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Abstract. In this paper we propose and analyze a backward differentiation formula

(BDF) type numerical scheme for the Cahn-Hilliard equation with third order tem-

poral accuracy. The Fourier pseudo-spectral method is used to discretize space. The
surface diffusion and the nonlinear chemical potential terms are treated implicitly,

while the expansive term is approximated by a third order explicit extrapolation for-
mula for the sake of solvability. In addition, a third order accurate Douglas-Dupont

regularization term, in the form of −A0∆t2∆N (φn+1−φn), is added in the numerical

scheme. In particular, the energy stability is carefully derived in a modified version,
so that a uniform bound for the original energy functional is available, and a theo-

retical justification of the coefficient A becomes available. As a result of this energy

stability analysis, a uniform-in-time L6
N

bound of the numerical solution is obtained.
And also, the optimal rate convergence analysis and error estimate are provided, in

the L∞

∆t
(0, T ;L2

N
) ∩ L2

∆t
(0, T ;H2

h
) norm, with the help of the L6

N
bound for the nu-

merical solution. A few numerical simulation results are presented to demonstrate

the efficiency of the numerical scheme and the third order convergence.
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N
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1. Introduction

The Allen-Cahn (AC) [1] (non-conserved dynamics) and Cahn-Hilliard (CH) [4]
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(conserved dynamics) equations, are some of the best known gradient flow models.

They result from the same or similar models for the free energy density and only differ

in whether they are conserved or non-conserved flows. The CH equation model spin-

odal decomposition and phase separation in a binary alloy or fluid. Over a bounded

domain Ω ⊂ R
d (with d = 2 or d = 3), the Cahn-Hilliard energy functional is given

by [4]

E(φ) =

∫

Ω

(
1

4
φ4 − 1

2
φ2 +

1

4
+

ε2

2
|∇φ|2

)
dx (1.1)

for any φ ∈ H1(Ω), where ε is a constant associated with the interface width. The CH

equation is precisely the H−1 (conserved) gradient flow of the energy functional (1.1)

φt = ∆µ, µ := δφE = φ3 − φ− ε2∆φ. (1.2)

Variations of the model may use non-constant mobilities or other free energy densities.

For simplicity of presentation, we assume periodic boundary condition in this article,

although an extension to other type boundary conditions, such as the homogeneous

Neumann one, will be straightforward. Due to the gradient structure of (1.2), the

following energy dissipation law holds:

d

dt
E
(
u(t)

)
= −

∫

Ω
|∇w|2dx.

Furthermore, the equation is mass conservative,
∫
Ω ∂tu dx = 0, which follows from the

conservative structure of the equation together with the periodic Neumann boundary

conditions for µ. This property can be re-expressed as (u( · , t), 1) = (u0, 1), for all t ≥ 0.

The Cahn-Hilliard equation is a very important model in mathematical physics. It

is often paired with equations that describe important physical behavior of a given

physical system, typically through nonlinear coupling terms. Examples of such coupled

models include the Cahn-Hilliard-Navier-Stokes (CHNS) equation for two-phase, im-

miscible flow; the Cahn-Larché model of binary solid state diffusion for elastic misfit;

the Cahn-Hilliard-Hele-Shaw (CHHS) equation for spinodal decomposition of a binary

fluid in a Hele-Shaw cell, etc. The scientific challenge of the CH equation model is

obvious, due to its fourth-order, nonlinear parabolic-type nature.

The energy stability of a numerical scheme has been a very important issue, since

it plays an essential role in the accuracy of long time numerical simulation. There have

been extensive existing numerical works with energy stability, in particular for first or-

der and second order accurate (in time) schemes. Among the second order energy

stable numerical schemes, the temporal discretization has been focused on either the

Crank-Nicolson approximation [7, 17–20, 26–30] or the second order backward differ-

entiation formula (BDF) one [13, 47]. Other than these numerical algorithms for the

Cahn-Hilliard model, which preserve the energy dissipation in the original phase vari-

able, a few other numerical works have been reported for the reformulated physical

system with an introduction of certain auxiliary variables, such as the scalar auxiliary
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variable (SAV) approach [40–42]. In comparison with the first order schemes, the nu-

merical viscosity is drastically reduced in these second order schemes, and this fact has

been verified by both the theoretical analysis and various numerical experiments.

Furthermore, it is observed that, some artificial diffusion terms were contained in

these reported second order accurate schemes to ensure the energy stability. In turn,

a quantitative study of these numerical dissipations is needed to explore their impact

on the long time numerical accuracy. Meanwhile, various numerical experiments have

revealed that third order accurate schemes can drastically reduce the numerical dissi-

pation and improve the long time numerical accuracy. For example, a recent work [14]

of a third order scheme for the no-slope-selection (NSS) thin film gradient equation has

produced much more accurate solutions than the ones computed by the second order

schemes, in particular in terms of power law index for growth of the surface roughness

and the mound width in the coarsening process, with improvements of two more dec-

imal points in both power law index precisions. Also see [8, 31] for similar numerical

results. Meanwhile, it is observed that, a theoretical analysis for these reported third

order schemes for the no-slope-selection thin film model is based on the following sub-

tle fact: the derivatives of the nonlinear terms in the NSS model are automatically L∞,

due to the special structure of the function ln(1 + |x|2). On the other hand, such a nice

property is not available for many gradient equations with a polynomial-pattern energy

potential, such as the presently-considered Cahn-Hilliard flow. As a result, efficient and

stable third order accurate numerical schemes are expected to be highly desirable in

the scientific computing of Cahn-Hilliard type equations. But, another natural question

arises: could the energy stability be theoretically justified for a third order accurate (in

time) numerical scheme for Cahn-Hilliard model? In fact, this problem is open for the

gradient flow with polynomial free energy. In the existing literature, the only related

work in this category could be found in [46], where a linearized third order numer-

ical scheme was used for the slope-selection epitaxial thin film equation. However,

a theoretical justification of the energy stability analysis has not been available for the

discussed numerical scheme, while the analyses for the first and second order accurate

linearized schemes have been reported in [33–35].

In this article, we propose and analyze a third order accurate numerical scheme

for the CH equation (1.2), based on the standard BDF3 temporal approximation, com-

bined with an explicit extrapolation formula for the expansive linear term. The unique

solvability analysis comes from the convexity structure associated with the nonlinear

implicit term. Moreover, the explicit treatment to the linear expansive term would

not be able to ensure the energy stability at the theoretical level. To overcome this

difficulty, we have to add a third order Douglas-Dupont regularization term in the nu-

merical scheme, namely in the form of −A0∆t2∆N (φn+1 −φn). Furthermore, a careful

energy estimate enables us to derive a rigorous stability estimate for a modified energy

function, which contains the original energy functional and a few non-negative numer-

ical correction terms. Meanwhile, the Fourier pseudo-spectral method is utilized for

spatial approximation, and the discrete summation by parts property will facilitate the

corresponding analysis for the fully discrete scheme. As a result of this modified en-
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ergy stability, we are able to derive a uniform-in-time H1
h bound for the original energy

functional, which in turn leads to an L6
N estimate for the numerical solution, with the

help of a discrete Sobolev embedding.

In addition to the energy stability analysis, we provide a theoretical analysis with

the optimal convergence rate, O(∆t3+hm), for the proposed third order BDF3 scheme,

in the L∞
∆t(0, T ;L

2
N ) ∩ L2

∆t(0, T ;H
2
h) norm. Similar to the estimates [31, 48], a direct

inner product with the numerical error equation by en+1 (the error function at time

step tn+1) does not lead to the desired result, because of the long stencil structure

involved. Instead, an inner product with en+1 + (en+1 − en) is considered by in the

analysis, originated from an existing work [37]. In turn, the full order convergence

result is expected via detailed numerical error estimates. In particular, the established

uniform-in-time L6
N bound for the numerical solution will play an essential role in the

convergence estimate.

The long time simulation results for the coarsening process have indicated a t−
1

3

law for the energy decay. In particular, the power index for energy decay, created by

the proposed third order BDF scheme, is more accurate than those created by certain

second order schemes in the existing literature, with the same numerical resolution.

This experiment has demonstrated the robustness of the proposed BDF3 numerical

scheme.

The rest of the article is organized as follows. In Section 2 we present the numeri-

cal scheme, including the review of the Fourier pseudo-spectral spatial approximation.

Afterward, a modified energy stability is established for the proposed third order BDF

scheme. Subsequently, the L∞
N (0, T ;L2

N ) ∩ L2
N (0, T ;H2

h) convergence estimate is pro-

vided in Section 3. In Section 4 we present the numerical results, including the accuracy

test and the long time simulation for the coarsening process. Finally, the concluding

remarks are given in Section 5.

2. The numerical scheme

2.1. Review of the Fourier pseudo-spectral approximation

For simplicity of presentation, we assume that the domain is given by Ω = (0, L)2,

Nx = Ny = N and N · h = L. A more general domain could be treated in a similar

manner. Furthermore, to facilitate the pseudo-spectral analysis in later sections, we

set N = 2K + 1. (The case for N even can be treated similarly.) All the variables are

evaluated at the regular numerical grid (xi, yj , zk), with xi = ih, yj = jh, zk = kh,

0 ≤ i, j, k ≤ 2K + 1.

Without loss of generality, we assume that L = 1. For a periodic function f over the

given 3D numerical grid, define its discrete Fourier expansion as

fi,j,k =

K∑

ℓ,m,n=−K

f̂ℓ,m,n exp
(
2πi(ℓxi +myj + nzk)

)
. (2.1)
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Then, the Fourier collocation spectral approximations to first and second order partial

derivatives in the x-direction become

(DNxf)i,j,k =

K∑

ℓ,m,n=−K

(2ℓπi) f̂ℓ,m,n exp
(
2πi(ℓxi +myj + nzk)

)
, (2.2)

(
D2

Nxf
)
i,j,k

=
K∑

ℓ,m,n=−K

(
−4π2ℓ2

)
f̂ℓ,m,n exp

(
2πi(ℓxi +myj + nzk)

)
. (2.3)

The differentiation operators in the y and z directions, namely, DNy, D2
Ny, DNz, D2

Nz,

are defined in the same fashion. In turn, the discrete Laplacian, gradient and diver-

gence become

∆Nf =
(
D2

Nx +D2
Ny +D2

Nz

)
f,

∇Nf =




DNxf

DNyf

DNzf


 , ∇N ·




f1
f2
f3


 = DNxf1 +DNyf2 +DNzf3, (2.4)

at the point-wise level. See the derivations in the related references [3,5,23,32], etc.

We define the grid function space

GN :=
{
f : Z3 → R

∣∣ f is ΩN -periodic
}
. (2.5)

The zero-mean grid function subspace is denoted

G̊N :=
{
f ∈ GN

∣∣ 〈f, 1〉 =: f = 0
}
,

where

〈f, g〉 := h3
N−1∑

i,j,k=0

fi,j,kgi,j,k (2.6)

for any f, g ∈ GN . The discrete form of the L2 norm is defined as

‖f‖2 :=
√

〈f, f〉. (2.7)

A careful calculation yields the following formulas of summation by parts at the discrete

level (see the related discussions [6,10,24,25]):

〈f,∆Ng〉 = −〈∇Nf,∇Ng〉,
〈
f,∆2

Ng
〉
= 〈∆Nf,∆Ng〉. (2.8)

For any grid function f ∈ G̊N , the operator (−∆N )−1 and the discrete ‖ · ‖−1,N norm

are defined as

(
(−∆N )−1f

)
i,j,k

:=
∑

ℓ,m,n 6=0

1

λℓ,m,n
f̂ℓ,m,n exp

(
2πi(ℓxi +myj + nzk)

)
, (2.9)

‖f‖−1,N :=
√
〈f, (−∆N )−1f〉, (2.10)

where λℓ,m,n := 4π2(ℓ2 +m2 + n2).
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In addition to the standard L2
N norm, we also introduce the L

p
N and discrete maxi-

mum norms for a grid function f , to facilitate the analysis in later sections

‖f‖∞ := max
i,j,k

|fi,j,k|, ‖f‖p :=


h3

N−1∑

i,j,k=0

|fi,j,k|p



1

p

, 1 ≤ p < ∞. (2.11)

The discrete H1 norm is introduced as

‖f‖2H1

N
:= ‖f‖22 + ‖∇Nf‖22.

For any grid function φ, the discrete energy is defined as

EN (φ) =
1

4
‖φ‖44 −

1

2
‖φ‖22 +

1

4
|Ω|+ ε2

2
‖∇Nφ‖22 . (2.12)

The following result corresponds to a discrete Sobolev embedding from H1
N to L6

N

in the pseudo-spectral space. Similar discrete embedding estimates in the discrete L4
N

and L∞
N norms could be found in [17, Lemmas 2.1 and 2.2]; a discrete embedding

from H2
N to W

1,6
N has been reported in [16]; also see the related results [9, 21, 22] in

the finite difference version. A direct calculation is not able to derive this inequality;

instead, a discrete Fourier analysis has to be applied in the derivation. The details will

are given in Appendix A.

Proposition 2.1. For any periodic grid function f , we have

‖f‖6 ≤ C‖f‖H1

N
(2.13)

for some constant C > 0 only dependent on Ω.

2.2. The proposed third order BDF numerical scheme

As usual, we denote φk as the numerical approximation to the PDE solution at time

step tk := k∆t, with any integer k. For n ≥ 2, given φn, φn−1, φn−2, we propose a third

order BDF-type scheme for the CH equation (1.2)

1

∆t

11

6
φn+1 − 3φn +

3

2
φn−1 − 1

3
φn−2 (2.14)

= ∆N

((
φn+1

)3 −
(
3φn − 3φn−1 + φn−2

)
− ε2∆Nφn+1 −A0∆t2∆N

(
φn+1 − φn

))
.

Remark 2.1. Since the third order algorithm (2.14) is a three-step scheme, the nu-

merical approximations φ1 and φ2 are needed in the initial time step. If we take

φ2 = φ1 = φ0, the energy bound estimate will become simple, while the third or-

der numerical accuracy may have been lost in the initial step. Instead, we could use

alternate explicit high-order numerical algorithms, such as RK2 and RK3, to update
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the numerical solutions at φ1 and φ2, so that the third order numerical accuracy is pre-

served in the first few time steps. This approach enables one to derive the full third

order temporal convergence estimate, as will be demonstrated in the future sections.

In particular, we notice that the first two RK time steps in the initial approximation

will not cause any stability concern, since they are treated as the initial values in the

numerical scheme.

For the proposed scheme (2.14), the mass-conservative property is always valid

un+1 = un = u0 := β0, which comes from the following obvious identity: ∆Ng = 0, for

any periodic grid function g.

2.3. Unique solvability analysis

The unique solvability of the proposed numerical scheme (2.14) is stated in the

following theorem.

Theorem 2.1. For n ≥ 2, given φn, φn−1, φn−2 ∈ GN , with φn = φn−1 = φn−2 = β0,

there is a unique solution φn+1 ∈ GN to the proposed scheme (2.14).

Proof. The numerical solution to (2.14) could be equivalently rewritten as

NN [φ] = f := ∆t
(
φ̂n+1 −A0∆t2∆Nφn

)
(2.15)

with

φ̂n+1 := 3φn − 3φn−1 + φn−2,

and

NN [φ] := (−∆N )−1

(
11

6
φ− 3φn +

3

2
φn−1 − 1

3
φn−2

)

+∆tφ3 −∆t
(
ε2 +A0∆t2

)
∆Nφ. (2.16)

By setting φ = β0 + φ̃ (with β0 = φ̄), the nonlinear equation (2.15) can be recast as

a minimization problem for the following discrete energy functional:

FN [φ̃] :=
3

11

∥∥∥∥
11

6
(φ̃+ β0)− 3φn +

3

2
φn−1 − 1

3
φn−2

∥∥∥∥
2

−1,N

+
∆t

4

∥∥φ̃+ β0
∥∥4
4

+
(ε2 +A0∆t2)∆t

2

∥∥∇N φ̃
∥∥2
2
−
〈
f, φ̃+ β0

〉
(2.17)

for any φ̃ ∈ G̊N . Since FN it has a unique numerical minimizer. This is the unique

solution for (2.14).
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2.4. The energy stability analysis

The energy stability of the proposed third order BDF-type scheme (2.14) is stated

in the following theorem, in a modified version.

Theorem 2.2. Suppose that A0 ≥ 9
32ε

−2 and n ≥ 2. The numerical solution produced by

the proposed BDF-type scheme (2.14) satisfies

ẼN

(
φn+1, φn, φn−1

)
≤ ẼN

(
φn, φn−1, φn−2

)
(2.18)

for any ∆t > 0, where

ẼN

(
φn+1, φn, φn−1

)
:= EN

(
φn+1

)
+

3

4∆t

∥∥φn+1 − φn
∥∥2
−1,N

+
1

6∆t

∥∥φn − φn−1
∥∥2
−1,N

+
1

2

(∥∥φn+1 − φn
∥∥2
2
+
∥∥φn+1 − 2φn + φn−1

∥∥2
2

)
. (2.19)

Proof. For the energy stability, we take the discrete inner product of (2.14) with

(−∆N )−1(φn+1 − φn)

0 =
1

∆t

〈
11

6
φn+1 − 3φn +

3

2
φn−1 − 1

3
φn−2, (−∆N )−1(φn+1 − φn)

〉

+
〈
−∆N

(
(φn+1)3

)
, (−∆N )−1(φn+1 − φn)

〉

+ ε2
〈
∆2

Nφn+1, (−∆N )−1(φn+1 − φn)
〉

+A0∆t2
〈
∆2

N (φn+1 − φn), (−∆N )−1(φn+1 − φn)
〉

+
〈
∆N

(
3φn − 3φn−1 + φn−2

)
, (−∆N )−1(φn+1 − φn)

〉
. (2.20)

For the nonlinear term,

〈
−∆N

(
(φn+1)3

)
, (−∆N )−1(φn+1 − φn)

〉

=
〈
(φn+1)3, φn+1 − φn

〉
≥ 1

4

(
‖φn+1‖44 − ‖φn‖44

)
, (2.21)

where the convexity of the function 1
4x

4 has been applied. For the highest-order linear

term,

〈
∆2

Nφn+1, (−∆N )−1(φn+1 − φn)
〉

=
〈
∇Nφn+1,∇N (φn+1 − φn)

〉

=
1

2

(∥∥∇Nφn+1
∥∥2
2
−
∥∥∇Nφn

∥∥2
2
+
∥∥∇N (φn+1 − φn)

∥∥2
2

)
. (2.22)

For the BDF3 temporal stencil, we begin with the following equivalent form:

11

6
φn+1 − 3φn +

3

2
φn−1 − 1

3
φn−2

=
2

3
(φn+1 − φn) +

7

6
(φn+1 − 2φn + φn−1) +

1

3
(φn−1 − φn−2).
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This in turn indicates that
〈
11

6
φn+1 − 3φn +

3

2
φn−1 − 1

3
φn−2, (−∆N )−1(φn+1 − φn)

〉

=
2

3
‖φn+1 − φn‖2−1,N +

7

6

〈
φn+1 − 2φn + φn−1, φn+1 − φn

〉
−1,N

+
1

3

〈
φn−1 − φn−2, φn+1 − φn

〉
−1,N

≥ 2

3
‖φn+1 − φn‖2−1,N − 1

6
‖φn+1 − φn‖2−1,N − 1

6
‖φn−1 − φn−2‖2−1,N

+
7

12

(
‖φn+1 − φn‖2−1,N − ‖φn − φn−1‖2−1,N + ‖φn+1 − 2φn + φn−1‖2−1,N

)

=
13

12
‖φn+1 − φn‖2−1,N − 7

12
‖φn − φn−1‖2−1,N − 1

6
‖φn−1 − φn−2‖2−1,N

+
7

12
‖φn+1 − 2φn + φn−1‖2−1,N . (2.23)

For the concave term, the following equivalent expression holds:

−3φn + 3φn−1 − φn−2 = −φn+1 +
(
φn+1 − 2φn + φn−1

)
−
(
φn − 2φn−1 + φn−2

)
.

Then we have

〈
∆N (3φn − 3φn−1 + φn−2), (−∆N )−1(φn+1 − φn)

〉

=
〈
− 3φn + 3φn−1 − φn−2), φn+1 − φn

〉

= −
〈
φn+1 − φn, φn+1

〉
+
〈
φn+1 − φn, φn+1 − 2φn + φn−1

〉

−
〈
φn+1 − φn, φn − 2φn−1 + φn−2

〉

≥ −1

2

(
‖φn+1‖22 − ‖φn‖22

)
− 1

2
‖φn+1 − φn‖22

+
1

2

(
‖φn+1 − φn‖22 − ‖φn − φn−1‖22

)
− 1

2
‖φn+1 − φn‖22

+
1

2

(
‖φn+1 − 2φn + φn−1‖22 − ‖φn − 2φn−1 + φn−2‖22

)

= −1

2

(
‖φn+1‖2 − ‖φn‖22

)
− 1

2
‖φn+1 − φn‖22 −

1

2
‖φn − φn−1‖22

+
1

2

(
‖φn+1 − 2φn + φn−1‖22 − ‖φn − 2φn−1 + φn−2‖22

)
. (2.24)

Substituting (2.21)-(2.24) into (2.20) yields

0 ≥ 1

4

(
‖φn+1‖44 − ‖φn‖44

)
+

ε2

2

(
‖∇Nφn+1‖22 − ‖∇Nφn‖22 + ‖∇N (φn+1 − φn)‖22

)

− 1

2

(
‖φn+1‖22 − ‖φn‖22

)
− 1

2
‖φn+1 − φn‖22

− 1

2
‖φn − φn−1‖22 +A0∆t2‖∇N (φn+1 − φn)‖2
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+
1

∆t

(
13

12
‖φn+1 − φn‖2−1,N − 7

12
‖φn − φn−1‖2−1,N − 1

6
‖φn−1 − φn−2‖2−1,N

)

+
1

2

(
‖φn+1 − 2φn + φn−1‖22 − ‖φn − 2φn−1 + φn−2‖22

)
. (2.25)

This inequality could be rewritten as

0 ≥ EN (φn+1)− EN (φn) +
ε2

2
‖∇N (φn+1 − φn)‖22 +A0∆t2‖∇N (φn+1 − φn)‖22

+
1

3∆t
‖φn+1 − φn‖2−1,N − 1

2
‖φn+1 − φn‖22 −

1

2
‖φn − φn−1‖22

+
1

∆t

(
3

4
‖φn+1 − φn‖2−1,N − 7

12
‖φn − φn−1‖2−1,N − 1

6
‖φn−1 − φn−2‖2−1,N

)

+
1

2

(
‖φn+1 − 2φn + φn−1‖22 − ‖φn − 2φn−1 + φn−2‖22

)
. (2.26)

Under the condition that

A0 ≥
9

32
ε−2

it follows that
ε2

2
+A0∆t2 ≥

√
2A0ε∆t ≥ 3

4
∆t. (2.27)

Therefore, we obtain

‖φn+1 − φn‖2 ≤ 3

4
∆t‖∇N (φn+1 − φn)‖22 +

1

3∆t
‖φn+1 − φn‖2−1,N

≤ ε2

2
‖∇N (φn+1 − φn)‖22 +A0∆t2‖∇N (φn+1 − φn)‖2

+
1

3∆t
‖φn+1 − φn‖2−1,N , (2.28)

where the Cauchy inequality has been applied. Going back to (2.26), we get

0 ≥ EN (φn+1)− EN (φn) +
1

2

(
‖φn+1 − φn‖22 − ‖φn − φn−1‖22

)

+
1

∆t

(
3

4
‖φn+1 − φn‖2−1,N − 7

12
‖φn − φn−1‖2−1,N − 1

6
‖φn−1 − φn−2‖2−1,N

)

+
1

2

(
‖φn+1 − 2φn + φn−1‖22 − ‖φn − 2φn−1 + φn−2‖22

)
, (2.29)

which is equivalent to (2.18). This finishes the proof of Theorem 2.2.

Corollary 2.1. Suppose that A0 ≥ 9
32ε

−2 and the initial data are sufficiently regular so

that there is a constant C0 > 0, independent of N and ∆t, such that

C0 ≥ EN (φ2) +
3

4∆t
‖φ2 − φ1‖2−1,N +

1

6∆t
‖φ1 − φ0‖2−1,N

+
1

2

(
‖φ2 − φ1‖22 + ‖φ2 − 2φ1 + φ0‖22

)
, (2.30)
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where we may assume that initial data, φ0, φ1 and φ2 are mass-conservative Fourier

projections of the exact PDE solution, described in Section 3. Then, there is a constant

C1 > 0, which depends on Ω and C0, but is independent of N , ∆t and final time, such

that

‖φm‖H1

N
≤ C1, ∀m ≥ 1. (2.31)

Proof. By the modified energy inequality (2.18), the following induction analysis

could be performed:

EN (φk) ≤ ẼN

(
φk, φk−1, φk−2

)
≤ · · · ≤ ẼN

(
φ2, φ1, φ0

)
≤ C0, ∀k ≥ 2. (2.32)

Meanwhile, at each time step tm, the following inequality comes from an application

of quadratic inequality:
1

4
‖φm‖44 − ‖φm‖22 ≥ −|Ω|. (2.33)

Then we obtain

EN (φm) ≥ 1

2
‖φm‖22 +

ε2

2
‖∇Nφm‖22 − |Ω|, (2.34)

which, in turn, leads to

ε2

2

(
‖φm‖22 + ‖∇Nφm‖22

)
≤ EN (φm) + |Ω| ≤ C0 + |Ω|. (2.35)

This is equivalent to

‖φm‖H1

N
≤
√

2(C0 + |Ω|)ε−2 =: C1, (2.36)

which is valid for any m ≥ 2. The case of m = 1 is trivial. The proof of Corollary 2.1 is

complete.

Remark 2.2. The requirement (2.27) for the parameter A0 indicates an order of A0 =
O(ε−2). Such a requirement is based on a subtle fact that, an extra stability estimate

from the surface diffusion term has to be used to balance the stability loss coming

from the multi-step explicit treatment of the linear expansive term, and the surface

diffusion coefficient is given by ε2 in the physical parameter. Also see the related work

of Douglas-Dupont regularization [44].

On the other hand, such a parameter order A0 = O(ε−2) is only used for the the-

oretical justification of the energy stability. In the practical computations, the choice

of A0 = O(1) has never led to any energy stability loss for the proposed third order

scheme.

Remark 2.3. There have been a few recent works of the second order BDF schemes

for certain gradient flow models, such as Cahn-Hilliard [13, 47], epitaxial thin film

equation [22, 36, 38], square phase field crystal [16], in which the energy stability

was theoretically established. Similarly, a Douglas-Dupont type regularization has to

be included in the numerical scheme, while a careful analysis only requires the corre-

sponding parameter A of an order A = O(1). The primary reason for the difference
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in the order of the artificial parameter A between the second and third order numeri-

cal schemes is based on the following fact: for the second order scheme, the artificial

regularization, with magnitude O(∆t2), and the temporal discretization terms are suf-

ficient to theoretically justify the energy stability; while for the third order scheme,

these two terms are not sufficient to ensure the numerical stability, since the artificial

regularization term has to be in the order of O(∆t3) to keep the third order temporal

accuracy.

Remark 2.4. The stability and convergence estimates for the temporally third order

accurate numerical schemes have been reported for fluid models, such as viscous Burg-

ers’ equation [25], incompressible Navier-Stokes equation [15], harmonic mapping

flow [45], etc.

For the gradient models, the only existing works to address the energy stability for

a third order numerical scheme could be found [8, 14, 46]. In this article, we provide

an alternate third order numerical approach for the standard Cahn-Hilliard equation,

for which both the energy stability and optimal rate convergence estimate could be

theoretically justified.

Remark 2.5. As a combination of the uniform-in-time H1
N bound (2.31) and the dis-

crete Sobolev embedding inequality (2.13), we arrive at a uniform-in-time L6
N estimate

for the numerical solution

‖φm‖6 ≤ CC1, ∀m ≥ 1. (2.37)

This estimate will be useful in the convergence analysis presented below.

Remark 2.6. In the numerical scheme (2.14), the Douglas-Dupont type regularization

term takes the form of −A0∆t2∆N (φn+1 − φn), which in turn leads to a parameter

order A0 = O(ε−2) to ensure the energy stability at a theoretical level. Meanwhile, if

higher order regularization term is used, such as the form of A0∆t2∆2
N (φn+1−φn), the

artificial parameter could be taken as A0 = O(1) to theoretically establish the energy

stability analysis; also see the related works [8,11] for the associated estimates.

2.5. The artificial regularization parameter estimate dependent on the time
step size

In a related work [43], a stabilized BDF2 numerical scheme is analyzed for the

Cahn-Hilliard equation, and a modified energy stability is theoretically justified under

a time step size dependent condition for A0

A0 ≥ Ãε−2 − α1

2
· ε

∆t
with Ã = O(1), 0 ≤ α1 ≤ 1 . (2.38)

In fact, a similar estimate could also be derived for the proposed BDF3 scheme (2.14).
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Theorem 2.3. Under the condition that

A0 ≥
9

8
ε−2 − 3

4∆t
, (2.39)

the numerical solution produced by the proposed BDF-type scheme (2.14) satisfies the

modified energy stability estimate (2.18) for any ∆t > 0, with ẼN (φn+1, φn, φn−1) defined

in (2.19).

Proof. All the estimate from (2.20) to (2.26) are still valid. For the artificial regu-

larization parameter A0, we decompose it as A0 = A∗ − B0, with A∗ = 9
8ε

−2, so that

B0 ≤ 3
4∆t , B0∆t ≤ 3

4 . Then we see that

ε2

2
+A∗∆t2 ≥

√
2A∗ε∆t ≥ 3

2
∆t. (2.40)

Moreover, the following lower bound becomes available:

ε2

2
+A0∆t2 =

ε2

2
+A∗∆t2 −B0∆t2 ≥ 3

2
∆t− 3

4
∆t =

3

4
∆t. (2.41)

Because of this bound, the estimates (2.28) and (2.29) are still valid. This finishes the

proof of Theorem 2.3.

With a combination of Theorems 2.2 and 2.3, it is clear that the modified energy

stability estimate (2.18) is always valid for

A0 ≥ min

(
9

32
ε−2,

9

8
ε−2 − 3

4∆t

)
.

In turn, we see that the energy stability could be theoretically established even if A0 =
0, under a condition for the time step size, ∆t ≤ 3

2ε
2. This fact leads to a more flexible

choice of the time step size in the practical computations.

3. The convergence analysis for the third order BDF scheme

The global existence of smooth solution and analytic solution for the CH equation

(1.2) has been established in [39]. With initial data of sufficient regularity, we could

assume that the exact solution has regularity of class R

φe ∈ R := H4(0, T ;C0) ∩H3(0, T ;Hm+2) ∩ L∞(0, T ;Hm+4). (3.1)

Define ΦN ( · , t) := PNφe( · , t), the (spatially-continuous) Fourier projection of the

exact solution into BK , the space of trigonometric polynomials of degree at most K.

The following projection approximation is standard: if φe ∈ L∞(0, T ;Hℓ
per(Ω)), for

some ℓ ∈ N, we have

‖ΦN − φe‖L∞(0,T ;Hk) ≤ Chℓ−k‖φe‖L∞(0,T ;Hℓ), ∀ 0 ≤ k ≤ ℓ. (3.2)
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By Φm
N we denote ΦN ( · , tm), with tm = m ·∆t. Since ΦN ∈ PK , the mass conservative

property is available at the discrete level

Φm
N =

1

|Ω|

∫

Ω
ΦN (·, tm) dx =

1

|Ω|

∫

Ω
ΦN (·, tm−1) dx = Φm−1

N , ∀m ∈ N. (3.3)

On the other hand, the initial numerical solutions φ1 and φ2 may be obtained by a stable

RK2 or RK3 algorithm, as described in Remark 2.1, though here, for simplicity, we

will assume that they are obtained via mass-conservative Fourier projection of the exact

PDE solution. See below. By the mass conservative structure of the gradient flow, we

see that φ2 = φ1 = φ0. Therefore, the solution of the numerical scheme (2.14) is also

mass conservative at the discrete level

φm = φm−1, ∀m ∈ N. (3.4)

We denote Φm as the point projection values of ΦN at discrete grid points at time in-

stant tm: Φm
i,j,k := ΦN (xi, yj, zk, t

m). As indicated before, we use the mass conservative

projection for the initial data

φℓ
i,j,k = Φℓ

i,j,k := ΦN (xi, yj, zk, t = tℓ), ℓ = 0, 1, 2. (3.5)

The error grid function is defined as

em := Φm − φm, ∀m ≥ 0. (3.6)

Thus eℓ ≡ 0, ℓ = 0, 1, 2. A combination of the mass conservative identities, (3.3), (3.4),

for the projection solution and numerical solution, respectively, implies that em = 0,

for any m ≥ 0.

For the proposed third order BDF-type scheme (2.14), the convergence result is

stated below.

Theorem 3.1. Given initial data Φ0
N , Φ1

N , Φ2
N ∈ Cm+4

per (Ω), with periodic boundary

conditions, suppose the unique solution for the CH equation (1.2) is of regularity class R.

Then, provided ∆t and h are sufficiently small, for all positive integers ℓ, such that ∆t ·ℓ ≤
T , we have

‖eℓ‖2 +
(
ε2∆t

ℓ∑

m=1

‖∆Nem‖22

) 1

2

≤ C(∆t3 + hm), (3.7)

where C > 0 is independent of ∆t and h.

3.1. Review of a preliminary equality

Before the proof of the convergence result, we present the telescope formula in [37]

for the third order BDF temporal discretization operator in the following lemma; also

see [31,48] for the related discussion. In fact, an inner product with en+1+α(en+1−en)
(with α > 0) has also been reported in the analysis for the second order BDF scheme

with variable time-step sizes [2,12], etc.
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Lemma 3.1 ([37]). For the third order BDF temporal discrete operator, there exist con-

stants αi, i = 1, . . . , 10, α1 6= 0, such that
〈
11

6
en+1 − 3en +

3

2
en−1 − 1

3
en−2, 2en+1 − en

〉

= ‖α1e
n+1‖22 − ‖α1e

n‖22 + ‖α2e
n+1 + α3e

n‖22 − ‖α2e
n + α3e

n−1‖22
+ ‖α4e

n+1 + α5e
n + α6e

n−1‖22 − ‖α4e
n + α5e

n−1 + α6e
n−2‖22

+ ‖α7e
n+1 + α8e

n + α9e
n−1 + α10e

n−2‖22. (3.8)

3.2. The proof of convergence theorem

For the Fourier-projected solution ΦN and its point projection Φm
i,j := ΦN (xi, yj , t

m),
a careful consistency analysis implies that

1

∆t

(
11

6
Φn+1 − 3Φn +

3

2
Φn−1 − 1

3
Φn−2

)

+ ε2∆2
NΦn+1 +A0∆t2∆2

N (Φn+1 − Φn)

= ∆N ·
((

Φn+1
)3 −

(
3Φn − 3Φn−1 +Φn−2

))
+ τn (3.9)

with ‖τn‖2 ≤ C(∆t3 + hm). In turn, subtracting the numerical scheme (2.14) from the

consistency estimate (3.9) yields

1

∆t

(
11

6
en+1 − 3en +

3

2
en−1 − 1

3
en−2

)

+ ε2∆2
Nen+1 +A∆t2∆2

N (en+1 − en)

= ∆N

( (
(Φn+1)2 +Φn+1φn+1 + (φn+1)2

)
en+1

−
(
3en − 3en−1 + en−2

) )
+ τn. (3.10)

Taking a discrete L2
N inner product of (3.10) with 2en+1 − en gives

T0 :=
1

∆t

〈
11

6
en+1 − 3en +

3

2
en−1 − 1

3
en−2, 2en+1 − en

〉

+ ε2
〈
∆Nen+1,∆N (2en+1 − en)

〉

+A∆t2
〈
∆N (en+1 − en),∆N (2en+1 − en)

〉

=
〈 (

(Φn+1)2 +Φn+1φn+1 + (φn+1)2
)
en+1

− (3en − 3en−1 + en−2),∆N (2en+1 − en)
〉
+
〈
τn, 2en+1 − en

〉
, (3.11)

where summation by parts has been repeatedly applied in the derivation. The local

truncation error term could also be bounded in a straightforward way

〈
τn, 2en+1 − en

〉
≤ ‖τn‖22 + ‖en+1‖22 +

1

2

(
‖τn‖22 + ‖en‖22

)
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=
3

2
‖τn‖22 + ‖en+1‖22 +

1

2
‖en‖22. (3.12)

The surface diffusion and the Douglas-Dupont regularization terms could be analyzed

as follows:

〈
∆Nen+1,∆N (2en+1 − en)

〉

= ‖∆Nen+1‖22 +
〈
∆Nen+1,∆N (en+1 − en)

〉

≥ ‖∆Nen+1‖22 +
1

2

(
‖∆Nen+1‖22 − ‖∆Nen‖22

)
, (3.13)

〈
∆N (en+1 − en),∆N (2en+1 − en)

〉

= ‖∆N (en+1 − en)‖22 +
〈
∆Nen+1,∆N (en+1 − en)

〉

≥ ‖∆N (en+1 − en)‖22 +
1

2

(
‖∆Nen+1‖22 − ‖∆Nen‖22

)
. (3.14)

For the nonlinear error term on the right hand side of (3.11), we recall that

‖Φn+1‖6 ≤ C2, ‖φn+1‖6 ≤ CC1, (3.15)

in which the first inequality comes from the regularity assumption (3.1), while the

second one was derived in (2.37) (in Remark 2.5). An application of discrete Hölder

inequality leads to

∥∥((Φn+1)2 +Φn+1φn+1 + (φn+1)2
)
en+1

∥∥
2

≤
(
‖Φn+1‖26 + ‖Φn+1‖6 · ‖φn+1‖6 + ‖φn+1‖26

)
‖en+1‖6

≤ 3

2

(
‖Φn+1‖26 + ‖φn+1‖26

)
‖en+1‖6

≤ C
(
C2
2 + C2

1

)
‖en+1‖6. (3.16)

Subsequently, we arrive at

T1 :=
〈(
(Φn+1)2 +Φn+1φn+1 + (φn+1)2

)
en+1− (3en − 3en−1 + en−2),∆N (2en+1 − en)

〉

≤
(
C
(
C2
2 + C2

1

)
‖en+1‖6 + 3‖en‖2 + 3‖en−1‖2 + ‖en−2‖2

)
·
∥∥∆N (2en+1 − en)

∥∥
2

≤ 9

2
ε−2

(
C(C2

2 + C2
1 )‖en+1‖6 + 3‖en‖2 + 3‖en−1‖2 + ‖en−2‖2

)2

+
ε2

18

∥∥∆N (2en+1 − en)
∥∥2
2

≤ C
(
C2
2 + C2

1

)
ε−2‖en+1‖26 + ε−2

(
36‖en‖22 + 36‖en−1‖22 + 4‖en−2‖22

)

+
ε2

18

∥∥∆N (2en+1 − en)
∥∥2
2

≤ C
(
C2
2 + C2

1

)
ε−2

(
‖en+1‖22 + ‖∇Nen+1‖22

)

+ ε−2
(
36‖en‖22 + 36‖en−1‖22 + 4‖en−2‖22

)
+

ε2

18

∥∥∆N (2en+1 − en)
∥∥2
2



A Third Order BDF-Type Energy Stable Scheme for the Cahn-Hilliard Equation 295

≤
(
C
(
C4
2 + C4

1

)
+ 1
)
ε−6‖en+1‖22 +

ε2

4
‖∆Nen+1‖22

+ ε−2
(
36‖en‖22 + 36‖en−1‖22 + 4‖en−2‖22

)
+

ε2

18

∥∥∆N (2en+1 − en)
∥∥2
2
, (3.17)

where the discrete Sobolev inequality (2.13) (in Proposition 2.1) has been applied in

the fourth step, and the following estimate has been used in the last step:

‖∇Nen+1‖22 ≤ ‖en+1‖2 · ‖∆Nen+1‖2

≤ ε4

4α
‖∆Nen+1‖22 + αε−4‖en+1‖22, ∀α > 0. (3.18)

Define

Fm := ‖α1e
m‖22 + ‖α2e

m + α3e
m−1‖22 + ‖α4e

m + α5e
m−1 + α6e

m−2‖22, (3.19)

in which the parameters αi correspond to the coefficients in identity (3.8) in Lemma 3.1.

Substituting (3.8), (3.12)-(3.14) and (3.17) into (3.11) leads to

T2 :=
1

∆t
(Fn+1 − Fn) +

3

4
ε2‖∆Nen+1‖22

+
1

2
(ε2 +A∆t2)

(
‖∆Nen+1‖22 − ‖∆Nen‖22

)

≤
((
C
(
C4
2 + C4

1

)
+ 1
)
ε−6 + 1

)
‖en+1‖22

+ (ε−2 + 1)
(
36‖en‖22 + 36‖en−1‖22 + 4‖en−2‖22

)

+
ε2

18

∥∥∆N (2en+1 − en)
∥∥2
2
+

3

2
‖τn‖22. (3.20)

Meanwhile, for the error gradient term ‖∆N (2en+1−en)‖22, an application of the Cauchy

inequality implies that

∥∥∆N (2en+1 − en)
∥∥2
2
≤ 6‖∆Nen+1‖22 + 3‖∆Nen‖22. (3.21)

Then we arrive at

T3 :=
1

∆t
(Fn+1 − Fn) +

5

12
ε2‖∆Nen+1‖22

+
1

2
(ε2 +A∆t2)

(
‖∆Nen+1‖22 − ‖∆Nen‖22

)

≤
((
C
(
C4
2 + C4

1

)
+ 1
)
ε−6 + 1

)
‖en+1‖22

+ (ε−2 + 1)
(
36‖en‖22 + 36‖en−1‖22 + 4‖en−2‖22

)

+
ε2

6
‖∆Nen‖22 +

3

2
‖τn‖22. (3.22)

Next, let us define

F̃m := Fm +
1

2
(ε2 +A∆t2)∆t‖∆Nem‖22. (3.23)
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Making use of the simple fact

‖ek‖22 ≤
1

α2
1

F̃ k, ∀k ≥ 0, (3.24)

we obtain the following estimate

T4 :=
1

∆t
(F̃n+1 − F̃n) +

5

12
ε2‖∆Nen+1‖22 −

ε2

6
‖∆Nen‖22 (3.25)

≤
((
C
(
C4
2 + C4

1

)
+ 1
)
ε−6 + 1

)
α−2
1 (F̃n+1 + F̃n + F̃n−1 + F̃n−2) +

3

2
‖τn‖22.

In turn, an application of discrete Grönwall inequality results in the convergence esti-

mate

Fn+1 +

(
1

3
ε2∆t

n+1∑

m=1

‖∆Nem‖22

) 1

2

≤ Ĉ(∆t3 + hm)2. (3.26)

Furthermore, its combination with definition (3.19) (for Fn+1) indicates the desired

result (3.7). This completes the proof of Theorem 3.1.

4. Numerical results

4.1. Convergence test for the numerical scheme

In this subsection we perform a numerical accuracy check for the third order accu-

rate BDF-type scheme (2.14). The computational domain is set to be Ω = (0, 1)2, and

the exact profile for the phase variable is set to be

Φ(x, y, t) =
1

2π
sin(2πx) cos(2πy) cos(t). (4.1)

To make Φ satisfy the original PDE (1.2), we have to add an artificial, time-dependent

forcing term. Then the proposed third order BDF-type scheme (2.14) can be imple-

mented to solve for (1.2). To demonstrate the accuracy in time, the spatial numerical

error has to be negligible. We fix the spatial resolution as N = 192 (so that h = 1
192),

and set the final time T = 1. The diffuse interface parameter is taken as ε = 0.5, and

we set the artificial regularization parameter as A0 = 1. Naturally, a sequence of time

step sizes are taken as ∆t = T
NT

, with NT = 100 : 100 : 1000. The expected temporal

numerical accuracy assumption e = C∆tk indicates that ln |e| = ln(CT k)− k lnNT , so

that we plot ln |e| vs. lnNT to demonstrate the temporal convergence order. The fitted

line displayed in Fig. 1 shows an approximate slope of −2.9964, which in turn verifies

a nice third order temporal convergence order, in both the discrete L2
N and L∞

N norms.



A Third Order BDF-Type Energy Stable Scheme for the Cahn-Hilliard Equation 297

102 103

NT

10 -12

10 -11

10 -10

10 -9

10 -8

N
um

er
ic

al
 e

rr
or

L  norm for 

L2  norm for 
fitting data

Figure 1: The discrete L2

N and L∞

N numerical errors vs. temporal resolution NT for NT = 100 : 100 : 1000,
with a spatial resolution N = 192. The surface diffusion parameter is taken to be ε = 0.5. The data
lie roughly on curves CN−3

T , for appropriate choices of C, confirming the full third-order accuracy of the
scheme.

4.2. Numerical simulation of coarsening process and energy dissipation in
time

In this subsection we present a numerical simulation result of a physics example.

With the assumption that the interface width is in a much smaller scale than the domain

size, i.e., ε ≪ min{Lx, Ly}, one is interested in how properties associated with the

solution to (1.2) scale with time. In particular, the energy dissipation law has attracted

a great deal of attentions, and a formal analysis indicates a lower decay bound as

t−1/3. Meanwhile, it is noted that the rate quoted as the lower bound is typically

observed for the averaged values of the energy quantity. A numerical prediction of

this scaling law turns out to be very challenging, since a large time scale simulation

has to be performed. To adequately capture the full range of coarsening behaviors,

numerical simulations for the coarsening process require short- and long-time accuracy

and stability, in addition to high spatial accuracy for small values of ε.

We compare the numerical simulation result with the predicted coarsening rate,

using the proposed third order scheme (2.14) for the Cahn-Hilliard flow (1.2). The

diffusion parameter is taken to be ε = 0.02, and we take the domain as Lx = Ly =
L = 12.8, h = L

N , where h is the uniform spatial step size. For such a value of ε,

extensive numerical experiments have shown that N = 512 is sufficient to resolve the

small structures in the solution.

For the temporal step size ∆t, we use increasing values of s in the time evolution.

In more detail, ∆t = 0.004 on the time interval [0, 400], ∆t = 0.04 on the time interval

[400, 6000], and ∆t = 0.16 on the time interval [6000, 20000]. Whenever a new time step

size is applied, we initiate the two-step numerical scheme by taking φ−1 = φ−2 = φ0,

with the initial data φ0 given by the final time output of the last time period. Both

the energy stability and third order numerical accuracy have been theoretically assured

in the previous sections. Fig. 2 presents time snapshots of the phase variable φ with

ε = 0.02. Significant coarsening is observed in the system. At early times many small
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t = 1, 10 t = 100, 200

t = 300, 400 t = 6000, 20000

Figure 2: (Color online.) Snapshots of the computed phase variable φ at the indicated times for the
parameters L = 12.8, ε = 0.02.

structures are present. At the final time, t = 20000, a single interface structure emerges,

and further coarsening is not possible.

The long time characteristics of the solution, especially the energy decay rate, are

of interest to material scientists. Recall that, at the space-discrete level, the energy, EN

is defined via (2.12). Fig. 3 presents the log-log plot for the energy versus time, with

the given physical parameter ε = 0.02. The detailed scaling “exponent” is obtained

using least squares fits of the computed data up to time t = 160. A clear observation of

the aet
be scaling law can be made, with ae = 7.6783, be = −0.3374. In other words, an

almost perfect t−1/3 energy dissipation law is confirmed by our numerical simulation.

100 101 102 103 104

time

100

101

Figure 3: Log-log plot of the temporal evolution the energy EN for ε = 0.02. The energy decreases like
t−1/3 until saturation. The red lines represent the energy plot obtained by the simulations, while the straight
lines are obtained by least squares approximations to the energy data. The least squares fit is only taken for
the linear part of the calculated data, only up to about time t = 400. The fitted line has the form aet

be ,
with ae = 7.6783, be = −0.3374.
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Remark 4.1. In this presented numerical simulation, the spatial resolution and time

step sizes are taken as the same as the ones presented for a second order accurate,

energy stable scheme [17]. For the long time simulation, both numerical schemes have

produced similar evolutionary curves in terms of energy. A more detailed calculation

shows that long time asymptotic growth rate of the standard deviation given by the

third order numerical simulation is closer to t−1/3 than that by the second order energy

stable scheme: be = −0.3374, as recorded in Fig. 3, while in [17] this exponent was

found to be be = −0.3445. This gives more evidence that the third order BDF-type

scheme is able to produce more accurate long time numerical simulation results than

the second order schemes.

5. Concluding remarks

In this article, we propose and analyze a third order accurate BDF-type numerical

scheme for the Cahn-Hilliard equation (1.2), combined with Fourier pseudo-spectral

spatial discretization. The surface diffusion the nonlinear chemical potential terms are

treated implicitly, while the expansive term is approximated by a third order explicit

extrapolation formula for the sake of solvability. More importantly, a third order accu-

rate Douglas-Dupont regularization term is added in the numerical scheme. A modified

energy stability is theoretically justified, so that a uniform bound for the original en-

ergy functional is available, and a theoretical justification of the coefficient A0 becomes

available. Such an energy estimate implies a uniform-in-time L6
N bound of the numer-

ical solution. Furthermore, the optimal rate convergence analysis and error estimate

are derived in details, with the help of such a uniform L6
N bound for the numerical so-

lution. In the convergence estimate, a discrete inner product is taken with an alternate

numerical term, to avoid the well-known difficulty associated with the long-stencil na-

ture of the standard BDF3 scheme. Some numerical simulation results are presented to

demonstrate the robustness of the numerical scheme and the third order convergence.

In particular, the long time simulation results have revealed that, the power index for

the energy decay rate for ε = 0.02 (up to T = 2 × 104), created by the proposed third

order numerical scheme, is more accurate than these created by certain second order

accurate, energy stable schemes in the existing literature.
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Appendix A. Proof of Proposition 2.1

Due to the periodic boundary condition for f and its cell-centered representation,

it has a corresponding discrete Fourier transformation, as the form given by (2.1)

fi,j,k =

K∑

ℓ,m,n=−K

f̂ℓ,m,n exp
(
2πi(ℓxi +myj + nzk)

)
. (A.1)

Then we make its extension to a continuous function

fN(x, y, z) =

K∑

ℓ,m,n=−K

f̂ℓ,m,n exp
(
2πi(ℓx+my + nz)

)
. (A.2)

The following result is excerpted as [22, Lemma A.2]; similar analyses have also

been reported in recent works [17,21], etc.

Lemma A.1 ([22]). For g ∈ GN , we have

‖g‖p ≤
√

p

2
‖gN‖Lp with p = 4, 6. (A.3)

Then we proceed into the proof of Proposition 2.1.

Proof. We see that

‖f‖6 ≤
√
3‖fN‖L6 ≤ C‖fN‖H1 ≤ C

(
‖fN‖+ ‖∇fN‖)

= C
(
‖f‖2 + ‖∇Nf‖2

)
≤ C‖f‖H1

N
, (A.4)

in which the second step is based on the Sobolev embedding in the continuous space

‖fN‖L6 ≤ C‖fN‖H1 , and the fourth step comes from the fact that f uniquely corre-

sponds to fN . This completes the proof of Proposition 2.1.
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