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Abstract. In this paper we study the effect of the artificial regularization term for the
second order accurate (in time) numerical schemes for the no-slope-selection (NSS)
equation of the epitaxial thin film growth model. In particular, we propose and ana-
lyze an alternate second order backward differentiation formula (BDF) scheme, with
Fourier pseudo-spectral spatial discretization. The surface diffusion term is treated im-
plicitly, while the nonlinear chemical potential is approximated by a second order ex-
plicit extrapolation formula. A second order accurate Douglas-Dupont regularization
term, in the form of −A∆t∆2

N(u
n+1−un), is added in the numerical scheme to justify

the energy stability at a theoretical level. Due to an alternate expression of the nonlin-
ear chemical potential terms, such a numerical scheme requires a minimum value of
the artificial regularization parameter as A= 289

1024 , much smaller than the other reported
artificial parameter values in the existing literature. Such an optimization of the arti-
ficial parameter value is expected to reduce the numerical diffusion, and henceforth
improve the long time numerical accuracy. Moreover, the optimal rate convergence
analysis and error estimate are derived in details, in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) norm,
with the help of a linearized estimate for the nonlinear error terms. Some numerical
simulation results are presented to demonstrate the efficiency and accuracy of the al-
ternate second order numerical scheme. The long time simulation results for ε= 0.02
(up to T=3×105) have indicated a logarithm law for the energy decay, as well as the
power laws for growth of the surface roughness and the mound width.
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1 Introduction

The no-slope-selection (NSS) epitaxial thin film growth equation is the L2 gradient flow
associated with the following energy functional

E(u) :=
∫

Ω

(
−1

2
ln(1+|∇u|2)+ ε2

2
|∆u|2

)
dx, (1.1)

in which Ω=(0,Lx)×(0,Ly), u : Ω→R is a periodic height function, and ε is a constant
parameter of transition layer width. In fact, the first non-quadratic term represents the
Ehrlich-Schwoebel (ES) effect, which means that an atom has to overcome a higher energy
barrier to stick to a step from an upper rather than from a lower terrace [11,21–23,33]. This
results in an uphill atom current in the dynamics and the steepening of mounds in the
film. The second higher order quadratic term represents the isotropic surface diffusion
effect [22,27]. In turn, the chemical potential becomes the following variational derivative
of the energy

µ :=δuE=∇·
(

∇u

1+|∇u|2

)
+ε2∆2u, (1.2)

and the dynamical equation stands for the L2 gradient flow

∂tu=−µ=−∇·
(

∇u

1+|∇u|2

)
−ε2∆2u. (1.3)

On the other hand, under a small-slope assumption that |∇u|2 ≪1, (1.3) may be approx-
imated as

∂tu=∇·
(
|∇u|2∇u

)
−∆u−ε2∆2u, (1.4)

with the energy functional given by a polynomial approximation

E(u)=
∫

Ω

(
1

4
(|∇u|2−1)2+

ε2

2
|∆u|2

)
dx. (1.5)

This model is referred to as the slope-selection (SS) equation [19, 20, 22, 27]. A solution to
(1.4) exhibits pyramidal structures, where the faces of the pyramids have slopes |∇u|≈1;
meanwhile, the no-slope-selection equation (1.3) exhibits mound-like structures, and the
slopes of which (on an infinite domain) may grow unbounded [22, 35]. Both solutions
have up-down symmetry in the sense that there is no way to distinguish a hill from a
valley. This can be altered by adding adsorption/desorption or other dynamics.
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Energy stable numerical algorithms for the thin film epitaxy have attracted a great
deal of attentions in recent years, due to the long time nature of the gradient flow coars-
ening process. There have been many such efforts for both the SS and NSS equations; see
the related references [5–7, 9, 18, 25, 29–32, 34–37, 39], etc. Among the energy stable ones,
the linear schemes have demonstrated great advantages over the nonlinear algorithms;
since the nonlinear chemical potential terms are explicitly updated in the linear schemes,
the computational cost is expected to be greatly reduced. In the pioneering work [3] of
linear energy stable schemes for thin film epitaxy, an alternate convex-concave decom-
position for the Ehrlich-Schwoebel energy is proposed. In more details, such a nonlinear
functional is non-convex, non-concave, while its combination with − κ0

2 ∥∇u∥2 becomes
concave. In turn, a linear convex splitting scheme is proposed and analyzed, in which
only a constant-coefficient linear system needs to be solved at each time step. The the-
oretical analysis reveals that the energy stability could be justified for κ0 ≥ 1, and this
estimate has been sharpened to κ0 ≥ 1

8 in a later work [18]. However, such a linear con-
vex splitting idea could not be directly extended to derive the second order energy stable
method, because of the challenge associated with a nonlinear concave term. To overcome
this difficulty, a second order BDF (BDF2)-type scheme is proposed and analyzed in [26],
with the energy stability established. The standard BDF2 temporal approximation is ap-
plied in this approach, combined with a second order explicit extrapolation formula for
the nonlinear term. Meanwhile, such an explicit treatment would not be able to ensure
the energy stability at the theoretical level. In fact, a second order Douglas-Dupont reg-
ularization term, namely in the form of −A∆t∆2(un+1−un), has to be added to stabilize
the numerical scheme. A careful energy estimate reveals that a theoretical justification
of the energy is available for A≥ 25

16 , under the nonlinear form given by the scheme. In
an alternate exponential time differencing (ETD) based approach reported in [4], a sim-
ilar artificial regularization term, in the form of −A∆t2∂t∆

2u, is added in the numerical
scheme, and its modified energy stability is theoretically established for the regulariza-

tion parameter A≥ 2+
√

3
6 .

In this article, we propose and analyze an alternate BDF2-type numerical scheme for
the NSS equation (1.3), so that the artificial regularization parameter A could have an op-
timized value. The numerical design follows similar idea as the one given by [26], while
we take an alternate approximation to the nonlinear chemical potential term at time step
tn+1. In more details, the nonlinear term takes a form of g(2un−un−1) (with g(u) the
nonlinear gradient term), as a second order approximation to g(u) at time step tn+1. In
the proposed scheme, we use an alternate second order approximation, in the form of
2g(un)−g(un−1). Again, an artificial Douglas-Dupont regularization term, in the form of
−A∆t∆2(un+1−un), has to be included in the numerical scheme for the sake of stability.
With such an alternate approximation, a careful estimate reveals that, a modified energy
stability could be theoretically justified for any A≥ 289

1024 . In fact, such an improved ar-
tificial parameter constant estimate is based on the convexity analysis for the nonlinear
chemical potential (as reported in [18]), combined with certain nonlinear inequalities. As
a result, the alternate approximation to the nonlinear chemical potential term leads to
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an optimized value of artificial regularization parameter, in comparison with the exist-
ing ones in [4, 26]. Again, the subtle fact that all the nonlinear terms have automatically
bounded higher order derivative will play an important role in the highly complicated
nonlinear analysis. The Fourier pseudo-spectral method is chosen as the spatial approx-
imation, and the discrete summation by parts property will facilitate the corresponding
analysis for the fully discrete scheme. In addition to the energy stability analysis, we pro-
vide a theoretical analysis of an O(∆t2+hm) rate convergence estimate for the proposed
alternate BDF2-type scheme, in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) norm.
The rest of the article is organized as follows. In Section 2 we present the numerical

scheme. We begin with the notations of Fourier pseudo-spectral spatial approximation,
as well as a review of existing energy stable linear numerical methods. Afterward, the
alternate BDF2-type scheme is proposed, and a modified energy stability is established.
Subsequently, the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) convergence estimate is provided in Section 3.
In Section 4 we present the numerical results, including the accuracy test and the long
time simulation for the coarsening process, which indicates a logarithm law for the en-
ergy decay, as well as the power laws for growth of the surface roughness and the mound
width. Finally, the concluding remarks are given in Section 5.

2 The numerical scheme

2.1 Review of the Fourier pseudo-spectral approximation

For simplicity of presentation, we assume that the domain is given by Ω=(0,L)2, Nx =
Ny = N and N ·h = L. A more general domain could be treated in a similar manner.
Furthermore, to facilitate the pseudo-spectral analysis in later sections, we set N=2K+1.
All the variables are evaluated at the regular numerical grid (xi,yj), with xi = ih, yj = jh,
0≤ i, j≤2K+1.

Without loss of generality, we assume that L= 1. For a periodic function f over the
given 2-D numerical grid, set its discrete Fourier expansion as

fi,j =
K

∑
k,ℓ=−K

f̂k,ℓexp
(
2πi(kxi+ℓyj)

)
, (2.1)

its collocation Fourier spectral approximations to first and second order partial deriva-
tives in the x-direction become

(DNx f )i,j =
K

∑
k,ℓ=−K

(2kπi) f̂k,ℓexp
(
2πi(kxi+ℓyj)

)
, (2.2)

(
D2

Nx f
)

i,j=
K

∑
k,ℓ=−K

(
−4π2k2

)
f̂k,ℓexp

(
2πi(kxi+ℓyj)

)
. (2.3)
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The differentiation operators in the y direction, namely, DNy and D2
Ny, could be defined

in the same fashion. In turn, the discrete Laplacian, gradient and divergence become

∆N f =
(
D2

Nx+D2
Ny

)
f ,

∇N f =

(
DNx f
DNy f

)
, ∇N ·

(
f1

f2

)
=DNx f1+DNy f2, (2.4)

at the point-wise level. See the derivations in the related references [1, 2, 14, 17], etc.
Given any periodic grid functions f and g (over the 2-D numerical grid), the spectral

approximations to the L2 inner product and L2 norm are introduced as

∥ f∥2=
√
⟨ f , f ⟩, with ⟨ f ,g⟩=h2

N−1

∑
i,j=0

fi,jgi,j. (2.5)

A careful calculation yields the following formulas of summation by parts at the discrete
level (see the related discussions [3, 6, 15, 16]):

⟨ f ,∆N g⟩=−⟨∇N f ,∇N g⟩ ,
〈

f ,∆2
N g

〉
= ⟨∆N f ,∆N g⟩ . (2.6)

Similarly, for any grid function f with f =0, the operator (−∆N)−1 and the discrete ∥·∥−1

norm are defined as
(
(−∆N)

−1 f
)

i,j
= ∑

k,ℓ≠0

1

λk,ℓ
f̂k,ℓexp

(
2πi(kxi+ℓyj)

)
, λk,ℓ=(2kπ)2+(2ℓπ)2, (2.7)

∥ f∥−1=
√
⟨ f ,(−∆N)−1 f ⟩. (2.8)

In addition to the standard ℓ2 norm, we also introduce the ℓp and discrete maximum
norms for a grid function f , to facilitate the analysis in later sections:

∥ f∥∞ :=max
i,j

| fi,j|, ∥ f∥p :=
(N−1

∑
i,j=0

| fi,j|p
) 1

p
, 1≤ p<∞. (2.9)

Moreover, for any numerical solution φ, the discrete energy is defined as

EN(φ)=Ec,1,N(φ)+
ε2

2
∥∆Nφ∥2

2 , Ec,1,N(φ)=h2
N−1

∑
i,j=0

(
−1

2
ln
(

1+|∇Nφ|2
)

i,j

)
. (2.10)

2.2 A review of existing energy stable linear schemes for (1.3)

In the pioneering work [3], the following convex-concave decomposition for the nonlin-
ear energy functional is presented:

EES(u) :=
∫

Ω
−1

2
ln(1+|∇u|2)dx=EES,c(u)−EES,e(u), (2.11)

with EES,c(u) :=
∫

Ω

κ0

2
|∇u|2 dx, EES,e(u) :=

∫

Ω

(
κ0

2
|∇u|2+ 1

2
ln(1+|∇u|2)

)
dx, (2.12)
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so that both EES,c(u) and EES,e(u) are convex in terms of u. In turn, the following first
order accurate, linear splitting scheme is proposed and analyzed in [3]:

un+1−un

∆t
=−∇·

(
∇un

1+|∇un|2

)
+κ0∆(un+1−un)−ε2∆2un+1. (2.13)

The energy stability, E(un+1)≤E(un), is proved under the constraint that κ0≥1.
In a more recent work [18], such a constraint has been improved to κ0≥ 1

8 .
Meanwhile, it is observed that a direct linear splitting method (2.13) is only first order

accurate (in time). To obtain a second order temporal accuracy while preserving the
energy stability, a BDF2-type scheme is proposed and analyzed in [26], which turns out
to be the mixed finite element version of the following algorithm:

3
2 un+1−2un+ 1

2 un−1

∆t
+ε2∆2un+1+∇·

( ∇ûn+1

1+|∇Nûn+1|2
)
+A∆t∆2(un+1−un)=0,

with ûn+1=2un−un−1. (2.14)

In other words, with the nonlinear chemical potential term denoted as g(u)=∇·
( ∇u

1+|∇u|2
)
,

a second order approximation to g(un+1) is taken as an explicit extrapolation g(2un−
un−1). With such an approximation, a modified energy stability was proved in [26] under
a constraint for the artificial regularization parameter: A≥ 25

16 .
Other than the BDF2-type approach, exponential time differencing (ETD) based ap-

proach has also been extensively studied in recent years. A direct application of the
ETD-based multi-step method was reported in [18], while a stability proof in terms of the
original energy functional has not been available. To overcome this theoretical difficulty,
a stabilized version is proposed and analyzed in [4], in which the numerical solution un+1

is given by the following solution of linear PDE,

∂tus =−Lus− fL(s,un,un−1)−A∆t2∂t∆
2us, us(t

n)=un, un+1=us(t
n+1), (2.15)

with Lu=(ε2∆2−κ0∆)u, fL(s,un,un−1)= g(un)+
s

∆t

(
g(un)−g(un−1)

)
. (2.16)

In more details, the artificial regularization is given by the form of −A∆t2∂t∆
2us, which

shares a similar idea as the BDF2-type scheme. For such a stabilized ETD-based scheme,
a theoretical analysis provides a modified energy stability under a similar constraint for

the artificial regularization parameter: A≥ 2+
√

3
6 .

2.3 The proposed alternate BDF2 numerical scheme

As usual, we denote uk as the numerical approximation to the PDE solution at time step
tk := k∆t, with any integer n. Given un, un−1, un−2, we propose a second order BDF-type
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scheme for the NSS equation (1.3):

3
2 un+1−2un+ 1

2 un−1

∆t
+ε2∆2

Nun+1+∇N ·
(

2
∇Nun

1+|∇N un|2

− ∇Nun−1

1+|∇Nun−1|2
)
+A∆t∆2

N(u
n+1−un)=0. (2.17)

In particular, we notice that a second order approximation to the nonlinear chemical po-
tential at time step tn+1 is taken as 2g(un)−g(un−1), in comparison with g(2un−un−1)
in [26]. Such alternate treatment of the nonlinear term has also been reported to have
better stability for Cahn-Hilliard equation in [24].

Remark 2.1. As be well-known, a second-order accurate multi-step scheme requires two
initial values.In general, the two other initial values are obtained by using a sufficiently
accurate Runge-Kutta method, the known initial data. And here, without loss of gener-
ality, we give the three exact initial values directly.

For the proposed scheme (2.17), the mass-conservative property is always valid: un+1=
un =u0 :=β0, which comes from the following obvious identities:

∇N · f =0, ∆N g=0. (2.18)

2.4 The energy stability analysis

The following two preliminary estimates in [18] will be useful in the energy stability
analysis.

Lemma 2.1. [18] Denote a mapping β : R2→R2: β(v)= v
1+|v|2 . Then we have

|β(v)−β(w)|≤ |v−w|, ∀v,w∈R2. (2.19)

Lemma 2.2. [18] Define H(a,b)= 1
2 ln(1+a2+b2)+ κ0

2 (a
2+b2). Then H(a,b) is convex in R2

if and only if κ0≥ 1
8 .

As a result of these convexity result, we are able to obtain the following energy esti-
mate.

Lemma 2.3. For the numerical solutions un+1 and un with un+1=un, we have

〈
∇N ·

( ∇Nun

1+|∇Nun|2
)

,un+1−un
〉

≥Ec,1,N(u
n+1)−Ec,1,N(u

n)− κ0

2
∥∇N(u

n+1−un)∥2
2, (2.20)

with the nonlinear energy functional Ec,1,N(φ) defined in (2.10).
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Proof. For simplicity of presentation, we denote

f
(0)
N (u)=∇N ·

(
∇Nu

1+|∇Nu|2

)
+κ0∆Nu. (2.21)

By Lemma 2.2, f
(0)
N (u) corresponds to a concave energy functional, so that the following

convexity inequality is valid:

⟨ f (0)N (un),un+1−un⟩≥HN(u
n+1)−HN(u

n),

with HN(φ)=Ec,1,N(φ)−
κ0

2
∥∇Nφ∥2

2, (2.22)

which is equivalent to (2.20). This finishes the proof of Lemma 2.3.

The energy stability of the proposed second order BDF-type scheme (2.17) is stated in
the following theorem, in a modified version.

Theorem 2.1. The numerical solution produced by the proposed BDF-type scheme (2.17) satisfies

ẼN(u
n+1,un)≤ ẼN(u

n,un−1),

with ẼN(u
n+1,un)=EN(u

n+1)+
1

4∆t
∥un+1−un∥2

2+
1

2
∥∇N(u

n+1−un)∥2
2, (2.23)

for any ∆t>0, provided that A≥ 289
1024 .

Proof. The numerical scheme (2.17) could be rewritten as

∇N ·
( ∇Nun

1+|∇Nun|2
)
=−

3
2 un+1−2un+ 1

2 un−1

∆t
−ε2∆2

Nun+1−A∆t∆2
N(u

n+1−un)

−∇N ·
( ∇Nun

1+|∇Nun|2 −
∇Nun−1

1+|∇Nun−1|2
)

. (2.24)

Taking a discrete ℓ2 inner product with (2.24) by un+1−un yields
〈
∇N ·

( ∇Nun

1+|∇Nun|2
)

,un+1−un
〉
+

1

∆t

〈3

2
un+1−2un+

1

2
un−1,un+1−un

〉

+ε2⟨∆2
Nun+1,un+1−un⟩+A∆t⟨∆2

N(u
n+1−un),un+1−un⟩

+
〈
∇N ·

( ∇Nun

1+|∇Nun|2 −
∇Nun−1

1+|∇Nun−1|2
)

,un+1−un
〉
=0. (2.25)

The temporal stencil term could be analyzed as follows:
〈3

2
un+1−2un+

1

2
un−1,un+1−un

〉

=
〈3

2
(un+1−un)− 1

2
(un−un−1),un+1−un

〉

≥3

2
∥un+1−un∥2

2−
1

4
(∥un−un−1∥2

2+∥un+1−un∥2
2)

=∥un+1−un∥2
2+

1

4
(∥un+1−un∥2

2−∥un−un−1∥2
2). (2.26)
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For the nonlinear increment term, the following estimate could be derived:

−
〈 ∇Nun

1+|∇N un|2 −
∇Nun−1

1+|∇Nun−1|2 ,∇N(u
n+1−un)

〉

≤∥∇N(u
n−un−1)∥2 ·∥∇N(u

n+1−un)∥2

≤1

2
(∥∇N(u

n+1−un)∥2
2+∥∇N(u

n−un−1)∥2
2), (2.27)

in which the point-wise inequality (2.19) (in Lemma 2.1) has been applied. For the surface
diffusion term, the following identity is available:

⟨∆2
Nun+1,un+1−un⟩= 1

2
(∥∆Nun+1∥2

2−∥∆Nun∥2
2+∥∆N(u

n+1−un)∥2
2). (2.28)

Similarly, the following identity is straightforward to the artificial Douglas-Dupont reg-
ularization term:

A∆t⟨∆2
N(u

n+1−un),un+1−un⟩=A∆t∥∆N(u
n+1−un)∥2

2. (2.29)

As a consequence, a substitution of (2.20) and (2.25)-(2.29) into (2.24) results in

EN(u
n+1)−EN(u

n)+
( ε2

2
+A∆t

)
∥∆N(u

n+1−un)∥2
2+

1

∆t
∥un+1−un∥2

2

+
1

4∆t
(∥un+1−un∥2

2−∥un−un−1∥2
2) (2.30)

≤ 9

16
∥∇N(u

n+1−un)∥2
2+

1

2
∥∇N(u

n−un−1)∥2
2, (2.31)

with the optimal value of κ0 = 1
8 taken. To control the right hand side of (2.30), we have

the following observation

A∆t∥∆N(u
n+1−un)∥2

2+
1

∆t
∥un+1−un∥2

2

≥2A1/2∥∆N(u
n+1−un)∥2 ·∥un+1−un∥2≥2A1/2∥∇N(u

n+1−un)∥2
2, (2.32)

in which the summation by parts formula has been applied in the last step. Under the
constraint that

2A1/2≥ 17

16
, i.e. A≥ 289

1024
, (2.33)

the following inequality is valid:

EN(u
n+1)−EN(u

n)+
17

16
∥∇N(u

n+1−un)∥2
2+

1

4∆t
(∥un+1−un∥2

2−∥un−un−1∥2
2)

≤ 9

16
∥∇N(u

n+1−un)∥2
2+

1

2
∥∇N(u

n−un−1)∥2
2. (2.34)
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In fact, (2.34) is equivalent to

ẼN(u
n+1,un)− ẼN(u

n,un−1)≤0. (2.35)

This completes the proof of Theorem 2.1.

Corollary 2.1. For the numerical solution (2.17), we have

EN(u
k)≤EN(u

0)+
1

4∆t
∥u0−u−1∥2

2+
1

2
∥∇N(u

0−u−1)∥2
2 := C̃0, ∀k≥0, (2.36)

provided that (2.33) is satisfied.

Proof. By the modified energy inequality (2.23), the following induction analysis could
be performed:

EN(u
k)≤ ẼN(u

k,uk−1)≤ ···≤ ẼN(u
0,u−1) := C̃0, ∀k≥0. (2.37)

This completes the proof.

Remark 2.2. In the proposed BDF2-type scheme, an alternate second order approxima-
tion to the nonlinear chemical potential at time step tn+1 is taken as 2g(un)−g(un−1),
instead of g(2un−un−1) reported in [26]. Such an alternate approximation leads to a
much improved regularization parameter constraint: A≥ 289

1024 , to justify a modified en-

ergy stability, in comparison with A ≥ 25
16 reported in [26]. In fact, such an improved

estimate is based on the convexity analysis for the nonlinear chemical potential (given by
Lemma 2.2), combined with certain nonlinear inequalities. In fact, this estimate turns out
to be an optimized value of artificial regularization parameter for the second order accu-
rate, energy stable schemes for the NSS equation (1.3), in comparison with the existing
ones in [4, 26].

Remark 2.3. There have been a few recent works of the BDF2-type schemes for cer-
tain gradient flow models, such as Cahn-Hilliard [8, 38], slope-selection thin film equa-
tion [12], square phase field crystal [10], in which the energy stability was theoretically
established. Similarly, a Douglas-Dupont type regularization has to be included in the
numerical scheme, while a careful analysis reveals its energy stability at a modified level.
Such a BDF2-type approach turns out to be a very robust numerical tool in the study of
gradient flows.

Remark 2.4. In one recent work [28], a similar BDF2-type scheme is proposed for the
NSS equation (1.3), as the mixed finite element version of the following semi-discrete
algorithm:

3
2 un+1−2un+ 1

2 un−1

∆t
+ε2∆2un+1+∇·

(
2

∇un

1+|∇un|2

− ∇un−1

1+|∇un−1|2
)
+A∆t∆2

(3

2
un+1−2un+

1

2
un−1

)
=0, (2.38)
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and a modified energy stability is proved under a constraint A ≥ 1. In more details,
the standard regularization term A∆t∆2(un+1−un) is applied in our proposed numeri-
cal method (2.17), in comparison with A∆t∆2( 3

2 un+1−2un+ 1
2 un−1) in (2.38). This brings

more convenience in the numerical implementation. In addition, an optimal coefficient
estimate has been derived in our work: A ≥ 289

1024 for (2.17), in comparison with A ≥ 1
for (2.38).

3 The convergence analysis for the alternate BDF2 scheme

The global existence of weak solution, strong solution and smooth solution for the NSS
equation (1.3) has been established in [22]. In more details, a global in time estimate of
L∞(0,T;Hm)∩L2(0,T;Hm+2) for the phase variable was proved, assuming initial data in
Hm, for any m ≥ 2. Therefore, with an initial data with sufficient regularity, we could
assume that the exact solution has regularity of class R:

ue∈R :=H4(0,T;C0)∩H1(0,T;H4)∩H3(0,T;Hm+2)∩L∞(0,T;Hm+4). (3.1)

Define UN(·,t) :=PNue(·,t), the (spatial) Fourier projection of the exact solution into BN ,
the space of trigonometric polynomials of degree to and including N. The following
projection approximation is standard: if ue∈L∞(0,T;Hℓ

per(Ω)), for some ℓ∈N,

∥UN−ue∥L∞(0,T;Hm)≤Chℓ−k∥ue∥L∞(0,T;Hℓ), ∀ 0≤ k≤ ℓ. (3.2)

By Un
N we denote UN(·,tn), with tn=n·∆t. Since UN∈BN , the mass conservative property

is available at the discrete level:

Un
N =

1

|Ω|

∫

Ω
UN(·,tn)dx=

1

|Ω|

∫

Ω
UN(·,tn−1)dx=Un−1

N , ∀ n∈N. (3.3)

On the other hand, the solution of the numerical scheme (2.17) is also mass conservative
at the discrete level:

un=un−1, ∀ n∈N. (3.4)

Meanwhile, we denote Un as the interpolation values of UN at discrete grid points at
time instant tn: Un

i,j :=UN(xi,yj,t
n). As indicated before, we use the mass conservative

projection for the initial data:

u0
i,j=U0

i,j :=UN(xi,yj,t=0). (3.5)

The error grid function is defined as

en :=Un−un, ∀ n∈{0,1,2,3,···}. (3.6)

Therefore, it follows that en =0, for any n∈{0,1,2,3,···}.
For the proposed second order BDF-type scheme (2.17), the convergence result is

stated below.
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Theorem 3.1. Given initial data U0
N, U−1

N ∈Cm+4
per (Ω), with periodic boundary conditions, sup-

pose the unique solution for the NSS equation (1.3) is of regularity class R. Then, provided ∆t
and h are sufficiently small, for all positive integers ℓ, such that ∆t ·ℓ≤T, we have

∥eℓ∥2+
(

ε2∆t
ℓ

∑
k=1

∥∆Nek∥2
2

)1/2
≤C(∆t2+hm), (3.7)

where C>0 is independent of ∆t and h.

3.1 The error evolutionary equation

For the Fourier projection solution UN and its interpolation U, a careful consistency anal-
ysis implies that

3
2Un+1−2Un+ 1

2Un−1

∆t
+ε2∆2

NUn+1+A∆t∆2
N(U

n+1−Un)

=−∇N ·
(

2
∇NUn

1+|∇NUn|2 −
∇NUn−1

1+|∇NUn−1|2
)
+τn, (3.8)

with ∥τn∥2 ≤C(∆t2+hm). In turn, subtracting the numerical scheme (2.17) from the con-
sistency estimate (3.8) yields

3
2 en+1−2en+ 1

2 en−1

∆t
+ε2∆2

Nen+1+A∆t∆2
N(e

n+1−en)

=−∇N ·
(

2
∇NUn

1+|∇NUn|2 −2
∇Nun

1+|∇N un|2 −
∇NUn−1

1+|∇NUn−1|2 +
∇Nun−1

1+|∇Nun−1|2
)
+τn. (3.9)

3.2 The ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2
h) error estimate

Taking a discrete ℓ2 inner product with (3.9) by en+1 gives

1

∆t

〈3

2
en+1−2en+

1

2
en−1,en+1

〉
+ε2∥∆Nen+1∥2

2+A∆t⟨∆N(e
n+1−en),∆Nen+1⟩

=
1

∑
j=0

γ(j)
〈 ∇NUn−j

1+|∇NUn−j|2
− ∇Nun−j

1+|∇Nun−j|2
,∇Nen+1

〉
+⟨τn,en+1⟩, (3.10)

with γ(0)=2, γ(1)=−1. Notice that the summation by parts formula has been repeatedly
applied in the derivation. The temporal stencil term could be analyzed in a standard
way:

〈
3

2
en+1−2en+

1

2
en−1,en+1

〉

=
1

4

(
∥en+1∥2

2−∥en∥2
2+∥2en+1−en∥2

2−∥2en−en−1∥2
2+∥en+1−2en+en−1∥2

2

)
. (3.11)
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The local truncation error term could also be bounded in a straightforward way:

⟨τn,en+1⟩≤ 1

2
(∥τn∥2

2+∥en+1∥2
2). (3.12)

The Douglas-Dupont regularization term could be analyzed as follows:

⟨∆N(e
n+1−en),∆Nen+1⟩= 1

2
(∥∆Nen+1∥2

2−∥∆Nen∥2
2+∥∆N(e

n+1−en)∥2
2). (3.13)

For the nonlinear error term on the right hand side of (3.10), we focus on the time instant
tn. By making use of inequality (2.19) (in Lemma 2.1), we see that

∣∣∣
∇NUn

1+|∇NUn|2 −
∇Nun

1+|∇Nun|2
∣∣∣≤ |∇Nen|, at a point-wise level. (3.14)

This in turn leads to

γ(0)
〈 ∇NUn

1+|∇NUn|2 −
∇Nun

1+|∇Nun|2 ,∇Nen+1
〉
≤2∥∇Nen∥2 ·∥∇N en+1∥2. (3.15)

Similarly, the following inequality is available:

γ(1)
〈 ∇NUn−1

1+|∇NUn−1|2 −
∇Nun−1

1+|∇Nun−1|2 ,∇Nen+1
〉
≤∥∇Nen−1∥2 ·∥∇Nen+1∥2. (3.16)

Then we arrive at

1

∑
j=0

γ(j)
〈 ∇NUn−j

1+|∇NUn−j|2
− ∇Nun−j

1+|∇Nun−j|2
,∇Nen+1

〉
(3.17)

≤(2∥∇Nen∥2+∥∇Nen−1∥2)·∥∇N en+1∥2≤
3

2
∥∇Nen+1∥2

2+∥∇Nen∥2
2+

1

2
∥∇Nen−1∥2

2,

with repeated application of Cauchy inequality at the last step.
Therefore, a substitution of (3.11), (3.12)-(3.13) and (3.17) into (3.10) leads to

1

∆t
(Fn+1−Fn)+ε2∥∆Nen+1∥2

2+
A

2
∆t(∥∆Nen+1∥2

2−∥∆Nen∥2
2)

≤3

2
∥∇Nen+1∥2

2+∥∇Nen∥2
2+

1

2
∥∇Nen−1∥2

2+
1

2
(∥τn∥2

2+∥en+1∥2
2), (3.18)

with

Fn+1=
1

4
(∥en+1∥2

2+∥2en+1−en∥2
2). (3.19)
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Meanwhile, for the error gradient term ∥∇Nen+1∥2
2, the following estimate could be de-

rived:

3

2
∥∇Nen+1∥2

2 =− 3

2
⟨en+1,∆Nen+1⟩≤ 3

2
∥en+1∥2 ·∥∆Nen+1∥2

≤27

8
ε−2∥en+1∥2

2+
ε2

6
∥∆Nen+1∥2

2. (3.20)

The error gradient terms at the other time step instants could be bounded in a similar
way:

∥∇Nen∥2
2≤

3

2
ε−2∥en∥2

2+
ε2

6
∥∆Nen∥2

2, (3.21)

1

2
∥∇Nen−1∥2

2≤
3

8
ε−2∥en−1∥2

2+
ε2

6
∥∆Nen−1∥2

2. (3.22)

Going back (3.18), we arrive at

1

∆t
(Fn+1−Fn)+

5

6
ε2∥∆Nen+1∥2

2+
A

2
∆t(∥∆Nen+1∥2

2−∥∆N en∥2
2)

≤
(27

8
ε−2+

1

2

)
∥en+1∥2

2+
3

2
ε−2∥en∥2

2+
3

8
ε−2∥en−1∥2

2

+
ε2

6
(∥∆N en∥2

2+∥∆Nen−1∥2
2)+

1

2
∥τn∥2

2. (3.23)

By introducing a modified quantity

F̃n+1 :=Fn+1+
A

2
∆t2∥∆N en+1∥2

2, (3.24)

and making use of the following obvious fact:

∥ek∥2
2≤4F̃k, ∀k≥0, (3.25)

we obtain the following estimate

1

∆t
(F̃n+1− F̃n)+

5

6
ε2∥∆Nen+1∥2

2−
ε2

6
(∥∆Nen∥2

2+∥∆N en−1∥2
2)

≤4
(27

8
ε−2+

1

2

)
(F̃n+1+ F̃n+ F̃n−1)+

1

2
∥τn∥2

2. (3.26)

In turn, an application of discrete Gronwall inequality results in the convergence esti-
mate:

Fn+1+
1

2
ε2∆t

n+1

∑
k=1

∥∆N ek∥2
2≤ Ĉ(∆t2+hm)2. (3.27)

Furthermore, its combination with definition (3.19) (for Fn+1) indicates the desired re-
sult (3.7). This completes the proof of Theorem 3.1.
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4 Numerical results

4.1 Convergence test for the numerical scheme

We perform a numerical accuracy check for the proposed alternate BDF2-type scheme (2.17).
The computational domain is set to be Ω=(0,1)2, and the exact profile for the phase vari-
able is set to be

U(x,y,t)=sin(2πx)cos(2πy)cos(t). (4.1)

To make U satisfy the original PDE (1.3), we have to add an artificial, time-dependent
forcing term. In turn, the BDF-type scheme (2.17) can be implemented to solve for (1.3).
To demonstrate the accuracy in time, the spatial numerical error has to be negligible. We
fix the spatial resolution as N = 192 (so that h = 1

192 ), and set the final time T = 1. The
surface diffusion parameter is taken as ε = 0.05, and we set the artificial regularization
parameter as A= 289

1024 . Naturally, a sequence of time step sizes are taken as ∆t= T
NT

, with

NT = 100 : 100 : 1000. The expected temporal numerical accuracy assumption e = C∆tk

indicates that ln|e|= ln(CTk)−klnNT , so that we plot ln|e| vs. lnNT to demonstrate the
temporal convergence order. The fitted line displayed in Fig. 1 shows an approximate
slope of −2, which in turn verifies a nice second order temporal convergence order, in
both the discrete ℓ2 and ℓ∞ norms.
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Figure 1: The discrete ℓ2 and ℓ∞ numerical errors vs. temporal resolution NT for NT = 100 : 100 : 1000, with
a spatial resolution N=192. The surface diffusion parameter is taken to be ε=0.05. The data lie roughly on
curves CN−2

T , for appropriate choices of C, confirming the full second-order accuracy of the scheme.

4.2 Long time simulation results of the coarsening process

With the assumption that ε≪min
{

Lx,Ly
}

, the temporal evolution of the solution to (1.3)
has always been of great interests. The physically interesting quantities include (i) the
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energy E(t); (ii) the characteristic (average) height (the surface roughness) h(t); and (iii)
the characteristic (average) slope m(t). These quantities are precisely defined as

h(t)=

√
1

|Ω|

∫

Ω

∣∣∣u(x,t)−ū(t)
∣∣∣
2
dx, with ū(t) :=

1

|Ω|

∫

Ω
u(x,t)dx, (4.2)

m(t)=

√
1

|Ω|

∫

Ω
|∇u(x,t)|2dx. (4.3)

For the no-slope-selection equation (1.3), asymptotic scaling law could be formally de-
rived as h ∼O

(
t1/2

)
, m(t)∼O

(
t1/4

)
, and E ∼O(−ln(t)) as t → ∞; see [13, 22, 23] and

other related references. This in turn implies that the characteristic (average) length
ℓ(t):=h(t)/m(t)∼O

(
t1/4

)
as t→∞. In other words, the average length and average slope

scale the same with increasing time. We also observe that the average mound height h(t)
grows faster than the average length ℓ(t), which is expected because there is no preferred
slope of the height function u.

At a theoretical level, as described in [19, 20, 23], one can at best obtain lower bounds
for the energy dissipation and, conversely, upper bounds for the average height. How-
ever, the rates quoted as the upper or lower bounds are typically observed for the av-
eraged values of the quantities of interest. It is quite challenging to numerically predict
these scaling laws, since very long time scale simulations are needed. To capture the full
range of coarsening behaviors, numerical simulations for the coarsening process require
short-time and long-time accuracy and stability, in addition to high spatial accuracy for
small values of ε.

In this section we display the numerical simulation results obtained from the alternate
BDF2-type algorithm (2.17) for the no-slope-selection equation (1.3), and compare the
computed solutions against the predicted coarsening rates. Similar results have also been
reported in the existing literature, such as the ones given by [3, 18, 35], etc. The surface
diffusion coefficient parameter is taken to be ε = 0.02 in this article, and the domain is
set as L= Lx = Ly = 12.8. The uniform spatial resolution is given by h= L/N, N = 512,
which is adequate to resolve the small structures in the solution with such a value of ε.
The artificial regularization parameter is taken as A=0.1 in our simulation.

For the temporal step size ∆t, we use increasing values of ∆t, namely, ∆t= 0.004 on
the time interval [0,400], ∆t= 0.04 on the time interval [400,6000], ∆t= 0.16 on the time
interval [6000,3×105]. Whenever a new time step size is applied, we initiate the two-
step numerical scheme by taking u−1=u0, with the initial data u0 given by the final time
output of the last time period. Fig. 2 displays time snapshots of the film height u with
ε= 0.02, with significant coarsening observed in the system. At early times many small
hills (red) and valleys (blue) are present. At the final time, t=300000, a one-hill-one-valley
structure emerges, and further coarsening is not possible.

The long time characteristics of the solution, especially the energy decay rate, av-
erage height growth rate, and the mound width growth rate, are of interest to surface
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(a) t=100, 400 (b) t=3000, 6000

(c) t=20000, 40000 (d) t=80000, 300000

Figure 2: (Color online) Snapshots of the computed height function u at the indicated times for the parameters
L=12.8, ε=0.02. The hills at early times are not as high as time at later times, and similarly with the valley.
The average height/depth evolution with time could be seen in Fig. 3.

physics community. The last two quantities can be easily measured experimentally. On
the other hand, the discrete energy EN is defined via (2.10); the space-continuous aver-
age height and average slope have been defined in (4.2), (4.3), and the analogous discrete
versions are also available. Theoretically speaking, the lower bound for the energy decay
rate is of the order of −ln(t), and the upper bounds for the average height and aver-
age slope/average length are of the order of t1/2, t1/4, respectively, as established for the
no-slope-selection equation (1.3) in [23]. Fig. 3 presents the semi-log plots for the en-
ergy versus time and log-log plots for the average height versus time, and average slope
versus time, respectively, with the given physical parameter ε=0.02, and the artificial reg-
ularization parameter A=0.1. The detailed scaling “exponents” are obtained using least
squares fits of the computed data up to time t= 400. A clear observation of the −ln(t),
t1/2 and t1/4 scaling laws can be made, with different coefficients dependent upon ε, or,
equivalently, the domain size, L.

Now we recall that a lower bound for the energy (1.1), assuming Ω=(0,L)2, which
has been derived and published in our earlier works [3, 6, 35]:

E(φ)≥ L2

2

(
ln

(
4ε2π2

L2

)
− 4ε2π2

L2
+1

)
=: γ. (4.4)

Obviously, since the energy is bounded below it cannot keep decreasing at the rate−ln(t).
This fact manifests itself in the calculated data as the rate of decrease of the energy, for



458 X. Meng et al. / CSIAM Trans. Appl. Math., 1 (2020), pp. 441-462

100 101 102 103 104 105 106

time

-700

-600

-500

-400

-300

-200

-100

100 101 102 103 104 105

time

10-1

100

101

102

100 101 102 103 104 105

time

101

102

Figure 3: Time evolution of the physical quantities with ε= 0.02, and the artificial regularization parameter
A=0.1. Left: Semi-log plot of the temporal evolution the energy EN. The energy decreases like −ln(t) until
saturation. Middle: The log-log plot of the average height (or roughness) of u, denoted as h(t), which grows
like t1/2. Right: The log-log plot of the average width of u, denoted m(t), which grows like t1/4. The dotted
lines correspond to the minimum energy reached by the numerical simulation. The red lines represent the energy
plot obtained by the simulations, while the straight lines are obtained by least squares approximations to the
energy data. The least squares fit is only taken for the linear part of the calculated data, only up to about time
t=400. The fitted line for the energy has the form ae ln(t)+be, with ae=−39.7488, be=−152.3815; the (blue)
fitting line for the average height has the form ahtbh , with ah =0.4017, bh =0.5002, and the fitting line for the
average width has the form amtbm , with am =4.1488, bm =0.2543.

example, begins to wildly deviate from the predicted −ln(t) curve. Sometimes the rate of
decrease increases, and sometimes it slows as the systems “feels” the periodic boundary
conditions. Interestedly, regardless of this later-time deviation from the accepted rates,
the time at which the system saturates (i.e., the time when the energy abruptly and essen-
tially stops decreasing) is roughly that predicted by extending the blue lines in Fig. 3 to
the predicted minimum energy (4.4).

In addition, we perform a numerical test to make a comparison between different
artificial regularization parameter values of A, in terms of its impact on the long time
simulation. In addition to the numerical results obtained with A=0.1, we carried out an-
other numerical simulation with exactly the same set-up, the physical parameters, as well
as the computational domain, while choosing another regularization parameter value
A= 289

1024 , the theoretically critical value given by Theorem 2.1. With this regularization
parameter, the overall structures are very similar, the final steady state solutions have the
same pattern, while the long time behavior and the scaling law for the physical quanti-
ties have minor difference. Fig. 4 displays the semi-log plots for the energy versus time
and log-log plots for the average height versus time, and average slope versus time, re-
spectively, with the regularization parameter A= 289

1024 . For instance, the saturation time

scale for the numerical results with A=0.1 is around 3×105, while the one with A= 289
1024

is around 5×105. By the numerical simulation of a third order accurate ETD-based nu-
merical scheme reported in a recent work [9], we believe that the saturation time scale
of 3×105 would be more accurate. And also, the detailed numerical data show that long
time asymptotic growth rate of the standard deviation given by the regularization pa-
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Figure 4: Time evolution of the physical quantities with ε= 0.02, and the artificial regularization parameter
A= 289

1024 . The figure set up is the same as in Fig. 3. For this artificial regularization parameter, the saturation

time scale is 5×105. The fitted line for the energy has the form ae ln(t)+be, with ae=−41.1038, be=−148.9292;
the (blue) fitting line for the average height has the form ahtbh , with ah = 0.4116, bh = 0.5064, and the fitting
line for the average width has the form amtbm , with am =4.1906, bm =0.2575.

rameter A=0.1 is closer to t1/2 than that by the one with A= 289
1024 : mr=0.5002 for A=0.1,

vs. mr =0.5064 for A= 289
1024 , as recorded in Figs. 3 and 4, respectively. Similarly, the long

time asymptotic growth rate of the mound width given by the results with A = 0.1 is
closer to t1/4 than that by the one with A= 289

1024 : bm = 0.2543 for A= 0.1 vs. bm = 0.2575

for A= 289
1024 , as recorded in the two figures. This gives more evidence that the artificial

regularization parameter really makes impact on the long time simulation of the epitax-
ial thin film model. In general, the long time accuracy improves with a decreasing value
such a regularization parameter.

For the regularization parameter A≥ 289
1024 , the theoretical analysis has ensured an un-

conditional energy stability, independent on the time step size. For A ≤ 289
1024 , such as

A=0.1 in this numerical simulation, extensive numerical experiments have also demon-
strated energy stability independent on the time step size.

As mentioned at the beginning of this work, the proposed BDF-type scheme (2.17) is
a variation of an existing work [26], in which the nonlinear term takes an alternate form,
and the regularization coefficient has a constraint A≥ 25

16 . We have performed a few more
numerical simulations, with increasing values of A, and these numerical results lead to
larger saturation time scale. As a result, we conclude that an optimized regularization
coefficient is valuable in the large time computation of no-slope-selection epitaxial thin
film equation.

5 Concluding remarks

In this article, the effect of the artificial regularization term for the second order accu-
rate numerical schemes for the no-slope-selection equation (1.3) of the epitaxial thin film
growth model is studied. In particular, we propose and analyze an alternate BDF2-type



460 X. Meng et al. / CSIAM Trans. Appl. Math., 1 (2020), pp. 441-462

scheme, combined with Fourier pseudo-spectral spatial discretization. As usual, the sur-
face diffusion term is treated implicitly, while the nonlinear chemical potential is approx-
imated by an explicit extrapolation formula for the sake of solvability. A second order ac-
curate Douglas-Dupont regularization term, in the form of −A∆t∆2

N(u
n+1−un), is added

to stabilize the numerical scheme. Instead of the standard approximation to the nonlinear
chemical potential at time step tn+1, given by g(2un−un−1) in an existing work, we use
alternate approximation as 2g(un)−g(un−1) in the proposed scheme. Such an alternate
approximation leads to a much improved regularization parameter constraint: A≥ 289

1024 ,

to justify a modified energy stability, in comparison with A ≥ 25
16 and A ≥ 2+

√
3

6 in the
existing literature, for the standard stabilized BDF2-type and the stabilized ETD-based
schemes, respectively. In addition to the energy stability, the optimal rate convergence
analysis and error estimate are derived in details, in the ℓ∞(0,T;ℓ2)∩ℓ2(0,T;H2

h) norm,
with the help of a linearized estimate for the nonlinear error terms. Some numerical sim-
ulation results are presented to demonstrate the robustness and accuracy of the alternate
second order numerical scheme. The long time simulation results for the coarsening pro-
cess have indicated a logarithm law for the energy decay, as well as the power laws for
growth of the surface roughness and the mound width. A numerical test is carried out
to make a comparison between different artificial regularization parameter values of A,
in terms of its impact on the long time simulation. In general, the long time accuracy
improves with a decreasing value such a regularization parameter. This gives another
evidence that the improvement of the regularization parameter value (as reported in this
article) would lead to more accurate scientific computing tools in the large time-scale
computations.
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