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Abstract. In this paper, we prove the existence and uniqueness of a Gevrey
regularity solution for a class of nonlinear bistable gradient flows, where with
the energy may be decomposed into purely convex and concave parts. Example
equations include certain epitaxial thin film growth models and phase field
crystal models. The energy dissipation law implies a bound in the leading
Sobolev norm. The polynomial structure of the nonlinear terms in the chemical
potential enables us to derive a local-in-time solution with Gevrey regularity,
with the existence time interval length dependent on a certain Hm norm of
the initial data. A detailed Sobolev estimate for the gradient equations results
in a uniform-in-time-bound of that Hm norm, which in turn establishes the
existence of a global-in-time solution with Gevrey regularity.

1. Introduction. Suppose ` 2 N + 1, } 2 2N + 4, and s 2 {0, 1}. (We use
the notation N := {0, 1, 2, 3, · · · } and Z = {· · · ,�2,�1, 0, 1, 2, · · · }.) Suppose ⌦ =
(0, 1)d, with d 2 N+1. We consider the following bistable energy: for all � : Rd ! R
that are ⌦–periodic and su�ciently regular, define

E(�) :=

}/2
X

j=2

c2j
2j

kr�k2j2j +
1

2

X̀

j=1

aj
�

�rj�s�
�

�

2

2
, (1.1)

where c} = 1, a` := "2 > 0, and otherwise cj , aj 2 R. We point out that " is usually
a small parameter. But, for the discussion herein, we will not pursue " dependences
in our estimates. Herein, k · kp stands for the Lp norm, with p � 1. Furthermore,
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kr�kp := k |r�| kp 6= |�|1,p, where |r�| :=
p

r� ·r� and | · |1,p is the standard

semi-norm on W 1,p(⌦). We use the notation

r0� := �, r2� := ��, r3� := r��, r4� := �2�, r5� := r�2�, · · · . (1.2)

For k 2 2N+ 1, our notation is

�

�rk�
�

�

2

2
=

Z

⌦
r(�(k�1)/2�) ·r(�(k�1)/2�) dx =

Z

⌦

�

�

�

r(�(k�1)/2�)
�

�

�

2
dx.

The energy E is termed bistable because it can be clearly written as the di↵erence of
purely convex energies, according to the signs of the coe�cients. Of course, if all of
the coe�cients are positive, the energy is itself purely convex, with every term being
convex. Observe that it is always true that the leading energy terms – consisting

of the non-quadratic part, c}
} kr�k}}, and the quadratic part, a`

2

�

�r`�s�
�

�

2

2
– are

purely positive and convex. This fact will play a key role in our analyses. The
variational derivative of the energy may be (formally) calculated as

��E = �r ·
�

|r�|}�2 + c}�2|r�|}�4 + · · ·+ c4|r�|2
�

r�
+ (�1)1�sa1�

1�s�+ (�1)2�sa2�
2�s�+ · · ·

+ (�1)`�1�sa`�1�
`�1�s�+ (�1)`�s"2�`�s�, (1.3)

utilizing periodic boundary conditions. Observe that the terms of the form �r ·
⇣

cp |r�|p�2 r�
⌘

are nonlinear p-laplacian operators, where p � 4 is an even num-

ber.
Our principal aim in this paper is to establish the Gevrey regularity of solutions

for the following family of nonlinear gradient flow evolution equations:

@t�+ (��)sµ = 0, µ := ��E on ⌦T := ⌦⇥ (0, T ), (1.4)

where � is ⌦–periodic in space, and s = 0 or s = 1. Equation (1.4) is the L2

gradient flow (for s = 0) and the H�1 gradient flow (for s = 1) with respect to E
in (1.1). The rates of energy dissipation along the solution trajectories are

dtE = �krsµk22 , (1.5)

and the mass of the solution is a conserved quantity, meaning dt
R

⌦ �(x, t)dx = 0,
for all t � 0. It is often useful to consider the model in the following, less compact
form:

@t� = (��)s
�

r ·
��

|r�|}�2 + c}�2|r�|}�4 + · · ·+ c4|r�|2
 

r�
� 

+ a1��� a2�
2�+ a3�

3�+ · · ·+ (�1)`a`�1�
`�1�+ (�1)`+1"2�`�.

(1.6)

The evolution equation is thus a nonlinear “parabolic” equation of order 2` in
purely divergence form, and, considering the periodic boundary conditions, the
mass conservation is assured.

There are a few special cases of great physical interest that we wish to point out.
The first is the epitaxial thin film model with slope selection, also known as the
regularized Cross-Newell equation [8, 14]. This equation can be obtained setting
s = 0, ` = 2, } = 4, a1 = �1:

@t� = r ·
�

|r�|2r�
�

���� "2�2�, Ess(�) =
1

4
kr�k44 �

1

2
kr�k22 +

"2

2
k��k22.

(1.7)
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It has been used as a model for thin film roughening and coarsening [19, 20, 21, 28,
29, 30, 31, 34, 35]. Some numerical works for the equation can be found in more
recent articles [6, 7, 39, 42, 44].

The second is the square phase field crystal (SPFC) model, which is obtained by
setting s = 1, ` = 3, } = 4, a2 = �2�2:

@t� =��(r · (|r�|2r�)) + a1��+ 2�2�2�+ "2�3�,

Espfc(�) =
1

4
kr�k44 +

a1
2
k�k22 � �2kr�k22 +

"2

2
k��k22.

(1.8)

The SPFC equation is related to another crystal growth model known as the phase
field crystal (PFC) equation [10, 11, 37, 41], which is the gradient flow

@t� = � (��Epfc) = �(�3) + a1��+ 2�2�2�+ "2�3� = 0,

Epfc(�) =
1

4
k�k44 +

a1
2
k�k22 � �2kr�k22 +

"2

2
k��k22.

(1.9)

The PFC model was proposed in [10] for simulating crystal dynamics at the atomic
scale in space but on di↵usive scales in time, with natural incorporation of elastic
and plastic deformations, multiple crystal orientations and defects. The natural
lattice for a crystal described by the PFC equation is hexagonal in 2D. The SPFC
model, on the other hand, predicts a “square” symmetry crystal lattice in 2D rather
than the usual hexagonal structure; see the related references [11, 15, 43]. While
the standard PFC model (1.9) is not covered by the following analysis – because
the form of the energy is di↵erent from and, in fact, somewhat simpler than what
is considered in (1.1) – our results can be easily extended for (1.9).

There have been many existing works to establish the existence of Gevrey reg-
ularity solutions for time-dependent nonlinear PDEs, such as [3, 13] for 2-D and
3-D incompressible Navier-Stokes equation, [2] for Kuramoto-Sivashinsky equation,
[5, 12] for certain nonlinear parabolic equations, [18] for the 3-D Navier-Stokes-
Voight equation, [33] for models porous media flow, to mention a few. For gradient
flow-type models, Gevrey regularity solutions have been proven by [36] for the Cahn-
Hilliard equation with dimension d = 1 to d = 5. A more recent work [40] gives a
further analysis with potentially rough initial data. In addition, a few related works
for the Cahn-Hilliard model combined with certain fluid motion equation have also
been reported, such as [9] for the convective Cahn-Hilliard equation, and [32] for
the Cahn-Hilliard-Hele-Shaw model. Other than the Gevrey regularity solutions, a
more general class of analytic solutions for di↵erent models of incompressible fluid
have been discussed in [4, 16, 22, 23, 24, 25, 26, 27], etc.

A general framework to establish the existence of local-in-time Gevrey regularity
solutions for nonlinear parabolic equations

@t�� ⌫��+G(�,r�) = 0,

with periodic boundary conditions in Rn, has been addressed in [5, 12]. The analyses
therein apply when the growth of F (r,~s) := G(r,~s) � r, in either the r or the ~s
variable, is bounded by a polynomial, and F is assumed to be real analytic in both
variables such that it possesses a majorant. In any case, it is clear that the analyses
in [5, 12] will not cover equation (1.1) considered in this article. The reason is that
the p laplacian terms of the form r · (|r�|pr�), p 2 2N+2 involve first and second
order derivatives combined in a highly nonlinear way, and these terms cannot be
recast in the form of F (�,r�).
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While there has been some existing work considering Gevrey regularity of solu-
tions for gradient flows with respect to the Cahn-Hilliard-type energy, no work has
been undertaken to study gradient flows with respect to (1.1). For the nonlinear
gradient flow considered here, (1.4), which covers a large class of models, the most
current result to our knowledge is the proof of a smooth solution for the epitaxial
thin film growth model (1.7), as reported by [30]: given any Hm initial data (with
m � 2), there is a unique solution with a uniform-in-time Hm estimate.

In this paper, we provide an analysis of a global-in-time Gevrey regularity solu-
tion for the general gradient flow given by (1.4) with respect to the energy (1.1).
The paper is organized as follows. In Section 2 we go over some basic notation.
In Section 3 we construct an approximate solution to the PDE using the standard
Galerkin procedure and give the leading order energy estimate. In Section 4 we
prove the existence and uniqueness of a local-in-time Gevrey regularity solution

for (1.4), with the existence time interval length dependent upon
�

�

�

(��)`/2 �0
�

�

�

2
.

Finally, a uniform in time H` bound
�

�

�

(��)`/2 �(t)
�

�

�

2
is presented in Section 5, so

that a global-in-time Gevrey regularity solution may be established.

2. Notation and preliminaries. We use the standard symbols for Lebesgue and
Sobolev spaces of complex-valued functions and their norms. To begin, for u, v 2
L2(⌦,C) = L2(⌦), we set (u, v) :=

R

⌦ u(~x)v⇤(~x) d~x, where z⇤ = a�ib is the complex
conjugate of z = a+ ib. Let us also define the following function spaces:

L̊2(⌦) :=
�

u 2 L2(⌦)
�

� (u, 1) = 0
 

,

Cm
per(⌦) :=

�

u 2 Cm(Rd)
�

� u is ⌦-periodic
 

, C̊m
per(⌦) := Cm

per(⌦) \ L̊2(⌦),

Wm,p
per (⌦) :=

�

u 2 Wm,p
loc (Rd)

�

� u is ⌦-periodic
 

, W̊m,p
per (⌦) := Wm,p

per (⌦) \ L̊2(⌦),

Hm
per(⌦) := Wm,2

per (⌦), H̊m
per(⌦) := W̊m,2

per (⌦),

H�m
per (⌦) :=

�

Hm
per(⌦)

�⇤
,

H̊�m
per (⌦) :=

�

v 2 H�m
per (⌦)

�

� hv, 1i = 0
 

,

where h · , · i is the duality pairing between H�m
per and Hm

per. Specifically, for v 2
H�m

per (⌦),
*

v,

n
X

k=1

↵kuk

+

:=
n
X

k=1

↵⇤
kv(u

⇤
k) =

n
X

k=1

↵⇤
khv, uki.

We denote the standard semi-norm and norm on Wm,p(⌦) by | · |m,p,⌦ = | · |m,p

and k · km,p,⌦ = k · km,p, respectively, dropping the subscript m whenever m = 0.

Since the domain ⌦ = (0, 1)d is understood in our discussion, we usually also drop
the subscript ⌦ in referencing the (semi-)norms.

Define the operator A to be �� paired with ⌦–periodic boundary conditions.
We define the range of A as R(A) := L̊2(⌦). The domain of A is simply D(A) =
H̊2

per(⌦), and A : D(A) ! R(A) is a positive, self-adjoint linear operator that
admits a compact inverse. The eigenfunctions of A may be chosen as �~↵(~x) =
exp(2⇡i ~↵ · ~x) 2 C̊1

per(⌦), for all ~↵ 2 Zd \
�

~0
 

=: Zd
?, in which case the eigenvalues

are �~↵ = (2⇡)2|~↵|2 > 0. Set B̊ :=
�

�~↵

�

� ~↵ 2 Zd
?

 

; this is an orthonormal basis for

L̊2(⌦). We can increase B̊ so the resulting set is an orthonormal basis for all of
L2(⌦); in particular, B := B̊ [

�

�~0 ⌘ 1
 

serves this purpose.
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Since A is symmetric and positive, we can define the following Hilbert spaces:
for any s � 0, set

D(As) : =
n

u 2 L̊2(⌦)
�

�

�

X

~↵2Zd
?

(2⇡)4s|~↵|4s|û~↵|2 < 1,
o

,

(u, v)D(As) : =
X

~↵2Zd
?

(2⇡)4s|~↵|4sû~↵ v̂⇤~↵, (2.1)

where û~↵ := (u,�~↵) =
R

⌦ u(~x)e�2⇡i ~↵·~xd~x are the Fourier coe�cients. For u 2
D(As), we define

Asu :=
X

~↵2Zd
?

(2⇡)2s|~↵|2sû~↵�~↵. (2.2)

Then, of course, (u, v)D(As) = (Asu,Asv) and kukD(As) = kAsuk2, and it is not

di�cult to show that, in general, D(As) = H̊2s
per(⌦). It is possible to define the

exponential operator exp(⌧As) = e⌧A
s

, for any ⌧, s � 0. To do so we introduce the
Hilbert space

D
�

e⌧A
s�

:=
n

u 2 L̊2(⌦)
�

�

�

X

~↵2Zd
?

e2⌧(2⇡)
2s|~↵|2s |û~↵|2 < 1

o

. (2.3)

For any u 2 D
�

e⌧A
s�

, define

e⌧A
s

u :=
X

~↵2Zd
?

e⌧(2⇡)
2s|~↵|2s û~↵ �~↵. (2.4)

We introduce the Gevrey space G⌧ := D
�

e⌧A
1/2�

. This is a Hilbert space with the
inner product and norm denoted by

(u, v)⌧ :=
�

e⌧A
1/2

u, e⌧A
1/2

v
�

=
X

~↵2Zd
?

e2⌧2⇡|~↵|û~↵ v̂⇤~↵, |u|⌧ :=
p

(u, u)⌧ . (2.5)

Observe that, for any u 2 G⌧ ,

|u|2⌧ =
1
X

m=0

(2⌧)m

m!

X

~↵2Zd
?

(2⇡)m|~↵|m|û~↵|2 =
1
X

m=0

(2⌧)m

m!
kuk2D(Am/4) . (2.6)

Since |u|⌧ is finite, it follows that every Hk norm of u is also finite.
Set GM := span ({�~↵ | |~↵|  M}). The operator PM : L2(⌦) ! GM is the

canonical orthogonal projection:

PMu :=
X

|~↵|M

û~↵ �~↵. (2.7)

Of course, if u 2 L̊2(⌦), then û~0 = 0. One can extend the domain of definition PM

to H̊�r
per(⌦), for any r 2 (0,1), as follows: if u 2 H̊�r

per(⌦), then

PMu :=
X

|~↵|M

u (�⇤
~↵)�~↵ =

X

|~↵|M

hu,�~↵i�~↵,

which implies that

(PMu, v) := hu,PMvi, 8v 2 H̊r
per(⌦).
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Recall that
⇣

H̊�r
per(⌦), k · kH̊�r

per

⌘

is a Hilbert space using the standard operator norm.

We have the following basic properties of the orthogonal projection that we state
without proof [38]:

Lemma 2.1. Let X = H̊�r
per(⌦), or D(As), for any r, s � 0. Then, for any u 2 X,

kPMukX  kukX , and ku� PMukX
M!1����! 0. (2.8)

The results can be modified in a trivial way to accommodate functions that are not

of mean zero.

We have the following interpolation inequalities [1]:

Lemma 2.2. Let r, k, j 2 R, with 0  k < j < r. Then, for any  2 H̊r
per(⌦) =

D(Ar/2),

�

�

�

Aj/2 
�

�

�

2
 C

�

�

�

Ak/2 
�

�

�

r�j
r�k

2

�

�

�

Ar/2 
�

�

�

j�k
r�k

2
. (2.9)

For integer values of the indices, we have

�

�rj 
�

�

2

�

�rk 
�

�

r�j
r�k

2
krr k

j�k
r�k

2 , (2.10)

where a constant of 1 su�ces.

Frequent use will be made of following Gagliardo-Nirenberg-type interpolation
inequality [1]:

Theorem 2.3. Let j,m 2 N, q, r, ✓ 2 R. Suppose 1  q, r  1,

j
m  ✓  1, and

1

p
� j

d
=

✓

1

r
� m

d

◆

✓ +
1� ✓

q
. (2.11)

If  2 Lq(⌦) \ Wm,r
per (⌦), then  2 W j,p

per(⌦), and there exists a constant C =
C(d, j,m, p, q, r,⌦) > 0 such that

| |j,p  C
⇣

| |✓m,r k k
1�✓
q + k kq

⌘

. (2.12)

3. Approximate solutions and uniform energy estimates.

3.1. Lower and upper bounds of the energy.

Proposition 3.1. Let E be the energy given in (1.1). For any � 2 H`�s
per (⌦) \

W 1,}
per (⌦), we have

C1 kr�k}} + C2

�

�r`�s�
�

�

2

2
� C3  E(�)  C4 kr�k}} + C5

�

�r`�s�
�

�

2

2
, (3.1)

where C1, · · · , C5 are positive constants that depend only on the model parameters.

Proof. First, we decompose the energy (1.1) into non-quadratic and quadratic parts:

P (�) =

}/2
X

j=2

c2j
2j

kr�k2j2j , c} = 1,

Q(�) =
1

2

X̀

j=1

aj
�

�rj�s�
�

�

2

2
, a` = "2 > 0.

(3.2)
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We begin with the lower bounds. The non-quadratic energy part obeys the following
estimate

P (�) � 1

}
kr�k}} � |c}�2|

}� 2
kr�k}�2

}�2 � · · ·� |c4|
4

kr�k44. (3.3)

A simple application of Hölder inequality, using |⌦| = 1, shows that kr�k2j 
kr�k}, for 2  j < }/2. Then, with the help of Young’s inequality,

a · b  1

p
ap +

1

q
bq, with

1

p
+

1

q
= 1, (3.4)

the following general estimate can be derived

|c2j |
2j

kr�k2j2j 
|c2j |
2j

kr�k2j}  1

2}2
kr�k}} +A2j , (3.5)

where

A2j :=
}� 2j

}
[2 · 2j · }]

2j
}�2j



|c2j |
2j

�

}
}�2j

, (3.6)

upon choosing

p =
}

2j
, q =

}

}� 2j
, a = [2 · 2j · }]�

2j
} kr�k2j} , b = [2 · 2j · }]

2j
}

|c2j |
2j

. (3.7)

Consequently,

P (�) � 1

}

✓

1� 1

2}
· }
2

◆

kr�k}} �A4 �A6 � · · ·�A}�2

=
3

4}
kr�k}} � C6. (3.8)

where the constant C6 := A4+A6+ · · ·+A}�2 > 0 only depends on the coe�cients
c4, c6, · · · , c}�2.

The quadratic part, Q(�), is analyzed in two separate cases: s = 0 and s = 1. If
s = 0, a direct observation gives

Q(�) � 1

2

⇣

"2kr`�k2 � |a`�1|
�

�r`�1�
�

�

2

2
� · · ·� |a1| kr�k22

⌘

. (3.9)

Meanwhile, an application of the interpolation inequality (2.9), with r = `, k = 1
and k < j < `, shows that

|aj | ·
�

�rj�
�

�

2

2
|aj | · kr�k

2(`�j)
`�1

2 ·
�

�r`�
�

�

2(j�1)
`�1

2

 Mj kr�k22 +
"2

2(`� 1)

�

�r`�
�

�

2

2
, (3.10)

where Young’s inequality was applied in the last step. We remark that the non-
negative constants M2,M3, · · · ,M`�1 only depend on |a2|, |a3|, · · · , |a`�1| and ".
Substitution of (3.10) into (3.9) yields

Q(�) � "2

4

�

�r`�
�

�

2

2
� C7 kr�k22 , (3.11)

where C7 := 1
2 (|a1|+M2 +M2 + ...+M`�1). As before, a simple application of

Hölder inequality, using |⌦| = 1, shows that kr�k2  kr�k}. The negative part in
(3.11) can be controlled as

C7 kr�k22  C7 kr�k2}  C8 +
1

4}
kr�k}} , (3.12)
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with another application of Young’s inequality. Again, note that C8 > 0 only
depends on } and |a2|, |a3|, · · · , |a`�1| and ". Consequently, we arrive at

Q(�) � "2

4

�

�r`�
�

�

2

2
� C7 kr�k22 � 1

4
"2
�

�r`�
�

�

2

2
� 1

4}
kr�k}} � C8. (3.13)

Finally, a combination of the non-quadratic part (3.8) and the quadratic part (3.13)
results in

E(�) � "2

4

�

�r`�
�

�

2

2
+

1

2}
kr�k}} � C8. (3.14)

Therefore, the energy estimate (3.1) with s = 0 is proven with

C1 =
1

2}
, C2 =

"2

4
, C3 = C8. (3.15)

The lower bound for the case with s = 1 can be analyzed in a similar manner. We
omit the details for the sake of brevity. Likewise, the upper bounds are straightfor-
ward, in fact, easier than the lower bounds, and the details are omitted.

Definition 3.2. Suppose ` 2 N + 2, s 2 {0, 1}, and d 2 N + 1. We say that
Condition 1 holds i↵ `� s � 2 and one of the following cases holds:

1. 2(`� s� 1) < d  4(`� s� 1) and

} 2 ⌃ :=

(

q 2 2N+ 4

�

�

�

�

�

q  q? :=
1

1
2 � `�s�1

d

)

, (3.16)

in which case H`�s
per (⌦) ,! W 1,}

per (⌦), or

2. 2(`� s� 1) = d and } 2 2N+ 4, in which case H`�s
per (⌦) ,! W 1,}

per (⌦), or
3. 2(`� s� 1) > d and } 2 2N+ 4, in which case

H`�s
per (⌦) ,! C`�s�1�[d/2]

per (⌦) ✓ C1
per(⌦) ⇢ W 1,}

per (⌦).

Remark 3.3. Observe that the set ⌃, defined in (3.16), is non-empty; in particular,
4 2 ⌃. Also note that if Condition 1 holds, then 4` � d+4 is always satisfied. When
s = 1, the last statement can be strengthened, in particular, 4` � d+ 8.

If Condition 1 holds, then the quadratic di↵usion term has control over the p-
laplacian terms, and we have the following:

Corollary 3.4. If Condition 1 holds and � 2 H`�s
per (⌦), then the following upper

bound holds:

E(�)  C6

�

�r`�s�
�

�

}

2
+ C7, (3.17)

where C6, C7 > 0 depend only upon the model parameters.

3.2. Approximate solutions and uniform energy estimates. We may write
the gradient flow in operator form as

@t�+N (�) + L(�) + "2A`� = 0, (3.18)

denoting the nonlinear term as

N (�) := �As
�

r ·
��

|r�|}�2 + c}�2|r�|}�4 + · · ·+ c4|r�|2
 

r�
� 

,

and the indefinite (unsigned) linear term as

L(�) := a1A�+ a2A
2�+ a3A

3�+ · · ·+ a`�1A
`�1�.
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We refer to the term "2A`� as the “surface di↵usion” term, following the physics
literature for solid thin film models. We seek the following Galerkin approximation
of the original problem: for fixed M 2 N, find

�M (~x, t) =
X

|~↵|M

�̃~↵,M (t)e2⇡i~↵·~x

such that

@t�M + PM (N (�M )) + L(�M ) + "2A`�M = 0, (3.19)

with �M (0) := �M ( · , 0) := PM (�0), where �0 2 L̊2(⌦). Note that we have assumed,
for simplicity, that the initial data are mean zero: |⌦|�1

R

⌦ �
0(~x) d~x = 0. We will

keep this convention for the remainder of the paper.

Lemma 3.5. Let �0 2 L̊2(⌦). The solution to the Galerkin approximation problem

exists for some T? = T?(M) > 0, such that �̃~↵,M 2 C1([0, T?]), for all |~↵|  M ,

and �̃~0,M (t) = 0, for all t 2 [0, T?]. Furthermore, the following energy stability is

valid: E(�M (t))  E(�M (0)), for any t 2 [0, T?].

Proof. The approximation problem can be recast as a system of nonlinear ODE’s;
it has a unique solution up to some finite time T?, such that �̃~↵,M 2 C1([0, T?]), for
all |~↵|  M . It is clear that �̃~0,M (t) = 0, for all t 2 [0, T?], since

R

⌦ �M (~x, t) d~x = 0
for all t 2 [0, T?]. We define the test function

µM := � PM

�

r ·
�

|r�M |}�2 + c}�2|r�M |}�4 + · · ·+ c4|r�M |2
�

r�M
�

+ (�1)1�sa1�
1�s�M + (�1)2�sa2�

2�s�M + · · ·
+ (�1)`�1�sa`�1�

`�1�s�N + (�1)`�s"2�`�s�N . (3.20)

Observe µM 2 GM \ L̊2(⌦). Testing this with the Equation (3.19) and integrating,
we arrive (after a standard energy variation calculation) at the result

(@t�M , µM ) = dtE(�M (t)) = �krsµM (t)k22 .

Integrating this in time, we have, for any T 2 [0, T?],

E(�M (t)) +

Z T

0
krsµM (t)k22 dt = E(�M (0)). (3.21)

As a consequence of Proposition 3.1, Lemma 3.5, and Corollary 3.4 the following
result is valid.

Corollary 3.6. Suppose that Condition 1 holds and �0 2 H̊`�s
per (⌦). Then �M and

µM , defined as in Lemma 3.5, exist for all time, and, moreover, for any T > 0
whatsoever,

max
0tT

k�M (t)k2H`�s +

Z T

0
krsµM (t)k22 dt  C9, (3.22)

where C9 depends on the initial data and the equation parameters, but is independent

of M and T .

Proof. A combination of Proposition 3.1, Lemma 3.5, and Corollary 3.4 indicates
that, for any 0 < t  T?,
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C2

�

�r`�s�M (t)
�

�

2

2
� C3 +

Z t

0
krsµM (⌧)k22 d⌧  E(�M (t)) +

Z t

0
krsµM (⌧)k22 d⌧

 E(�M (0))

C6

�

�r`�s�M (0)
�

�

}

2
+ C7

 C6

�

�r`�s�0
�

�

}

2
+ C7, (3.23)

where Lemma 2.8 was employed in the last step. By regularity, there is a constant
constant, C10 such that

C10 k k2H`�s  k k2H̊`�s
per

=
�

�r`�s 
�

�

2

2
, (3.24)

for any  2 H̊`�s
per (⌦). Therefore, estimate (3.22) is proven for T = T?. But, since

C9 is independent of the final time, T , the Galerkin approximate solutions do not
blow-up and can be extended up to any final time T > 0 [38].

Definition 3.7. Suppose T > 0 and �, µ : ⌦ ⇥ [0, T ] ! R. We say that the pair
(�, µ) is a weak solution on the time interval [0, T ] i↵

� 2 L1
⇣

0, T ; H̊`�s
per (⌦) \ W̊ 1,}

per (⌦)
⌘

\ C0
⇣

0, T ; L̊2(⌦)
⌘

,

µ 2 L2
⇣

0, T ; H̊s
per(⌦)

⌘

,

@t� 2 L2
⇣

0, T ; H̊�s
per(⌦)

⌘

, (3.25)

and, for almost all t 2 [0, T ],

h@t�, ⌫i+ (rsµ,rs⌫) = 0, 8 ⌫ 2 Hs
per(⌦),

(3.26)

X̀

j=1

aj
�

rj�s�,rj�s 
�

+

}/2
X

j=2

c2j
�

|r�|2j�2 r�,r 
�

� (µ, ) = 0, 8  2 H`�s
per (⌦),

(3.27)

with �(0) = �0 2 L̊2(⌦), where a` = "2 and c} = 1, as usual.

Theorem 3.8. Suppose that Condition 1 holds and �0 2 H̊`�s
per (⌦). Then a weak

solution exists on any time interval [0, T ], however large the final time T may be.

Proof. Since the bound (3.22) is uniform in M , there exist subsequences �Mm and

µMm and limit points � 2 L1
⇣

0, T ; H̊`�s
per (⌦)

⌘

and µ 2 L2
⇣

0, T ; H̊s
per(⌦)

⌘

, such

that �Mm converges weakly to �, µMm converges weakly to µ, and

k�kL1(0,T ;H`�s
per (⌦)) + kµkL2(0,T ;Hs

per(⌦))  C11, (3.28)

where C11 > 0 is independent of T . Passing to limits, one can prove that the pair
(�, µ) is a weak solution to the gradient equation (1.4). The details are standard
and are skipped for brevity.

4. A local-in-time solution with Gevrey regularity. In this section, we es-
tablish a crucial technical estimate that will be used in the Gevrey analysis of the
solution for (1.4). In a standard way, we need to analyze the Galerkin approximate
solution (3.19) and pass to the limit to obtain the desired results.
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4.1. A preliminary estimate of the nonlinear terms. We define the following
nonlinear terms: for � su�ciently regular and ⌦-periodic, set

N 0
p (�) := �r · (|r�|pr�), N 1

p (�) := ��N 0
p (�), p 2 {2, 4, · · · ,}� 2} .

Then, using the formula

r (|r�|q) = q|r�|q�2H(�)r�, 8 q 2 2N, (4.1)

we find

N 0
p (�) = �|r�|p��� p|r�|p�2 [H(�)r�] ·r�, (4.2)

where H(�) is the d⇥d symmetric Hessian matrix of � with components [H(�)]i,j =
@i@j�. Furthermore, using

�(fg) = g�f + 2rf ·rg + f�g, (4.3)

we find

N 1
p (�) = � (|r�|p)��+ 2r (|r�|p) ·r��+ |r�|p�2�

+ p�
�

|r�|p�2
�

[H(�)r�] ·r�+ 2pr
�

|r�|p�2
�

·r ([H(�)r�] ·r�)
+ p|r�|p�2� ([H(�)r�] ·r�) .

(4.4)

This expression becomes quite a bit more complicated upon further expansion. For
instance,

r ([H(�)r�] ·r�) = 2H2(�)r�+ [C(�)r�]r�, (4.5)

where C(�) is the symmetric 3-tensor with the components [C(�)]i,j,k = @i@j@k�,
and

� ([H(�)r�] ·r�) = 2 [H(�)r�] ·r��+ 4 [C(�)r�] :H(�)

+ 2H2(�) :H(�) + [H(�)r�] ·r�.
(4.6)

where A :B =
Pd

j,k=1 Aj,kBj,k, for two-tensors (matrices) A and B.
In the next lemma, we examine a single representative term of N s

p , s = 0, 1.

Definition 4.1. Let p 2 2N+2, i.e., p = 2r, r 2 N+1. Define, for u(1), · · ·u(p), v :
⌦ ! R su�ciently regular,

N s
p,?(u

(1), · · · , u(p), v) :=

2

4

r
Y

j=1

ru(2j�1) ·ru(2j)

3

5�1+sv, (4.7)

Observe that

N s
p,?(�, · · · ,�,�) = (r� ·r�)p/2�1+s� = |r�|p�1+s�, (4.8)

which is the first term of N 0
p (�) (s = 0) in (4.2) and third term of N 1

p (�) (s = 1)
in (4.4), modulo the appropriate signs. Then, we have the following result.

Lemma 4.2. Suppose p 2 2N+2, s 2 {0, 1}, u(1), u(2), · · · , u(p), v, w 2 D(A`e⌧A
1/2

),
⌧ > 0, where A = ��. Then, if Condition 1 is satisfied, the following estimate
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holds:���
⇣
e⌧A

1/2

N s
p,?(u

(1), u(2), · · · , u(p), v), e⌧A
1/2

A`w
⌘���

 C12

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

Qp
j=1

���A
`
2 u(j)

���
4`�2�d

2`

⌧

���A`u(j)
���
d�2`+2

2`

⌧

� ���A
`
2 v

���
2(`�s�1)

`

⌧

��A`v
�� 2s+2�`

`
⌧

��A`w
��
⌧

for

d>2`�2
`
2<1+s`

Qp
j=1

���A
`
2 u(j)

���
4`�2�d

2`

⌧

���A`u(j)
���
d�2`+2

2`

⌧

� ���A
`
2 v

���
⌧

��A`w
��
⌧

for

d>2`�2
1+s `

2

hQp
j=1

���A
`
2 u(j)

���
⌧

i ���A
`
2 v

���
2(`�s�1)

`

⌧

��A`v
�� 2s+2�`

`
⌧

��A`w
��
⌧

for

d2`�2
`
2<1+s`

hQp
j=1

���A
`
2 u(j)

���
⌧

i ���A
`
2 v

���
⌧

��A`w
��
⌧

for

d2`�2

1+s `
2

.

(4.9)

for some C12 > 0.

Proof. Suppose p = 2r. Let us set

v(~x) =
X

~↵2Zd

v̂~↵e
2⇡i~↵·~x, e⌧A

1/2

v(~x) = ṽ(~x) =
X

~↵2Zd

ˆ̃v~↵e
2⇡i~↵·~x, ˆ̃v~↵ := e⌧2⇡|~↵|v̂~↵,

with similar notation for u(1), u(2), · · · , u(p), w. Observe that v̂~0 = 0, et cetera. We
have

⇣

e⌧A
1/2

N s
p,?(u

(1), u(2), · · · , u(p), v), e⌧A
1/2

A`w
⌘

= (�1)r(2⇡)p+2(1+s)+2`
X

~�2Zd
Pp

k=1
~↵(k)+~↵=~�

2

4

r
Y

j=1

û
(2j�1)
~↵(2j�1) û

(2j)
~↵(2j)~↵

(2j�1) · ~↵(2j)

3

5

⇥ v̂~↵|~↵|2(1+s)ŵ⇤
~�
|~�|2`e2⌧2⇡|~�|

= (�1)r(2⇡)p+4+2`
X

~�2Zd
Pp

k=1
~↵(k)+~↵=~�

2

4

r
Y

j=1

ˆ̃u(2j�1)
~↵(2j�1)

ˆ̃u(2j)
~↵(2j)~↵

(2j�1) · ~↵(2j)

3

5

⇥ ˆ̃v~↵|~↵|2(1+s) ˆ̃w⇤
~�
|~�|2`e⌧2⇡(|~�|�

Pp
k=1 |~↵(k)|�|~↵|).

Now, observe that

|~�|�
p
X

`=1

|~↵(`)|� |~↵| =

�

�

�

�

�

p
X

`=1

~↵(`) + ~↵

�

�

�

�

�

�
p
X

`=1

|~↵(`)|� |~↵|  0,

and, consequently,
�

�

�

⇣

e⌧A
1/2

N s
p,?(u

(1), u(2), · · · , u(m), v), e⌧A
1/2

A`w
⌘

�

�

�

 (2⇡)p+2(1+s)+2`
X

~�2Zd
Pp

`=1
~↵(`)+~↵=~�

2

4

p
Y

j=1

�

�

�

ˆ̃u(j)
~↵(j)

�

�

�

·
�

�

�

~↵(j)
�

�

�

3

5

�

�

�

ˆ̃v~↵
�

�

�

· |~↵|2(1+s) ·
�

�

�

ˆ̃w~�

�

�

�

·
�

�

�

~�
�

�

�

2`
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=:

✓

 

p
Y

j=1

⇠j , ✓

◆

, (4.10)

where, for all ~x 2 ⌦,

⇠j(~x) := 2⇡
X

~↵2Zd

�

�

�

ˆ̃u(j)
~↵

�

�

�

|~↵|e2⇡i~↵·~x,  (~x) := (2⇡)2(1+s)
X

~↵2Zd

�

�

�

ˆ̃v~↵
�

�

�

|~↵|2(1+s)e2⇡i~↵·~x,

✓(~x) := (2⇡)2`
X

~↵2Zd

�

�

�

ˆ̃w~↵

�

�

�

· |~↵|2` e2⇡i~↵·~x.

According to the Nirenberg inequality (2.12),

k⇠jk1  C
�

�

�

A
d
4 ⇠j

�

�

�

2
= C

�

�

�

A
2+d
4 e⌧A

1/2

u(j)
�

�

�

2
, 8 j 2 {1, 2, · · · , p} , (4.11)

furthermore,

k k22 =
�

�

�

A1+se⌧A
1/2

v
�

�

�

2

2
, k✓k22 =

�

�

�

A`e⌧A
1/2

w
�

�

�

2

2
. (4.12)

Since Condition 1 holds, it follows (see Remark 3.3) that 4` � d+2, and, we will
need to consider four cases in the analysis. If d > 2` � 2, there are two sub-cases,
Cases 1 and 2:

Case 1. If
`

2
<

2 + d

4
 ` and

`

2
< 1 + s  `,

we have, using Lemma 2.2,
�

�

�

A
2+d
4 e⌧A

1/2

u(j)
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

u(j)
�

�

�

4`�2�d
2`

2

�

�

�

A`e⌧A
1/2

u(j)
�

�

�

d�2`+2
2`

2
,

�

�

�

A1+se⌧A
1/2

v
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

v
�

�

�

2(`�s�1)
`

2

�

�

�

A`e⌧A
1/2

v
�

�

�

2s+2�`
`

2
.

Therefore,
�

�

�

⇣

e⌧A
1/2

N s
p,?(u

(1), u(2), · · · , u(p), v), e⌧A
1/2

A`w
⌘

�

�

�

 C

p
Y

j=1

�

�

�

A
`
2u(j)

�

�

�

4`�2�d
2`

⌧

�

�

�

A`u(j)
�

�

�

d�2`+2
2`

⌧

�

�

�

A
`
2 v
�

�

�

2(`�s�1)
`

⌧

�

�A`v
�

�

2s+2�`
`

⌧
|A`w|⌧ .

(4.13)

Case 2. If
`

2
<

2 + d

4
 ` and 1  1 + s  `

2
,

we have, appealing to Lemma 2.2 and the Sobolev embedding D(A`/2) ,! D(A1+s),
�

�

�

A
2+d
4 e⌧A

1/2

u(j)
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

u(j)
�

�

�

4`�2�d
2`

2

�

�

�

A`e⌧A
1/2

u(j)
�

�

�

d�2`+2
2`

2
,

�

�

�

A1+se⌧A
1/2

v
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

v
�

�

�

2
.

Therefore,
�

�

�

⇣

e⌧A
1/2

N s
p,?(u

(1), u(2), · · · , u(p), v), e⌧A
1/2

A`w
⌘

�

�

�

 C

p
Y

j=1

�

�

�

A
`
2u(j)

�

�

�

4`�2�d
2`

⌧

�

�

�

A`u(j)
�

�

�

d�2`+2
2`

⌧

�

�

�

A
`
2 v
�

�

�

⌧

�

�A`w
�

�

⌧
.

(4.14)
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If d < 2`� 2, two more sub-cases must be examined, Cases 3 and 4:

Case 3. If
2 + d

4
 `

2
and

`

2
< 1 + s  `,

we have
�

�

�

A
2+d
4 e⌧A

1/2

u(j)
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

u(j)
�

�

�

2
,

�

�

�

A1+se⌧A
1/2

v
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

v
�

�

�

2(`�s�1)
`

2

�

�

�

A`e⌧A
1/2

v
�

�

�

2s+2�`
`

2
,

and therefore
�

�

�

⇣

e⌧A
1/2

N s
p,?(u

(1), u(2), · · · , u(p), v), e⌧A
1/2

A`w
⌘

�

�

�

 C

p
Y

j=1

�

�

�

A
`
2u(j)

�

�

�

⌧

�

�

�

A
`
2 v
�

�

�

2(`�s�1)
`

⌧

�

�A`v
�

�

2s+2�`
`

⌧
|A`w|⌧ .

(4.15)

Case 4. If
2 + d

4
 `

2
and 1  1 + s  `

2
,

we obtain
�

�

�

A
2+d
4 e⌧A

1/2

u(j)
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

u(j)
�

�

�

2
,

�

�

�

A1+se⌧A
1/2

v
�

�

�

2
 C

�

�

�

A
`
2 e⌧A

1/2

v
�

�

�

2
,

and thus
�

�

�

⇣

e⌧A
1/2

N s
p,?(u

(1), u(2), · · · , u(p), v), e⌧A
1/2

A`w
⌘

�

�

�

 C

p
Y

j=1

�

�

�

A
`
2u(j)

�

�

�

⌧

�

�

�

A
`
2 v
�

�

�

⌧

�

�A`w
�

�

⌧
.

(4.16)

The proof of Lemma 4.2 is finished.

We summarize the analysis of the nonlinear terms in the following result:

Corollary 4.3. Suppose that Condition 1 holds, � 2 D(A`e⌧A
1/2

), ` 2 N + 2,
} 2 2N+ 4, s 2 {0, 1}, A = ��. Let N be as defined in (3.2). Then

�

�

�

⇣

e⌧A
1/2

N (�), e⌧A
1/2

A`�
⌘

�

�

�

 C13

�

�

�

A
`
2�
�

�

�

�1

⌧

�

�A`�
�

�

�2

⌧
, (4.17)

for some constant C13 > 0 that depends upon the parameters } and `, where

�1 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(4`�2�d)(}�2)+4(`�1�s)
2` if

n

d>2`�2
`
2<1+s`

o

(Case 1)

(4`�2�d)(}�2)+2`
2` if

n

d>2`�2
1+s `

2

o

(Case 2)

`(}�2)+2(`�1�s)
` if

n

d2`�2
`
2<1+s`

o

(Case 3)

}� 1 if

n

d2`�2
1+s `

2

o

(Case 4)

,

�2 =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(d�2`+2)(}�2)+4(s+1)
2` if

n

d>2`�2
`
2<1+s`

o

(Case 1)

(d�2`+2)(}�2)+2`
2` if

n

d>2`�2
1+s `

2

o

(Case 2)

2s+2
` if

n

d2`�2
`
2<1+s`

o

(Case 3)

1 if

n

d2`�2
1+s `

2

o

(Case 4)

.

(4.18)
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Remark 4.4. Observe that we always have �1 + �2 = }, regardless of the case.
Because of Condition 1, all of the exponents in the last corollary are non-negative.

4.2. A local-in-time solution with Gevrey regularity.

Definition 4.5. We say that Condition 2 holds i↵ �2 = }� �1 < 2.

The following theorem is the main result of this section.

Theorem 4.6. Suppose that Conditions 1 and 2 hold, and assume that �0 2
D(A`/2). Then there exists T⇤ that depends upon

�

�A`/2�0
�

�

2
, such that the weak

solution is regular and unique on (0, T?), and t ! etA
1/2

�(t) is analytic on (0, T?).

Proof. Considering the Galerkin approximation, �M (⌧), constructed earlier, we take

the scalar inner product of (3.19) with A`�M (⌧) in the space D(e⌧A
1/2

):

0 =
⇣

e⌧A
1/2

@t�M (⌧), A`e⌧A
1/2

�M (⌧)
⌘

+
⇣

e⌧A
1/2

N (�M ), A`e⌧A
1/2

�M (⌧)
⌘

+
X̀

j=1

aj

⇣

e⌧A
1/2

Aj�M (⌧), A`e⌧A
1/2

�M (⌧)
⌘

+ "2
⇣

e⌧A
1/2

A`�M (⌧), A`e⌧A
1/2

�M (⌧)
⌘

.

(4.19)

The terms above are evaluated as follows. For the time-derivative term, using
Caucy’s inequality, and Lemma 2.2, we have
⇣

e⌧A
1/2

@t�M (⌧), A`e⌧A
1/2

�M (⌧)
⌘

=
⇣

A
`
2 @t

h

etA
1/2

�M (t)
i

t=⌧
�A

`+1
2 e⌧A

1/2

�M (⌧), e⌧A
1/2

A
`
2�M (⌧)

⌘

=
1

2

d

d⌧

�

�

�

A
`
2 e⌧A

1/2

�M (⌧)
�

�

�

2

2
�
⇣

A
`+1
2 e⌧A

1/2

�M (⌧), A
`
2 e⌧A

1/2

�M (⌧)
⌘

=
1

2

d

d⌧

�

�

�

A
`
2�M

�

�

�

2

⌧
�
⇣

A
`+1
2 �M (⌧), A

`
2�M (⌧)

⌘

⌧

� 1

2

d

d⌧

�

�

�

A
`
2�
�

�

�

2

⌧
� "2

2

�

�

�

A
`+1
2 �M (⌧)

�

�

�

2

⌧
� 1

2"2

�

�

�

A
`
2�M (⌧)

�

�

�

2

⌧

� 1

2

d

d⌧

�

�

�

A
`
2�M

�

�

�

2

⌧
� "2

2

�

�

�

A
`
2�M (⌧)

�

�

�

2(`�1)
`

⌧

�

�A`�M (⌧)
�

�

2
`

⌧
� 1

2"2
|A `

2�M (⌧)|2⌧

� 1

2

d

d⌧

�

�

�

A
`
2�M

�

�

�

2

⌧
�
✓

"2

2

`� 1

`
+

1

2"2

◆

�

�

�

A
`
2�M (⌧)

�

�

�

2

⌧
�
✓

"2

2

1

`

◆

�

�A`�M (⌧)
�

�

2

⌧
.

(4.20)

For the surface di↵usion term, we have

"2
⇣

e⌧A
1/2

A`�M (⌧), A`e⌧A
1/2

�M (⌧)
⌘

= "2
�

�A`�M (⌧)
�

�

2

⌧
. (4.21)

For the linear terms, we have

aj

⇣

e⌧A
1/2

Aj�M (⌧), A`e⌧A
1/2

�M (⌧)
⌘

 |aj |
�

�Aj�M
�

�

⌧

�

�A`�M
�

�

⌧
, (4.22)

for 1  j  `� 1. Now, if j  `
2 , we get

|aj | ·
�

�Aj�M
�

�

⌧

�

�A`�M
�

�

⌧
 C|aj | ·

�

�

�

A
`
2�M

�

�

�

⌧

�

�A`�M
�

�

⌧

 |aj |
4

· 8`
"2

�

�

�

A
`
2�M

�

�

�

2

⌧
+
"2

8`

�

�A`�M
�

�

2

⌧
.

(4.23)
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If ` > j > `
2 , using Lemma 2.2, we have

|aj | ·
�

�Aj�M
�

�

⌧

�

�A`�M
�

�

⌧
 C|aj | ·

�

�

�

A
`
2�M

�

�

�

2(`�j)
`

⌧

�

�A`�M
�

�

2j
`

⌧

 C14

�

�

�

A
`
2�M

�

�

�

2

⌧
+
"2

8`

�

�A`�M
�

�

2

⌧
.

(4.24)

We now use the nonlinear estimate given by (4.17) in Corollary 4.3. Considering
Condition 2, we have using Young’s inequality,

⇣

e⌧A
1/2

N (�M ), A`e⌧A
1/2

�M (⌧)
⌘

 C13

�

�

�

A
`
2�M

�

�

�

�1

⌧

�

�A`�M
�

�

�2

⌧

 C15

�

�

�

A
`
2�M

�

�

�

2�1
2��2

⌧
+
"2

8

�

�A`�M
�

�

2

⌧
.

(4.25)

Putting together estimates (4.20), (4.21), (4.23), (4.24), and (4.25) we have

1

2

d

d⌧

�

�

�

A
`
2�M

�

�

�

2

⌧
+

✓

"2 � "2

4
� "2

8
� "2

8

◆

�

�A`�M
�

�

2

⌧
 C16

�

�

�

A
`
2�M

�

�

�

2�1
2��2

⌧
+C17

�

�

�

A
`
2�M

�

�

�

2

⌧
.

(4.26)
This in turn gives

1

2

d

d⌧

�

�

�

A
`
2�M

�

�

�

2

⌧
 C18

�

�

�

A
`
2�M

�

�

�

2�1
2��2

⌧
+ C17

�

�

�

A
`
2�M

�

�

�

2

⌧
. (4.27)

Set �1 := �1
2��2

, and �2 := 2
2��2

. Observe that, since 0 < �2 < 2 (Condition 2) and
} � 4 (Condition 1),

�1 =
}� �2
2� �2

=
}� 2

2� �2
+ 1 � 2

2� �2
+ 1 = �2 + 1 � 2. (4.28)

In particular, �1 � 1 � �2 � 1. Setting y(⌧) := 1 +
�

�

�

A
`
2�M (⌧)

�

�

�

2

⌧
, it follows that

y0  C18y
�1 ,

for some C18 > 0. Then we have the estimates

y(⌧) 
✓

1

1� (�1 � 1)C18⌧y�1�1(0)

◆

1
�1�1

y(0) 
✓

1

1� �2C18⌧y�2(0)

◆

1
�2

y(0),

(4.29)
valid for 0  ⌧ < T1, where

T1 :=
1

(�1 � 1)C18y�1�1(0)
 1

�2C18y�2(0)
.

Using the stability of the L2 projection, this result implies the uniform (in M)
estimate

y(⌧) = 1 +
�

�

�

A
`
2�M (⌧)

�

�

�

2

⌧
 2y(0) = 2 + 2

�

�

�

A
`
2�M (0)

�

�

�

2

2
 2 + 2

�

�

�

A
`
2�(0)

�

�

�

2

2
,

for 0  ⌧  T2, where,

T2 : =
2�1�1 � 1

2�1�1(�1 � 1)C18

✓

1 +
�

�

�

A
`
2�0

�

�

�

2

2

◆1��1

 2�1�1 � 1

2�1�1(�1 � 1)C18

✓

1 +
�

�

�

A
`
2�M (0)

�

�

�

2

2

◆1��1

. (4.30)
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Thus �M (⌧) 2 D
⇣

A
`
2 e⌧A

1/2
⌘

, for all ⌧ 2 [0, T2], uniformly in M , provided �0 2

D
⇣

A
`
2

⌘

.

We can now extract a further subsequence of �M and pass to limits to obtain
our estimates for the limit point �, which is observed to be Gevrey regular on the
time interval (0, T2). The uniqueness analysis of the Gevrey regularity solution is
straightforward, due to the high order regularity. The details are left to interested
readers. The theorem is proven with T? = T2.

5. Global-in-time existence of a Gevrey regularity solution. Note that the
existence time interval length T? in Theorem 4.6 for the Gevrey regularity solu-

tion depends on the initial data, specifically
�

�

�

A
`
2�0

�

�

�

2
. To obtain a global-in-time

solution with Gevrey regularity, we have to establish a uniform-in-time bound for
�

�

�

A
`
2�(t)

�

�

�

2
, so that the constructed solution can be extended to any time. For the

case s = 0, this follows from Theorem 3.8 immediately, and we have the following:

Theorem 5.1. Suppose that Conditions 1 and 2 hold, and assume that �0 2
D(A`/2). If s = 0, then there exists a unique global-in-time Gevrey regular solution

to (1.4).

To establish a uniform-in-time bound for
�

�

�

A
`
2�(t)

�

�

�

2
for the case s = 1, we will

need another condition, namely

Definition 5.2. We say that Condition 3 holds i↵ when s = 1,

2 + 1/2 < ` if d = 1,

(}� 2)(d/2 � 1) + 4 < 2` if d � 2.
(5.1)

Theorem 5.3. Suppose that Conditions 1 – 3 hold, s = 1, and �0 2 H̊`
per(⌦) =

D
�

A`/2
�

. Then the weak solution � has the additional regularity � 2 L1 (0, T ;

H̊`
per(⌦)

⌘

, however large the final time T may be. Furthermore, we have the

uniform-in-time bound

�

�

�

A
`
2�(t)

�

�

�

2
 C19, (5.2)

for all t � 0, where C19 is independent of t.

Proof. For simplicity, we only focus on the case of odd `. The case with an even `
can be handled in a similar way. Taking the inner product of (3.19) with ��`�M
gives

�

@t�M ,��`�M
�

+ "2
�

��`�M
�

�

2

2

=
`�1
X

j=1

aj(�1)j
�

�j�M ,�`�M
�

�

0

@�`�M ,

}/2
X

j=2

c2jN 1
2j(�M )

1

A . (5.3)

For the temporal derivative term, since ` is odd, we have

�

@t�M ,��`�M
�

=
⇣

@tr�
`�1
2 �M ,r�

`�1
2 �M

⌘

=
1

2
dt

�

�

�

r�
`�1
2 �M

�

�

�

2

2
. (5.4)
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For the lower-order linear terms, we start from an application of Cauchy’s inequality:
�

�aj
�

�j�M ,�`�M
�

�

� |aj | ·
�

��j�M
�

�

2

�

��`�M
�

�

2

 (`� 1)|aj |
"2

�

��j�M
�

�

2

2
+

"2

4(`� 1)

�

��`�M
�

�

2

2
,

(5.5)

for all 1  j  `� 1. Using (3.22), we have

�

��j�M
�

�

2

2
 C9, for 1  j  `� 1

2
. (5.6)

Using Lemma 2.2, Young’s inequality, and (3.22), for `�1
2 < j  ` � 1, we observe

that

�

��j�M
�

�

2

2
C

�

�

�

�
`�1
2 �M

�

�

�

4(`�j)
`+1

2
·
�

��`�M
�

�

4j�2(`�1)
`+1

2
 C(�j)C9 + �jk�`�k2, (5.7)

for any �j > 0, for some C = C(�j) > 0, where we have used p = `+1
2(`�j) and

q = `+1
2j�(`�1) in Young’s inequality. Thus

(`� 1)|aj |
"2

�

��j�M
�

�

2

2
 (`� 1)|aj |C9

"2
, for 1  l  `� 1

2
, (5.8)

(`� 1)|aj |
"2

�

��j�M
�

�

2

2
 (`� 1)|aJ |C(�)C9

"2
+

"2

2(`� 1)

�

��`�M
�

�

2

2
,

for
`+ 1

2
< j  `� 1. (5.9)

Here we have taken

�j =
"4

2(`� 1)2|aj |
. (5.10)

Putting (5.8) – (5.9) into (5.5) yields
�

�

�

�

�

�

`�1
X

j=1

aj(�1)j
�

�j�M ,�`�M
�

�

�

�

�

�

�


`�1
2
X

j=1

(`� 1)|aj |
"2

�

��j�M
�

�

2

2
+

`�1
X

j= `+1
2

(`� 1)|aj |
"2

�

��j�M
�

�

2

2
+
"2

4

�

��`�
�

�

2

2

 S1 +
"2

4

�

��`�M
�

�

2

2
+
"2

4

�

��`�M
�

�

2

2
= S1 +

"2

2

�

��`�M
�

�

2

2
,

(5.11)

where

S1 :=
(`� 1)C9

"2

0

@

`�1
2
X

j=1

|aj |+
`�1
X

j= `+1
2

|aj |C(�j)

1

A .

Now, turning our attention to the nonlinear terms, we see that, after some tedious
computations – see, in particular, (4.4) – and the application of some Sobolev
inequalities, for even number p, 2  p  }� 2,

k� (r · (|r�M |p r�M ))k2
 C

⇣

k�MkpW 1,1 · k�MkH4 + k�Mkp�1
W 1,1 · k�MkW 2,1 · k�MkH3

+ k�Mkp�2
W 1,1 · k�Mk2W 2,1 · k�MkH2

⌘

.

(5.12)
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Recall the Sobolev embedding inequalities in Rd: for any  2 H
k+d/2+�
per (⌦), � > 0,

 2 W k,1
per (⌦) and, for some C = C(�) > 0,

k kWk,1  C(�) k kHk+d/2+� . (5.13)

By Condition 1, `� 1 � 2, and we have, for all t � 0,

k�M (t)k2H2  C k�M (t)k2H`�1  CC9 := C20. (5.14)

In addition, since s = 1, Condition 1 ensures that 2 + d/2 < 4 + d/2  2`. Thus,
there is a � > 0 such that 2 + d/2 + �  2`. In particular any 0 < � < 2 works,
though we will see that we need to make � as small as possible for the results to be
most meaningful. The following interpolation inequality can be derived

k�MkH2+d/2+�  C k�Mk
2`�2�d/2��

2(`�1)

H2 · k�Mk
d/2+�
2(`�1)

H2`  CC
2`�2�d/2��

4(`�1)

20 k�Mk
d/2+�
2(`�1)

H2` .
(5.15)

To estimate k�MkH1+d/2+� we will need two cases. Case 1: d = 1. In this case, for
small �,

k�MkH1+d/2+�  C k�MkH2  CC9. (5.16)

Case 2: d � 2. In this case, for any 0 < � < 1, 2 < 1 + d/2 + �  2`, and we have
the interpolation inequality

k�MkH1+d/2+�  C k�Mk
2`�1�d/2��

2(`�1)

H2 · k�Mk
d/2+��1
2(`�1)

H2`  CC
2`�1�d/2��

4(`�1)

20 k�Mk
d/2+��1
2(`�1)

H2` ,
(5.17)

Since 2 < 3, 4  2`, we also have

k�MkH3  C k�Mk
2(`�2)+1
2(`�1)

H2 · k�Mk
1

2(`�1)

H2`  CC
2(`�2)+1
4(`�1)

20 k�Mk
1

2(`�1)

H2` , (5.18)

k�MkH4  C k�Mk
2(`�2)
2(`�1)

H2 · k�Mk
2

2(`�1)

H2`  CC
2(`�2)
4(`�1)

20 k�Mk
2

2(`�1)

H2` . (5.19)

Substitution of these estimates into (5.12) leads to

�

�N 1
p (�)

�

�

2
= k� (r · (|r�M |p r�M ))k2  C

8

<

:

k�Mk
d/2+�+1

`�1

H2` for d = 1

k�Mk
p(d/2+��1)+2

2(`�1)

H2` for d � 2
(5.20)

for all even integers p satisfying 2  p  } � 2. Therefore, for some C21 > 0, and
for any 0 < �  1,

kN (�M )k2  C21

�

��`�
�

�

�

2
, (5.21)

where

� =

(

d/2+�+1
`�1 for d = 1

(}�2)(d/2+��1)+2
2(`�1) for d � 2

, (5.22)

where the following norm equivalence was applied in the last step:

k kH2`  C
�

��` 
�

�

2
= C k kD(A`) , (5.23)

for all  2 D(A`) = H̊2`(⌦). Finally, for some C22 > 0, we have

�

�`�M ,N (�M )
�


�

��`�M
�

�

2
· C21

�

��`�M
�

�

�

2
 C22 +

"2

4

�

��`�M
�

�

2

2
, (5.24)

provided � < 1. Observe that, if Condition 3 holds, there is always some 0 < � < 1
that ensures that � < 1.
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Finally, a combination of (5.3), (5.4), (5.11) and (5.24) results in

dt

�

�

�

r�
`�1
2 �M

�

�

�

2

2
+

1

2
"2
�

��`�M
�

�

2

2
 C23. (5.25)

Setting y(t) :=
�

�

�

r�
`�1
2 �M

�

�

�

2

2
and making use of the elliptic regularity

�

�

�

r�
`�1
2  M

�

�

�

2
 C

�

��` 
�

�

2
, (5.26)

for every  2 H̊2`(⌦), we arrive at

dty(t) + y(t)  C24, (5.27)

where C24 > 0 is independent of t � 0. Integrating in time yields

y(t) =
�

�

�

r�
`�1
2 �M (t)

�

�

�

2

2
 e�t

�

�

�

r�
`�1
2 �M (0)

�

�

�

2

2
+ C24  e�t

�

�

�

r�
`�1
2 �(0)

�

�

�

2

2
+ C24.

(5.28)

Therefore, a global-in-time, uniform in M bound of
�

�

�

A
`
2�M (t)

�

�

�

is available. We

can now extract a further subsequence of the Galerkin approximation and pass to
limits to establish the bound for the weak solution, �. The proof is complete.

As a consequence of Theorem 4.6 and Theorem 5.3, we arrive at the following
theorem, the main result of this paper.

Theorem 5.4. Suppose that Conditions 1 – 3, s = 1, and �0 2 H̊`
per(⌦) =

D
�

A`/2
�

. Then there exists a unique global-in-time Gevrey regular solution to (1.4).

Remark 5.5. For the local-in-time solution, the mapping t ! etA
1/2

�(t) is ana-
lytic within the time interval (0, T?). Meanwhile, let us denote by T?? the Gevrey
regularity solution existence time interval length, determined by Theorem 4.6, with
�

�A`/2�0
�

�

2
 C19, where C19 > 0 is given in Theorem 5.3. After time T?, we can

only ensure that the norm of eT??A
1/2

�(t) is bounded; we cannot ensure, by the

present theory, that the norm of etA
1/2

�(t) is bounded for large time.

Remark 5.6. Before we conclude, let us check that Conditions 1 – 3 are not so
stringent as to exclude all of the interesting PDE’s introduced earlier.

• For the Slope Selection (SS) epitaxial thin film growth model (1.7), we have
the parameters, s = 0, ` = 2 and } = 4 in d = 2. Condition 1 is easily
satisfied. For the calculation of exponents, we are in Case 4, and �2 = 1.
Thus Condition 2 is satisfied. Condition 3 is not applicable.

• One can envision an SS epitaxial growth model with s = 0, ` = 2 and } = 6
in d = 2 [43]. Thus the highest nonlinear term is a 6-laplacian. Again,
Conditions 1 is easily satisfied. For the calculation of exponents, we are again
in Case 4, and �2 = 1. Conditions 1 and 2 are satisfied. Condition 3 is not
applicable.

• For the regularized Cross-Newell (RCN) equation, the parameters are the
same as the SS equation (in fact the equation is the same), but the dimension
d = 3 may be appropriate. In this instance, Conditions 1 is satisfied. For the
RCN equation with d = 3, �2 = 3/2 and Condition 2 is also satisfied. Here
exponents are calculated according to Case 2. Condition 3 is not applicable.
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• We can imagine an RCN-type equation with the following parameters: s = 0,
` = 2, } = 6, and d = 3. The exponents are covered by Case 1, and �2 = 2.
Unfortunately, our analysis does not cover this model, since Condition 2 fails
to hold. Condition 3 is not applicable.

• For the SPFC model (1.8), we have the parameters d = 3, s = 1, ` = 3 and
} = 4. Condition 1 is satisfied. The exponents are covered by Case 3, and
�2 = 4/3, showing that Condition 2 is once again satisfied. Condition 3 is
also satisfied, since

(}� 2)(d/2 � 1) + 4 = 5 < 6 = 2`.

Remark 5.7. For a gradient flow with the Allen-Cahn/Cahn-Hilliard type energy

E(�) =
1

4
k�k44 �

1

2
k�k22 +

"2

2
kr�k22, (5.29)

we see that the global-in-time Gevrey regularity solution could be derived in the
same manner, based on the fact that the degree of nonlinearity associated with k�k44
is much lower than that of kr�k44.

On the other hand, the Gevrey regularity for the Cahn-Hilliard equation has
already been proved in an existing work [36].

Remark 5.8. For the sake of comparison with the Slope Selection (SS) model
(1.7), the energy for the No-Slope-Selection (NSS) epitaxial thin film growth model
is given by

E(�) =

Z

⌦

✓

�1

2
ln(1 + |r�|2) + "2

2
(��)2

◆

dx, (5.30)

which includes a logarithmic term. The L2 gradient flow with respect to this energy
is

@t� = �µ = ���E = �r ·
✓

r�
1 + |r�|2

◆

� "2�2�. (5.31)

For the NSS model (5.31), the existence of a global-in-time smooth solution has
been established in [30]. However, the framework to establish the Gevrey regularity
solution, as presented in this article, can not be directly applied to this problem. The
primary di�culty derives from the fact that the preliminary estimate Lemma 4.2
is not available for this gradient flow, since the nonlinear term in (5.31) is not in
a polynomial pattern; instead, the nonlinear denominator makes a Fourier-type-
analysis not feasible any more.

The analysis of the analytic solution for the NSS model (5.31) will be explored
in a future work. The techniques related to the analyticity radius for nonlinear
parabolic equations in a bounded domain, as reported by [4, 17, 22, 23, 24], are
expected to be useful for this work.
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