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A THIRD ORDER LINEARIZED BDF SCHEME FOR

MAXWELL’S EQUATIONS WITH NONLINEAR CONDUCTIVITY

USING FINITE ELEMENT METHOD

CHANGHUI YAO, YANPING LIN, CHENG WANG, AND YANLI KOU

Abstract. In this paper, we study a third order accurate linearized backward differential for-
mula (BDF) type scheme for the nonlinear Maxwell’s equations, using the Nédelec finite element
approximation in space. A purely explicit treatment of the nonlinear term greatly simplifies the
computational effort, since we only need to solve a constant-coefficient linear system at each time
step. An optimal L2 error estimate is presented, via a linearized stability analysis for the nu-
merical error function, under a condition for the time step, τ ≤ C∗

0h
2 for a fixed constant C∗

0 .
Numerical results are provided to confirm our theoretical analysis and demonstrate the high order
accuracy and stability (convergence) of the linearized BDF finite element method.

Key words. Maxwell’s equations with nonlinear conductivity, convergence analysis and optimal
error estimate, linearized stability analysis, the third order BDF scheme.

1. Introduction

This paper is concerned with the nonlinear Maxwell’s equations

ϵEt + σ(x, |E|)E −∇×H = 0, in Ω× (0,+∞),(1)

µHt +∇×E = 0, in Ω× (0,+∞),(2)

with initial and boundary conditions

E(x, 0) = E0(x), H(x, 0) = H0(x), in Ω,(3)

n×E = 0 and n ·H = 0, on Γ× (0,+∞),(4)

where Ω is a bounded, convex, simply-connected domain in R3 with a regular
boundary Γ = ∂Ω, E(x, t), H(x, t) represent the electric and magnetic fields, n is
the outward normal vector on Γ, and the positive constants ϵ and µ stand for the
permittivity and the magnetic permeability, respectively. In addition, σ = σ(x, s)
is a real valued function representing the electric conductivity.

The system (1)−(4) have been investigated in [6, 31, 32]. The authors proved the
existence of the weak solution for a nonlinear function J(E) = σ(|E|)E, with σ(s)
monotonically increasing. In [4], the authors presented the existence and uniqueness
of the scheme by discretizing the time domain and taking the limit for infinitely
small time-step. In section 5 of [4], the authors also proved that the solutions
converges to the quasi-state state (no time derivative for equation involving E)
when the permittivity ϵ → 0. Also when ϵ goes zero, numerical example indicated
that numerical scheme converges to the quasi static state as part of verification.
In [5], the authors proved existence and uniqueness of the discrete fields using the
monotone operator theory (see [27]). In [26], the authors studied a time dependent
eddy current equation, established the existence and uniqueness of a weak solution
in suitable function space, designed a nonlinear time discrete approximation scheme
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based on the Rothe’s method and proved the convergence of approximation to a
weak solution.

Numerical analysis for the nonlinear system have also been extensively carried
out, see [2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 18, 22, 23, 25, 26]. In addition, nonlinear
schemes have been proposed and analyzed in many literatures. In [4], the authors
presented a numerical scheme to solve coupled Maxwell’s equations with a nonlinear
conductivity, with the backward Euler discretization in time and mixed conforming
finite elements in space. And also, a mixed finite element method for the Maxwell’s
equations with a nonlinear boundary condition was studied in [25]. In [10], the
authors proposed a fully-discrete finite element method to solve the time-domain
metamaterial Maxwell’s equations, which can be reduced to a vector wave integro-
differential equation involving just one unknown. Some related works can also be
found in [9, 11, 12, 18]. In [5], the authors proposed a numerical scheme based on
backward Euler discretization in time and curl-conforming finite element in space
to solve Maxwell’s equations with nonlinear conductivity in the form of a power
law. As a result, its convergence was proved, based on the boundedness of the
second derivative in the dual space by the Minty-Browder technique. In [3], the
authors developed a fully-discrete (T,ψ) − ψe finite element decoupled scheme to
solve time-dependent eddy current problem with multiple-connected conductors.
Subsequently, an improved convergence rate analysis was provided in [14]. A few
more earlier works are also available in [23, 26].

Clearly, linearized schemes are much more efficient than nonlinear schemes for
solving nonlinear equations, since only one linear system solver is needed in the
former one, while the latter one always requires a nonlinear iteration solver at
each time step. For example, a new approach was developed in [16], based on
a temporal-spatial error splitting technique by introducing a corresponding time-
discrete system. Similarly, a linearized backward differential formula (BDF) type
scheme was applied to the time-dependent nonlinear thermistor equation in [7].
The linearized backward Euler scheme for the nonlinear Joule heating equation
was studied in [8]. In [29], the authors presented an optimal L2 error estimate of
a linearized Crank-Nicolson Galerkin FEM for a generalized nonlinear Schrödinger
equation, without any time step size restriction.

In turn, an important question arises: Is it possible to design higher order (≥ 3)
linearized temporal discretization for the nonlinear Maxwell’s equations, with a
convergence analysis available? In this paper, we give an affirmative answer to this
question. We propose a third order accurate, linearized BDF type FEM method for
the Maxwell’s equations and provide a theoretical error analysis for the proposed
scheme. It is well-known that the 3rd order BDF temporal scheme is not A-stable;
in fact, its stability domain does not contain any part on the purely imaginary
axis, where all the eigenvalues of the linear Maxwell operator are located. This fact
makes a theoretical analysis for the 3rd order BDF method applied to the Maxwell
equation highly challenging. To overcome this subtle difficulty, we take an inner
product with the numerical error equation by en+1 + (λ0 + 1)(en+1 − en) (with
λ0 > 0 and ek denoted as the numerical error function at time step tk), and employ
a telescope formula established in [20]. Moreover, due to the hyperbolic nature of
the Maxwell’s equation, a requirement for the time step size, τ ≤ C∗

0h
2 (with C∗

0

a fixed constant), has to be imposed to pass through the numerical error estimate.
Another key technical contribution in the convergence analysis is to obtain an L∞

bound of the numerical solution, via a linearized stability analysis for the numerical
error function; by contrast, such an L∞ bound was not needed in the previous
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works [5, 14, 23, 26], due to the implicit treatment of the nonlinear term. In more
details, an a-priori L∞ assumption is made for the numerical error function at the
previous time steps, and such an L∞ bound for the numerical solution leads to a
full order O(τ3+hs) error estimate at the next time step. In turn, an application of
inverse inequality yields the L∞ bound of the numerical error function at the next
time step, so that an induction could be applied to complete the nonlinear error
estimate, under a trivial requirement τ ≤ o(h

d

6 ). Similar methodology of linearized
stability analysis for nonlinear problems could also be found in a few related works
[15, 16, 28, 29], etc.

Of course, the time step requirement in the nonlinear error estimate, τ ≤ o(h
d

6 ),
is much less severe than the one imposed for the linear Maxwell part, τ ≤ C∗

0h
2,

associated with the stability analysis for the 3rd order BDF temporal stencil. As a
result, the more severe time step constraint, τ ≤ C∗

0h
2, is needed to pass through

the convergence analysis for the whole numerical scheme. Meanwhile, such a severe
time step constraint is only a theoretical issue; extensive numerical results have
shown that, the stability and convergence are well preserved with a more relaxed
constraint, τ = O(h).

This analysis could easily go through for a polynomial element with degree s ≥ 2,
since the O(hs) spatial convergence order in L2 norm enables one to obtain an L∞

bound of the numerical error function. For a linear element with s = 1, such an
argument is not directly available. Instead, we perform a super-convergence of the
lowest element over a uniform mesh, so that an O(h2) spatial convergence in L2 is
valid. In turn, an application of inverse inequality yields the desired L∞ bound for
the numerical solution.

The rest of the paper is organized as follows. In Section. 2, we present the
linearized BDF finite element method and state the main theoretical result. In
Section. 3, we derive an L2 error estimate of the fully discrete system and get the
corresponding estimate of order O(τ3+hs), under a requirement τ ≤ C∗

0h
2. In par-

ticular, the super-convergence analysis for s = 1 is also provided in this section. In
Section. 4, numerical results are presented to demonstrate the theoretical analysis.
Finally, the concluding remarks are provided in Section. 5.

2. Finite element method and the main theoretical result

The inner product in [L2(Ω)]3 will be denoted by (u, v) =
∫
Ω u · vdx, and the

corresponding norm is given by ∥u∥ =
√
(u, u). In this article, we use the standard

Sobolev spaces and introduce some common notation:

H(curl,Ω) = {u ∈ [L2(Ω)]3;∇× u ∈ [L2(Ω)]3},

H0(curl,Ω) = {u ∈ H(curl,Ω);n× u = 0 on Γ},

H(div0,Ω) = {u ∈ [L2(Ω)]3; div u ∈ L2(Ω); div u = 0}.

Here, we need to employ the assumptions of σ(x, s) in [31, 32]. And also, it is
assumed that there exist positive constants κ,σ0 > 0 with 0 < κ ≤ σ(x, s) ≤ σ0 and
σ(x, s) ∈ C1,1(Ω, [0,+∞)). The problem (1) − (4) has a unique solutions (E,H)
such that [6]

E ∈ L2(0,∞;H0(curl,Ω)) ∩H(div0,Ω) ∩ Lp+2(0,∞; [Lp+2(Ω)]3),

H ∈ L2(0,∞;H0(div
0,Ω)) ∩H1(0,∞; [H1(Ω)]3).

To introduce the mixed FEM, we partition Ω by a family of regular cubic meshes
Th with maximum mesh size h. For the spatial approximation, we employ 3D cubic
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Raviart-Thomas-Nédelec elements [21, 22]

Vh = {φ ∈ H(curl,Ω),φ|K ∈ Qk−1,k,k ×Qk,k−1,k ×Qk,k,k−1, ∀K ∈ Th},

Wh = {ψ ∈ [L2(Ω)]3,ψ|K ∈ Qk,k−1,k−1 ×Qk−1,k,k−1 ×Qk−1,k−1,k, ∀K ∈ Th},

or 3D tatrahedron Raviart-Thomas-Nédelec elements

Vh = {φ ∈ H(curl,Ω),φ|K ∈ Pk−1,k,k × Pk,k−1,k × Pk,k,k−1, ∀K ∈ Th},

Wh = {ψ ∈ [L2(Ω)]3,ψ|K ∈ Pk,k−1,k−1 × Pk−1,k,k−1 × Pk−1,k−1,k, ∀K ∈ Th}.

In turn, we denote the interpolation operator Πh and projection operator Ph

on Vh and Wh, respectively. The following important properties could be found in
[10, 11, 12, 18].

Lemma 2.1. For the space pairs Vh and Wh, there holds

curlhVh ⊆ Wh.(5)

If v is a function such that both the interpolants Πhv and Ph(curlv) exist, then we
get curlh(Πhv) = Ph(curlv). For w ∈ [L2(Ω)]3, the following property holds:

(w − Phw, q) = 0, ∀q ∈ Wh.

We need the optimal interpolation error estimate [1, 21, 22] for general anisotrop-
ically refined meshes. For regular meshes, a similar result is obtained as follows.

Lemma 2.2. For 1 ≤ s ≤ k, v ∈ Hs+1(Ω), w ∈ Hs(Ω), there exists a constant
C > 0 independent of h such that

∥v −Πhv∥H(curl,Ω) ≤ Chs|v|s+1, ∥w − Phw∥0 ≤ Chs|w|s,

where | · |s denotes the seminorm in the space Hs(Ω).

For t ∈ (0, T ], the weak formulation of (1)− (2) with the boundary condition (4)
is defined by

(ϵEt, ξu) + (σ(x, |E|)E, ξu)− (H,∇× ξu) = 0, ∀ ξu ∈ Vh,(6)

(µHt, ξφ) + (∇× E, ξφ) = 0, ∀ ξφ ∈ Wh.(7)

Moreover, let {tn}Nn=0 be a partition in time direction with tn = nτ, T = Nτ and

En = E(x, tn), Hn = H(x, tn).

For any sequence of functions {fn}Nn=0, the third order BDF temporal discrete
operator is defined as

Dτf
n =

1

τ
(
11

6
fn − 3fn−1 +

3

2
fn−2 −

1

3
fn−3), 3 ≤ n ≤ N.(8)

Now, we turn our attention to the computation of the starting approximations.
When n = 0, we define

E0
h = ΠhE0,(9)

H0
h = PhH0.(10)

In order to compute (E1
h,H

1
h), let (Ẽ1

h, H̃
1
h) be the solution of the following

equations

(ϵ
Ẽ1

h −E0
h

τ
, ξu)− (H̃1

h,∇× ξu) + (σ(x, |E0|)E0
h, ξu) = 0, ∀ξu ∈ Vh,(11)

(µ
H̃1

h −H0
h

τ
, ξφ) + (∇× Ẽ1

h, ξφ) = 0, ∀ξφ ∈ Wh.(12)
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Afterward, (E1
h,H

1
h) (corresponding to n = 1) is updated as

(ϵ
E1

h −E0
h

τ
, ξu)− (

H1
h +H0

h

2
,∇× ξu) +

1

2
(σ(x, |Ẽ1

h|)Ẽ
1
h(13)

+σ(x, |E0|)E0
h, ξu) = 0, ∀ξu ∈ Vh,

(µ
H1

h −H0
h

τ
, ξφ) + (∇× (

E1
h +E0

h

2
), ξφ) = 0, ∀ξφ ∈ Wh.(14)

Next, for n = 2, (E2
h,H

2
h) is determined by

(ϵ
E2

h −E1
h

τ
, ξu)− (

H2
h +H1

h

2
,∇× ξu) +

1

2
(3σ(x, |E1

h|)E
1
h(15)

−σ(x, |E0|)E0
h, ξu) = 0, ∀ξu ∈ Vh,

(µ
H2

h −H1
h

τ
, ξφ) + (∇× (

E2
h +E1

h

2
), ξφ) = 0, ∀ξφ ∈ Wh.(16)

With the above numerical solutions at the first two time steps, we introduce
the linearized third order BDF finite element method for the nonlinear Maxwell’s
equations (1)− (4): find En

h ∈ Vh,H
n
h ∈ Wh, n ≥ 3, such that

(ϵDτE
n
h, ξu)− (Hn

h,∇× ξu) + (3σ(x, |En−1
h |)En−1

h − 3σ(x, |En−2
h |)En−2

h(17)

+σ(x, |En−3
h |)En−3

h , ξu) = 0, ∀ξu ∈ Vh, n ≥ 3,

(µDτH
n
h, ξφ) + (∇×En

h, ξφ) = 0, ∀ξφ ∈ Wh.(18)

Lemma 2.3. At each time step, the system (9)− (18) is uniquely solvable.

Proof. Since the linear system generated by (17) and (18) is square, the existence
of the solution is implied by its uniqueness. The homogeneous part of scheme
(17)− (18) is given by

11ϵ

6
(En

h, ξu)− τ(Hn
h ,∇× ξu) = 0, ∀ ξu ∈ Vh,(19)

11µ

6
(Hn

h , ξφ) + τ(∇×En
h, ξφ) = 0, ∀ ξφ ∈ Wh.(20)

By choosing ξu = En
h, ξφ = Hn

h in (19) and (20), we have

11ϵ

6
∥En

h∥
2 +

11µ

6
∥Hn

h∥
2 = 0,(21)

which in turn yields En
h = 0,Hn

h = 0. The existence and the uniqueness of (9)−(16)
can be similarly proved. This completes the proof of Lemma 2.3. !

In the rest part of this paper, the following regularity is assumed for the exact
solution of the initial boundary value problem (1)− (4):

∥E0∥Hs(Ω) + ∥Et∥L∞(0,T ;Hs(Ω)) + ∥Et∥L2(0,T ;Hs(Ω))(22)

+∥Ett∥L2(0,T ;Hs(Ω)) + ∥Ettt∥L2(0,T ;Hs(Ω)) + ∥Etttt∥L2(0,T ;Hs(Ω)) ≤ C,

∥H0∥Hs(Ω) + ∥Ht∥L∞(0,T ;Hs(Ω)) + ∥Ht∥L2(0,T ;Hs(Ω))(23)

+∥Htt∥L2(0,T ;Hs(Ω)) + ∥Httt∥L2(0,T ;Hs(Ω)) + ∥Htttt∥L2(0,T ;Hs(Ω)) ≤ C.

We present the main theoretical result in the following theorem.

Theorem 2.1. Let (E,H) be the solution of the problem (1)−(4), with the regularity
given by (22) − (23), (En

h,H
n
h) be the solution of the discrete scheme (17) − (18)

and starting approximations (9) − (16), with the finite element polynomial degree
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2 ≤ s ≤ k. Under the requirement that τ ≤ C∗
0h

2, with C∗
0 a fixed constant, we

have

∥En −En
h∥0 + ∥Hn −Hn

h∥0 ≤ C(τ3 + hs),(24)

where C is a positive constant, independent of n, the maximum mesh size h and
time step τ .

3. The convergence analysis

3.1. Higher Raviart-Thomas-Nédelec elements. In this section, we provide
an error estimate for the linearized BDF Maxwell FEM scheme (17)− (18). As a
first step, the starting error estimates are needed.

Lemma 3.1. Suppose that (E,H) is the solution of problem (1) − (4) satisfying
(22)−(23), with the finite element polynomial degree 2 ≤ s ≤ k. Then the following
error estimates of equations (9)− (16), for m = 0, 1, 2, are valid:

max
0≤m≤2

∥Em −Em
h ∥0 + max

0≤m≤2
∥Hm −Hm

h ∥0 ≤ C(τ3 + hs),(25)

where C is a positive constant, independent of n, h and τ .

Proof. The constructed solution (Ẽ1, H̃1) and its interpolation (ΠhẼ1, PhH̃1) sat-
isfy the numerical scheme (11)− (12) up to an O(τ + hs) truncation error:

ϵ(
ΠhẼ1 −ΠhE

0

τ
, ξu)− (PhH̃1,∇× ξu) + (σ(x, |ΠhE

0|)ΠhE
0, ξu)(26)

= (A, ξu), ∀ ξu ∈ Vh,

µ(
PhH̃1 − PhH

0

τ
, ξφ) + (∇×ΠhẼ1, ξφ) = (P, ξφ), ∀ ξφ ∈ Wh,(27)

where

(A, ξu) = (A1, ξu)− (A2,∇× ξu) + (A3, ξu),(28)

A1 = ϵ(
ΠhẼ1 − Ẽ1

τ
+

Ẽ1 −E0

τ
−E

1

2

t ) +∇×H
1

2 −∇× H̃1,(29)

A2 = PhH̃1 − H̃1,(30)

A3 = σ(x, |ΠhE
0|)ΠhE

0 − σ(x, |E0|)E0 + σ(x, |E0|)E0 − σ(x, |E
1

2 |)E
1

2 ,(31)

P = µ(
PhH̃1 − H̃1

τ
+

H̃1 −H0

τ
−H

1

2

t ) +∇×ΠhẼ1 −∇× Ẽ1(32)

+∇× Ẽ1 −∇×E
1

2 .

Based on the interpolation error estimates in Lemmas 2.1- 2.2 and the Taylor
expansion, it is easy to see that

∥A1∥0 ≤ C(τ + hs), (A2,∇× ξu) = 0, ∥P∥0 ≤ C(τ + hs).(33)

For the estimate of A3, with the smooth properties of σ(x, s), the regularity of
the exact solution E and the interpolation error estimates, we have

∥σ(x, |E0|)E0 − σ(x, |E
1

2 |)E
1

2 ∥0(34)

= ∥σ(x, |E0|)E0 − σ(x, |E0|)E
1

2 + σ(x, |E0|)E
1

2 − σ(x, |E
1

2 |)E
1

2 ∥0

≤ ∥σ(x, |E0|)(E0 −E
1

2 )∥0 + ∥(σ(x, |E0|)− σ(x, |E
1

2 |))E
1

2 ∥0

≤ ∥σ(x, |E0|)∥L∞∥E0 −E
1

2 ∥0 + C∥E0 −E
1

2 ∥0∥E
1

2 ∥L∞

≤ ∥E0 −E
1

2 ∥0 ≤ Cτ,
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and

∥σ(x, |ΠhE
0|)ΠhE

0 − σ(x, |E0|)E0∥0(35)

= ∥σ(x, |ΠhE
0|)ΠhE

0 − σ(x, |ΠhE
0|)E0 + σ(x, |ΠhE

0|)E0 − σ(x, |E0|)E0∥0

≤ ∥σ(x, |ΠhE
0|)(ΠhE

0 −E0)∥0 + ∥(σ(x, |ΠhE
0|)− σ(x, |E0|))E0∥0

≤ ∥σ(x, |ΠhE
0|)∥L∞∥ΠhE

0 −E0∥0 + C∥ΠhE
0 −E0∥0∥E

0∥L∞

≤ C∥ΠhE
0 −E0∥0 ≤ Chs.

Then we arrive at

∥A3∥0 ≤ C(τ + hs).(36)

By denoting A = A1 +A3, we have ∥A∥0 ≤ C(τ + hs), ∥P∥0 ≤ C(τ + hs).
Define

ẽ1 = ΠhẼ1 − Ẽ1
h, η̃

1 = PhH̃1 − H̃1
h.(37)

Subtracting (26)− (27) from (11)− (12) yields

ϵ(
ẽ1

τ
, ξu)− (η̃1,∇× ξu) + (σ(x, |ΠhE

0|)ΠhE
0 − σ(x, |E0|)E0

h, ξu)(38)

= (A, ξu), ∀ξu ∈ Vh,

µ(
η̃1

τ
, ξφ) + (∇× ẽ1, ξφ) = (P, ξφ), ∀ξφ ∈ Wh.(39)

Taking ξu = ẽ1 in (38) and ξφ = η̃1 in (39), summing equations (38) and (39) up,
we obtain

ϵ(
ẽ1

τ
, ẽ1) + µ(

η̃1

τ
, η̃1) = (A, ẽ1) + (P, η̃1)− (σ(x, |ΠhE

0|)ΠhE
0(40)

−σ(x, |E0|)E0
h, ẽ

1).

Multiplying equation (40) by τ on both sides, employing Young inequality and (35),
we have

ϵ∥ẽ1∥20 + µ∥η̃1∥20 ≤ τ∥A∥0∥ẽ1∥0 + τ∥P∥0∥η̃1∥0 + Cτ∥ΠhE
0 −E0∥0∥ẽ1∥0(41)

≤
τ2∥A∥20
4a1

+ a1∥ẽ1∥
2
0 +

τ2∥P∥20
4a2

+ a2∥η̃1∥
2
0 +

Cτ2h2s∥E0∥20
4a3

+ a3∥ẽ1∥
2
0.

Moreover, by taking ϵ > a1 + a3, µ > a2, we see that

∥ẽ1∥20 + ∥η̃1∥20 ≤ C(τ4 + h2s).(42)

For n = 1, the exact solution (E1,H1) and its interpolation (ΠhE
1, PhH

1) satisfy
the numerical scheme (13)− (14) up to an O(τ2 + hs) truncation error:

ϵ(
ΠhE

1 −ΠhE
0

τ
, ξu)− (

PhH
1 + PhH

0

2
,∇× ξu) +

1

2
(σ(x, |ΠhẼ1|)ΠhẼ1(43)

+σ(x, |ΠhE
0|)ΠhE

0, ξu) = (B, ξu),

µ(
PhH

1 − PhH
0

τ
, ξφ) + (∇×

ΠhE
1 +ΠhE

0

2
, ξφ) = (M, ξφ),(44)
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where

(B, ξu) = (B1, ξu)− (B2,∇× ξu) + (B3, ξu),(45)

B1 = ϵ(
ΠhE

1 −E1

τ
+

E1 −E0

τ
−E

1

2

t ) +∇×H
1

2 −∇×
H1 +H0

2
,(46)

B2 =
PhH

1 −H1

2
,(47)

B3 =
1

2
(σ(x, |ΠhẼ1|)ΠhẼ1 + σ(x, |ΠhE

0|)ΠhE
0 − σ(x, |Ẽ1|)Ẽ1(48)

−σ(x, |E0|)E0) +
1

2
(σ(x, |Ẽ1|)Ẽ1 + σ(x, |E0|)E0)− σ(x, |E

1

2 |)E
1

2 ,

M = µ(
PhH

1 −H1

τ
+

H1 −H0

τ
−H

1

2

t ) +∇×
ΠhE

1 −E1

2
(49)

+∇×
E1 +E0

2
−∇×E

1

2 .

Similarly, the following truncation error estimates are available, based on Lem-
mas 2.1, 2.2., as well as the Taylor expansion:

∥B1∥0 ≤ C(τ2 + hs), (B2,∇× ξu) = 0, ∥M∥0 ≤ C(τ2 + hs).(50)

The estimate of B3 depends on the properties of σ(x, s), the regularity assump-
tion of the exact solution E, and the interpolation error estimates; the details are
skipped for the sake of brevity:

∥B3∥0 ≤ C(τ2 + hs).(51)

Therefore, by defining B = B1 +B3, we have ∥B∥0 ≤ C(τ2 + hs), ∥M∥0 ≤ C(τ2 +
hs). Subsequently, we denote

e1 = ΠhE
1 − E1

h, η1 = PhH
1 −H1

h.(52)

Subtracting (43)− (44) from (13)− (14) results in

ϵ(
e1

τ
, ξu)− (

η1

2
,∇× ξu) +

1

2
(σ(x, |ΠhẼ1|)ΠhẼ1 + σ(x, |ΠhE

0|)ΠhE
0(53)

−σ(x, |Ẽ1
h|)Ẽ

1
h − σ(x, |ΠhE

0|)E0
h, ξu) = (B, ξu), ∀ξu ∈ Vh,

µ(
η1

τ
, ξφ) + (∇×

e1

2
, ξφ) = (M, ξφ), ∀ξφ ∈ Wh.(54)

Taking ξu = e1 in (53) and ξφ = η1 in (54), summing equations (53) and (54), we
arrive at

ϵ(
e1

τ
, e1) + µ(

η1

τ
, η1) = (B, e1) + (M, η1)−

1

2
(σ(x, |ΠhẼ1|)ΠhẼ1(55)

+σ(x, |ΠhE
0|)ΠhE

0 − σ(x, |Ẽ1
h|)Ẽ

1
h − σ(x, |ΠhE

0|)E0
h, e

1).
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The last four terms of (55) could be rewritten as

1

2
(σ(x, |ΠhẼ1|)ΠhẼ1 + σ(x, |ΠhE

0|)ΠhE
0 − σ(x, |Ẽ1

h|)Ẽ
1
h(56)

−σ(x, |ΠhE
0|)E0

h)

=
1

2
(σ(x, |ΠhẼ1|)ΠhẼ1 − σ(x, |Ẽ1

h|)ΠhẼ1 + σ(x, |Ẽ1
h|)ΠhẼ1

−σ(x, |Ẽ1
h|)Ẽ

1
h) +

1

2
(σ(x, |ΠhE

0|)(ΠhE
0 −E0) + (σ(x, |ΠhE

0|)

−σ(x, |E0|))E0)

=
1

2
((σ(x, |ΠhẼ1|)− σ(x, |Ẽ1

h|))ΠhẼ1 + σ(x, |Ẽ1
h|)(ΠhẼ1 − Ẽ1

h))

+
1

2
(σ(x, |ΠhE

0|)(ΠhE
0 −E0) + (σ(x, |ΠhE

0|)− σ(x, |E0|))E0),

so that the following bound could be obtained:

∥∥∥
1

2
(σ(x, |ΠhẼ1|)ΠhẼ1 + σ(x, |ΠhE

0|)ΠhE
0 − σ(x, |Ẽ1

h|)Ẽ
1
h(57)

−σ(x, |ΠhE
0|)E0

h)
∥∥∥
0

≤ ∥ΠhẼ1 − Ẽ1
h∥0∥ΠhẼ1∥L∞ + ∥σ(x, |Ẽ1

h|)∥L∞∥ΠhẼ1 − Ẽ1
h∥0

+∥σ(x, |ΠhE
0|)∥L∞∥ΠhE

0 −E0∥0 + C∥ΠhE
0 −E0∥0∥E

0∥L∞

≤ C∥ΠhẼ1 − Ẽ1
h∥0 + C∥ΠhE

0 −E0∥0

≤ C∥ẽ1∥0 + C∥ΠhE
0 −E0∥0.

Multiplying (55) by τ on both sides and employing Young inequality, we get

ϵ∥e1∥20 + µ∥η1∥20 ≤ τ∥B∥0∥e
1∥0 + τ∥M∥0∥η

1∥0 + τ∥ẽ1∥0∥e
1∥0(58)

+τ∥ΠhE
0 −E0∥0∥e

1∥0

≤
τ2∥B∥20
4b1

+ b1∥e
1∥20 +

τ2∥M∥20
4b2

+ b2∥η
1∥20 +

Cτ2∥ẽ1∥20
4b3

+b3∥e
1∥20 +

τ2h2s∥E∥20
4b4

+ b4∥e
1∥20.

In addition, by taking b1, b2, b3, b4 > 0 such that b1 + b3 + b4 < ϵ, µ > b2, we have

∥e1∥20 + ∥η1∥20 ≤ C(τ6 + h2s).(59)

The estimates for n = 2 could be carried out in a similar way. The following
result could be derived, and the details are left to interested readers:

∥e2∥20 + ∥η2∥20 ≤ C(τ6 + h2s).(60)

This finishes the proof of Lemma 3.1. !

In addition, the truncation error estimates for n ≥ 3 are given below.

Proposition 3.1. For the exact solution (E,H), its interpolation (ΠhE, PhH) sat-
isfy the numerical scheme (17) − (18) up to an O(τ3 + hs) truncation error, in a
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weak form:

ϵ(DτΠhE
n, ξu)− (PhH

n,∇× ξu) + (3σ(x, |ΠhE
n−1|)ΠhE

n−1(61)

−3σ(x, |ΠhE
n−2|)ΠhE

n−2 + σ(x, |ΠhE
n−3|)ΠhE

n−3, ξu)

= (gn1 , ξu), ∀ξu ∈ Vh,

µ(DτPhH
n, ξφ) + (∇×ΠhE

n, ξφ) = (gn2 , ξφ), ∀ξφ ∈ Wh,(62)

with ∥gn1 ∥0, ∥g
n
2 ∥0 ≤ C(τ3 + hs).

Proof. Obviously, the interpolation (ΠhE
n, PhH

n) satisfy the numerical scheme
(61)− (62) with the truncated error formula:

(gn1 , ξu) = (Rn
1 , ξu)− (Rn

2 ,∇× ξu) + (Rn
3 , ξu), with(63)

Rn
1 = ϵ(DτΠhE

n −DτE
n +DτE

n −En
t ),(64)

Rn
2 = PhH

n −Hn,(65)

Rn
3 = 3σ(x, |ΠhE

n−1|)ΠhE
n−1 − 3σ(x, |ΠhE

n−2|)ΠhE
n−2(66)

+σ(x, |ΠhE
n−3|)ΠhE

n−3 − σ(x, |En|)En,(67)

gn2 = µ(DτPhH
n −DτH

n +DτH
n −Hn

t ) +∇×ΠhE
n −∇×En.(68)

The interpolation error estimates in Lemmas 2.1 and 2.2 indicate that

∥Rn
1∥0 ≤ C(τ3 + hs), (Rn

2 ,∇× ξu) = 0, ∥gn2 ∥0 ≤ C(τ3 + hs).(69)

In addition, the estimate of Rn
3 depends on the smooth properties of σ(x, s), the

regularity of the exact solution E and the interpolation error estimates. We begin
with a rewritten form: Rn

3 := S1 + S2, with

S1 = 3σ(x, |ΠhE
n−1|)ΠhE

n−1 − 3σ(x, |ΠhE
n−2|)ΠhE

n−2(70)

+σ(x, |ΠhE
n−3|)ΠhE

n−3 − σ(x, |ΠhE
n|)ΠhE

n,

S2 = σ(x, |ΠhE
n|)ΠhE

n − σ(x, |En|)En.

An application of Taylor formula in the third order expansion implies that

∥S1∥0 ≤ Cτ3.(71)

For the term S2, the interpolation error estimates are applied:

∥S2∥0 = ∥σ(x, |ΠhE
n|)ΠhE

n − σ(x, |En|)En∥0(72)

≤ ∥σ(x, |ΠhE
n|)(ΠhE

n −En)∥0 + ∥(σ(x, |ΠhE
n|)− σ(x, |En|))En∥0

≤ ∥σ(x, |ΠhE
n|)∥L∞∥ΠhE

n −En∥0 + C∥ΠhE
n −En∥0∥E

n∥L∞

≤ C∥ΠhE
n −En∥0 ≤ Chs.

A combination of (71) and (72) leads to

∥Rn
3∥0 ≤ C(τ3 + hs).(73)

Therefore, by defining gn1 = Rn
1 +Rn

3 , we complete the proof of Proposition 3.1. !

Next, we present the telescope formula in [20] for the third order BDF temporal
discretization operator Dτ in the following lemma.

Lemma 3.2. With the definition of the BDF temporal discrete operator Dτ in (8),
there exists ci, i = 1, · · · , 10, c1 ̸= 0, such that

τ(Dτu
n, 2un − un−1)(74)

= ∥c1u
n∥20 − ∥c1u

n−1∥20 + ∥c2u
n + c3u

n−1∥20 − ∥c2u
n−1 + c3u

n−2∥20
+∥c4u

n + c5u
n−1 + c6u

n−2∥20 − ∥c4u
n−1 + c5u

n−2 + c6u
n−3∥20

+∥c7u
n + c8u

n−1 + c9u
n−2 + c10u

n−3∥20.
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Now we proceed into the proof of Theorem 2.1.

Proof. The following numerical error functions are defined:

en = ΠhE
n −En

h, η
n = PhH

n −Hn
h.(75)

In turn, subtracting (17)− (18) from the consistency estimate (61)− (62) yields

ϵ(Dτe
n, ξu)− (ηn,∇× ξu)(76)

= −3(σ(x, |ΠhE
n−1|)ΠhE

n−1 − σ(x, |En−1
h |)En−1

h , ξu)

+3(σ(x, |ΠhE
n−2|)ΠhE

n−2 − σ(x, |En−2
h |)En−2

h , ξu)

−(σ(x, |ΠhE
n−3|)ΠhE

n−3 − σ(x, |En−3
h |)En−3

h , ξu) + (gn1 , ξu)

:= B1(ξu) +B2(ξu) +B3(ξu) + (gn1 , ξu),

µ(Dτη
n, ξφ) + (∇× en, ξφ) = (gn2 , ξφ).(77)

Taking ξu = 2en−en−1+λ0(en−en−1) in (76) and ξφ = 2ηn−ηn−1+λ0(ηn−ηn−1)
in (77), with certain value λ0 > 0, we have

ϵ(Dτe
n, 2en − en−1) + µ(Dτη

n, 2ηn − ηn−1)(78)

+ϵλ0(Dτe
n, en − en−1) + µλ0(Dτη

n, ηn − ηn−1)

= B1(ξu) +B2(ξu) +B3(ξu) + (gn1 , ξu) + (gn2 , ξφ)

+(λ0 + 1)
(
(∇× en, ηn−1)− (ηn,∇× en−1)

)
.

The first two terms in (78) could be analyzed with the help of identity (74).
The two additional terms associated with the temporal difference stencil could be
estimates as follows:

(Dτe
n, en − en−1) =

1

τ

(11
6
∥en − en−1∥20 −

7

6
(en − en−1, en−1 − en−2)(79)

+
1

3
(en − en−1, en−2 − en−3)

)

≥
1

τ

(13
12

∥en − en−1∥20 −
7

12
∥en−1 − en−2∥20

−
1

6
∥en−2 − en−3∥20

)
,

(Dτη
n, ηn − ηn−1) ≥

1

τ

(13
12

∥ηn − ηn−1∥20 −
7

12
∥ηn−1 − ηn−2∥20(80)

−
1

6
∥ηn−2 − ηn−3∥20

)
,

in which the Cauchy inequality has been repeatedly applied.
The last two terms in (78) could be rewritten as

(∇× en, ηn−1)− (ηn,∇× en−1) = −(∇× en, ηn − ηn−1)(81)

+(ηn,∇× (en − en−1)).

The first part in (81) could be bounded as

−(λ0 + 1)τ(∇× en, ηn − ηn−1)(82)

≤
1

3
µλ0∥η

n − ηn−1∥20 + C
(0)
µ,λτ

2∥∇ × en∥20,

with C
(0)
µ,λ = 3(λ0+1)2

4µλ0
. Furthermore, an application of the inverse inequality

∥∇× e∥20 ≤ Ĉh−2∥e∥20,(83)
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implies that

C
(0)
µ,λτ

2∥∇× en∥20 ≤ C
(0)
µ,λĈτ

2h−2∥en∥20 ≤ C
(1)
µ,λτ∥e

n∥20,(84)

with C
(1)
µ,λ = ĈC∗

0C
(0)
µ,λ, under the requirement that τ ≤ C∗

0h
2. Going back (82), we

get

−(λ0 + 1)τ(∇× en, ηn − ηn−1) ≤
1

3
µλ0∥η

n − ηn−1∥20 + C
(1)
µ,λτ∥e

n∥20.(85)

The second part in (81) could be similarly analyzed:

(λ0 + 1)τ(ηn,∇× (en − en−1))(86)

≤ ατ∥∇ × (en − en−1)∥20 +
1

4
(λ0 + 1)2α−1τ∥ηn∥20

≤ αĈτh−2∥en − en−1∥20 +
1

4
(λ0 + 1)2α−1τ∥ηn∥20,

≤ αĈC∗
0∥e

n − en−1∥20 +
1

4
(λ0 + 1)2α−1τ∥ηn∥20,

for any α > 0. Meanwhile, we could choose α with αĈC∗
0 = 1

3ϵλ0, so that the above
inequality becomes

(λ0 + 1)τ(ηn,∇× (en − en−1)) ≤
1

3
ϵλ0∥e

n − en−1∥20 + C
(1)
ϵ,λτ∥η

n∥20,(87)

with C
(1)
ϵ,λ = 1

4 (λ0 + 1)2α−1. Consequently, a combination of (81), (85) and (87)
leads to

(λ0 + 1)τ
(
(∇× en, ηn−1)− (ηn,∇× en−1)

)
(88)

≤
1

3
µλ0∥η

n − ηn−1∥20 +
1

3
ϵλ0∥e

n − en−1∥20 + C
(1)
µ,λτ∥e

n∥20 + C
(1)
ϵ,λτ∥η

n∥20,

under the condition τ ≤ C∗
0h

2.
The rest work is focused on the nonlinear error estimate on the right hand side

of (78). We note an L∞ bound for the exact solution and its interpolation

∥Ek∥L∞ ≤ C∗, ∥ΠhE
k∥L∞ ≤ C∗,(89)

in which the second inequality comes from the following estimate

∥Ek −ΠhE
k∥L∞ ≤ Chs+1| lnh|.(90)

An a-priori L∞ assumption up to time step tk, k ≤ n − 1 We also assume
a-priori that the numerical error function for E has an L∞ bound at time steps tk:

∥ek∥L∞ ≤ 1, k ≤ n− 1,(91)

so that an L∞ bound for the numerical solution Ek
h is available

∥Ek
h∥L∞ = ∥ΠhE

k − ek∥L∞ = ∥ΠhE
k∥L∞ + ∥ek∥L∞ ≤ C∗ + 1 := C̃0.(92)

This assumption will be recovered in later analysis.
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For the nonlinear error term, we begin with the following decomposition for
k = n− 1:

σ(x, |ΠhE
n−1|)ΠhE

n−1 − σ(x, |En−1
h |)En−1

h(93)

= σ(x, |ΠhE
n−1|)ΠhE

n−1 − σ(x, |En−1
h |)ΠhE

n−1

+σ(x, |En−1
h |)ΠhE

n−1 − σ(x, |En−1
h |)En−1

h

= (σ(x, |ΠhE
n−1|)− σ(x, |En−1

h |))ΠhE
n−1

+σ(x, |En−1
h |)(ΠhE

n−1 −En−1
h )

= (σ(x, |ΠhE
n−1|)− σ(x, |En−1

h |))ΠhE
n−1 + σ(x, |En−1

h |)en−1.

Moreover, an application of intermediate value theorem shows that

σ(x, |ΠhE
n−1|)− σ(x, |En−1

h |) = σ′(x, ξn)en−1,(94)

with ξn between ΠhE
n−1 and En−1

h . On the other hand, the following estimates
are available

∥ΠhE
n−1∥L∞ ≤ C∗, ∥En−1

h ∥L∞ ≤ C̃0,(95)

which coms from the regularity estimate (89) and the a-priori assumption (92),
respectively. Then we get

∥ξn∥L∞ ≤ ∥ΠhE
n−1∥L∞ + ∥En−1

h ∥L∞ ≤ C̃1 := C∗ + C̃0.(96)

As a consequence, we denote

C̃2 := max
x∈Ω,−C̃1≤θ≤C̃1

|σ′(x, θ)|, so that ∥σ′(x, ξn)∥L∞ ≤ C̃2.(97)

This in turn implies that

∥(σ(x, |ΠhE
n−1|)− σ(x, |En−1

h |))ΠhE
n−1∥0 = ∥σ′(x, ξn)en−1ΠhE

n−1∥0(98)

≤ ∥σ′(x, ξn)∥L∞ · ∥ΠhE
n−1∥L∞ · ∥en−1∥0 ≤ C̃2C

∗∥en−1∥0,

with the Hölder inequality applied at the second step. The analysis for the second
term on the right hand side of (93) is more straightforward. By the L∞ bound (95)
for ∥En−1

h ∥L∞ , we denote

C̃3 := max
x∈Ω,−C̃0≤θ≤C̃0

|σ(x, θ)|, so that ∥σ(x, |En−1
h |)∥L∞ ≤ C̃3.(99)

An application of Hölder inequality shows that

∥σ(x, |En−1
h |)en−1∥0 ≤ ∥σ(x, |En−1

h |)∥L∞ · ∥en−1∥0 ≤ C̃3∥e
n−1∥0.(100)

Therefore, a combination of (93), (98) and (100) yields

∥σ(x, |ΠhE
n−1|)ΠhE

n−1 − σ(x, |En−1
h |)En−1

h ∥0 ≤ C̃4∥e
n−1∥0,(101)

where C̃4 = C̃2C
∗ + C̃3. As a direct consequence, we obtain the nonlinear error

estimate

τB1(ξu) ≤ 3C̃4τ∥e
n−1∥0 · ∥ξu∥0(102)

≤ CC̃4τ(∥e
n−1∥20 + ∥en∥20 + ∥en−1∥20),

with the Cauchy inequality repeatedly applied.
The following estimates could be similarly derived:

τB2(ξu) ≤ 3C̃4τ∥e
n−2∥0 · ∥ξu∥0(103)

≤ CC̃4τ(∥e
n−2∥20 + ∥en∥20 + ∥en−1∥20),
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τB3(ξu) ≤ C̃4τ∥e
n−3∥0 · ∥ξu∥0(104)

≤ CC̃4τ(∥e
n−3∥20 + ∥en∥20 + ∥en−1∥20).

The truncation error terms could be bounded by an application of Cauchy in-
equality:

τ(gn1 , ξu) ≤ τ∥gn1 ∥0 · ∥ξu∥0(105)

≤
1

2
∥gn1 ∥

2
0 + d5τ(∥e

n∥20 + ∥en−1∥20),

τ(gn2 , ξφ) ≤ τ∥gn2 ∥0 · ∥ξφ∥0(106)

≤
1

2
∥gn2 ∥

2
0 + d5τ(∥η

n∥20 + ∥ηn−1∥20).

A substitution of the above estimates into (78) gives

ϵτ(Dτe
n, 2en − en−1) + µτ(Dτη

n, 2ηn − ηn−1)(107)

+ϵλ0
(3
4
∥en − en−1∥20 −

7

12
∥en−1 − en−2∥20 −

1

6
∥en−2 − en−3∥20

)

+µλ0

(3
4
∥ηn − ηn−1∥20 −

7

12
∥ηn−1 − ηn−2∥20 −

1

6
∥ηn−2 − ηn−3∥20

)

≤ (CC̃4 + d5)τ(∥e
n∥20 + ∥en−1∥20 + ∥en−2∥20 + ∥en−3∥20)

+C
(1)
µ,λτ∥e

n∥20 + (C(1)
ϵ,λ + d5)τ∥η

n∥20 + d5τ∥η
n−1∥20 +

1

2
τ(∥gn1 ∥

2
0 + ∥gn2 ∥

2
0).

By using the telescope formula (74) for Dτ , summing in (107), and applying the
discrete Gronwall inequality, we have

∥en∥20 + ∥ηn∥20 ≤ C̃5(τ
6 + h2s),(108)

with C̃5 dependent on C∗, independent on τ and h.
Recovery of the a-priori bound (91). With the help of the L2 error estimate
(108) and an application of inverse inequality, the following inequality is available,
for d ≤ 3:

∥en∥L∞ ≤
C∥en∥0

h
d

2

≤
C̃6(τ3 + hs)

h
d

2

≤ C,(109)

under a trivial requirement τ = o(h
d

6 ). This requirement is much less severe than
the one imposed for the linear Maxwell part, τ ≤ C∗

0h
2, associated with the stability

analysis for the 3rd order BDF temporal stencil. Then we have finished the proof
of Theorem 2.1. !

Remark 3.1. As can be seen in the theoretical derivation, the time step constraint,
τ ≤ C∗

0h
2, is needed to justify the stability estimate for the 3rd order BDF temporal

stencil. This theoretical difficulty comes from the subtle fact that, the 3rd order
BDF scheme is not A-stable in the classical standard; in particular, the stability
domain of the 3rd order BDF scheme does not contain any part on the purely
imaginary axis in the complex plane. On the other hand, it is well-known that
all the eigenvalues associated with the linear part of Maxwell operator are purely
imaginary. Therefore, a direct stability analysis for the 3rd order BDF scheme is
not available for a hyperbolic equation; in comparison, such an analysis could be
carefully derived for the parabolic equations, as reported in [20].
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Instead of a third order accurate scheme, if one uses the second order BDF
temporal stencil:

(ϵ
3
2E

n
h − 2En−1

h + 1
2E

n−2
h

τ
, ξu)− (Hn

h,∇× ξu) + (2σ(x, |En−1
h |)En−1

h(110)

−σ(x, |En−2
h |)En−2

h , ξu) = 0, ∀ξu ∈ Vh, n ≥ 2,

(µ
3
2H

n
h − 2Hn−1

h + 1
2H

n−2
h

τ
, ξφ) + (∇×En

h, ξφ) = 0, ∀ξφ ∈ Wh,(111)

the stability and convergence analyses could be carried out with a much milder time
step requirement, τ = O(h). This improvement is based on the fact that, the 2nd
order BDF scheme is A-stable, and its stability domain contains the whole part of
the purely imaginary axis in the complex plane.

In addition to the BDF approximation (110)-(111), there have been some other
second order accurate temporal schemes, such as Leap-frog (Theorem 3.11 [17])
and Crank-Nicolson (see the related reference [30]), so that the stability estimate
is available for a τ = O(h) requirement. However, a theoretical justification of the
stability and convergence analyses for any third order accurate temporal scheme
applied to nonlinear Maxwell’s equations is still an open problem, and this article
provided the first such result, under a severe time step constraint, τ ≤ C∗

0h
2.

On the other hand, such a severe time step constraint is only a theoretical issue;
extensive numerical results have shown that, the stability and convergence are well
preserved with a more relaxed constraint, τ = O(h).

There may be other alternative third order accurate temporal schemes for the
nonlinear Maxwell’s equations, so that the stability and convergence analyses could
be theoretically justified under the milder time step requirement, τ = O(h). This
investigation will be undertaken in the authors’ future works.

3.2. The lowest Raviart-Thomas-Nédelec element. From the above subsec-
tion we observe that the convergence order estimate for gn1 and gn2 in (69)-(73) has
played a crucial role to recover the a-priori bound (91). In more details, its spa-

tial accuracy has to be stronger than O(h
d

2 ), as demonstrated in (109). In order
to improve the convergence order for the lowest Raviart-Thomas-Nédelec element,
we have to employ the super-convergence analysis for a uniform mesh; see [19] for
the related theoretical tools. Now we consider the lowest Raviart-Thomas-Nédelec
element space in three dimension

Vh = {φ ∈ H(curl,Ω),φ|K ∈ Q0,1,1 ×Q1,0,1 ×Q1,1,0, ∀K ∈ Th},

Wh = {ψ ∈ [L2(Ω)]3,ψ|K ∈ Q1,0,0 ×Q0,1,0 ×Q0,0,1, ∀K ∈ Th}.

The following results are needed in the later analysis; the detailed proofs could
be found in [18].

Lemma 3.3. For any ψh ∈ Vh,φh ∈ Wh, denote Πh and Ph as the interpolation
operator on Vh and Wh, respectively, we have

(E−ΠhE,ψh) = O(h2)∥E∥2 · ∥ψh∥0,(112)

(∇× (E−ΠhE),φh) = O(h2)∥E∥2 · ∥φh∥0.(113)
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There exists a post-processing operator Π1
2hw ∈ Q1,1,1(K), P 1

2hv ∈ Q1,1,1(K) [18,
19], such that

(i) ∥Π1
2hw − w∥0 ≤ Ch2∥w∥0, ∥P 1

2hv − v∥0 ≤ Ch2∥v∥2,(114)

∀ w ∈ [H2(Ω)]2, v ∈ H2(Ω),

(ii) ∥Π1
2hw∥0 ≤ C∥w∥0, ∥P 1

2hv∥0 ≤ C∥v∥0, ∀ w ∈ Vh, v ∈ Wh,(115)

(iii) Π1
2hw = Π1

2hΠhw, P 1
2hV = P 1

2hPhv, ∀ w ∈ Vh, v ∈ Wh,(116)

for the adjoin element K =
⋃

Ki, i = 1, 2, 3, 4.

Using these postprocessing operators, we can achieve the following global super-
convergence for all three dispersive media:

Theorem 3.1. Assume the partition Th of Ω is uniform, Πh and Ph are the interpo-
lation on Vh andWh, respectively. If E ∈ C4(0, T ; [H2(Ω)]3), H ∈ C4(0, T ; [H2(Ω)]3),
for the lowest Raviart-Thomas-Nédelec element space, there exists the following
super-convergence estimate under the condition that τ ≤ C∗

0h
2:

max
1≤n≤N

∥E−Π1
2hE

n
h∥0 ≤ C(τ3 + h2),(117)

max
1≤n≤N

∥H− P 1
2hH

n
h∥0 ≤ C(τ3 + h2),(118)

in which C only depends on the exact solution, independent on τ and h.

Proof. From (114)-(116), we have

∥E−Π1
2hE

n
h∥0 = ∥Π1

2h(E
n
h −ΠhE

n) + (Π1
2hE

n −En)∥0(119)

≤ C∥En
h −ΠhE

n∥0 + ∥Π1
2hE

n −En∥0.

Similarly, we have

∥H− P 1
2hH

n
h∥0 = ∥P 1

2h(H
n
h − PhH

n) + (P 1
2hH

n −Hn)∥0(120)

≤ C∥Hn
h − PhH

n∥0 + ∥P 1
2hH

n −Hn∥0.

From (63) − (68) and Lemma 3.3, we know that the following super-convergence
estimate is valid

∥gn1 ∥0, ∥gn2 ∥0 ≤ (τ3 + h2),(121)

with C only dependent on ∥E∥C4(0,T ;[H2(Ω)]3) + ∥H∥C4(0,T ;[H2(Ω)]3). This in turn
leads to the super-convergent L2 error estimate for en, ηn, in a similar way as (108):

∥en∥20 + ∥ηn∥20 ≤ C̃15(τ
6 + h2s),(122)

under the a-priori L∞ assumption (91). As a result, such an assumption could be
similarly recovered as (109):

∥en∥L∞ ≤
C∥en∥0

h
d

2

≤
C̃15(τ3 + hs)

h
d

2

≤ C.(123)

This finishes the argument for the a-priori bound (91).
Finally, with the help of (114) and (115), we obtain

∥En −Π1
2hE

n
h∥0 ≤ Ch2∥En∥2, ∥Hn − P 1

2hH
n
h∥0 ≤ Ch2∥Hn∥2.(124)

The proof of Theorem 3.1 is completed. !
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Figure 1. Error curve on the mesh 2m+1× 2m+1, after N = 100 :
100 : 500 time steps.

4. Numerical Results

In this section, we provide some numerical examples in the TE case to confirm
our theoretical analysis, with E = [E1, E2, 0] and H = [0, 0, H3]. For convenience,
we still denote E = [E1, E2] and H = H3. The computations are performed using
the Matlab code. The angular frequency is denoted as ω, and the number of time
step is given by a sequence: N = 100 : 100 : 500. We use the lowest Raviart-
Thomas-Nédelec element whose basic functions can be found in the section 3.2 of
[17].

In these numerical examples, we observe that, numerical results have shown that,
the stability and convergence are well preserved with a more relaxed constraint for
the time step, τ = O(h). The severe time step constraint, τ ≤ C∗

0h
2, as appeared

in Theorems 2.1, 3.1, is only a theoretical issue.
Define

errE = ∥En −En
h∥0, errH = ∥Hn −Hn

h∥0,

SerrE = ∥En −Π1
2hE

n
h∥0, SerrH = ∥Hn −Π1

2hH
n
h∥0.

Example 1: The nonlinear conductivity is fixed as σ(|E|) = |E|2 − |E|4. For
ω = 1, the exact solution (E,H) is formulated as

E = [e−t cos(ωπx) sin(ωπy),−e−t sin(ωπx) cos(ωπy)],

H = −2ωπe−t cos(ωπx) cos(ωπy).

The error curves for E and H on the mesh 2m+1×2m+1, with m = 1, 2, 3, 4, after
N = 100 : 100 : 500 time steps are provided in Figure 1. The convergence curve is
demonstrated in Figure 2 and the numerical solutions are presented in Figure 3.

Example 2: In the case of rectangular mesh, we consider the nonlinear conduc-
tivity in the form of σ(|E|) = |E|1−α,α = 0.3, 0.5, 0.6, 0.8, with the exact solution
(E,H) given by

E = [(y − 1)ye−ye−t, (x− 1)xe−xe−t],

H = e−t(e−x(−x2 + 3x− 1) + e−y(y2 − 3y + 1)).

Figure 4 shows the convergence curve after 100 time steps with τ = 10−5, and
σ(|E|) = |E|1−α,α = 0.3, 0.5, 0.6, 0.8. The numerical solution of E and H on the
rectangular domain is displayed in Figure 5.
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Figure 2. Convergence after N = 100 : 100 : 500 time steps, with
τ = 10−6.
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Figure 3. Numerical solution for E and H with σ(|E|) = E2 −E4.
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Figure 4. Convergence curve after 100 time steps with τ = 10−5,
and σ(|E|) = |E|1−α, α = 0.3, 0.5, 0.6, 0.8.

Example 1: In the of an L-shape domain Ω = [0, 1]2\[0.5, 1]2, we consider the
nonlinear conductivity in the form of σ(|E|) = |E|α, with the initial value

E0(x, y, 0) = [sin(2ωπy), sin(2ωπx)],

H0(x, y, 0) = (−
2πω

µ
)(cos(2ωπx)− cos(2ωπy)),
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Figure 5. Numerical solution for E and H with σ(|E|) =
|E|1−α,with α = 0.5.
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Figure 6. Numerical solution of E and H on the L-type domain
and τ = 1e− 6.
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Figure 7. The figure of σ(|En
h|) = |En

h|
α, with α =

0.3, 0.5, 0.6, 0.8, respectively, at the center of every edge of the el-
ement.

and the right-hand-side term

F (x, y, t) = (f1, f2),

f1 = −ϵe−t sin(2ωπy) + ((e−t sin(2ωπy))2 + (e−t sin(2ωπx))2)
α

2 e−t sin(2ωπy)

−
4π2ω2

µ
e−t sin(2ωπy),

f2 = −ϵe−t sin(2ωπx) + ((e−t sin(2ωπy))2 + (e−t sin(2ωπx))2)
α

2 e−t sin(2ωπx)

+
4π2ω2

µ
e−t sin(2ωπx).
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Figure 6 presents the numerical solution of En
h and Hn

h on the L-shape do-
main. Meanwhile, the nonlinear conductivity functions σ(|En

h|) = |En
h|

α, with
α = 0.3, 0.5, 0.6, 0.8, are displayed in Figure 7, at the center of every edge of the
element, respectively.

5. Conclusions

In this article, we propose a third order linearized BDF FEM scheme for the
nonlinear Maxwell’s equations, with a purely explicit extrapolation applied to the
nonlinear terms. Such an explicit treatment has greatly improved the numerical
efficiency; only one constant-coefficient linear system needs to be solved at each time
step. A theoretical analysis for the 3rd order BDF scheme to the Maxwell’s equation
turns out to be highly challenging, due to the hyperbolic nature of the equation.
We make use of a telescope formula for the 3rd order BDF stencil, combined with
other related analytic tools, so that a local in time stability could be derived under a
condition for the time step as τ ≤ C∗

0h
2, with C∗

0 a fixed constant. In addition, the
linearized stability analysis for the numerical error function has to be performed,
which in turn yields the full order L2 error estimate via an L∞ a-priori assumption
at the previous time steps. As a result, an optimal rate L2 convergence analysis and
error estimate becomes available. Numerical experiments are investigated, which
confirm the theoretical analysis.
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[25] M. Slodička and S. Durand, Fully discrete finite element scheme for Maxwell’s equations with

non-linear boundary condition, J. Math. Anal. Appl., 375, 230-244, 2011.
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