHUA QIAO, CHENG WANG, AND NAN ZHENG

where the Cauchy inequality has been applied in the second step. Then we see that

eτΛ�,m,n |e−τΛ�,m,n f̂�,m,n|2 +
1

1− e−τΛ�,m,n
|ĝ�,m,n − e−τΛ�,m,n f̂�,m,n|2

≥
(
|e−τΛ�,m,n f̂�,m,n|+ |ĝ�,m,n − e−τΛ�,m,n f̂�,m,n|

)2

≥ |ĝ�,m,n|2,

so that

τ
〈
GhLκf,Δ

2
he

−τLκf
〉
+‖Δh(g−e−τLκf)‖22 ≥ L3

∑
�,m,n

λ2
�,m,n(1−e−τΛ�,m,n)|ĝ�,m,n|2.

In comparison with the representation formula for τ‖G(5)
h g‖22:

τ‖G(5)
h g‖22 = τL3

∑
�,m,n

1− e−τΛ�,m,n

τΛ�,m,n
Λ�,m,n · λ2

�,m,n · |ĝ�,m,n|2

= L3
∑
�,m,n

λ2
�,m,n(1− e−τΛ�,m,n)|ĝ�,m,n|2,

we see that (2.14) has been established. This finishes the proof of Proposition 2.5.
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